\ 4 UNIVERSITE DE PAU ET EJES PAYSOCL'AfXMlK Femtosecond laser ablation Inorganic analytical chemistry in 5 dimensions: concentration, isotopes, speciation, spatial resolution, time resolution and the way to combine all of them; some developments in LA in proteomics Christophe Pecheyran Laboratoire de Chimie Analytique Bio-lnorganique et Environnement (LCABIE), UMR CNRS-UPPA 5254 IPREM, Helioparc Pau Pyrenees, 64053 Pau, France christophe.pecheyran@univ-pau.fr Ultra trace, Isotopes and laser ablation in LCABIE-IPREM Environment Nuclear non proliferation LCABIE-IPREM (University of Pau - CNRS) • 30 permanent position scientists. • 275 peer reviewed publications (last 4 years). • 22 PhD thesis (last 4 years). • 8 quadripole ICPMS (12 including the spinoff UT2A) (Perkin, Agilent, Thermo, Brucker (loan)) • 2HR-ICPMS(T/?ermo>> • 1 MC-ICPMS (Nu Instrument) • 1ICPAES (JY) +1 Spectro (spinoff UT2A) • 2 High repetition rate femtosecond lasers (Nexeya-Aplitude Systemes) • GC, HPLC,ULPC,FFF, etc... • Organic mass spectrometry (orbitrap, GCMS, ESIMS) • MARSS (MAss Spectrometry Center for Reactivity and Speciation Sciences) : (1 nano SIMS, 1 FTICR, 1 HR-MCICPMS to be installed) Analytical chemistry in 5 dimensions Analytical chemistry in 5 dimensions Concentration resolution resolution r Analytical chemistry in 5 dimensions koto Pe N Concentration : itH| 0 'a ty/\o\ecuVar stryctuve Time resolution sPatial solution Hyphenation with the ICPMS family Speciation & Laser ablation Hyphenation with the ICPMS family Analytical chemistry in 5 dimensions Concentration 1 . ■ GC-ICPMS Coupling • • • • GC-/ICPMS coupling General Principles Aim: in a system. Speciation —> distribution of an element among defined chemical species Spedation analysis —* Identification and/or measurement of the quantities of one or more individual chemical species in a sample. Principle: Sequential separation ICPMS is suitable for Elemental analysis, but do not allow to differentiate or to identify the various chemical species of an element in a sample (-» simultaneous ionization & detection). The sequential introduction of the analytes in the spectrometer is able to solve that problem and to discriminate the chemical species and their proper isotopic signature. This separation is achieved prior to the ionization and must be well characterized in term of elution order and time. A transient signal is obtained : peak intensity proportional to concentration. Total analysis - ICPMS Sample Hg g Ionization Source (6000 - 8000K) Speciation analysis - GC/ICPMS Ionization Source Sample i Hg -202Hg 199 Hg Elution time Pau, Nov.3-6*' 2014 GC-ICPMS coupling: Advantages & Limitations Classical elements /species analyzed by GC-ICPMS Me2Se, Me2Se2, ... Hg°, MeHgH, HgCI2, Me2Hg, MeEtHg, Et2Hg, Bu2Hg, EtHgCI SnH4, MeSnH3 , Me2SnH2, Me3SnH , Me4Sn, Et4Sn, BuSnH3, Bu2SnH2, Bu3SnH, BuEt3Sn, Bu2Et2Sn, Bu3EtSn, BuPr3Sn, Bu2Pr2Sn, Bu3PrSn, PhSn3*, Ph2Sn2+, Ph3Sn+, Ph4Sn BiH3, MeBiH2, Me2BiH, Me3Bi Me4Pb, Me3EtPb, Me2Et2Pb, MeEt3Pb, Et4Pb Pau, Nov.3-6ih2014 GC-ICPMS coupling: Gas Chromatography Analytical technique for the separation of chemical species from a complex mixture, likely to be volatilized by heating without any degradation. Sample Injection Carrier GC Column : : E ! ! ! ! 1 1 E E z : ] i i i E □....................ä.....................Ei..................... 1....................1 1................. .....................z................. E z : i i i i .....................i................. E E EE: E i i.....................!..................i.................n................................... ] 1 A I li i j Time (min) Elution to the Detector Gas chromatography (GC) is based on a partition equilibrium of analytes between: - a solid stationary phase (column filled with a silicone-based material) - a mobile phase (inert carrier gas: He, N2, ...)■ Analytes are eluted to the detector as a function of: - their chemical affinity with the stationary phase - their boiling point (for derivatized Hg species) Final sample preparation and injection has to be achieved in organic solvent Pau, Nov.3-6ih2014 GC-ICPMS coupling:_Gas Chromatography Chromatographic parameters: Retention time (tR) The retention time is the characteristic time it takes for a particular analyte to pass through the system (from the column inlet to the detector). tR is defined at the maximum intensity of the peak tR is theoretically independent of the concentration and of the injected amount. Under fixed experimental conditions, tR is reproducible and allows the identification of the analytes by comparison with injections of standard solutions. Pau, Nov.3-6th2014 GC-ICPMS coupling:_Gas Chromatography Chromatographic parameters: General factors influencing the quality of the GC separation & analysis: - Column geometrical factors Length, Internal diameter, coiling up - Column filling Stationary phase regularity, type and quantity - Mobile phase: Type of gas and flow - other factors Oven heating program, amount of sample injected => Optimized design of the GC system Pau, Nov.3-6ih2014 GC-ICPMS Instrument Injection port Carrier gas Injector Column Oven GC Column Carrier gas: Chemically inert with the analytes High purity grade Compatibility with the employed detector Typical carrier gases include helium, nitrogen, argon, hydrogen and air. -» The carrier gas flow depends on the type of column used (capillary, filled column) and influenced both separation of the analytes and