EXERCISES IN CATEGORY THEORY 9

1. Adjoint functors

1.1. Algebra of adjoint functors.

(1) Consider $U_{1}: \mathcal{A} \rightarrow \mathcal{B}$ and $U_{2}: \mathcal{B} \rightarrow \mathcal{C}$ and adjunctions $F_{1} \dashv U_{1}$ and $F_{2} \dashv U_{2}$. Show that we have a composite adjunction $F_{1} F_{2} \dashv U_{2} U_{1}$.
(2) Show that the left adjoint of a functor $U: \mathcal{A} \rightarrow \mathcal{B}$ is unique up to natural isomorphism.
1.2. Adjoints and representables. Let \mathcal{C} be a locally small category. Recall that a functor $U: \mathcal{C} \rightarrow$ Set is said to be representable if there exists a natural isomorphism $U \cong \mathcal{C}(X,-)$ for some $X \in \mathcal{C}$.
(1) Let \mathcal{C} and U be as above. Prove that if U has a left adjoint then U is representable.
(2) Assuming that \mathcal{C} has all (infinite) coproducts show that the converse holds: U is representable $\Longrightarrow U$ has a left adjoint.

1.3. Examples.

(1) We have seen that $U: M o n \rightarrow$ Set has a left adjoint (constructed using word monoids). Prove that U does not have a right adjoint.
(2) Show that the forgetful functor $U: G r p \rightarrow$ Mon from groups to monoids does have a right adjoint - construct it!

1.4. Further questions.

(1) Consider the forgetful functor O : Cat \rightarrow Set which sends a small category to its set of objects. Show that there is a string of four adjoints $C \dashv D \dashv O \dashv I$.
(2) Show that $U: \mathcal{A} \rightarrow \mathcal{B}$ has a left adjoint \Longleftrightarrow each category X / U has an initial object \Longleftrightarrow each functor $\mathcal{B}(X, U-): \mathcal{A} \rightarrow$ Set is representable. ${ }^{1{ }^{2}}$
(3) Given a category \mathcal{C} a weakly initial set consists of a set of objects $\left\{X_{i} \in \mathcal{C}, i \in I\right\}$ such that for each $A \in \mathcal{C}$ there exists some $i \in I$ and a morphism $X_{i} \rightarrow A$. Now given a functor $U: \mathcal{A} \rightarrow \mathcal{B}$ we say that U satisfies the solution set condition if for each $X \in \mathcal{B}$ the category X / U has a weakly initial set of objects. The general adjoint functor theorem asserts that if \mathcal{C} is a locally small category with limits then $U: \mathcal{C} \rightarrow \mathcal{D}$ has a left adjoint if and only if U preserves limits and satisfies the solution set condition. Use the adjoint functor theorem to verify that $U: G r p \rightarrow M o n$ (or your favourite forgetful functor between algebraic categories) has a left adjoint.
(The key point here is to think about how to construct solution sets in algebraic categories.)

[^0]
[^0]: Date: November 12, 2014.
 ${ }^{1}$ Objects of the category X / U are pairs $(f: X \rightarrow U A, A)$. A morphism $h:(f: X \rightarrow U A, A) \rightarrow(g:$ $X \rightarrow U B, B)$ in X / U is given by a morphism $h: A \rightarrow B \in \mathcal{A}$ such that $U h \circ f=g$.
 ${ }^{2}$ The functor $\mathcal{B}(X, U-): \mathcal{A} \rightarrow$ Set is the composite of $U: \mathcal{A} \rightarrow \mathcal{B}$ and $\mathcal{B}(X,-): \mathcal{B} \rightarrow$ Set.

