EXERCISES IN CATEGORY THEORY 1

1. Exercises

1.1. Isomorphisms.

(1) Suppose that $f: A \to B$ is an isomorphism. Show that it has a unique inverse $B \to A$.

1.2. Epis and monos.

- (1) Show that in Set the monos are exactly the injective functions.
- (2) Show that in the categories of monoids and groups the monos are the injective homomorphisms.
- (3) Show that the monos in the category of topological spaces are the injective continuous functions.
- (4) Show that the epis in Set are the surjective functions.
- (5) Can you find an example of a homomorphism of monoids/rings or a continuous map of metric spaces which is epi but not a surjective function?

1.3. Initial and terminal objects.

(1) Let \mathcal{K} be the following category. Objects of \mathcal{K} are triples (X, a, s) where X is a set, $a \in X$ is an element of X, and $f: X \to X$ is a function. A morphism $f: (X, a, s) \to (Y, b, t)$ of \mathcal{K} is a function $f: X \to Y$ such that f(a) = b and $t \circ f = f \circ s$. Can you describe the objects and morphisms of this category using diagrams in the category Set? For instance, an element $x \in X$ of a set can be viewed using diagrams as an arrow

$$1 \to X$$

where $1 = \{\star\}$ is the 1-element set. What is the initial object of \mathcal{K} ?