duration of the analysis. Pau, Nov.3-6th 2014 GC-ICPMS coupling: GC Instrument Injector: The injector provides the means to efficiently introduce the sample in the GC column - No degradation of the analytes prior to the separation - Repeatable injection of microvolumes The injector column - connected to the head of the GC . - thermoregulated - flushed by the carrier gas —> Sample injection through a septum Thermo lite® septa for Hg species analysis Analytes are volatilized in the liner Septum Carrier gas inlet Heated metal block Glass liner V □ II r: a Heated Chamber Li.. Septum purge outlet Split outlet Vaporization chamber Column Pau, Nov.3-6fh 2014 GC-ICPMS coupling: GC Instrument Injection mode: Split A part of the sample/carrier gas mixture in the injection chamber is exhausted through the split vent. Split injection is preferred when working with samples with high concentrations. 1- Injection and vaporization in the liner 2- Split of the sample/carrier gas mixture 3- Septum Purge to remove heavier elements For GC-MC/ICPMS application: The split mode can induce isotopic fractionation Septum Purge m t GC Column Pau, Nov.3-6*' 2014 GC-ICPMS coupling:_ Injection mode: Splitless GC Instrument The carrier gas sweeps completely the sample into the column. Splitless injection is dedicated to trace analysis with low amounts of analytes. 1- Injection and vaporization in the liner 2- Septum Purge to remove heavier elements Limitation : Maximum injection volume of 3uL The Inlet must be cleaned on a regular basis (septum replacement, ferrules fragment removal) Septum Purge GC Column Pau, Nov.3-6*' 2014 GC-ICPMS coupling: GC Instrument Injection mode: - PTV Injector: Programmable Temperature Vaporization injector A programmed temperature gradient is applied to perform a pre-separation of target analytes from other components of the sample (solvent, matrix, heavy compound...) Simultaneous cold/cryo trapping of the analytes and venting of the solvent => large volume or multiple injection Advantages: - Improve chromatographic resolution and analytical performances - Increase injection volume up to ~100-200 |JL - Reduce solvent & matrix effects - Prevent GC column against aging, clogging and bleeding Limitations: - Cost - Liquid nitrogen supply - Helium carrier gas - Analytes losses via the solvent vent Liq. N2 7\ I I V h?ijicii ■ ft* * 44 il Temperature He Flow \ I r 4 * Pou, Nov.3-6ih 2014 GC-ICPMS coupling:_ GC column: 1- Capillary column characteristics: - Internal diameter: 0.2 to 0.32 mm - Length : 15 to 100 meters - Tubing : Fused silica. Stainless steel - Carrier gas flow: 0.5-2 mL min"1 2- Semi-capillary column characteristics: - Internal diameter: 0.53 mm - Length : 5 to 50 meters - Tubing : Fused silica, Stainless steel - Carrier gas flow: 1-30 mL min1 => Chromatographic resolution will depend on: - Internal diameter - Length - Type of the stationary phase and thickness GC Instrument Capillary column cross section Pau, Nov.3-6ih2014 GC-ICPMS coup ing:_Advantages & Limitations Applications and required conditions for speciation analysis and GC separation • Target analytes must be volatile and thermally stable. • Non volatile target analytes must be easily alkylated, without any modification of the original speciation and species distribution in the sample. Example of chemical species of environmental interest '. Mercury Tin Lead Selenium,.... Hg2+ Sn4+ Pb2+ MexHg(2-*)+ MexSn(4-x>+ MexEtyPbC4"x-y)+ Me2Se Et.Hg^H EtxSn(4"x)+ Me2Se2 BuxSn(4-x> PhxSn(4-*) For these elements, only the fully substituted species, plus Hg°, are volatile and can be directly analyzed, without any sample prep with using a GC-(MC)/ICPMS Ex : Hg°, Me2Hg, Et2Hg, Et4Sn, Me4Pb, etc... Pau, Nov.3-6ih2014 GC-ICPMS coupling: GC Instrument GC column: Most frequently used capillary column for Hg, Sn, Pb, Se Speciation & GC/ICPMS coupling: DBS, DBMS, HPS, MXT1, ... Preference: Semi-capillary MXT-1 column : - Siltek treated Stainless steel (or Silcosteel) - non polar phase 100% dimethyl polysiloxane - T° range: -60 to 430°C RESTEK CH I ■Si I CH 3 100% Similar columns: DB-1, DB-1MS, HP-1, HP-1MS, Ultra-1, SPB-1, Equity-1, MDN-1, CP-Sil 5 CB. VF-1ms - Robustness - Easy installation and maintenance - Flexible Chromatographic resolution: Peak width suitable for isotopic measurements Pau, Nov.3-6th 20 U GC-CPMS coupling: Advantages & Limitations i+J L*J Gaseous phase sample introduction 100% of the sample is transferred into the ionization source (plasma). => The transient signal obtained (chromatographic peak) improves significantly the analytical performances of the method (ALD < lpg ). The signal treatment and statistics have to be carefully conducted in order to maintain that benefit for isotopic measurement. -X» > K Chromatographic separation The sequential elution of the analytes reduced isobaric interferences and matrix effects in the plasma Enhanced stability of the ionization source and background noise due to the continuous introduction of the GC mobile phase (Carrier gas). I +| GC-MC/ICPMS coupling New and promising analytical tool to push back the frontier of scientific knowledge on Hg metrology and environmental issues (natural transformation mechanisms, source tracking, ...). Pau, Nov.3-6ih2014 GC-ICPMS coupling: Advantages & Limitations Limitations of GC/ICPMS coupling [ - | Stability of the target analytes during the chromatographic process => Species preservation and absence of isotopic fractionation | - | Chromatographic organic solvent induces plasma disturbance and carbon deposits on the cones [ - ] GC-(MC)/ICPMS interface Only 3 couplings are commercially available (Agilent, Thermo, Perkin Elmer) Customization still needed to fully optimize the mass spectrometer (mass calibration, mass bias correction, GC-ICPMS control and communication script,...) | - | GC-(MC)/ICPMS Analysis Run time Isotopic measurements on transient signal => "Slow" GC run (15-20 min), needed for replicated analyses + bracketing standards LJ GC-(MC)/ICPMS Data treatment Transient signal treatment for isotopic measurements is time consuming Need for customized Chromatographic integration software or calculation sheets. Pau, Nov.3-6th 2014 GC-ICPMS coupling: Analytical protocol optimization Speciation scheme for GC-(MC)/ICPMS analysis r Raw Sample Prep. Filtration, drying, freeze drying |jW digestion, ...etc) Derivatization Gas chromatography AEach step of the sample prep, protocol has to preserve the chemically integrity of the target analytes and avoid any fractionation process. Pau, Nov.3-6ih2014 GC-ICPMS coupling: Extraction Soft extraction methods for Hg speciation Objective: preservation of the chemically integrity of the target Hg species. Hot plate digester: - Acidic or Alkaline digestion - T max ~75-80°C - Closed glass or Teflon vessel (Savillex) Assisted Micro wave digestic - Acidic or Alkaline digestion - Programmable Heating -Semi- closed glass vessel iUihumii'"-1 1% Avoid sonication processes to solubilize the sample: Significant risk of methylmercury degradation Pau, Nov.3-6ih2014 GC-ICPMS coupling Extraction & Derivatization Soft extraction methods for Hg speciation (Hg2+, CH3Hg+) 100mL of filtred acidified Water HCl 0.5% {v/v) + 5 mL Acetic acid/Acetate Buffer (0.1M pH 3.9) \ — pH adjustment at 3.9 + Ammonia solution (20% NH3) \ + GC solvant (hexane, isooctane) 200|JL to 2 mL 0.5 mL of derivatization reagent solution 0,5%(w/v) Manual Shaking (5 min) Dry Sediments (0.1-O.Sg) Particules + Filtre i m + 5mLHNOj6N Micro wave digestion (4 min / 75°C / 70W) Centrifugation (2500 r.p.m., 5 min) í 0.1-1 mL of extract ] + 5 mL Acetic acid/Acetate Buffer (0.1 M pH 3.9) i pH adjustment at 3.9 + 20% Ammon| solution (NH3) + GC solvant (hexane, isooctane) 200|jLto2 mL A 1 mL of derivatization reagent solution 0,5 % (w/v) ♦ Dry Biotissue (0.1-0.5g) \ + 5mLHNOj6N orTMAH Micro wave digestion (4 min / 75°C / 70W) Centrifugation (2500 r.p.m., 5 min) 0.1-1 mL of extract ) + 5 mL Acetic acid/Acetate Buffer (0.1 M pH 3.9} ^^^^^^ pH adjustment at 3.9 + Ammonia solution or HCl A + GC solvant (hexane, isooctane) 200|JL to 2 mL 1 mL of derivatization reagent solution 0,5 % (w/v) Manual Shaking (5 min) Recovery of the organic phase in GC vial -> 1-2|jL injection öu, Nov.3-6*' 20 U GC-ICPMS coupling:_Extraction Soft extraction methods for Hg speciation (Hg2+, CH3Hg+ Some critical points: - Specific pH adjustment using a pH meter for each sample - precision required: 10~2 pH unit - acceptable range: 3.8 - 4.1 - frequent calibration of the instrument - Vessel and vials must be compatible with the entire chemical prep protocol regarding : - the nature of material (glass, Teflon, polypropylene) - the decontamination protocol (acid resistance) - the tightness (manual shaking) - the centrifugation step - the liq/liq extraction step & the recovery of the organic phase (narrow neck) ■x Significant risk of cross contamination : The material and ancillary instruments should be dedicated to the isotopic composition analyses Wheaton vials + Teflon lined PP cap ( > Pau, Nov.3-6ih2014 GC-MC/ICPMS coupling: Derivatization Derivatization reaction Alkylation Reactions Reactions in aqueous solution Hg species Ethylation (NaBEt4) : 2NaBEt4 + Hg 2+ -► 2BEt3 + HgEt2 + 2Na+ NaBEt4 + MeHg+-► BEt3 + MeHgEt + Na+ Hg species Propylation (NaBPr4) : 2NaBPr4 + Hg 2+ -► 2BPr3 + HgPr2 + 2Na+ NaBPr4 + MeHg+-► BPr3 + MeHgPr + Na+ Hg species Phenylation (NaBPh4) : 2NaBPh4 + Hg 2+ -> 2BPh3 + HgPh2 + 2Na+ NaBPh4 + MeHg+ -► BPh3 + MeHgPh + Na + Pau, Nov.3-6*' 2014 GC-MC/ICPMS coupling:_Derivatization Derivatization reaction Alkylation Reactions Driving parameters pH effect - Optimum alkylation of Hg species occurs at pH 3.9 - Lower pH => parasitic reactions producing alkanes will reduce Hg derivatization efficiency - higher pH => reaction rate is slow down Kinetic of the reaction - Reaction time ranges from 5 to 30 min depending on the type of matrix and reagent Limitations - Purity grade of derivatizating reagents is variable depending on suppliers and lots - Reagent stability - A post-derivatization liquid/liquid extraction is needed to transfer the substituted Hg species in the GC solvent. Pau, Nov.3-6th 2014 GC-MC/ICPMS coupling: Analytical protocol optimization Detector's acquisition frequency The ICPMS acquisition frequency is a key parameter for transient signal characterization and treatment, It directly influences: the chromatographic peak's definition : 20 to 30 points of acquisition are necessary to well characterized a symmetric chromatographic transient signal (lOOpts for asymmetric peak). the analytical performances : Too high acquisition frequency increases the background noise and decreases in turn the performances. in c 100 pts/s 5 pts/S |r Time chromatographic resolution A good compromise has to be found between Analytical performances Pau, Nov.3-6ih2014 Signal acquisition. Some basics... CT ~a shot noise + ° flicker"1"'" • The acquision time directly affects the shot noise value. In a first approximation, the shot noise varies according to the law : a shot noise k. (1M) , where t is the acquision time and k a constant. 