
Numerical Methods for Differential Equations

YA YAN LU

Department of Mathematics

City University of Hong Kong

Kowloon, Hong Kong

1

Contents

1 ODE IVP: Explicit One-step Methods 4

1.1 Introduction 4

1.2 Euler and Runge-Kutta Methods 5

1.3 Local truncation error and order 10

1.4 Embedded Runge-Kutta methods 13

2 ODE IVP: Implicit One-step Methods 17

2.1 Stiff equations 17

2.2 Implicit one-step methods 21

3 ODE IVP: Multi-step Methods 23

3.1 Explicit multi-step methods 23

3.2 Implicit multi-step methods 26

4 ODE IVP: Stability Concepts 29

4.1 Zero stability 29

4.2 Absolute stability 31

5 ODE Boundary Value Problems 34

5.1 The shooting method 34

5.2 Finite difference methods 37

5.3 The finite element method 39

6 Finite Difference Methods for Parabolic PDEs 42

6.1 Introduction 42

6.2 Classical explicit method 43

6.3 Crank-Nicolson method 44

6.4 Stability analysis 45

6.5 Alternating direction implicit method 48

7 Finite Difference Methods for Hyperbolic PDEs 52

7.1 First order hyperbolic equations 52

7.2 Explicit methods for wave equation 55

7.3 Maxwell’s equations 57

2

8 Finite Difference Methods for Elliptic PDEs 60

8.1 Finite difference method for Poisson equation 60

8.2 Fast Poisson solver based on FFT 61

8.3 Classical iterative methods 62

8.4 Conjugate gradient method 64

8.4.1 1-D optimization problem 64

8.4.2 Subspace minimization problem 65

8.4.3 Orthogonal residual 66

8.4.4 The next conjugate direction 66

8.4.5 The method . 67

8.4.6 Rate of convergence .. . 67

3

Chapter 1

ODE IVP: Explicit One-step Methods

1.1 Introduction

In this chapter, we study numerical methods for initial value problems (IVP) of ordinary differential

equations (ODE). The first step is to re-formulate your ODE asa system of first order ODEs:

dy
dt

= f (t,y) for t > t0 (1.1)

with the initial condition

y(t0) = y0 (1.2)

wheret is the independent variable,y= y(t) is the unknown function oft, y0 is the given initial condition,

and f is a given function oft andy which describes the differential equation. High order differential

equations can also be written as a first order system by introducing the derivatives as new functions. Our

numerical methods can be used to solve any ordinary differential equations. We only need to specify

the function f .

The variablet is discretized, sayt j for j = 0,1,2, ..., then we determiney j ≈ y(t j) for j = 1,2,3,

The first class of methods (Runge-Kutta methods) involve one-step. Ify j is calculated, then we construct

y j+1 from y j . Previous values such asy j−1 are not needed. Since this is an IVP and for the first step, we

havey0 only att0, then we can findy1, y2, ..., in a sequence. The one-step methods are vary natural. A

higher order method gives a more accurate numerical solution than a lower order method for a fixed step

size. But a higher order one-step method requires more evaluations of thef function. For example, the

first order Euler’s method requires only one evaluation off , i.e., f (t j ,y j), but a fourth order Runge-Kutta

method requires four evaluations off .

For a large scale problem, the computation off could be time consuming. Thus, it is desirable to

have high order methods that require only one evaluation off in each step. This is not possible in a one-

step method. But it is possible in a multi-step method. Therefore, the main advantage of the multi-step

method is that they are efficient. However, they are more difficult to use.

For one-step methods, we will introduce implicit methods. These are methods designed for the so-

called “stiff” ODEs. If an explicit method is used for a stiffODE and the step size is not small enough,

the error (between the exact and the numerical solution) maygrow very fast. For these stiff ODEs, the

4

implicit methods are useful. The situation is the same for multi-step methods. We also need implicit

multi-step methods for stiff ODEs.

We will also introduce the embedded Runge-Kutta methods. These are methods that combine two

methods together, so that the step size can be automaticallychosen for a desired accuracy. There are

also multi-step methods that allow automatic selection of the step size. But they are more complicated

and we will not cover them.

Consider the following example. We have the following differential equation foru = u(t):

u′′′ +sin(t)
√

1+(u′′)2u′ +
u

1+e−t = t2 (1.3)

for t > 0, with the initial conditions:

u(0) = 1, u′(0) = 2, u′′(0) = 3. (1.4)

We can introduce a vectory

y(t) =





u(t)

u′(t)

u′′(t)





and write down the equation fory as

y′ = f (t,y) =





u′

u′′

−sin(t)
√

1+(u′′)2 u′−u/(1+e−t)+ t2





The initial condition isy(0) = [1,2,3]. Here is a simple MATLAB program for the above functionf .

function k = f(t, y)

% remember y is a column vector of three components.

k = zeros(3,1);

k(1) = y(2);

k(2) = y(3);

k(3) = -sin(t) * sqrt(1+y(3)^2) * y(2) - y(1)/(1 + exp(-t)) + t^2;

In the MATLAB program,y(1), y(2), y(3) are the three components of the vectory. They are

u(t), u′(t) andu′′(t), respectively. They are different fromy(1), y(2) andy(3) which are the vectorsy

evaluated att = 1, t = 2 andt = 3. Notice that we also havey(0), which is the initial value ofy. But we

do not havey(0). Anyway, the components ofy are only used inside the MATLAB programs.

A numerical method is usually given for the general system (1.1-1.2). We specify the system of

ODEs by writing a program for the functionf , then the same numerical method can be easily used for

solving many different differential equations.

1.2 Euler and Runge-Kutta Methods

Numerical methods start with a discretization oft by t0, t1, t2, ..., say

t j = t0 + jh

5

whereh is thestep size. Numerical methods are formulas fory1, y2, y3, ..., wherey j is the approximate

solution att j . We usey(t j) to denote the (unknown) exact solution, thus

y j ≈ y(t j).

Please notice that wheny is a vector,y1, y2, ..., are also vectors. In particular,y1 is not the first component

of y vector,y2 is not the 2nd component of they vector. The components ofy are only explicitly given

inside the MATLAB programs asy(1), y(2), etc.

Euler’s method:

y j+1 = y j +h f(t j ,y j). (1.5)

Sincey0 is the known initial condition, the above formula allows us ofind y1, y2, etc, in a sequence. The

Euler’s method can be easily derived as follows. First, we assumeh is small and consider the Taylor

expansion:

y(t1) = y(t0 +h) = y(t0)+hy′(t0)+ ...

Now, we know thaty′(t0) = f (t0,y(t0)). If we keep only the first two terms of the Taylor series, we

obtain the first step of Euler’s method:

y1 = y0 +h f(t0,y0),

wherey(t1) is replaced by the “numerical solution”y1, etc. The general step fromt j to t j+1 is similar.

Here is a MATLAB program for the Euler’s method:

function y1 = eulerstep(h, t0, y0)

% This is one step of the Euler’s method. It is

% given for the first step, but any other step

% is just the same. You need the MATLAB function

% f to specify the system of ODEs.

y1 = y0 + h* f(t0, y0)

Now, let us solve (1.3-1.4) fromt = 0 to t = 1 with the step sizeh= 0.01. For this purpose, we need

to write a main program. In the main program, we specify the initial conditions, initial timet0, final time

and the total number of steps. The step size can then be calculated. Here is the MATLAB program.

% The main program to solve (1.3)-(1.4) from t=0 to

% t = 1 by Euler’s method.

% initial time

t0 = 0;

% final time

tfinal = 1;

% number of steps

nsteps = 100;

% step size

6

h = (tfinal - t0)/ nsteps;

% initial conditions

y = [1, 2, 3]’;

% set the variable t.

t = t0

% go through the steps.

for j= 1 : nsteps

y = eulerstep(h, t, y)

t = t + h

% saved output for u(t) only, i.e. the first component of y.

tout(j) = t;

u(j) = y(1);

end

% draw a figure for the solution u.

plot(tout, u)

Now, insider MATLAB, in a folder containing the three programs:f.m, eulerstep.m, eulermain.m,

if we typeeulermain, we will see a solution curve. That is the solid curve in Fig. 1.1. This is for the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

t

u(
t)

Numerical solutions by Euler’s method using h=0.01, 0.1, 0.2

Figure 1.1: Numerical solutions of (1.3) and (1.4) by Euler’s method. The solid curve is forh = 0.01.

The “+” is for h = 0.1 and the “o” is forh = 0.2.

case ofh = 0.01. We also want to see what happens ifh is 0.2 and 0.1. For this purpose, we change

nsteps to 5 and 10, then useplot(tout, u, ’o’) andplot(tout, u, ’+’) to show the results.

All three plots are shown in the Fig. 1.1.

The Euler’s method is not very accurate. To obtain a numerical solution with an acceptable accuracy,

we have to use a very small step sizeh. A small step sizeh implies a larger number of steps, thus more

7

computing time. It is desirable to develop methods that are more accurate than Euler’s method. If we

look at the Taylor series again, we have

y(t1) = y(t0 +h) = y(t0)+hy′(t0)+
h2

2
y′′(t0)+

h3

6
y′′′(t0)+ ...

