EXERCISES IN CATEGORY THEORY 9

1. Adjoint functors

1.1. Algebra of adjoint functors.

- (1) Consider $U_1 : \mathcal{A} \to \mathcal{B}$ and $U_2 : \mathcal{B} \to \mathcal{C}$ and adjunctions $F_1 \dashv U_1$ and $F_2 \dashv U_2$. Show that we have a composite adjunction $F_1F_2 \dashv U_2U_1$.
- (2) Show that the left adjoint of a functor $U : \mathcal{A} \to \mathcal{B}$ is unique up to natural isomorphism.

1.2. Adjoints and representables. Let \mathcal{C} be a locally small category. Recall that a functor $U : \mathcal{C} \to \text{Set}$ is said to be *representable* if there exists a natural isomorphism $U \cong \mathcal{C}(X, -)$ for some $X \in \mathcal{C}$.

- (1) Let \mathcal{C} and U be as above. Prove that if U has a left adjoint then U is representable.
- (2) Assuming that \mathcal{C} has all (infinite) coproducts show that the converse holds: U is representable $\implies U$ has a left adjoint.

1.3. Examples.

- (1) We have seen that $U : Mon \to Set$ has a left adjoint (constructed using word monoids). Prove that U does not have a right adjoint.
- (2) Show that the forgetful functor $U: Grp \to Mon$ from groups to monoids *does* have a right adjoint construct it!

1.4. Further questions.

- (1) Consider the forgetful functor $O : Cat \to Set$ which sends a small category to its set of objects. Show that there is a string of four adjoints $C \dashv D \dashv O \dashv I$.
- (2) Show that $U : \mathcal{A} \to \mathcal{B}$ has a left adjoint \iff each category X/U has an initial object \iff each functor $\mathcal{B}(X, U-) : \mathcal{A} \to \text{Set}$ is representable.¹
- (3) Given a category \mathfrak{C} a weakly initial set consists of a set of objects $\{X_i \in \mathfrak{C}, i \in I\}$ such that for each $A \in \mathfrak{C}$ there exists some $i \in I$ and a morphism $X_i \to A$. Now given a functor $U : \mathcal{A} \to \mathcal{B}$ we say that U satisfies the solution set condition if for each $X \in \mathcal{B}$ the category X/U has a weakly initial set of objects. The general adjoint functor theorem asserts that if \mathfrak{C} is a locally small category with limits then $U : \mathfrak{C} \to \mathcal{D}$ has a left adjoint functor theorem to verify that $U : Grp \to Mon$ (or your favourite forgetful functor between algebraic categories) has a left adjoint.

(The key point here is to think about how to construct solution sets in algebraic categories.)

Date: November 12, 2014.

¹Objects of the category X/U are pairs $(f: X \to UA, A)$. A morphism $h: (f: X \to UA, A) \to (g: A)$

 $X \to UB, B$) in X/U is given by a morphism $h: A \to B \in \mathcal{A}$ such that $Uh \circ f = g$.

²The functor $\mathcal{B}(X, U-) : \mathcal{A} \to \text{Set}$ is the composite of $U : \mathcal{A} \to \mathcal{B}$ and $\mathcal{B}(X, -) : \mathcal{B} \to \text{Set}$.