'Hence increasing the acquisition time allows reducing the shot noise => According to this approximation, the LOĎ can be improved by a factor 2 when increasing the acquisition time by a factor 4. => In ICPMS (quad), the shot noise becomes negligible after 1 - 2 s of integration. 100 pts/s 5 pts/s Acquisition time (s) GC-ICPMS coupling:_GC transfer line Principle: Objective n°l: Efficient introduction of the GC carrier gas in the Plasma ICPMS Argon flows act as a mechanical barrier for the GC's analytes introduction in the plasma. The addition of an Argon Make up gas is essential. Pau, Nov.3-6ih2014 GC-ICPMS coupling: GC transfer line Principle: Objective n°2: Dual sample introduction system via the double inlet torch Simultaneous connection of a Desolvating nebuliser system or Nebulisation spray chamber Continuous internal standard introduction Bias correction 1 Signal optimization ^Signal stability monitoring Transfer line's holder is necessary to not disturb the torch positioning Pau, Nov.3-6*' 2014 GC-ICPMS coupling: GC transfer line Commercial GC-ICPMS Interfaces Thermo T max = 300°C GC-ICPMS coupling: GC transfer line Dry Plasma interface : ;*C*; Agilent Technologies > Need for 02 introduction to avoid carbon deposits ■ v > Need for a gaseous Internal standard for signal optimization I PerkinElmer Ar make up gas + Xe GC Column Heating wire GC Column Insulated mantle Heating wire GC Column Pau, Nov.3-6*' 2014 GC-ICPMS coupling GC transfer line Example of potential plasma disturbance during GC solvent elution : 2jjL of gaseous organometallic standards in methanol > Solvent effect reduced by addition of 02 Without 02 addition With 02 addition Pqu, May 12-15th2012 GC-ICPMS coupling: GC transfer line Wet Plasma interface Simultaneous introduction via a double inlet torch: - GC flow in the torch axis - Liquid aerosol with a 45° angle Ar Make up Designed and made in Pau (France) 000 --- ] 000 Ar Cooling Ar Auxiliary GC Column Avantages: Continuous nebuiization of Standard aqueous (or desoivated) solution => Online signal optimization Dissolved 02 avoid any Carbon deposit Signal stability control, mass bias correction Semi-Quantification with internal liquid standard (± 30%) Wet or dry plasma configuration Pau Nov.3-6th 2014 GC-MC/ICPMS coupling: GC transfer line Dry/Wet Plasma interface Thermo SCIENTIFIC - Outer tubing: 1/16" passivated Stainless Steel tubing (Siitek / Silcosteel, Restek) - Inner tubing: 0.28 mm ID MXT1 Stainless Steel Guard column (Restek) - GC column connection: passivated & low dead volume connector (Restek) -1/16" Stainless Steel tubing GC column (MXT-1 0.53mm ID) MXT Connector Dt=tQ- 1/16"SS T connector Heating wire & Insulating Mantle Argon Make up coil Female spherical SS connector GC Overt MC-ICPMS Torch box Pau, Nov.3-6ih2014 Torch design for dual-inlet introduction Standard torch X7 et XII Torch for GC/ ICPMS X7 et XII (collaboration LCABIE/ Thermo) Thermo GC-ICP-MS XSeries ICP-MS and Focus GC > Three legged GC-ICP-MS torch > Autotune & Performance; reporting with aqueous solution > Gas or solution analyses without reconfiguring the interface > On-line addition of aqueous internal standards > Robust wet plasma conditions for GC-ICP-MS analysis Realisation modified torch box with GC coupling 42 GC-ICPMS coupling GC transfer line GC Injector Splitless, 250 °C Column DB1,30 m, i.d. 0,32 mm, df 0,25 Carrier Helium, 4 mL/min gas GC 80°C / ramp 50°C/min program /280°C ICP/MS Power 1250 W Gas flows Plasma gas : 15 l/min Auxiliary Gas : 1 L/min Blend gas : 0,85 l/min + Xe Internal standard Xenon 50 ppmv in Ar, 5 mL/min mode Time Resolved Analysis CM 2,4x10 -2,2xl05 -2,0xl05 -l,8xl05 - 1,6x10 - Continuous internal standard 1 (Sb, 5 ug/L) 1,4x10 - 1,2x10 - 6 £ i,oxio5 § 8,0xl04 w 6,0xl04 4,0xl04 2,0xl04 0,0 r160000 - 140000 - 120000 - 100000 80000 - 60000 3 - 40000 - 20000 Retention time (min) GC-ICP-MS determination of 7 organotin compounds (1: MBX 2:TPrT, 3: DBT, 4: MPhT, 5: TBT, 6: DPhTf 7: TPhT) Analytical performance Limits of detection < 10 fg for organo-tin compounds 43 GC-ICPMS coupling:_GC transfer line Example of Operating Conditions for Hg species analysis - Wet Plasma GC Parameters Injector Splitless; 250°C Column MXT-1; 30m Igth; 0.53mrn ID df 1pm Carrier gas Helium,25 mL min1 Make up gas Argon, 280 mL min-1 GC program 60°C/2min - 40°C/min - 250°C ICP-MS oarameters Power 1270 W Gas Flow I Cooling: 14 L min1 Auxiliary: O.SLmin1 Nebulizer: 0.5 L min1 Spray Chamber Cyclonic Nebulizer Meinhard concentric, self aspirating Isotopes 198Hg ; 199Hg ; 20flHg . Z01Hg ; 202Hg ; 20*TI; 205TI GC-Q-ICPMS analysis by propylation of the Hg species to O PI 140 130 120 110 100 90 80 Thallium solution .(0.5 ug Ľ1) Hg 2+ CH3Hg 80 100 Time (s) 120 202Hq if ■ it- m mi In 11 Wi i 'i *n .I*. 