This can be written as
y(t1)−y(t0)

h
= y′(t0)+

h
2

y′′(t0)+
h2

6
y′′′(t0)+ ... (1.6)

Actually, the right hand side is a more accurate approximation for y′(t0 +h/2), since

y′(t0 +
h
2
) = y′(t0)+

h
2

y′′(t0)+
h2

8
y′′′(t0)+ ...

The first two terms on the right hand sides of the above two equations are identical, although the third

terms involvingy′′′(t0) are different. Thus,

y(t1)−y(t0)
h

≈ y′(t0 +
h
2
) = f

(

t0 +
h
2
,y(t0 +

h
2
)

)

The right hand side now involvesy(t0 + h/2). Of course, this is now known, because we only have

y(t0). The idea is that we can use Euler’s method (with half step size h/2) to get an approximate

y(t0+h/2), then use the above to get an approximation ofy(t1). The Euler approximation fory(t0+h/2)

is y(t0)+h/2 f (t0,y0). Therefore, we have

k1 = f (t0,y0) (1.7)

k2 = f (t0 +
h
2
,y0 +

h
2

k1) (1.8)

y1 = y0 +hk2. (1.9)

This is the first step of the so-calledmidpoint method. The general step is obtained by simply replacing

t0, y0 andy1 by t j , y j andy j+1, respectively.

The right hand side of (1.6) can also be approximated by(y′(t0)+y′(t1))/2, because

y′(t0)+y′(t1)
2

= y′(t0)+
h
2

y′′(t0)+
h2

4
y′′′(t0)+ ...

Therefore, we have
y(t1)−y(t0)

h
≈ y′(t0)+y′(t1)

2
.

We can replacey′(t0) andy′(t1) by f (t0,y(t0)) and f (t1,y(t1)), but of course, we do not knowy(t1),

because that is what we are trying to solve. But we can use Euler’s method to get the first approximation

of y(t1) and use it inf (t1,y(t1)), then use the above to get the second (and better) approximation of y(t1).

This can be summarized as

k1 = f (t0,y0) (1.10)

k2 = f (t0 +h,y0 +hk1) (1.11)

y1 = y0 +
h
2
(k1 +k2). (1.12)

8

This is the first step of the so-calledmodified Euler’s method. The general step fromt j to t j+1 is easily

obtained by replacing the subscripts 0 and 1 byj and j +1, respectively.

Similarly, the right hand side of (1.6) can be approximated by

Ay′(t0)+By′(t0 + αh),

whereα is a given constant, 0< α ≤ 1, the coefficientsA andB can be determined, such that the above

matches the first two terms of the right hand side of (1.6). We obtain

A = 1− 1
2α

, B =
1

2α
.

Theny′(t0 +αh) = f (t0 +αh,y(t0 +αh)) and we use Euler’s method to approximatey(t0 +αh). That is

y(t0 + αh) ≈ y(t0)+ αh f(t0,y(t0)).

Finally, we obtain the following general2nd order Runge-Kutta Methods:

k1 = f (t j ,y j) (1.13)

k2 = f (t j + αh,y j + αhk1) (1.14)

y j+1 = y j +h

[(

1− 1
2α

)

k1 +
1

2α
k2

]

(1.15)

Sinceα is an arbitrary parameter, there are infinitely many 2nd order Runge-Kutta methods. The mid-

point method and the modified Euler’s method correspond toα = 1/2 andα = 1, respectively. In this

formula,k1 andk2 are temporary variables, they are different for different steps.

There are many other Runge-Kutta methods (3rd order, 4th order and higher order). The following

classical 4th order Runge-Kuttamethod is widely used, because it is quite easy to remember.

k1 = f (t j ,y j) (1.16)

k2 = f (t j +
h
2
,y j +

h
2

k1) (1.17)

k3 = f (t j +
h
2
,y j +

h
2

k2) (1.18)

k4 = f (t j +h,y j +hk3) (1.19)

y j+1 = y j +
h
6
(k1 +2k2 +2k3 +k4) (1.20)

We have mentioned theorder of a method above. This concept will be explained in the next section.

Next, we consider a MATLAB implementation of the midpoint method. For this purpose, we write

the following function calledmidptstep which is saved in the file calledmidptstep.m.

function y1 = midptstep(h, t0, y0)

% This is midpoint method (one of the second order Runge-Kutta methods).

% It is given for the first step, but any other step is just the same.

% You need the MATLAB function f to specify the system of ODEs.

k1 = f(t0, y0);

k2 = f(t0+h/2, y0 + (h/2)*k1)

y1 = y0 + h* k2;

9

To solve the same differential equation (1.3-1.4), we need the earlier MATLAB functionf and a

main program. We can write a main program by copying the main programeulermain for Euler’s

method. The new main programmidptmain is different fromeulermain only in one line. The liney

= eulerstep(h, t, y) is now replaced by

y = midptstep(h, t, y)

You can see that writing a program for a new method is very easy, since we have separated the differ-

ential equation (inf.m) and the numerical method (ineulerstep.m or midptstep.m) from the main

program. In Fig. 1.2, we show the numerical solutionu(t) for (1.3-1.4) calculated by the midpoint

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

t

u(
t)

Numerical solutions by the midpoint method for h=0.01 and h=0.2

Figure 1.2: Numerical solutions by the midpoint method. Thesolid curve is forh= 0.01. The “o” is for

h = 0.2.

method withh = 0.01 andh = 0.2. You can see that the midpoint solution obtained withh = 0.2 is

much more accurate than the Euler’s solution with the sameh.

1.3 Local truncation error and order

When a numerical method is used to solve a differential equation, we want to know how accurate is the

numerical solution. We will denote the exact solution asy(t), thusy(t j) is the exact solution att j . The

numerical solution att j is denoted asy j , therefore, we are interested in the following error:

ej = |y(t j)−y j |.

We do not expect to be able to knowej exactly, because we do not have the exact solution in general.

Therefore, we will be happy to have some estimates (such as approximate formulas or inequalities) for

ej . However, even this is not so easy. The reason is that the error accumulates. Let us look at the steps.

10

We start withy0 = y(t0) which is exact, then we calculatey1 which approximatesy(t1), then we calculate

y2 which approximatesy(t2), etc. Notice that when we calculatey2, we usey1, noty(t1). The numerical

solutiony1 has some error, this error will influencey2. Therefore, the errore2 depends one1. Similarly,

the error at the third step, i.e.,e3, depends on the error at step 2, etc. As a result, it is rather difficult to

estimateej .

The numerical methods given in the previous sections can be written in the following general form:

y j+1 = φ(t j ,h,y j), (1.21)

whereφ is some function related to the functionf which defines the differential equation. For example,

the Euler’s method is

φ(t j ,h,y j) = y j +h f(t j ,y j).

The midpoint method is

φ(t j ,h,y j) = y j +h f

(

t j +
h
2
,y j +

h
2

f (t j ,y j)

)

.

If we have the exact solution, we can put the exact solutiony(t) into (1.21). That is, we replacey j and

y j+1 by y(t j) andy(t j+1) in (1.21). When this is done, the two sides of (1.21) will not equal, so we

should consider

Tj+1 = y(t j+1)−φ(t j ,h,y(t j)). (1.22)

The aboveTj+1 is the so-calledlocal truncation error . If we know the exact solutiony(t), then we can

calculateTj . In reality, we do not know the exact solution, but we can understand howTj+1 depends on

step sizeh by studying the Taylor series ofTj+1. We are interested in the local truncation error because

it can be estimated and it gives information on the true error. Therefore, we will try to do a Taylor series

for Tj+1 at t j , assumingh is small. In fact, we only need to calculate the first non-zeroterm of the Taylor

series:

Tj+1 = Chp+1 + ...

where the integerp is the order of the method,C is a coefficient that depends ont j , y(t j), y′(t j),

f (t j ,y(t j)), etc. ButC does not depend on the step sizeh. The above formula forTj+1 gives us informa-

tion on howTj+1 varies with the step sizeh. Becauseh is supposed to be small, we notice that a larger

p implies that|Tj+1| will be smaller. Therefore, the method will be more accurateif p is larger.

We notice that|T1| = e1, becausey0 = y(t0), thusy1 = φ(t0,h,y0) = φ(t0,h,y(t0)). However, it is

clear that|Tj | 6= ej for j > 1.

When we try to work out the first non-zero term of the Taylor series ofTj+1, we work on the general

equation (1.1). This is for the local truncation error att j+1. But the general case att j+1 has no real

difference with the special case att1. If we work out the Taylor series forT1, we automatically know the

result atTj+1. The integerp (that is the order of the method) should be the same. In the coefficient C,

we just need to replacet0, y(t0), f (t0,y(t0)), ... byt j , y(t j), f (t j ,y(t j)), ...

