EXERCISES IN CATEGORY THEORY 2

1. Products

Let \mathcal{K} be a category with products.
(1) Suppose that \mathcal{K} admits a terminal object 1 . Show that there are isomorphisms $A \times 1 \cong$ A and $1 \times A \cong A$.
(2) Find an isomorphism $A \times B \cong B \cong A$.
(3) Define the product $A \times B \times C$ of three objects A, B and C using a universal property and show that it is unique up to isomorphism.
(4) Given objects A, B and C find an isomorphism $(A \times B) \times C \cong A \times(B \times C)$. Show that these are isomorphic (one way is to show that both have the universal product of $A \times B \times C$.)
(5) Given $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$ find a map $f \times g: A_{1} \times B_{1} \rightarrow A_{2} \times B_{2}$. In the category of sets this is the map sending the ordered pair (a, b) to $(f a, g b)$.
(6) Show that in any category with products and coproducts there exists a canonical map

$$
(A \times B)+(A \times C) \rightarrow A \times(B+C)
$$

(To construct this, use maps of the form $f \times g$ as constructed in the previous question.)
(7) Show that, in the category of sets, the above map is an isomorphism.

[^0]
[^0]: Date: September 24, 2014.