140 160 1S0 200 Drift correction with internal Instrument sensitivity changed by « de-tuning standards »the extraction lens 2,41 2,2 J 2,0 J 1,8 J 1,6 J 1,4 J CD 1,2 H 1,0^ 0,8 J 0,6 -0,4 J 0,2 J 0,0 03 Ä I Original calibration Correction with TPrT A Correction with Sb 5b 100% 5b 66% É Sb 50% 140000 120000 100000 80000 _Q CM 60000 Q_ 40000 20000 0 Data for TBT, injection 2 pg absolute 45 SPME/GC/ICPMS Definition: SPME (Solid Phase Micro Extraction) is a preconcentration technique, allowing analyte preconcentration on a fiber prior injection into a GC. The extraction yield (preconcentration) is not total as a result of an equilibrium between the fiber, the solution un the head space. It depends on the matrix, the species, the volume of the solution, the fiber type, the temperature and the mixing of the solution. SPME seringe Preconcentration principles Plunger Direct sampling Barrel Color-coded Screw Hub ling Septuj Retaining Nut Head space sampling i í J Rb*r Sheath (pJtfCM Mptum Flb#r Attachment Rod SPME/GC/ICPMS The GC jiia^/ICPMS interface is similar as shown previously. A special liner must however be used Advantages : ° Very low limits of detection (pg/l organoSn) • No solvent No sovent injection into the detector Can be automated (analyse on-line) • Equilibrium time (10-40 min) depending on the species and the sampling mode (direct or head space) • Internal standard or standard addition are mandatory to conterbalance matrix effects that likely affect the extraction yield. • Poor reproducibility Drawbacks: SPME/GC/ICPMS Organo-Sn Aqueous matrix filtration Solid matrix extraction CH3COOH Sediment, sludge HCI/MeOH (0.1M) biological tissue sample + acetate buffer pH=4.8 200pl of NaBEt4(2%) = 100ml Adsorption on í PDMS 100pm (40 min) elliptic table (420 rpm) desorption 5PME GC injector (250°<ľ) 48 250000 - 200000 - 150000 - 100000 - 50000 - 0 e _o a Li i- SPME/GC/ICPMS Organo-Sn. Analytical performances JL ° injection of 50 ng(Sn)/l . i2oSn Retention time o 4 6 8 10 12 MBT DBT TBT MPhT DPhT TPhT Limites de detection pg(Sn)/l 2 0.7 0.6 4 6 20 Repetabilite (%) 7 7 3 10 14 20 Linearite ng(Sn)/l De la limite de detection a 400 Isotope dilution /GC/ICP/MS Objectives - High precision and high accuracy analysis - Monitor reactivity and transfert of a given species in the environment (Biogeochemical cycles understanding) Principle • It consists in adding a specific isotope incorporated in the same chemical form than the species to be analysed, e.g : add 201HgMe+ to quantify HgMe+ Advantages : the isotopicallv enriched chemical species behave similarly than the analytes... Then : - The analytical bias related to sample preparation (some molecular degradation, adsorption, etc..) are counterbalanced - Matrix effects occuring into the ICPMS (and sample introduction) are also corrected. 5o Sample preparation for fish tissue (case of Methyl mercury determination) 201HgMe+ synthesis Spike of 201HgMe+ into the sample Microwave digestion Derivatization/Extraction: • acetate buffer 0.1 M, pH=4.0 • NaBEt4 (0.06 % w/w) • Shaken 5 min. • Centrifugation 2500rpm; 5min. Plasma ICP-MS Parameters Steel Capillary capillary column Helium Argon, « blend gas » HP 6850 GC Parameters Power 1250 W Gas Flow Plasma : 15 L/min Auxiliary : 1 L/min Nebulizer: 0.6 L/min Spray Chamber Cyclonic Nebulizer Meinhard concentric, self aspirating Isotopes mHg ■ mHg ; mHg ; aü1Hg ; 202Hg ; 204Hg ; 126Xe ; 203TI; 205TI Dwell time Hg isotopes : 20 ms Xe and Tl : 5 ms Injector Splitless, 200 °C Column M XT Silcosteel; 30 m ; i.d. 0.53 mm ; df 1.0 urn Carrier gas Helium, 25 mL/min Make up gas Argon, 300 mL/min GC program 60 °C/ramp 50 °C/min/180 °C 52 Determination du methylmercure par dilution isotopique : ĎORM-1 100 -i 80-1 e 60 □ 201HgD202Hg 97,3 * - 40 20 0 29,86 13,18 CH3201Hg+ naturel CH3Hg+j iui til un3nyj (DORM-1)/ DORM -1 aprěs ajout CH3201Hg+ 30000 , 25000 - & 20000 ■55 15000 c - 10000 H 5000 H 30.2 29.86 CH3201Hg CH3202Hg MeHgEt Et,Hg r I 100 150 200 time, s 53 Determination of methyl mercury by speciated isotope dilution: DORAA-1 w and w' c and c' : Ar and Ar X and X 9 weight of solution concentration : relative atomic mass of the element isotope abundance (atom %) isotope 201 (') « enriched spike » Y and Y ' : isotope abundance (atom %) isotope 202 R = isotope ratio (201Hg/202Hg) Critical parameters: isotope ratio (R) and spike concentration (c) Concentration of CH3Hg+ (|jg/g) Determined (n=5) Certified DORM-1 0.712 ±0,036 0.731 ± 0.060 54 Analytical performance 1. Precision of 0.9 % for 202Hg/201Hg (50 pg MeHg+, n= 5) 2. Accuracy of 0.2 % for 202Hg/201Hg (50 pg MeHg+, n= 5) 3. Absolute detection limits (as Hg) in the fg range 198Hg 199Hg 200Hg 201 Hg 202Hg 204Hg 250 194 192 220 143 596 Mass bias correction (205TI/203TI) Detector dead time (35 ns) 55 Volatile metal speciation in the atmosphere (natural or industrial chimney stack).. Speciation in industrial chimney stack 20 m, 60 mv.. Temperature : 120°C C07=ll%(vol.) 0 = 8% S02 = 800 ppm Which chemical species in the gas phase (not associated to particles)! Which amounts? Sampling device for speciation in the atmosphere An universal cryo-sampler Resistance chauffante Thermocouple Lainedeverre N2 sec + 5X -10CC Membrane Nafion 2 colonnes d 'échanti Hon nage 20 m, 60 m,... N2 cc liquide » Cylindre de cuivre Filtre f I 0.1 um -1CTC Piége cryogénique -18CTC Régulateur de débit Temperature : 120°C *C02=ll%(vol.) 0 = 8% S02 = 800 ppm Pecheyran, C, Quetel, CR., Martin Lecuyer, F.M., Donard, O.F.X. Simultaneous Determination of Volatile Metal (Pbf Hg, Sn, In, Ga) and Nonmetal Species (5e, P, As) in Different Atmospheres by Cryofocusing and Detection by ICPMS (1998) Analytical Chemistry, 70 {13), pp. 2639-2645. Pecheyran, C, Lalere, B., Donard, O.F.X., Volatile metal and metalloid species {Pb, Hg, Se) in a European urban atmosphere {Bordeaux, France)(2000) Environmental Science and Technology 34 (1), pp. 27-32, Pavageau, M.