Now, let us work out the local truncation error for Euler’s method. The method isy j+1 = y j +

h f(t j ,y j) = φ(t j ,h,y j). Thus,

T1 = y(t1)−φ(t0,h,y(t0)) = y(t1)−y1.

11

We have a Taylor expansion fory(t1) at t0:

y(t1) = y(t0)+hy′(t0)+
h2

2
y′′(t0)+ ...

Notice thaty′(t0) = f (t0,y(t0)). Therefore,

T1 =
h2

2
y′′(t0)+ ...

The power ofh is p+1 for p = 1. Therefore, the Euler’s method is a first order method.

We can show that the local truncation error of the general 2ndorder Runge-Kutta methods is

T1 =
h3

4

[(

2
3
−α

)

y′′′ + αy′′
∂ f
∂y

]

t=t0

+ ...

As an example, we prove the result for the midpoint method (α = 1/2). The local truncation error is

T1 = h3
[

1
24

y′′′ +
1
8

y′′
∂ f
∂y

]

t=t0

+O(h4)

Proof: First, since the differential equation isy′ = f (t,y). We use thechain rule and obtain:

y′′ = ft + fyy
′ = ft + f fy

y′′′ = ftt + ftyy
′ +[f]′ fy + f [fy]

′ = ftt + f fty +[ft + fyy
′] fy + f [fty + fyyy

′]

= ftt +2 f fty + f 2 fyy+[ft + f fy] fy = ftt +2 f fty + f 2 fyy+y′′ fy

Now for y1 using the midpoint method, we have

k1 = f (t0,y0) = y′(t0)

k2 = f (t0 +
h
2
,y0 +

h
2

k1) = f (t0 +
h
2
,y0 +

h
2

y′(t0)).

Now, we needTaylor expansion for functions of two variables. In general, we have

f (t + δ,y+ ∆) = f (t,y)+ δ ft(t,y)+ ∆ fy(t,y)

+
δ2

2
ftt(t,y)+ δ∆ fty(t,y)+

∆2

2
fyy(t,y)+ ...

Now, for k2, apply the above Taylor formula and usef to denotef (t0,y0) = y′(t0), we have

k2 = f +
h
2

ft +
h
2

y′ fy +
h2

8
ftt +

h2y′

4
fty +

h2(y′)2

8
fyy+O(h3)

= y′ +
h
2

y′′ +
h2

8
[y′′′−y′′ fy]+O(h3).

Herey, f and their derivatives are all evaluated att0. Notice thaty(t0) = y0. Therefore,

y1 = y+hk2 = y+hy′ +
h2

2
y′′ +

h3

8
[y′′′−y′′ fy]+O(h4)

Use the Taylor expansion

y(t1) = y(t0 +h) = y+hy′ +
h2

2
y′′ +

h3

6
y′′′ +O(h4)

and the definition forT1, we have

T1 =
h3

6
y′′′− h3

8
[y′′′−y′′ fy]+O(h4) = h3

[

1
24

y′′′ +
1
8

y′′ fy

]

+O(h4).

12

1.4 Embedded Runge-Kutta methods

Some differential equations may have solutions that changerapidly in some time intervals and change

relatively slowly in other time intervals. As an example, weconsider the Van der Pol equation:

u′′ +u = µ(1−u2)u′, t > 0.

Forµ= 6 and the initial conditionsu(0) = 1, u′(0) = 0, we use the midpoint method withh = 0.04 and

solve the equation fromt = 0 to t = 40. The solution is given in Fig. 1.3. It appears that we should not

0 5 10 15 20 25 30 35 40
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

u(
t)

Solution of the Van der Pol equation

Figure 1.3: A solution of the Van der Pol equation forµ= 6 andu(0) = 1, u′(0) = 0.

keep the step sizeh as a constant. Rather, we should only use a smallh when the solution changes with

time rapidly. A numerical method that automatically selects the step size in each step is an adaptive

method.

A class of adaptive method for solving differential equations is the so-called embedded Runge-Kutta

methods. An embedded Runge-Kutta method uses two ordinary Runge-Kutta methods for comparing

the numerical solutions and selecting the step size. Moreover, the two methods in an embedded method

typically share the evaluation off (we are solvingy′ = f (t,y)). Therefore, the required computation

effort is minimized.

Here is a 3rd order Runge-Kutta method

k1 = f (t j ,y j) (1.23)

k2 = f (t j +h,y j +hk1) (1.24)

k3 = f (t j +
h
2
,y j +

h
4
(k1 +k2)) (1.25)

y j+1 = y j +
h
6
(k1 +4k3 +k2) (1.26)

13

The cost of this method is mainly related to the calculation of k1, k2 andk3. That is, three evaluations of

f . With the abovek1 andk2, we can use the 2nd order Runge-Kutta method (α = 1, the modified Euler’s

method) to get a less accurate solution att j+1:

y∗j+1 = y j +
h
2
(k1 +k2). (1.27)

Although we are not going to usey∗j+1 as the numerical solution att j+1, we can still usey∗j+1 to compare

with the 3rd order solutiony j+1. If their difference is too large, we reject the solution anduse a smaller

stepsizeh to repeat the calculation. If their difference is small enough, we will accepty j+1. But we

also use this information to suggest a step size for the next step. A user must specify a small numberε
(called the error tolerance) to control the error for selecting the step size. The difference betweeny j+1

andy∗j+1 is

e= ||y j+1−y∗j+1|| =
h
3
||k1−2k3 +k2||. (1.28)

Sincey may be a vector, we have used a vector norm above.

To understand the formula for changing the step size, we consider the first step and the exact solution

y(t1) at t1. The local truncation errors give us

y(t1)−y∗1 = C1h3 + ...

y(t1)−y1 = C2h4 + ...

for someC1 andC2 related to the solution att0, its derivatives, the functionf and its partial derivatives

at t1. Thus, we have

y1−y∗1 = C1h3 + ...

Therefore,

e≈ ||C1||h3. (1.29)

Although we do not knowC1, the above relationship allows us to design a stepsize selection method

based on the user specified error toleranceε. If e≤ ε, we accepty1, otherwise, we rejecty1 and repeat

this step. The current step size used for calculatingy1 andy∗1 is h, how should we choose a new step

size? We have

enew≈ ||C1||h3
new< ε.

Compare this with (1.29), we have
||C1|| h3

new

||C1|| h3 <
ε
e

or

hnew< h
(ε

e

)1/3

To satisfy the above inequality, we use

h := 0.9h
(ε

e

)1/3
(1.30)

to reset the stepsize. Now, ife≤ ε, we acceptt1 = t0 +h andy1, but we also use formula (1.30) to reset

the stepsize. This gives rise to the possibility to increasethe stepsize when the originalh is too small

(so thate is much smaller thanε).

Algorithm: to solvey′ = f (t,y) from t0 to tend with error toleranceε and initial conditiony(t0) = y0,

14

initialize t = t0, y = y0, ε, h (initial step size)

while t < tend

k1 = f (t,y)

k2 = f (t +h,y+hk1)

k3 = f (t +h/2,y+ h
4(k1 +k2))

e= h
3||k1−2k3 +k2||

if e≤ ε, then

y = y+ h
6(k1 +4k3 +k2)

t = t +h

outputt, y

end if

h = 0.9h(ε/e)1/3

end

Notice that the formula for resettingh is outside the “if...end if” loop. That is, whether the calculation

is accepted or not,h will always be changed.

As an example, we consider

y′ = y− ty2, t > 0, (1.31)

with initial conditiony(0) = 1. If we useε = 10−5 and the initial step sizeh = 0.5, we get

k1 = 1, k2 = 0.375, k3 ≈ 0.8286, e≈ 0.047.

Sincee> ε, this step is rejected. We have the new step sizeh≈ 0.0269 and

k2 ≈ 0.9985, k3 ≈ 0.9996, e≈ 6.4194×10−5.

Thus, the new step is accepted and

t1 ≈ 0.0269, y1 ≈ 1.0268.

The numerical solution of this differential equation is shown in Fig. 1.4. A MATLAB program (erk23.m)

for the embedded Runge-Kutta method is given below.

function [tout, yout] = erk23(t0, tfinal, y0, tiny, h0)

% This is the embedded Runge-Kutta method using a 3rd order

% Runge-Kutta method and a 2nd order Runge-Kutta method.

% We are solving y’ = f(t, y), where y is a column vector

% of functions of t.

% Input: t0, the initial time

% tfinal, the final time

% y0, a column vector of the initial conditions, i.e., y(t0) = y0.

% tiny, the small parameter for error tolerance

% h0, initial time step

% Output: tout, a row vector for the discrete time steps

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

t

y(
t)

Figure 1.4: Numerical solution of (1.31) by embedded Runge-Kutta method.

