EXERCISES IN CATEGORY THEORY 3

Try either (2) or (2^*) depending upon whether you prefer monoids or vector spaces.

(1) Let $PX = \{U : U \subseteq X\}$ be the power set. Extend this construction to a functor $P : \text{Set} \to \text{Set}$. Show that the functions $\eta_X : X \to PX : x \mapsto \{x\}$ give a natural transformation

(2) The free monoid FX on a set X has elements given by words (lists) $[x_1x_2...x_n]$. Multiplication in FX is given by joining words together (eg. $[xy] \circ [z] = [xyz]$), and the identity element is the *empty word* [-]. Show that F is part of a functor $F : \text{Set} \to Mon$.

Let $U: Mon \to \text{Set}$ be the forgetful functor and consider the composite W = UF: Set \to Set. Describe a natural transformation $1 \Rightarrow W$.

- (2*) The free vector space FX on a set X is the vector space with basis $\{e_i : i \in X\}$: thus elements of FX are finite sum $\Sigma_i r_i e_i$ where each $r_i \in \mathbb{R}$. Show that F extends to a functor $F : \text{Set} \to \text{Vect}$. Letting $U : \text{Vect} \to \text{Set}$ denote the forgetful functor, describe a natural transformation $1 \to UF$.
- (3) Let $\mathbb{N} = (\mathbb{N}, +, 0)$ be the monoid of natural numbers with addition. Describe a natural transformation

$$Mon(\mathbb{N}, -)$$

$$Mon \underbrace{\bigcup_{U}}_{V} \operatorname{Set}$$

and show that it is a natural isomorphism.

(4) Let \mathcal{K} be a category with products and $X \in \mathcal{K}$. Given $f : B \to C$ there exists a unique map

$$X \times f : X \times A \to X \times B$$

making the diagram

commute. Use the universal property of products to show that this gives a functor $X \times -: \mathfrak{K} \to \mathfrak{K}$. (More generally product gives a functor $-\times -: \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$.)

Date: October 2, 2014.

(5) Show that the product projections $q_A: X \times A \to A$ form the components of a natural transformation

 2