-P., Pecheyran, C, Krupp, E.M., Morin, A., Donard, O.F.X. Volatile metal species in coal combustion flue gas (2002) Environmental Science and Technology, 36 (7), pp. 1561-1573. Pavageau, M.P., Krupp, E., de Diego, A., Pecheyran, C, Donard, O.F.X. Cryogenic trapping for speciation analysis (2003) Comprehensive Analytical Chemistry, 41f pp. 495-531. Pavageau, M.-P., Pecheyran, C, Demange, M., Donard, O.F.X. Phosphine emission measurements from a tobacco factory using cryogenic sampling and GC-ICP-MS analysis {2003) Journal of Analytical Atomic Spectrometry, 18 (4), pp. 323-329. Pavageau, M.-P., Morin, A., Seby, F., Guimon, C, Krupp, E., Pecheyran, C, Poulleau, J., Donard, O.F.X. Partitioning of Metal Species during an Enriched Fuel Combustion Experiment. Speciation in the Gaseous and Particulate Phases{2004) Environmental Science and Technology, 38 (7), pp. 2252-2263. Mass flow controllers Ar 000 ICP/MS PE - Sciex ELAN 5000 □ [—[ Ar+Xe .-.- .• H.e. ,f ,i ,1 ,t ,1 x Event Sample introduction Cryogenic trap N2 Liq (b) Field column l^a) Injection port ICP/MS Detection Chromatoaraohic^ Separation __) Sample introduction Crytrapping- Low-temperature GC /ICPMS Absolute limit of detection, 3xSD, (pg as metal) Element GC/ICP/MS GC/AAS Lead 0.07 10 Forsyth, 1985 Tin 0.2 10 Jantzen, 1991 Mercury 0.8 50 Puk, 1994 Selenium 2.5 100 Jiang, 1982 Isotope ratio Pb Sn Hg Se Isotopes 208/206 120/118 202/200 78/77 Measured 2.19 1.37 1.30 3.17 n = 5 ± 0.02 ± 0.01 ± 0.01 ± 0.12 Theoretical 2.22 1.37 1.29 3.10 Spéciation of volatile metal species in a chimney stack HOMO 120C-D0 100C30 SOLDO 60M0 40M0 20C-D0 mm ŮÚQ0OO 7ŮMŮQ MQ0ŮŮ mm iOC-DOC Í-JC-DJC 23C33C 100300 Copper Cu65 Compose volatil du cuivre Cu63 í 50 100 IK) 200 Z5Q 300 3S0 n:; Temps de retention (s) 450 6Í3 550 Composes volatils du cuivre Tin Compose volatíl d'étúín Sn 11 a Sn 120 3 50 100 150 200 2 DO 300 350 400 450 Temps de retention is) Detected at the emission of a coal power plant LOD (fg) LOD (Pg/m3) As 229 45,9 Se 1600 319,5 Sn 29 5,7 Sb 3 0,7 Te 23 4,6 Pb 23 4,5 Bi 2 0,5 &Ů0 550 600 ESO 70C SM0OD 4 550C 3 ■1C HOC Ii 3M0M 3C3003 253003 2CD0CD 153003 1C 3003 53003 I Mercury I Compose volatil du mercure / Hg° 1 V Hg 200 Hg 202 400« 350« 30C30 2-;C30 20000 15000 im::;u Composes volatils de mercure Composes du selenium Selenium 50 1-30 150 2M 250 300 36Ů 4M 4M Temps de retention (s) 0 50- 100 150 2M 250 300 350 40O 450 500 550 6M 650 Temps de retention Is-j 700 550 S0Ď ÖM 700 Compose volatil ď étain Composes volatils du selenium Spéciation of volatile metal species over duck manure storage a ü u I 3.3E+« !< SE+M 7.0EK» G.ÍÍE+Í* J.OEK» 3.3E+C* 2.0EK» 1 JOCKS D.3E+00 75As n. 0 1 í/i U6E+04 1 1-.M 1-ZE+04 1.3E+04 6.3E+01 i.OE'B 2.0EH» 3 -j=-90%) • Linear Regression Slope 10 n 6 i 0_ a in 2 A y = 37.70391x-9.3127 R2 = 0.99999433 -2 -6 J 0*2121 0.4242 -10 Peak area o 'max Smax.(i-n/iOO) Wietzke et aL(2008), JAAS: Sr by LA/MC-ICP-MS +Natural weigh ting of the most significant points. • Precision improvement >10 Sianal 204Pb (V) In dependent ofthe chemical form * Excel lent results even at low concentration Concepts of isotope ratio determination in fast transient signals • Linear Regression Slope method SRM NIST 981, (injection of 1,2 ng as Pb) Correction 208/204 pb 207/204pb 206/204 pb 208/206 pb 207/206pb NIST 981 ref. 36,72185 15,49161 16,93736 2,1681 ± 0,91464 ± value 0.00033 0.0008 measured , n = 7 36,72093 15,49127 16,93699 2,16809 0,914641 accuracy bias. (%o) -0.025 -0.022 -0.022 -0.005 0.00068 2RSDExt, (ppm) 234 190 209 49 69 Anal. Chem. http://dx.doi.org/10.1021/ac301251b Using speciation techniques for dating crude oil formation Timing crude oil generation This information is useful to better understand the petroleum system and to find new petroleum reservoirs... Trace metal in petroleum products t í,IS => better understand the petroleum system, find new petroleum reservoirs, etc... A, Anticlinal trap Probability of success Les metaux dans les huiles, bitumes et kerogene donnent des informations cles : • oil migration •oil-oil and oil-source rock correlation •Biodegradation •Maturity • depositional environment •Time of oil expulsion Ps = (Charge factor) x (Trap factor) x (Time factor) v. Ps < 15 % U 15 % < Ps < 30 % 30 % < Ps < 50 % Ps > 50 % High risk J Medium risk Low risk ^ « Very Low » risk U-Pb, Th-Pb géochronometers? U-Pb, Th-Pb geochronometers a 4.196 MeV. 234Th 24.1 d 230Th 7.5X104y 222Rn 3.323 d a 5.490 MeV 218p0 3.04 min a 6.003 MeV P 214p0 1.4X104D 214Bi 19.7 min "7 214pb Z6.9 min P a 7.6S7 MeV u 7,04.109y Ct 4.395 MeV 231Th 23iPa 3.29X10^ ot 5.013 MeV 227Ac P 210po 138.4 d 210Bi 5,01 D a 5.304 MeV 210 Pb 22.4 y 206pb STABLE A=15/5.10-11yr1 227Th a •6.038 MeV 223Ra 11.4 d a 7.386 MeV / a 215p0 212pb 6051 l.SX104D 10,6 h MeV 211Bj 2,14 min 211Pb 36.1 min 208T5 3,05 min 208pb STABLE ^^.lO^yr1 A=98/5.1011yr 204Pb non radiogenic U-Pb, Th-Pb geochronometers In a closed system... I 206pb v / 206pfe v 206 204 V Pb It 204 Pb + 204 V Pb (eA,'-l) ^ I 207 pb \ \ 204 / 207 Pb \ ( 235tj \ 204 V Pb + \ 204 Pb (eKt -1) J I 208\ 204 V Pb I 208 Pb \ I 232Th \ 204 V Pb + i \ 204 Pb (e^ -1) Based on natural radioactivity of uranium and thorium Good precision to date samples older than 30 Ma. Needs precise and accurate determination of Pb isotope ratio Pb isotope ratios in crude oil: an analytical challenge.. Very complex matrix... Low concentrations (ppb)... MC-ICPMS <& data processing •Time consuming •Risk of contamination •Large sample dilution No Certified Reference crude oils for Pb Isotope ratios Mineralization \ •Dry ashing •Acid digestion A « conventional » analytical approach in geochemistry... 