EXERCISES IN CATEGORY THEORY 3

Try either (2) or $\left(2^{*}\right)$ depending upon whether you prefer monoids or vector spaces.
(1) Let $P X=\{U: U \subseteq X\}$ be the power set. Extend this construction to a functor $P:$ Set \rightarrow Set. Show that the functions $\eta_{X}: X \rightarrow P X: x \mapsto\{x\}$ give a natural transformation

(2) The free monoid $F X$ on a set X has elements given by words (lists) $\left[x_{1} x_{2} \ldots x_{n}\right]$. Multiplication in $F X$ is given by joining words together (eg. $[x y] \circ[z]=[x y z]$), and the identity element is the empty word $[-]$. Show that F is part of a functor $F:$ Set \rightarrow Mon.
Let $U: M o n \rightarrow$ Set be the forgetful functor and consider the composite $W=U F$: Set \rightarrow Set. Describe a natural transformation $1 \Rightarrow W$.
$\left(2^{*}\right)$ The free vector space $F X$ on a set X is the vector space with basis $\left\{e_{i}: i \in X\right\}$: thus elements of $F X$ are finite sum $\Sigma_{i} r_{i} e_{i}$ where each $r_{i} \in \mathbb{R}$. Show that F extends to a functor $F:$ Set \rightarrow Vect. Letting $U:$ Vect \rightarrow Set denote the forgetful functor, describe a natural transformation $1 \rightarrow U F$.
(3) Let $\mathbb{N}=(\mathbb{N},+, 0)$ be the monoid of natural numbers with addition. Describe a natural transformation

and show that it is a natural isomorphism.
(4) Let \mathcal{K} be a category with products and $X \in \mathcal{K}$. Given $f: B \rightarrow C$ there exists a unique map

$$
X \times f: X \times A \rightarrow X \times B
$$

making the diagram

commute. Use the universal property of products to show that this gives a functor $X \times-: \mathcal{K} \rightarrow \mathcal{K}$. (More generally product gives a functor $-\times-: \mathcal{K} \times \mathcal{K} \rightarrow \mathcal{K}$.)
(5) Show that the product projections $q_{A}: X \times A \rightarrow A$ form the components of a natural transformation

