EXERCISES IN CATEGORY THEORY 6

1. Limits

(1) Let J be the category below:

$$\begin{array}{cccc} 0 & X & \xrightarrow{p_0} D(0) \\ & & & \downarrow i & & \downarrow D(i) \\ 1 & & & & \downarrow D(i) \\ 1 & & & & D(1) & \xrightarrow{p_0} D(2) \end{array}$$

and consider a diagram $D: J \to C$. Show that a cone (X, p) on D is the same thing as a pair of arrows $X \to D(0)$ and $X \to D(1)$ making the square above commute. Show therefore that the limit of D is exactly the pullback of D(i) and D(j).

- (2) Let C be a category with products. Show that each representable functor C(X, -): $C \to Set$ preserves products.
- (3) Let J and C be categories. Given $X \in C$ the constant functor $\Delta_X : J \to C$ at X is defined by $\Delta_X(j) = X$ for all $j \in J$ and sends all morphisms of J to the identity on X. Given $D : J \to C$ show that a natural transformation $p : \Delta_X \to D$ is the same thing as a cone (X, p) on D.
- (4) Show that each morphism $f : X \to Y \in C$ determines a natural transformation between constant functors $\Delta_f : \Delta_X \to \Delta_Y$ and observe that a morphism of cones $(X, p) \to (Y, q)$ over D amounts to an arrow f such that the triangle of natural transformations

- (5) Given a functor $F: A \to B$ and object $X \in B$ the comma category F/X has objects: triples $(A, p: FA \to X)$ and morphisms $f: (A, p: FA \to X) \to (B, q: FB \to X)$ are arrows $f: A \to B$ such that $q \circ Ff = p$. Show that constant functors themselves define a functor $\Delta: C \to [J, C]$ and that
- Cone(D) is the comma category Δ/D.
 (6) Given a diagram D : J → Set show that the limit of D is given by the set of cones Cone(1, D) over D with base the 1-element set.

Date: October 23, 2014.