% yout, a matrix for solutions of y at various various time.

t = t0;

y = y0;

h = h0;

tout = t0;

yout = y0;

while t < tfinal

k1 = f(t, y);

k2 = f(t+h, y + h*k1);

k3 = f(t+h/2, y + h*(k1+k2)/4);

E = (h/3)*norm(k1-2*k3 +k2);

if E <= tiny

y = y + (h/6)*(k1 + 4*k3 + k2);

t = t + h;

tout = [tout, t];

yout = [yout, y];

end

h = 0.9 * h * (tiny/E)^(1/3);

end

This program requiresf.m which specifies the differential equation.

16

Chapter 2

ODE IVP: Implicit One-step Methods

2.1 Stiff equations

The Euler’s method and the Runge-Kutta methods in previous sections areexplicit methods. For the step

from t j to t j+1, the numerical solutiony j+1 has anexplicit formula. In the section on local truncation

errors, we write down such a formula byy j+1 = φ(t j ,h,y j). It turns out that the explicit methods have

some difficulties for some differential equations. These are the so-calledstiff differential equations.

First, we consider the following example:

y′ +sin(t) = −200(y−cos(t)), (2.1)

with initial conditiony(0) = 0. The exact solution is

y(t) = cos(t)−e−200t .

As t increases, the exact solution converges to cos(t) rapidly. Let us use the Euler’s method for this

equation. The numerical solutions are obtained withh = 0.008 andh = 1/99 in Fig. 2.1. We observe

that the numerical solution looks reasonable for larget if h = 0.008. There are large errors at the first

a few steps, then the error decrease rapidly. In fact, this istrue forh < 0.01. If h = 1/99, we can see

that the error oscillates and grows exponentially int. If we replace the Euler’s method by a higher order

Runge-Kutta (explicit) method, we still have similar difficulties.

While the above example appears to be a toy problem, we also have more realistic examples. Let us

consider the heat equation

ut = uxx, 0 < x < L, t > 0. (2.2)

This is one of the simplest partial differential equations (PDEs) and it will be studied again in Chapter

6. This equation is usually solved with two boundary conditions and one initial condition. For example,

we have

u(0, t) = a and u(L, t) = b, t ≥ 0,

u(x,0) = f (x), 0 < x < L,

17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

t

y(
t)

step size h = 0.008

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

0

5
step size h = 1/99

t

y(
t)

Figure 2.1: Comparison of the exact and the numerical solutions of equation (2.1). The numerical

solutions are obtained by the Euler’s method

where f is a given function ofx. We can solve thisinitial and boundary value problemby separation of

variables. We have

u(x, t) = u∞(x)+
∞

∑
j=1

ĝ j sin

(

jπx
L

)

e−(jπ/L)2t ,

where

u∞(x) = a+(b−a)
x
L
, ĝ j =

2
L

Z L

0
[f (x)−u∞(x)]sin

(

jπx
L

)

dx.

Notice that the solution converges rapidly to the time-independent (steady) solutionu∞ ast → ∞. The

steady solution is determined by the boundary conditions only and it is a linear function ofx. In Chapter

6, we will study a number of numerical methods for this equation. For the moment, we will use a simple

method to discretize the variablex and approximate this PDE by a system of ODEs. We discretizex by

xi = i∆x for i = 0,1,2, ...,m+1 and ∆x =
L

m+1
,

denoteui = u(xi , t) and approximateuxx(xi , t) by

uxx(xi , t) ≈
ui−1−2ui +ui+1

(∆x)2 ,

18

then the heat equation is approximated by the following system of ODEs:

d
dt

















u1

u2
...

um−1

um

















=
1

(∆x)2















−2 1

1 −2 1

1
... .. .
. . . −2 1

1 −2































u1

u2
...

um−1

um

















+
1

(∆x)2















a

0
...

0

b















. (2.3)

Since onlyx is discretized, we call the above approximation asemi-discretization. Originally, the heat

equation is defined on the two-dimensional domain{(x, t)|0 < x < L, t > 0}, now we are approximating

u only on the lines:x = xi for t > 0. We call such a process that turns PDE to a system of ODEs the

method of lines. In the following, we letL = 1, a = 1, b = 2 and f (x) = 0 for 0< x < L, and solve the

above system by the 4th order classical Runge-Kutta method.The right hand side of the ODE system is

given inf.m:

function k=f(t,u)

% ODE system for semi-discretized heat equation.

% u_t = u_xx, 0<x<L, t>0,

% u=a at x=0, u=b at x=L.

global L a b

m = length(u);

dx = L/(m+1);

s = 1/(dx)^2;

k(1)=s*(a-2*u(1)+u(2));

k(m)=s*(u(m-1)-2*u(m)+b);

k(2:m-1)=s*(u(1:m-2)-2*u(2:m-1)+u(3:m));

The 4th order classical Runge-Kutta method is given inrk4step.m:

function y1 = rk4step(h,t0,y0);

k1 = f(t0,y0);

k2 = f(t0+h/2, y0 + (h/2)*k1);

k3 = f(t0+h/2, y0 + (h/2)*k2);

k4 = f(t0+h, y0+ h*k3);

y1 = y0 + (h/6)*(k1+2*k2+2*k3+k4);

The main program is given below.

global L a b

L=1; a=1; b=2;

% discretizing x by m points in (0,L)

m = 99;

dx = L/(m+1);

x = dx*(1:m);

% simple initial condition u = 0.

19

u = zeros(1,m);

% solve from t=0 to t=0.05 with nsteps

tzero = 0; tfinal = 0.05;

nsteps = 718; % try 717, 716

h = (tfinal - tzero)/nsteps

for j=1:nsteps

t = (j-1)*h;

u = rk4step(h,t,u);

end

% draw the solution at t=tfinal

plot([0,x,L],[a,u,b])

We have tried two stepsh = 0.05/718≈ 6.964×10−5 andh = 0.05/716≈ 6.983×10−5. The smaller

h gives a satisfactory solution, while the largerh gives an incorrect solution with wild oscillations.

Compared with the grid size∆x = 0.01, the time step sizeh = 6.964× 10−5 appears to be extremely

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

x

u(
x,

0.
05

)

Figure 2.2: Numerical solutions of the heat equation att = 0.05 by a 4th order Runge-Kutta method

with step sizeh = 0.05/718 andh = 0.05/716.

small.

The concept of “stiff” differential equation is not rigorously defined. Suppose we have an exact

solutiony(t) of a differential equation. Fix a timet∗, the differential equation has infinitely many other

solutions fort > t∗. If these other solutions converge toy(t) rapidly for t > t∗, then we may say that this

differential equation is stiff att∗. If a nearby solution, say ˜y(t), converges toy(t) rapidly, the derivative

of ỹ can be large (in absoluate value). Numerically, this can be difficult to catch. For explicit method,

the error can decrease if the step size is sufficiently small.But the error may increase exponentially, if

the step size is not small enough.

20

2.2 Implicit one-step methods

For stiff differential equations, we need the “implicit” methods. One step implicit methods can be

written as

y j+1 = φ(t j ,h,y j ,y j+1). (2.4)

Notice thaty j+1 is what we want to calculate, but it also appears in the right hand side. To be more

precise, they j+1 in the right hand side only appears inside the functionf . Remember that we are trying

to solvey′ = f (t,y). The method is called implicit, because we do not have an explicit formula fory j+1.

Instead, we have to solve an equation to findy j+1. If the differential equation is complicated, an implicit

method can be very difficult to use.

When applied to stiff differential equations, the implicitmethods behave better. We can use a large

step size. Of course, if the step size is large, the numericalsolution may be not very accurate. But at

least the error is under control. Next, we list some one step implicit methods.

Backward Euler’s method:

y j+1 = y j +h f(t j+1,y j+1). (2.5)

This is a first order implicit method. Notice thaty j+1 also appears in the right hand side inf .

Trapezoid method:

y j+1 = y j +
h
2

[f (t j ,y j)+ f (t j+1,y j+1)] (2.6)

This is one of the most widely used implicit method. It is a 2ndorder method.

Implicit midpoint method:

y j+1 = y j +h f

(

t j +
h
2
,
1
2
(y j +y j+1)

)

(2.7)

Again, this is a 2nd order implicit method. Notice thaty j+1 also appears in the right hand side. The

implicit midpoint method is equavelent to the so-called2nd order Gauss method:

k1 = f

(

t j +
h
2
,y j +

h
2

k1

)

(2.8)

y j+1 = y j +hk1. (2.9)

This time,k1 is implicitly given in the first equation. If we eliminatek1, the method can still be written

as (2.10).

Now, let us solve the differential equation (2.1) by the implicit midpoint method. Using the step size

h = 0.02, we obtain the numerical results shown as the little circles in Fig. 2.3. Besides the first a few

steps, the numerical solutions are pretty accurate.

The implicit methods given in this section are one-step method, sincey j+1 depends ony j only (does

not depend on earlier solutions, such asy j−1). The local truncation error and the order of the method

can be defined as before. For the general implicit method (2.10), we first calculate ˜y j+1 by changingy j

to the exact solutiony(t j), i.e.,

ỹ j+1 = φ(t j ,h,y(t j), ỹ j+1),

then the local truncation error is

Tj+1 = y(t j+1)− ỹ j+1.

