EXERCISES IN CATEGORY THEORY 8

1. Adjoint functors

1.1. Examples of adjoint functors. A functor $U : \mathcal{A} \to \mathcal{B}$ has a left adjoint if for each $X \in \mathcal{A}$ there exists an object FX and morphism $\eta_X : X \to UFX$ with the following universal property:

given $A \in \mathcal{A}$ and $f: X \to UA \in \mathcal{B}$ there exists a unique arrow $\overline{f}: FX \to A \in \mathcal{A}$ such that the triangle

commutes. Then FX is the value of the left adjoint to U.

- (1) Let $U: Mon \to \text{Set}$ be the forgetful functor from monoids to sets. Given a set X elements of the word monoid FX are lists $[x_1 \dots x_n]$ of elements of X, with multiplication given by joining lists: i.e. [x, y][z] = [x, y, z]. Show that FX has the universal property of the left adjoint to U.
- (2) The forgetful functor $U : CRing \to Set$ from the category of commutative rings to the category of sets has a left adjoint F. Show that the value of F at the 1-element set $\{x\}$ is the commutative ring of polynomials $a_n x^n + a_1 x + \ldots a_0$ with integer coefficients $a_i \in Z$. What is FX where X is a finite set (or even an arbitrary set?)
- (3) Consider $U: Vect \to Set$. Show that the value of the left adjoint FX is the vector space with basis set X.
- (4) Consider the forgetful functor from topological spaces $U: Top \to Set$ to sets. Show that the left adjoint to U sends a set X to X with the *discrete* topology: all subsets are open.
- (5) Given a set X let PX be the power set of X: since this is a poset we can view it as a category. Given $f: X \to Y$ we get functors $Pf: PX \to PY: U \mapsto \{fx \in Y : x \in U\}$ and $f^*: PY \to PX: U \mapsto \{x: fX \in U\}$. Show that $Pf \dashv f^*$.

1.2. General categorical questions.

- (1) Prove that given a collection of arrows as in (1.1) that the objects FX uniquely give rise to a functor $F : \mathcal{B} \to \mathcal{A}$ such that the morphisms $\eta_X : X \to UFX$ are the components of a natural transformation. In particular check that F preserves composition.
- (2) Prove that the left adjoint of a functor $U : \mathcal{A} \to \mathcal{B}$ is unique up to natural isomorphism.

Date: November 5, 2014.