PERIODIC TABLE OF THE ELEMENTS

1. Read the text on elements classification development throughout the history and

dobývat, těžit	přidělen	
navrhnout	vztahující se k	
filozof	zásluha za	
destilovat	na základě	
zařící	sjednocující vzorec, vzorce	
je považován za		
učebnice	hydrid	
rozlišit	oxid	
vyžadovat	opakování	
podle pořadí	konstatovat, prohlásit	

A. Find the words or phrases (listed in the order as they appear in the text) that mean:

B. Then match the stages with the names

the four roots	Plato
the four elements	Lavoisier
Philosopher's Stone	Boyle
an element defined as a substance	Aristotle
that cannot be broken down into	
a simpler substance	
elements divided into metals/non-metals	Newlands
discovering "triads"	Mendeléev
the law of octaves	Döbereiner
arranging elements in the order of their	Brand
increasing atomic masses	

- C. Answer the questions below:
- a) What was originally meant by the 4 elements?
- b) How was phosphorus discovered?
- c) Which book is considered to be the first modern chemical textbook?
- d) Which branch of chemistry developed rapidly in the 19th century?
- e) Why was Newland's law called the law of octaves?
- f) What was Mendeleév's attitude towards his mother?
- g) Why were hydrides and oxides important for Mendeleév and the way he classified elements?

2. Listening. Listen to the song of the elements by Tom Lehrer and fill in the gaps.

There's antimony, arsenic, aluminum, selenium,	There's holmium and helium and hafnium and		
And hydrogen and and nitrogen	erbium,		
and rhenium.			
And nickel, neodymium, neptunium, germanium,	And and francium and fluorine and terbium.		
And <u>And</u> , americium, ruthenium,	And manganese and mercury,		
uranium,			
· · · · · · · · · · · · · · · · · · ·	molybdenum,		
Europium, zirconium, lutetium, vanadium,	Dysprosium and scandium and cerium and		
And lanthanum and osmium and astatine and	cesium,		
	And lead, praseodymium, and platinum,		
And gold, protactinium and indium and gallium,	plutonium,		
And and thorium and thulium and	Palladium, promethium,,		
thallium.	polonium,		
	Tantalum, technetium, titanium, tellurium,		
	And cadmium and and		
	chromium and curium.		
There's yttrium, ytterbium, actinium,	There's sulfur, californium and fermium,		
<u>.</u> And boron, gadolinium, niobium, iridium.	berkelium,		
And strontium and and silver	And also mendelevium, einsteinium and		
and samarium,	nobelium.		
And bismuth, bromine, lithium, beryllium and	And argon,, neon, radon,		
barium.	xenon, zinc and rhodium,		
	And chlorine, carbon, cobalt, copper,		
	Tungsten, tin and		
	These are the only ones of which the news has		
	come to Harvard,		
	And there may be many others but they haven't		
	been discovered.		

3. Put the number of the definition from the list below into the square with the appropriate term. Check your answers by adding the numbers to see if all the sums of all rows, both across and down add up to the same number, the Magic Number.

PERIODS	ATOMIC NUMBER	SYMBOL
FAMILIES	VALENCE	NEUTRON
ELECTRON	MASS NUMBER	PROTON

1. positive subatomic particle

- 2. vertical columns on the periodic table
- 3. number of protons in an element
- 4. the electrons in the outermost energy level
- 5. represents an element
- 6. negative subatomic particle
- 7. horizontal rows on the periodic table
- 8. number of protons and neutrons
- 9. neutral subatomic particle
- **4.** Find the following chemical elements, there are 15 of them. If you cross all of them, the remaining letters, if read from left to right, form a word. Which word is it?

	Α	В	С	D	Е	F	G	Η	Ι
1	С	А	R	В	0	Ν	Ι	Т	Е
2	Α	L	U	М	Ι	Ν	Ι	U	Μ
3	L	Е	В	S	L	Е	Μ	М	Е
4	С	Κ	Ι	Ν	0	Е	Ν	Ν	Т
5	Ι	С	D	R	R	D	Α	Е	L
6	U	Ι	Ι	С	0	Ζ	Ι	Ν	С
7	М	Ν	U	R	Α	Ν	Ι	U	М
8	S	R	Μ	0	S	Μ	Ι	U	М
9	Y	Т	Т	Е	R	В	Ι	U	М

/ ´æl ə'mın i əm/ /'kæl si əm/ /'kar bən/ /'aı ən/ /lɛd/ /'bz miəm/ /ru'bɪd iəm/ /'soʊ diəm/ /tɪn/ /yʊ'reɪ niəm/

