SOME TYPICAL ERRORS

Adapted from Trzeciak Jerzy, Writing Mathematical Papers in English. European Mathematical society, 1995

a) Spelling errors - Spelling should be either British or American throughout.

Br.: colour, centre, fibre, labeled, modeling Amer.: color, center, fiber, labeled, modeling

- b) Grammatical errors
- c) Wrong word used
- d) Wrong word order

Exercise. Correct the following expressions or sentences. There may be spelling or grammatical errors, wrong words or wrong word order.

1)	an unified approach
2)	Which proves our thesis
3)	In 1964 Lax has shown
4)	a bounded by 1 function
5)	similar as B
6)	independent on B
7)	the described above condition
8)	loosing
9)	preceeding
	Most of them is
11)	occuring
	Let f denotes
13)	F is greater or equal to G
14)	Every f is not convex
15)	disjoint with B
	its both sides
17)	For no x the limit exists
18)	on Fig. 3
19)	This map we denote by f
20)	At last, \hat{C} is dense because
21)	This is precised by
22)	Such map exists
23)	Equivalent with B
24)	the mentioned map
25)	the three first rows
26)	Only for x=1 the limit exist
27) 1	the both conditions
28).	F is equal G
29) 1	the two following sets
	in the end of Section 2
31)	This makes clear that
32)	developped
33)′	This allows to prove
34)	The Taylor's formula
5) 4	At first, note that

A] "Who Am I" Solve these problems.

- 1. I am the only power with a base from 1 through 10 and an exponent from 1 through 10 that has the same value when my base and exponent exchange places. Who am I?
- 2. If you add 10 to me, you get a number more than 5 less than 20. If you subtract 5 from me you get a number which is not zero. I am not 49:7. Who am I if I am a two-digit multiple of both 2 and 3.
- 3. I am the remainder you get when you choose a prime number greater than 3; square it; then add 17 and divide by 12. Who am I?
- 4. I am between 500 and 1000. I am a multiple of 10 and I am divisible by 3 but not by 4. Not one of my digits is prime and their sum is less than 15. Who am I?
- 5. Make up another similar "Who Am I?" type problem and give it to a neighbour to solve.

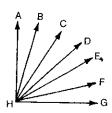
B] Square - No Matter How You Look at it

Illustrate each of the following:

- a) nine square centimetres
- b) nine centimetres squared
- c) nine centimetre-squares
- d) nine centimetre square

C] Painting Solids

Imagine that you have a rectangular prism, a triangular prism, and a cylinder. All have the same base area and the same height. Your task is to paint these figures (all surfaces).


- a) Which shape would require the most paint?
- b) Which would require the least?

D] Ratios

A calculator is 11 cm long, 6 cm wide and 7 mm thick. What do the following ratios express?

- a) 6:11
- b) 110:7
- c) 110:60:7

E] How many angles are in the figure?