0.5 g of crude on + HN(^+ H2Oz Pb purification AG1-X8 resin 0.5 mL A [=1 Solid dissolution HBr^SM to Acid Evaporation Total Pb Q-ICPMS (Perkin Elmer, Elan DRC-I HPAS digestion Different* API Crude Oil: 0.5 g Kerogene: 6 - 100 mg P: 100 bar T: 300 °C Resin cleaning: 4mL0.25M HN03, then 2mLH20 Resin conditioning: 2mL0.5M HBr ^ ^ Sample loading: 10 mL0.5 M HBr Matrix removal: 2mL0.5M HBr+ 0.2 mLHCI Sample elution: L 4 mL 6M HCI Acid Evaporation Q ICP-MS: concentration checking Solid dissolution HN03 2% Ok Pb Isotopic ratio analysis by DSN/MC-ICP-MS, Nu plasma, NU Instruments >18 h J. Anal. At Spectrom., 2012, 27,1447-1456 Due to the lOW Pb concentrations in crude oil sample (5-200 ppb), DSN was used for all MC-ICPMS measurements. Using speciation techniques for Pb isotope ratios determination Mineralization Derivatization GC separation MC-ICPMS detection r r -1CJ If Data reduction 1U Solvent Nl£T 9Ů1 1 f 3. 5 Í/3 O. 3UCJ böü 'ríOU Time (s) i r 0 10"* 1Q-3 109 Pressure in mBar ens Lens potary pump III Turbo pump Electrostatic sector Mon :cr Plate Magnetic sector Variable dispersion Collector array Optic zoom A/u Hasrwa HR Anal. Chem. http://dx.doi.org/10.1021/ac301251b A « conventional » analytical approach in geochemistry... Remaining matrix effect when analyzing crude oils. Tl and Pb wash out profile after a purified crude oil digest 0.02 0.015 > -Q CL CO o CM 0.010 0.005 0 0 500 1000 1500 Time (s) 0.6 0.4 0.2 o CM 00 2000 30.0 29 jO £q.q lO.D e.o Organic molecular signature after acid digestion HPLC Dionex-UV 3CO rim Membrane coating by remaining organic compounds? Tl accumulation in the DSN Membrane? Very long washout J. Anal. At Spectrom., 2012, 27, 1447-1456 A « conventional » analytical approach in geochemistry... (Wash - Blank - Nist981 - Blank - Sample )n Time(min) 10->120 3,3 13 3,3 13 Analysis time : 80-180 min/sample Results for SRM NIST 981 (20 ng mL1) with a double mass bias correction : Tl correction + sample bracketing 2067204pb 207/204pb 206/204pb 208/206p^ 207/206pk Certified Reference Value Mean, n = 17 36.7219 15.4916 16.9374 2.1681 0.9146 36.7218 15.4916 16.9373 2.1681 0.9146 2RSDExt (ppm) 107 94 64 52 26 Using speciation techniques for Pb isotope ratios determination Fast alternative to conventional sample preparation and MC-ICPMS analysis Two-step matrix separation after sample mineralization 1. Derivatization with NaBEt^ &N~4*j9 (acetate, buffer) Extraction in isooctane (5-10 min) 2. Gas Chromatography to separate Et4Pb from the matrix Sample Isooctane (0,5 ml) + Et.Pb Gas Flow MC-ICPMS Ethylation of Pb with NaBEt4, Pb extraction in isooctane and the extract is introduced in the MC-ICPMS coupled to a Gas Chromatograph Anal. Chem. http://dx.doi.org/10.1021/ac301251b Using speciation techniques for Pb isotope ratios determination Elution time per sample Peak duration Integration time Mass bias correction = 13 min ~23 s 0,5 s (46 points/peak) Tl external correction + Standard Bracketing {NIST 981) Solvent Et.Pb Et4Pb Anal. Chem. http://dx.doi.org/10.1021/ac301251b -Data treatment strategy How to calculate Isotopic Ratios ? • Peak Apex: RA/B= Intensities ratios a • Average (point by point): RA/B= average of isotopic ratios ~ 20 pts ^ \W o o A / o 1 o ^ / o \ o A So <> o Isotope A / /TV • Isotope B Standard Using speciation techniques for Pb isotope ratios determination Data processing Linear Regression Slope IFietzke et al.(2008), JAAS: Sr by LA/MC-ICP-MS *Epov et 01.(2010), Anal. Chem: Hg by GC/MC-ICP-MS ťSanabria et al (2012), Anal Chem, Pb by GC/MC-ICP-MS Precision improved by ~ 10 10 . _ 6 ^ > £ 2^ O O 2 -2 4 g> ' CO -6 -I y -10 ^ 208Pb/204Pb y = 37.70391x-9.3127 R2 = 0.99999433 0c£121 0.4242 Sianal 204Pb (V) Results obtained for the measurement of SRM NIST 981, (1,2 ng as Pb was injected) NIST981 Certified Reference Value Measured, n = 7 Corrected Deviation to the (TI+ Bracketing) CRV (%o) 2RSDExt, (ppm) 207 r204pb 20 208/206 Pb 207/206pb 36,72185 15,49161 16,93736 2,1681 ± 0.00033 0,91464 ± 0.0008 36,72093 15,49127 16,93699 2,16809 0,914641 -0.025 -0.022 -0.022 -0.005 0.00068 234 190 209 49 69 Anal. Chem. http://dx.doi.org/10.1021/ac301251b Analysis of real-life samples: oil, asphaltens, kerogens, etc... Comparing pneumatic nebulisation (DSN) with GC methods. Isotope ratios for one crude oil, two asphaltenes, three kerogens le 208/204p 207/204 Kerol, pneumatic nebulization (DSN) (n = 4) Kerol. GC (n = 5) Kero2, pneumatic nebulization (DSN) (n = 2) Kero2, GC n = 2 Kero3, pneumatic nebulization (DSN) (n = 2) Kero3, GC (n = 4) Asphl, pneumatic nebulization (DSN) (n = 2) Asphl, GC(n = 2) Asph2, pneumatic nebulization (DSN) (n = 2) Asph2, GC(n = l) COill, pneumatic nebulization (DSN) (n = 2) COill,GC(n=3) 38.2677 ± 0.0017 38.264810.0118 38.317410.0218 38.319810.0048 38.3508 1 0.0030 38.342410.0114 38.6146 1 0.0039 38.6105 1 0.0005 38.4428 1 0.0042 38.4365 38.6613 1 0.0013 38.586110.0187 16.0729 1 0.0005 16.073910.0031 16.222410.0089 16.2235 1 0.0036 16.121210.0016 16.121010.0002 16.0769 1 0.0015 16.0763 16.134310.0001 16.113610.0065 18.6581+ 0.0038 18.6553 1 0.0115 22.8335 1 0.1144 22.6573 1 0.0136 16.1600 1 0.0013 20.9620 1 0.0015 16.1570 1 0.0042 20.9242 1 0.0219 19.1545 1 0.0022 19.148610.0016 18.7759 1 0.0019 18.7680 19.1747 1 0.0006 19.0904 1 0.0678 Analytical uncertainty represents SD of reproducibility Anal. Chem. http://dx.doi.org/10.1021/ac301251b Analysis of real-life samples: oil, asphaltens, kerogens, etc... 20 15 CO 10 5 - Sample preparation Sample Preparation time Wet and dry plasma: Column separation, acid evaporation GC: Ethylation and isooctane extraction 15 times faster!!! PN (DSN) GC Whole bracketing Measurement Protocol Wet and dry plasma: Wash + Blank + NIST981 + wash + blank + sample + wash + blank + NIST981 10 CD GC: NIST981 + Sample + NIST981 Anal. Chem. http://dx.doi.org/10.1021/ac301251b PN (DSN) GC Dating petroleum generation... 