EXERCISES IN CATEGORY THEORY 7

1. Equivalence of categories

An equivalence of categories consists of categories \mathcal{C} and \mathcal{D} together with functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $1_{\mathcal{C}} \to GF$ and $1_{\mathcal{D}} \to FG$.¹ We also call the functors involved $F: \mathcal{C} \to \mathcal{D}$ and $\mathcal{D} \to \mathcal{C}$ equivalences of categories.

- (1) Let Cat_1 denote the category of categories with one object and functors between them. There is a functor $U : \operatorname{Cat}_1 \to Mon$ which sends a category C with one object x to the monoid C(x, x). Show that U is part of an equivalence of categories.
- (2) Show that equivalence of categories is an equivalence relation on categories.

A functor $U : \mathcal{C} \to \mathcal{D}$ is said to be *essentially surjective* if given $a \in \mathcal{D}$ there exists $b \in \mathcal{C}$ such that Fb is isomorphic to a in \mathcal{D} . A functor $U : \mathcal{C} \to \mathcal{D}$ is said to be *fully faithful* if given $f : Ua \to Ub$ there exists a unique arrow $g : a \to b$ such that Ug = f. (In other words, the function $F_{a,b} : \mathcal{C}(a,b) \to \mathcal{D}(Fa,Fb)$ is a bijection.)

In fact a functor $U : \mathfrak{C} \to \mathfrak{D}$ is an equivalence of categories if and only if it is essentially surjective and fully faithful.

Use this result where useful in the following exercises.

(3) Set_{par} is the category of sets and partial functions. A partial function $(U, f) : X \to Y$ consists of a subset $U \subseteq X$ and function $f : U \to Y$. Thus a function from X to Y which is only defined on U. The composite of $(U, f) : X \to Y$ and $(V, g) : Y \to Z$ is the partial function $(W, gf) : X \to Z$ where $W = \{x \in U : fx \in V\}$. (Draw some diagrams to see this).

The category of pointed sets Set_{*} has objects (X, x) where $x \in X$ and morphisms $f: (X, x) \to (Y, y)$ are functions such that fx = y.

There is a functor $F : \operatorname{Set}_{par} \to \operatorname{Set}_*$ defined by $FX = (X + 1, * \in 1)$ and sends $(U, f) : X \to Y$ to $k : (X + 1, *) \to (Y + 1, *)$ defined by kx = fx if $x \in U$ and k(y) = * otherwise. Show that F is a functor and an equivalence of categories.

- (4) Show that if $F : \mathbb{C} \to \mathcal{D}$ is an equivalence then it preserves terminal and initial objects. (In fact, an equivalence preserves any limits or colimits that exist.)
- (5) (*Harder*) Prove that a functor is an equivalence of categories if and only if it is essentially surjective on objects and fully faithful.

Date: October 29, 2014.

¹Note that the direction of the natural isomorphisms does not matter since if $1_{\mathcal{C}} \to GF$ is a natural isomorphism then we get a natural isomorphism $GF \to 1_{\mathcal{C}}$ by taking inverses.