21

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.3: Comparision of the exact solution and the numerical solution by the implicit midpoint

method withh = 0.02 for (2.1).

This definition is somewhat complicated, since ˜y j+1 must be solved from an equation. Notice that a

one-step implicit method can be written as

y j+1 = φ(t j ,h,y j ,y j+1) = y j +hΦ(t j ,y j ,y j+1), (2.10)

whereΦ is related tof . We can approximate ˜y j+1 by

ŷ j+1 = φ(t j ,h,y(t j),y(t j+1)) = y(t j)+hΦ(t j ,y(t j),y(t j+1)).

Notice that ˆy j+1 is given explicitly. This gives rise to the modified definition of local truncation error:

T̂j+1 = y(t j+1)− ŷ j+1 = y(t j+1)−φ(t j ,h,y(t j),y(t j+1)).

It appears that we just need to insert the exact solution intothe numerical formula to get the local

truncation error. It can be proved that the original and the modified definitions give the same first non-

zero term in their Taylor expansions. That is, if we assume the time steph is small and work out the first

a few terms of the Taylor expansions, then

Tj+1 = Chp+1 +Dhp+2+ ...

T̂j+1 = Chp+1 + D̂hp+2 + ...

Since we are only interested in the first non-zero term of the local truncation error, we can usêTj+1 to

replace the originalTj+1. As before, the method has orderp, if the first non-zero term of the Taylor

series of the local truncation error is proportional tohp+1. For example, the local truncation error of the

backward Euler’s method is

T̂j+1 = y(t j+1)−y(t j)−h f(t j+1,y(t j+1)) = y(t j+1)−y(t j)−hy′(t j+1) = −h2

2
y′′(t j)+ ...

Therefore, the backward Euler’s method is a first order method.

22

Chapter 3

ODE IVP: Multi-step Methods

3.1 Explicit multi-step methods

In Runge-Kutta methods, the solution att j+1 is based on the solution att j . That isy j+1 is calculated

from y j . In multi-step methods,y j+1 is calculated from the solutionsy j , y j−1, etc. Multi-step methods

are more difficult to program, but they are more efficient thanthe Runge-Kutta methods. To present the

multi-step methods, we need the following notation:

fk = f (tk,yk)

for any integerk. The Adams-Bashforth methods are the most widely used explicit multi-step methods:

AB2 (2nd order)

y j+1 = y j +h

[

3
2

f j −
1
2

f j−1

]

(3.1)

AB3 (3rd order)

y j+1 = y j +h

[

23
12

f j −
16
12

f j−1+
5
12

f j−2

]

. (3.2)

AB4 (4th order)

y j+1 = y j +h

[

55
24

f j −
59
24

f j−1 +
37
24

f j−2−
9
24

f j−3

]

(3.3)

The Adams-Bashforth methods are derived in the following steps.

1. The following formula is exact

Z t j+1

t j

y′(t) dt = y(t j+1)−y(t j) =
Z t j+1

t j

f (t,y(t)) dt

2. Find a polynomial interpolation forf based on the points

(t j , f j), (t j−1, f j−1), ...

3. Replacef by its polynomial aproximation in step 2, then integrate.

23

The method AB2 is a 2-step method, and it is also a second ordermethod. The concept of order is

related to the concept of local truncation error (LTE). If wewrite an explicit multi-step method as

y j+1 = φ(t j ,h,y j ,y j−1, ...)

for some functionφ related to the differential equationy′ = f (t,y), the LTE is defined as

Tj+1 = y(t j+1)−φ(t j ,h,y(t j),y(t j−1), ...)

wherey(t) is the exact solution of differential equation. As an example, we consider the method AB2.

We have

φ(t j ,h,y(t j),y(t j−1)) = y(t j)+h

[

3
2

f (t j ,y(t j))−
1
2

f (t j−1,y(t j−1))

]

= y(t j)+h

[

3
2

y′(t j)−
1
2

y′(t j−1)

]

To find the order, we need the first non-zero term of the Taylor series of the LTE. Since

y′(t j−1) = y′(t j −h) = y′(t j)−hy′′(t j)+
h2

2
y′′′(t j)+ ...

we obtain

φ(t j ,h,y(t j),y(t j−1)) = y(t j)+hy′(t j)+
h2

2
y′′(t j)−

h3

4
y′′′(t j)+ ...

On the other hand,

y(t j+1) = y(t j +h) = y(t j)+hy′(t j)+
h2

2
y′′(t j)+

h3

6
y′′′(t j)+ ...

Therefore,

Tj+1 =
5h3

12
y′′′(t j)+ ...

If the LTE is related toh as

Tj+1 = Chp+1 + ...

then the order of the numerical method isp. For AB2, the order is 2. In other words, AB2 is a second

order method.

Let us consider the method AB4 (which is a fourth order method). To evaluatey j+1, we needf j ,

f j−1, f j−2 and f j−3. However, we only need to calculatef j in this step, because the other three values

of f (i.e. f j−1, f j−2 and f j−3) are already calculated in the previous steps. In comparision, in each

step of the 4th order Runge-Kutta method, we need to evaluatef four times (i.e.,k1, k2, k3 andk4).

For large scale problems, usually the most expensive part ofthe calculation is to evaluate the function

f . Therefore, AB4 is roughly four times faster than a 4th orderRunge-Kutta method. A MATLAB

program for the method AB4 is given below:

% We implement the 4th order Adams-Bashforth’s method here. A

% constant step size h is used. The differential equation is y’ = f(t,y),

% where f is the name (a string) of the function f(t,y). Notice that y

24

% and f are supposed to be column vectors.

% Input:

% t0 --- the intial time

% y0 --- the initial values (a column vector)

% tfinal --- the final time

% steps --- the total number of steps.

% Output:

% t --- a row vector for the discretized time

% y --- a matrix for solutions at various time

function [t, y] = myab4(t0, y0, tfinal, f, steps)

% setup the step size.

h = (tfinal - t0)/steps;

% setup the vector for output.

n = length(y0);

t = t0 : h: tfinal;

y = zeros(n, steps+1);

y(:,1) = y0;

% first 3 steps by the classical 4th order Runge-Kutta method.

[y(:,2), f1] = myrk4a(f, h, y(:,1), t(1));

[y(:,3), f2] = myrk4a(f, h, y(:,2), t(2));

[y(:,4), f3] = myrk4a(f, h, y(:,3), t(3));

% calculate the remaining steps by AB4

for j=4:steps

f4 = feval(f, t(j), y(:,j));

y(:,j+1) = y(:,j) + (h/24)*(-9*f1 + 37*f2-59*f3+55*f4);

f1 = f2;

f2 = f3;

f3 = f4;

end

% The 4th order classical Runge-Kutta method

function [y1, k1] = myrk4a(f, h, y, t)

k1 = feval(f, t, y);

k2 = feval(f, t+0.5*h, y+0.5*h*k1);

k3 = feval(f, t+0.5*h, y+0.5*h*k2);

k4 = feval(f, t+h, y+h*k3);

y1 = y + (h/6) * (k1 + 2*k2 + 2*k3 + k4);

Next, we use AB4 to solve the following Lorenz system:

y′1 = 10(y2−y1)

25

y′2 = −y1y3 +28y1−y2

y′3 = y1y2−
8
3

y3.

This is implemented in the following MATLAB programlorenz.m:

% The Lorenz system

function k = lorenz(t,y)

k = zeros(3,1);

k(1) = 10 * (y(2) - y(1));

k(2) = - y(1)*y(3) + 28*y(1) - y(2);

k(3) = y(1) * y(2) - (8/3) * y(3);

Now, we solve the Lorenz system fromt = 0 to t = 40 with the following main program.

% the main program to solve the Lorenz system by AB4.

% initial time

t0 = 0;

% final time

tfinal = 40;

% initial conditions (column vector):

y0 = [-11.3360, -16.0335, 24.4450]’ ;

% total number of steps

steps = 2000;

% call the function myab4

[t, y] = myab4(t0, y0, tfinal, ’lorenz’, steps);

The solutions are plotted in Fig. 3.1. The Lorenz system exhibits chaos. If you think about the solution

as a trajectory in the 3-D space ofy1, y2 andy3, then the trajectory does not approach a fixed point

or a closed loop. If the trajectory approaches a fixed point, the solutions (as functions oft) tend to

constants. If the trajectory approaches a closed loop, thenthe solutions become periodic ast → ∞. But

the solutions of the Lorenz equation is non-periodic ast → ∞.

3.2 Implicit multi-step methods

The Adams-Bashforth methods, like the explicit Runge-Kutta methods, have difficulties for stiff differ-

ential equations. Some one-step implicit methods are introduced in Chapter 2. In the following, we

develop some implicit multi-step methods.

