EXERCISES IN CATEGORY THEORY 4

1. The Yoneda Lemma

In Set elements of a set X correspond to maps $1 \to X$ where 1 is the set with 1 element. From one perspective, the Yoneda lemma says that representable functors have a similar behaviour: maps $C(X, -) \to F$ in [C, Set] correspond to elements of the set FX.

- (1) Use the Yoneda lemma to show that a morphism $\theta: F \to G \in [C, Set]$ is mono if and only if each of its components $\theta_X: FX \to GX$ is mono is Set: an injective function. Note: one direction is straightforward and does not use the Yoneda lemma.
- (2) Given $F, G \in [C, Set]$ we want to work out what the product functor $F \times G$ looks like. Use the Yoneda lemma and the universal property of products to show that we must have $(F \times G)(X) \cong F(X) \times G(X)$.
- (3) Set $F \times G(X) = F(X) \times G(X)$. Use the universal property of the product projections in Set

to define $F \times G$ on morphisms and to construct a product diagram in [C, Set] as above right.

- (4) To each object X of C we have assigned a functor $C(X, -) : C \to \text{Set.}$ For each $f: X \to Y$ describe a natural transformation $C(f, -) : C(Y, -) \to C(X, -)$.
- (5) Prove that these assignments define a functor $Y : C^{op} \to [C, \text{Set}]$. This is called the Yoneda embedding.
- (6) A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be fully faithful if given $f : FX \to FY \in D$ there exists a unique $g : X \to Y$ such that F(g) = f. Use the Yoneda Lemma to prove that the Yoneda embedding $C^{op} \to [C, \text{Set}]$ is fully faithful.