APPENDIX 1

The steps in derivation of the probability $\mathrm{p}(\mathrm{n}, \mathrm{x})$ for the production of an avalanche of n electrons at the distance x from the cathode are as follows:

Let $N(x)$ is the number of electrons emitted from the cathode which pass the distance x^{\prime} from the cathode without any ionizing collision. Then

$$
\begin{aligned}
\mathrm{dN}\left(\mathrm{x}^{\prime}\right) & =-\alpha \cdot \mathrm{N}(\mathrm{x}) \mathrm{dx} \\
\mathrm{~N}\left(\mathrm{x}^{\prime}\right) & =N_{0} \cdot \exp \left(-\alpha \mathrm{x}^{\prime}\right)
\end{aligned}
$$

where $N_{0}=\mathrm{N}\left(\mathrm{x}^{\prime}=0\right)$. As a consequence of this

$$
\begin{array}{lllll}
\mathrm{p}\left(1, \mathrm{x}^{\prime}\right) & = & \mathrm{N}\left(\mathrm{x}^{\prime}\right) / \quad N_{0} & = & \exp \left(-\alpha x^{\prime}\right) \tag{1}
\end{array}
$$

Let the probability that the avalanche contains $n-1$ at x^{\prime} is

$$
\mathrm{p}\left(\mathrm{n}-1, \mathrm{x}^{\prime}\right)
$$

(2)

The probability that one and only one of these electrons will ionize in the region between x^{\prime} and $x^{\prime}+d x^{\prime}$ can be found from the binomial distribution considering that $W(k, 1)=p(n-1,1)$, and $y=\alpha$.dx .Thus

$$
\mathrm{p}(\mathrm{n}-1,1)=(\mathrm{n}-1) \cdot \alpha \cdot d x^{\prime}\left(1-\alpha \cdot d x^{\prime}\right)^{\mathrm{n}-2}
$$

for $\mathrm{dx}^{\prime} \approx 0$

$$
\mathrm{p}(\mathrm{n}-1,1) \quad \cong \quad(\mathrm{n}-1) \cdot \alpha \cdot \mathrm{dx} x^{\prime}
$$

The number of electrons in the avalanche has now increased from $n-1$ to n. The probability that none of these electrons will ionize in the region between $x^{\prime}+\mathrm{dx}^{\prime}\left(\cong \mathrm{x}^{\prime}\right)$ and x is:

$$
\begin{equation*}
\left[p\left(1, x-x^{\prime}\right)\right]^{n}=\left[\exp \left\{-\alpha \cdot\left(x-x^{\prime}\right)\right\}\right]^{n}=\exp \left\{-n \cdot \alpha \cdot\left(x-x^{\prime}\right)\right\} \tag{4}
\end{equation*}
$$

where $\mathrm{p}\left(1, \mathrm{x}-\mathrm{x}^{\prime}\right)$ is the probability that a single electron will not ionize between x^{\prime} and x. If we take the product of expressions (2),(3) and (4), and integrate over x,for $\mathrm{n}>1$, we get

$$
\begin{align*}
& \mathrm{p}(\mathrm{n}, \mathrm{x})=\int_{0}^{\infty} p\left(\mathrm{n}-1, \mathrm{x}^{\prime}\right) \cdot \mathrm{p}(\mathrm{n}-1,1) \cdot\left[\mathrm{p}\left(1, \mathrm{x}-\mathrm{x}^{\prime}\right)\right]^{\mathrm{n}} \mathrm{~d} \mathrm{x}^{\prime} \\
& \mathrm{p}(\mathrm{n}, \mathrm{x})=\int_{o}^{0} p\left(\mathrm{n}-1, \mathrm{x}^{\prime}\right) \cdot(\mathrm{n}-1) \cdot \alpha \cdot \exp \left\{-\mathrm{n} \cdot \alpha \cdot\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\right\} d x \tag{5}\\
& \quad p(n, x)=\exp (-n \cdot \alpha \cdot x) \cdot(\exp \{\alpha \cdot x\}-1)^{n-1}=
\end{align*}
$$

The solution of the equation (5) is:

$$
=\left(\frac{1}{n}\right)^{n} \cdot(\bar{n}-1)^{n-1}=-\frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{n-1}
$$