The Adams-Moulton methods are implicit multi-steps methods and they are derived similarly as the

Adams-Bashforth methods. We start with

y(t j+1)−y(t j) =

Z t j+1

t j

f (t,y(t))dt

and use polynomial interpolation forf . For Adams-Moulton methods, we include(t j+1, f j+1) as an

interpolation point. If we only use two points:(t j , f j) and(t j+1, f j+1) for approximatingf , then we get

26

0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

t

y 1

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

t

y 2

0 5 10 15 20 25 30 35 40
0

20

40

60

t

y 3

Figure 3.1: Solutions of the Lorenz system by AB4.

a single-step implicit method. This is the Trapezoid methodgiven in section 2.2 (which can be regarded

as AM1).

If f is approximated by its polynomial interpolation using the three points:

(t j+1, f j+1), (t j , f j), (t j−1, f j−1)

we get the following 2-step Adams-Moulton method (AM2):

y j+1 = y j +h

[

5
12

f j+1 +
8
12

f j −
1
12

f j−1

]

. (3.4)

The above is a 3rd order method. The 3-step Adams-Moulton method (AM3) has a fourth order of

accuracy. It is given as follows:

y j+1 = y j +h

[

9
24

f j+1 +
19
24

f j −
5
24

f j−1 +
1
24

f j−2

]

.

The Admas-Moulton methods are useful when they are used together with the Admas-Bashforth

methods as the so-calledPredictor-Corrector methods. In this a method, an explicit method is used to

calculate a solution att j+1, sayỹ j+1, then it is improved by an implicit method. In the implicit method,

27

f j+1 is replaced byf (t j+1, ỹ j+1). Here is the 3rd order Adams predictor-corrector method

ỹ j+1 = y j +h

[

23
12

f j −
16
12

f j−1 +
5
12

f j−2

]

(3.5)

y j+1 = y j +h

[

5
12

f (t j+1, ỹ j+1)+
8
12

f j −
1
12

f j−1

]

. (3.6)

Overall, this is still an explicit method. Notice that the two methods involed in the above predictor-

corrector method both are 3rd order and the resulting methodis also 3rd order.

A class of useful implicit multi-step method is theBackward Differentiation Formulas (BDF) .

The derivation is as follows:

1. Write down a polynomialQ(t) that interpolates

(t j+1,y j+1), (t j ,y j), (t j−1,y j−1), ...

BDF2 is a 2-step method, soQ is based on the above three points. BDF3 is a 3-step method, so

(t j−2,y j−2) is also needed.

2. Replacey′ = f (t,y) at t j+1 by

Q′(t j+1) = f (t j+1,y j+1)

Consider BDF2, we have

Q(t) = y j+1
(t − t j)(t − t j−1)

(t j+1− t j)(t j+1− t j−1)
+y j

(t − t j+1)(t − t j−1)

(t j − t j+1)(t j − t j−1)
+y j−1

(t − t j)(t − t j+1)

(t j−1− t j)(t j−1− t j+1)

Take a derivative and sett = t j+1, we get

3
2h

y j+1−
2
h

y j +
1
2h

y j−1 = f (t j+1,y j+1)

or

y j+1−
4
3

y j +
1
3

y j−1 =
2h
3

f (t j+1,y j+1).

The methodBDF3 can be similarly derived. We have

y j+1−
18
11

y j +
9
11

y j−1−
2
11

y j−2 =
6
11

h f(t j+1,y j+1).

For an implicit multi-step method, given as

y j+1 = φ(t j ,h,y j+1,y j ,y j−1, ...),

the local truncation error is defined as

Tj+1 = y(t j+1)−φ(t j ,h,y(t j+1),y(t j),y(t j−1), ...).

Going through a Taylor series, we may find

Tj+1 = Chp+1 + ...

then the order of the method isp.

28

Chapter 4

ODE IVP: Stability Concepts

4.1 Zero stability

There are many other multi-step methods. Some of them have higher order than the methods in the

previous chapter (for the same number of steps). The following explicit multi-step method

y j+1 +4y j −5y j−1 = h[4 f j +2 f j−1] (4.1)

is a third order 2-step method. This can be verified by calculating its local truncation error. We have

Tj+1 = y(t j+1)+4y(t j)−5y(t j−1)−h[4 f (t j ,y(t j))+2 f (t j−1,y(t j−1))]

= y(t j+1)+4y(t j)−5y(t j−1)−h
[

4y′(t j)+2y′(t j−1)
]

.

Now, if we insert the Taylor series ofy(t j+1), y(t j−1) andy′(t j−1) at t = t j , we obtain

Tj+1 =
h4

6
y(4)(t j)+ ...

Since the power ofh is 4= 3+1, this is a third order method.

Notice that the 2-step AB2 is only a second order method. It thus seems that the above method

would be more useful than AB2. This is not the case, since it can not solve the simplest differential

equation

y′ = 0

The solution of the above should bey= const. If the initial condition isy(t0) = y0, theny(t) = y0 for all

t. For the 2-step method (4.1), we must assume thaty1 ≈ y(t1) is also given. We assume that

y1 ≈ y0, but y1 6= y0

This can happen, if we have somehow computedy1 with a small error. Then (4.1) is simple

y j+1 +4y j −5y j−1 = 0

for j = 1,2,3, This linear recurrence relationship can be solved. The general solution is

y j = C1λ j
1 +C2λ j

2,

29

whereC1 andC2 are constants,λ1 andλ2 are the solutions of

λ2 +4λ−5= 0.

Therefore,

λ1 = 1, λ2 = −5.

Thus the general solution is

y j = C1+C2(−5) j .

Now, we can try to determineC1 andC2 from

y0 = C1 +C2

y1 = C1−5C2.

We have

C1 =
5y0 +y1

6
, C2 =

y0−y1

6
.

If y0 6= y1, thenC2 6= 0, thus

lim
j→∞

|y j | = ∞.

Therefore, the error grows exponentially fast and the method (4.1) is useless.

Let us write a numerical method for ODE IVPs in the following general form:

k

∑
l=0

αl y j+l = αky j+k + ...+ α1y j+1 + α0y j = hΦ(y j+k, ...,y j+1,y j , t j ;h). (4.2)

This is ak-step method. The right hand side is related to the functionf , i.e., the right hand side of the

ODE. In general, the above method is implicit, sincey j+k is also in the right hand side. Furthermore,

we may require thatαk = 1. Notice that we have shifted the subscripts, so that terms like y j−1 do not

appear. In fact, method (4.1) is now written as

y j+2 +4y j+1−5y j = h[4 f j+1 +2 f j].

In any case, we may ask when the general method (4.2) is zero stable. If the method is applied toy′ = 0,

then we just have the left hand side:

αky j+k + ...+ α1y j+1 + α0y j = 0. (4.3)

Consider a special solutiony j = ζ j , we obtain

ρ(ζ) =
k

∑
l=0

αl ζl = 0.

For zero-stability, we require that all solutions of the linear recurrence (4.3) must be bounded for allj

and for all initial conditions. Therefore, the roots of the polynomialρ(ζ), i.e. the zeros of the polynomial

ρ(ζ) or the solutions of the above equation, must satisfy

|ζ| ≤ 1, and |ζ| = 1 only if ζ is a simple root.

30

4.2 Absolute stability

For stiff differential equations, it is desirable to haveA-stablenumerical methods. A numerical method

is calledA-stable (which means absolutely stable), ifwhen it is applied to

y′ = ay, t > 0, y(0) = y0,

where a is any complex number with Re(a) < 0, the numerical solution yj → 0 as j→ ∞, for any step

size h> 0. Notice that the exact solution of the above equation

y(t) = y0eat → 0, as t → ∞,

since Re(a) < 0. Therefore, the A-stable numerical methods have the correct behavior for larget. An

explicit numerical method can never be A-stable. When an explicit method is applied toy′ = ay, the

numerical solution converges to zero ifh is small enough, otherwise, the numerical solution diverges

exponentially.

The implicit methods presented in Chapter 2 are all A-stable. When applied toy′ = ay, the backward

Euler’s method gives

y j+1 =
1

1−ah
y j ,

or

y j =

[

1
1−ah

] j

y0.

Since Re(a) < 0, |1−ah|> 1, thus,y j → 0 as j →∞. For the implicit midpoint method and the Trapzoid

method, we get

y j+1 =
1+ah/2
1−ah/2

y j .

Therefore,

y j =

[

1+ah/2
1−ah/2

] j

y0.

Since Re(a) < 0, we have
∣

∣

∣

∣

1− ah
2

∣

∣

∣

∣

>

∣

∣

∣

∣

1+
ah
2

∣

∣

∣

∣

.

Therefore,y j → 0 as j → ∞.

Other implicit methods may or may not be A-stable. In fact, the Adams-Moulton methods are not

A-stable. Let us consider the third order method AM2. If we apply the method toy′ = ay, wherea is a

complex constant with a negative real part, we get

(1−5s)y j+1− (1+8s)y j +syj−1 = 0,

wheres= ah/12. The general solution of the linear recurrence relationship is

y j = Aλ j
1 +Bλ j

2

whereλ1 andλ2 satisfies

(1−5s)λ2− (1+8s)λ+s= 0.