/'mȝr kyə ri/ /'ni ɒn/ /ɪ'tȝr bi əm/ /'nɪk əl/ /zɪŋk/

5. ARSENIC. Watch the video and note down the uses of arsenic.³

6. Read the text about Arsenic. After you have read it complete the table with suitable information

ARSENIC

Arsenic is the chemical element that has the symbol As, atomic number 33 and atomic mass 74.92. Arsenic was first documented by Albertus Magnus in 1250. The element is a steel grey, very brittle, crystalline solid. Arsenic is a poisonous element that occurs in the earth's crust. It is metalloid with many allotropic forms, including a yellow (molecular non-metallic) and several black and grey forms (metalloids). Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small1
grey, very brittle, crystalline solid. Arsenic is a poisonous element that occurs in the earth's crust. It is metalloid with many allotropic forms, including a yellow (molecular non-metallic) and several black and grey forms (metalloids). Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. 3 In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are −3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. 4 Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) → FeS + As(g) → As(s) 5
 Arsenic is a poisonous element that occurs in the earth's crust. It is metalloid with many allotropic forms, including a yellow (molecular non-metallic) and several black and grey forms (metalloids). Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are −3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) → FeS + As(g) → As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
 Alsence is a poisonous element that occurs in the earth's crust. It is ineration with many allotropic forms, including a yellow (molecular non-metallic) and several black and grey forms (metalloids). Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are −3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) → FeS + As(g) → As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
 (metalloids). Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys.
 found free in nature. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) → FeS + As(g) → As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
seconds. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
hydrogen to form organic arsenic compounds. The most common oxidation states for arsenic are -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) \rightarrow FeS + As(g) \rightarrow As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
 -3 (arsenides: usually alloy-like intermetallic compounds), +3 (arsenates(III) or arsenites, and most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS (700°C) → FeS + As(g) → As(s) Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
most organoarsenic compounds), and +5 (arsenates: the most stable inorganic arsenic oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys.4Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. $FeAsS (700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ 5Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small5
oxycompounds). Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys.4Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. $FeAsS (700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ 5Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small5
in various alloys. Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS $(700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
Arsenic is made on an industrial scale by heating appropriate minerals in the absence of air. The arsenic is condensed out as a solid. FeAsS $(700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
air. The arsenic is condensed out as a solid. FeAsS $(700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
FeAsS $(700^{\circ}C) \rightarrow FeS + As(g) \rightarrow As(s)$ Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small 5
Upon heating arsenic sublimes. You may be exposed to arsenic by: taking in small
amounts in food, water or air; burning smoke from arsenic-treated wood; living in an area with
high levels of arsenic in rock; working in a job where arsenic is made or used.
Exposure to arsenic can cause many health problems. Being exposed to low levels for a
long time can change the colour of your skin. Exposure to high levels of arsenic can cause death.

Symbol	
Atomic number	
Atomic mass	
Properties	
Occurrence	
Types of compounds	
Uses	
Effects of Exposure	

7. Now read the text again and complete the second chart with words needed for a description of an element.

	Adjectives
occurs	crystalline
	occurs

8. Translate the words/phrases into English

Vocabulary – Periodic Table of the Elements			
	otáčet se		
	tekutina		
	sloučeniny a směsi		
	bod varu / tání		
	bod kondenzace		
	bod mrazu		
	zkapalnit / zkapalnění		
	alkalické kovy		
	kovy alkalických zemin		
	halogeny		
	chalkogeny		
	vzácné plyny		
	chemická značka		
	protonové číslo		
	poločas rozpadu		
	relativní atomová hmotnost		
	jedovatý		
	vyskytovat se		
	kov / polokov / nekov		
	slitina		
	množství		
	molekulární struktura		
	stabilní izotop		
	obvyklý		
	životní prostředí		
	reaguje s a vytvoří		
	být vystaven (np. chemikálii)/ vystavení se		
	ošetřit		
	způsobit		
	vysoké / nízké hladiny		
	vzorek		
	těkavý		
	zbavit se		
	prášek		
	plíseň		
	krmit dobytek		

The lesson was adapted from Milada Pavlovová.Sources: http://www.privatehand.com/flash/elements.html , transcript http://www.edu- cyberpg.com/iec/elementsong.html www.wikipedia.org http://www.youtube.com/watch?v=a2AbKwAvyos http://dictionary.reference.com/help/luna/IPA_pron_key.html

http://www.nclark.net

Useful website: www.webelements.com