206pb/204pb J IA present (Rock) R 1 ^expulsion (crude oil) R initial t sed / 206p^\ 204 / 238jy \ Rockpresent V I Rockgeneratton 204 Pb Rockpresent i mpD\ 204 / COpfvsent \ Pb ( mU^ 0 COgeneratbn COpresenl 204 V Pb / 206p^\ resent 204 Pb i Rockgeneratton ^expulsion 'present tgeneration expression: generation 206 Pb 206 Rockpresent \ Pb COpresent Sanabria Ortega, Article in preparation, Science Dating petroleum generation ... New Albany Shale - Illinois Basin 91'00 90*00 S9°00 88*00 87*00 86*00 41*00V 40*00 r 39*00 U 38*00 I 37*00 s to LU LU CO S > iu to CO PERCENT OF CUMULATIVE OIL PRODUCTION FORMATION LITHQLOGY (4,1380) HYDROCARBON SOURCE ROCK •Extends cross Illinois, southwestern Indiana and western Kentucky •Time-Transgresive unit •Consits of brownish-black, organic-rich and greenish-gray organic-poor shale •Near the southern depocenter, the black shale incorporate more than 2.5% wt% organic carbon which are typical of the oil prone type II kerogen. Samples availables: 4 Source rocks, 2 crude oil Sanabria Ortega, Article in preparation, Science Dating petroleum generation ... Ages of crude oils and their asphaltenes measured with the U/Pb chronometer Events chart Illinois basin Pensyl ~285 Ma nian - Permian Sample Crude Oil C007 Asphaltene A p007 Crude Oil C018 Asphaltene AS018 238y/204p|3 206pb/204pb 235(j/204pb 207pb/204pb 238(j/204pb 206pb/204pb 235L 207P 204pb )/204pb 238y/204pb 206pb/204pb 235y/204pb 207pb/204pb 238y/204p>b 206pb/204pb 235y/204pb 207pb/204pb Rock R1 136 ±23 110 ±30 128 ±12 ±8 196 ±20 230 ± 28 180 ± 17 204 ± 44 Rock R2 285 ± 10 290 ± 11 284 ±8 288 ±8 294 ±9 305 ± 10 292 ±9 301 ± 13 Rock R3 253 ± 11 252 ± 13 251 ±8 248 ±8 270 ± 10 283 ±13 267 ± 9 276 ± 17 Rock R4 277 ± 6 277 ±8 275 ±4 274 ±4 289 ±5 299 ±7 285 ± 5 294 ± 10 Conclusion... An alternative method for Pb isotope ratio determination have been developed by GC MC-ICPMS. v Precision < 200 ppm Accuracies around -0.020 %0 1.2 ng of Pb Analytical process reduced by a factor 15. Good performance for the analysis of complex matrices The U-Pb geochro no meter was successfully used, for the first time, to estimate the age of crude oil generation. Geochemistry approaches revisited with speciation techniques. Analytical chemistry in 5 dimensions Concentration ASER ABLATION/ICPMS I mo \ecu\a itructure sPatial ^solution Laser ablation-ICPMS set up drain 96 Simulating a sharp blade laser beam Scanning with a virtual sharp blade 10 urn 10 (im o o Qß QJ O O 1000 Hz Large spot vs sharp blade ablation : -> better spatial resolution while keeping high signal sensitivity —■— o Q_ o Time Application to ultra trace metallo-protein identification 1 ■■, c I - . Proteins previously separated on gel B electrophoresis Improvement factor >40 Taille des particules de gel ablaté 0,4 H 0,3 H 0,2 266 nifT ns LA o % mass 38% < l|jm 0,01 0,1 1 Particles diameter 10 0,3 n 0,2 0,1 - 1030 f s LA % mass 82% < l|jm nm>i 0,1 1 Particles diameter 10 • -v. í' V fsLA ľ 27 x V MO nsLA Cl 3500^ o 1-1-1-1-T-1-% 0 8 10 12 6x104 Cl K > -i—1 ■71 cz ■Ľ B (U Ln 0 8 _. .10 12 Distance, mm Application in proteomics : Toward the identification of new preoteins 266 nm ns laser Alfamet laser Ol ft ■IT1 ■DCi CO 00 o CO (D 5 8 8 O CO o en 8 rO Ü1 00 CO CO CD _I 99 In collaboration with R. Lobinski and S. Mounicou CEYAC LSX 100, 266 nm, 20 Hz, 1 mJ aser beam diameter : 130 //m ALFAMET, 10000 Hz, 35 j/J Virtual beam shape 2000 um x 20 um Collision cell \7 LOt) = 1 ppb LOt> = 0.02 ppb _i_ \j\j Isotopic speciation imaging by fsLA/ICPMS. ' *4. ŕ* ■* (201HgMe+) and isotopically enriched inorganic mercury (199Hg2+). 0-0,3 0,3-0,6 "0,6-0,9 "0,9-1,2 "1,2-1,5 Bl^-l.B ■ l,»-2fa ■ 2,1-2,* "2,£-2,/ "2,7-3 0-0,3 0,3-0,6 "Ü,fc-G,5 "03-1,2 "1,2-1,5 ■ 1,5-1,3 "1,8-2,1 "2,1-2,4 "2,4-2,7 "2,7-2- FsLA- 2D-SF-ICPMS : Simultaneous isotopic and trace element information IR-Vis-UvJái Fs Laser Galvanometric mirrors gas flow rate tuning split adjustment Plasma viscosity + and other parameters (0,8L/min) Jet-HR-ICPMS (dry plasma) Homogenisating cell Ar (1,2 L/min) Stability I Sensitivity Accuracy MC-ICPMS (wet plasma) Development of a minimally invasive test for early diagnosis of Wilson's disease o- -10- o o -20- 3 U in \D -30- -40- -50- I 0 ■ Wilson (Under treatment) 3 Wilson (No treatment) ■ Norma 50 100 200 500 1000 Resano et Al, JAAS, 2012 Cu content (jjg L"1) FsLA- 2D-SF-ICPMS: Simultaneous isotopic and trace element information j■■ i ■ i i 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 Temps (s) FsLA- 2D-SF-ICPMS : Simultaneous isotopic and trace element information 1600 Downstream 0,712 1 >300 mV 86Sr o,7ii "2RSE=750 ppm 87/86 0,71 0,709 ■ 0,708 ■ 0,707 ■ 0.706 +■ <50 mV 86Sr - 2RSE=3000 ppm 0,2 0,4 0,6 ■ 0,8 Typical LODs with fsLA/Jet-HRICPMS Sr =40 ppb i.e. 1,2 femtograms Ba = 6 ppb i.e. 180 attograms Cd = 4 ppb i.e. 120 attograms Versatile approach with complementary information. Relevant when some geochemical signatures are not significantly pronounced (here 87/86Sr)