31

If λ1 or λ2 satisfies|λ|> 1 for somes, then|y j |→ ∞ as j → ∞ for the givens (thus the given step sizeh).

If that is the case, the method will not be A-stable. This is indeed the case for reala< 0 whens<−1/2

or h > −6/a. Therefore, the method is not A-stable.

The 2-step BDF formula (i.e., BDF2) isA-stable, but thek-step BDF formulae fork ≥ 3 are not

A-stable. Furthermore, for BDF formulae, we also need to check their zero-stability. It turns out that

the BDF formulae are zero-stable only if the number of stepsk ≤ 6. Although the BDF formulae are

notA-stable for 3≤ k≤ 6, they areA(0)-stable. A numerical method is calledA(0)-stable, ifwhen it is

applied to y′ = ay for anyreal and negative a, the numerical solution always satisfies yj → 0 as j→ ∞
for any step size h> 0. It is clear thatA(0)-stable is a weaker condition thanA-stable. If a method is

A-stable, then it is certainlyA(0)-stable, but the reverse is not true. Notice that theA-stable condition

checks the solution for allcomplex a with a real and negative imaginary part, but it includes a real a as

a special case.

Actually, we can have more information if we calculate theregion of absolute stability of a nu-

merical method. This concept is again related toy′ = ay for complexa, but it is also related to the

step sizeh. As we see from the earlier calculations, the numerical solution for this equation is closely

related toz = ah. Therefore, we define the region of absolute stability as a region in the complexz

plane, wherez= ah. It is defined as those values ofzsuch that the numerical solutions ofy′ = aysatisfy

y j → 0 as j → ∞ for any initial conditions. For the explicit Runge-Kutta methods in Chapter 1, the

Adams-Bashforth methods, the Adams-Moulton methods, and the BDF methods, we show the regions

of absolute stability in the extra handout. What about the three implicit methods in Chapter 2? The

backward Euler’s method is identified as BDF1, the trapezoidmethod is identified as AM1, and the

region of absolute stability for implicit midpoint method is identical to that of the trapezoid method.

With this concept, we realize that a method isA-stable, if its region of absolute stability includes the

left half of the complexz-plane, and a method isA(0)-stable, if its region of absolute stability includes

the negative half of the real line in the complexz-plane. Furthermore, we can say that one method is

more stable than the other method, if the first method has a larger absolute stability region. As a little

exercise, we consider the interval of absolute stability onthe real axis ofz. For y = ay, the 4th order

Runge-Kutta method gives

y j+1 =

(

1+z+
z2

2
+

z3

6
+

z4

24

)

y j

On the real axisz= ah is real, the interval is thus defined as
∣

∣

∣

∣

1+z+
z2

2
+

z3

6
+

z4

24

∣

∣

∣

∣

< 1.

We solve the end points of the interval from

1+z+
z2

2
+

z3

6
+

z4

24
= ±1.

The case of 1 givesz= 0 andz= −2.7853, the case−1 has no real roots. Therefore, the interval on the

real axis (of the region of absolute stability) is−2.7853< z< 0.

While our numerical methods are designed for the general first order systemy′ = f (t,y) wherey is

in general a vector, we only considered the absolute stability concept fory′ = aywherey is a scalar and

32

a is a constant. Therefore, it is natural to ask whether this concept is relevant. First, we consider the

linear equations:

y′ = Ay

whereA is a square matrix and it ist-independent. In that case, the matrixA has eigenvaluesλ1, λ2, ...,

the corresponding right eigenvectorsp1, p2, ..., and left eigenvectorswT
1 , wT

2 , ..., whereT denotes the

transpose operation. That is

Apj = λ j p j , wT
j A = λ jw

T
j , j = 1,2, ...

As y is a column vector of functions, we can multiply the row vector wT
j and obtain

wT
j y′ = wT

j Ay= λ jw
T
j y,

If we define a scalar functiong j = wT
j y, theng′j = λ jg j . This equation has the same form as the simple

equationy′ = ay studied earlier. If we assume Re(λ j) < 0 for all j, then the analytic solution satisfies

y→ 0 ast → ∞. In order to have numerical solutions that converge to zero,we must make sure thatλ jh,

for all j, are in the region of absolute stability. This type of argument goes though for the linear system

of ODEs with an inhomogeneous term:

y′ = Ay+b,

whereb is a vector. This is exactly the semi-discretized form (2.3)of heat equation discussed in section

2.1. At that time, we did not explain why the method is stable for step sizeh = 0.05/718 and unstable

for h = 0.05/716. We can explain this, if we calculate the eigenvalues of coefficient matrix in (2.3) and

then consider the region of absolute stability of the 4th order Runge-Kutta method. Actually, since the

eigenvalues are real, we only need to consider the intersection of the absolute stability region with the

real axis. If the eigenvalues areλ j (all real and negative), then the numerical method is stableif the step

sizeh satisfies

|λ j |h < 2.7853.

It turns out that the eigenvalues of the coefficient matrix in(2.3) are

λ j = − 4
(∆x)2 sin2 jπ

2(m+1)
, j = 1,2, ...,m.

The one with the largest absolute value isλm. Form= 99,∆x = 0.01, we have

λm ≈−39990.13.

Therefore, we need−39990.13h < 2.7853 orh < 6.964968×10−5. This is satisfied forh = 0.05/718

but noth = 0.05/717 orh = 0.05/716.

For the more general systemy′ = f (t,y), the absolute stability concept is useful if we think of

approximatingf (t,y) at any fixed timet j by a linear system of ODEs using Taylor expansion. But the

approximate linear system changes ast j changes.

33

Chapter 5

ODE Boundary Value Problems

5.1 The shooting method

Consider a 2nd order ordinary differential equation with two boundary conditions

y′′ = f (x,y,y′), a < x < b

y(a) = α

y(b) = β,

wherea, b, α, β are given constants,y is the unknown function ofx, f is a given function that specifies

the differential equation. This is a two-point boundary value problem. An initial value problem (IVP)

would require that the two conditions be given at the same value of x. For example,y(a) = α and

y′(a) = γ. Because the two separate boundary conditions, the above two-point boundary value problem

(BVP) is more difficult to solve.

The basic idea of “shooting method” is to replace the above BVP by an IVP. But of course, we do

not know the derivative ofy at x = a. But we can guess and then further improve the guess iteratively.

More precisely, we treaty′(a) as the unknown, and use secant method or Newton’s method (or other

methods for solving nonlinear equations) to determiney′(a).

We introduce a functionu, which is a function ofx, but it also depends on a parametert. Namely,

u = u(x; t). We useu′ andu′′ to denote the partial derivative ofu, with respect tox. We wantu to be

exactlyy, if t is properly chosen. Butu is defined for anyt, by

u′′ = f (x,u,u′)

u(a; t) = α

u′(a; t) = t.

If you choose somet, you can then solve the above IVP ofu. In generalu is not the same asy, since

u′(a) = t 6= y′(a). But if t is y′(a), thenu is y. Since we do not knowy′(a), we determine it from the

boundary condition atx = b. Namely, we solvet from:

φ(t) = u(b; t)−β = 0.

34

If a solution t is found such thatφ(t) = 0, that meansu(b; t) = β. Therefore,u satisfies the same two

boundary conditions atx = a andx = b, asy. In other words,u = y. Thus, the solutiont of φ(t) = 0

must bet = y′(a).

If we can solve the IVP ofu (for arbitraryt) analytically, we can write down a formula forφ(t) =

u(b; t)− β. Of course, this is not possible in general. However, without an analytic formula, we can

still solve φ(t) = 0 numerically. For anyt, a numerical method for IVP ofu can be used to find an

approximate value ofu(b; t) (thusφ(t)). The simplest method is to use the secant method.

t j+1 = t j −
t j − t j−1

φ(t j)−φ(t j−1)
φ(t j), j = 1,2,3, ...

For that purpose, we need two initial guesses:t0 andt1. We can also use Newton’s method:

t j+1 = t j −
φ(t j)

φ′(t j)
, j = 0,1,2, ...

We need a method to calculate the derivativeφ(t). Sinceφ(t) = u(b; t)−β, we have

φ′(t) =
∂u
∂t

(b; t)−0 =
∂u
∂t

(b; t).

If we definev(x; t) = ∂u/∂t, we have the following IVP forv:

v′′ = fu(x,u,u′) v+ fu′(x,u,u′) v′

v(a; t) = 0

v′(a; t) = 1.

Herev′ andv′′ are the first and 2nd order partial derivatives ofv, with respect tox. The above set of

equations are obtained from taking partial derivative withrespect tox for the system foru. The chain

rule is used to obtain the differential equation ofv. Now, we haveφ′(t) = v(b; t). Here is the algorithm

for the shooting method which involves Newton’s method for solving φ(t) = 0:

t0 = initial guess fory′(a).

for j = 0,1,2, ...

solve the following system numerically fromx = a to x = b

u′′ = f (x,u,u′)

u|x=a = α
u′|x=a = t j

v′′ = fu(x,u,u′)v+ fu′(x,u,u′)v′

v|x=a = 0

v′|x=a = 1.

set

t j+1 = t j − u|x=b−β
v|x=b

.

If we want to use the methods developed in the previous chapter to solve the above system of two 2nd

order equations foru andv, we need to introduce a vectorz = (u,u′,v,v′)T and write the differential

equation asz′ = F(x,z) for some vectorF. The initial condition isz(a) = (α, t j ,0,1)T .

35

The shooting method is also applicable to eigenvalue problem:

y′′ = f (x,y,y′,λ), a < x < b,

y(a) = 0, y(b) = 0,

where f satisfies the conditionf (x,0,0,λ) = 0 and more generally,f is homogeneous iny, i.e.,

f (x,cy,cy′ ,λ) = c f(x,y,y′,λ).

for any constantc. Notice thaty = 0 is always a solution of the above boundary value problem. Infact,

an eigenvalue problem is a special boundary value problem satisfying (1) y = 0 is always a solution,

(2) there is a parameter calledλ in the equation (or boundary condition). The eigenvalue problem is

to determine non-zero solutions which exist only for special values ofλ. The solutions of eigenvalue

problems are the pairs{λ,y(x)}, whereλ is the eigenvalue andy is the eigenfunction. Usually, there are

many (may be infinite) eigenvalues and eigenfunctions. To use the shooting method, we consider the

initial value problem

u′′ = f (x,u,u′,λ), x > a,

u(a;λ) = 0,

u′(a;λ) = 1,

whereλ is considered as a parameter. Since the solution depends onλ, we use the notationu = u(x;λ),

but u′ andu′′ represent the first and second order derivatives with respect to x. For any givenλ, we can

solve the above initial value problem. Now supposeλ satisfies the condition

φ(λ) = u(b;λ) = 0,

then y(x) = u(x,λ) is the eigenfunction we are looking for, andλ is the corresponding eigenvalue.

Therefore, we just have to use secant or Newton’s method to solve λ from the equationφ(λ) = 0. If a

secant method is used, we just have to solve initial value problems for different iterates ofλ. If Newton’s

method is used, we must evaluateφ′(λ) for givenλ. Therefore, we need

v(x;λ) =
∂u
∂λ

(x;λ).

We need an initial value problem forv. This can be obtained by taking partial derivative with respect to

λ for the initial value problem ofu. We have

v′′ = fu(x,u,u′,λ)v+ fu′(x,u,u′,λ)v′ + fλ(x,u,u′,λ), x > a,

v(a;λ) = 0,

v′(a;λ) = 0.

Notice that we have been using the chain rule (of Calculus) toget the equation forv. Now, you can solve

the initial value problem forv (together withu), then evaluateφ′(λ) for any givenλ.

36

5.2 Finite difference methods

The basic idea of “finite difference method” is to replace thederivatives in a differential equation by

“difference approximations”.

To approximate the derivativef ′(x0), we can use the left side of the following equations:

1. Forward difference:
f (x0 +h)− f (x0)

h
= f ′(x0)+

h
2

f ′′(x0)+ ...

2. Backward difference:
f (x0)− f (x0−h)

h
= f ′(x0)−

h
2

f ′′(x0)+ ...

3. Central difference:
f (x0 +h)− f (x0−h)

2h
= f ′(x0)+

h2

6
f ′′′(x0)+ ...

4. Central difference using half step:

f (x0 +0.5h)− f (x0−0.5h)

h
= f ′(x0)+

h2

24
f ′′′(x0)+ ...

5. Three-point formulas:

− f (x0 +2h)+4 f (x0 +h)−3 f (x0)

2h
= f ′(x0)−

h2

3
f ′′′(x0)+ ...

f (x0−2h)−4 f (x0−h)+3 f (x0)

2h
= f ′(x0)−

h2

3
f ′′′(x0)+ ...

For the second order derivative, we have:

f (x0 +h)−2 f (x0)+ f (x0−h)

h2 = f ′′(x0)+
h2

12
f (4)(x0)+ ...

We consider the following two-point BVP of a linear 2nd orderODE:

y′′ + p(x)y′ +q(x)y = r(x), a < x < b

y(a) = α

y(b) = β.

Let

x0 = a, x j = x0 + jh, and xn+1 = b,

we obtain

h =
b−a
n+1

.

We are looking fory j for j = 1,2, ...,n, where

y j ≈ y(x j).

37

We also lety0 = y(x0) = y(a) = α andyn+1 = y(xn+1) = y(b) = β. Thus,y0 andyn+1 are known. The

derivatives atx j can be approximated by

y′(x j) ≈ y(x j+1)−y(x j−1)

2h

y′′(x j) ≈ y(x j−1)−2y(x j)+y(x j+1)

h2 .

These are the central difference approximations. Therefore, the 2nd order differential equation is dis-

cretized by
y j−1−2y j +y j+1

h2 + p(x j)
y j+1−y j−1

2h
+q(x j)y j = r(x j)

for j = 1,2, ...,n. This can be written as
[

1− h
2

p(x j)

]

y j−1 +[−2+h2q(x j)]y j +

[

1+
h
2

p(x j)

]

y j+1 = h2r(x j).

We define

a j = −2+h2q(x j)

b j = 1− p(x j)h/2

c j = 1+ p(x j)h/2

d j = h2r(x j)

and obtain
















a1 c1

b2 a2 c2

b3
.
. cn−1

bn an

































y1

y2

y3
...

yn

















=

















d1−b1y(a)

d2

d3
...

dn−cny(b)

















.

If we have the boundary condition

y′(b) = β

then we let

x0 = a, x j = x0 + jh, and xn = b.

Thus

h =
b−a

n
.

While y0 = y(x0) = y(a) = α is known, yn = y(xn) = y(b) is not known. Therefore, we have then

unknowns:

y1,y2, ...,yn,

wherey j ≈ y(x j). Imagine that there isxn+1 = b+ h andyn+1 ≈ y(xn+1), then we can write down the

approximation of the differential equation atx = b as

bnyn−1 +anyn +cnyn+1 = dn

38

wherea j , b j , c j andd j are defined by the same set of formulas (even thoughx j here is different). The

boundary conditiony′(b) = β can be discretized as

yn+1−yn−1

2h
= y′(b) = β.

We can then solveyn+1 and subsititute to the equation obtained earlier. This leads to

(bn +cn)yn−1 +anyn = dn−2βhcn

Therefore, with this new boundary condition atx = b and the new definition ofh andx j , we have
















a1 c1

b2 a2 c2

b3
.
. cn−1

bn +cn an

































y1

y2

y3
...

yn

















=

















d1−b1y(a)

d2

d3
...

dn−2hcny′(b)

















.

5.3 The finite element method

Consider the following linear second order ODE boundary value problem:

u′′ + p(x)u′ +q(x)u = r(x) for a < x < b

u(a) = α, u(b) = β,

wherea, b, α andβ are given constants,p, q andr are given functions. We start with the discretization:

a = x0 < x1 < ... < xn−1 < xn < xn+1 = b,

then try to find numerical solutions on the grid:

u j ≈ u(x j) for j = 0,1, ...,n,n+1.

From the boundary conditions, we haveu0 = α, un+1 = β. Thus the unknowns areu1, u2, ..., un. The

finite element method provides us an approach for computing thesen unknowns.

The finite element method relies on an integral relation derived from the differential equation. Let

ϕ be a differentiable function ofx satisfyingϕ(a) = ϕ(b) = 0, we can multiplyϕ to the differential

equation ofu and integrate. That is

Z b

a
ϕ(x)[u′′ + p(x)u′ +q(x)u− r(x)] dx= 0.

If we use integration by parts for the term involvingu′′, we obtain

Z b

a

[

−ϕ′u′ + p(x)ϕu′ +q(x)ϕu− r(x)ϕ
]

dx= 0. (5.1)

Now, we consider the basis functionφ j(x) defined as thecontinuous piecewise linearfunction satisfying

φ j(x j) = 1, φ j(xk) = 0 if k 6= j.

39

More precisely, we have

φ j(x) =







(x−x j−1)/(x j −x j−1), x j−1 < x≤ x j ,

(x j+1−x)/(x j+1−x j), x j < x < x j+1,

0, otherwise.

The derivative of this function is piecewise constant. We have

φ′j(x) =







1/(x j −x j−1), x j−1 < x < x j ,

−1/(x j+1−x j), x j < x < x j+1,

0, otherwise.

The piecewise linear function obtained by connecting(x j ,u j) by line segments is

u(n)(x) =
n+1

∑
j=0

u jφ j(x) (5.2)

Obviously,u(n) is an approximation foru(x). If we plug u(n) into the differential equation, we will not

get an exact identity. In fact,u(n) does not even have derivative at the the grid points. In the finite

element method, we replaceu in (5.1) byu(n) and replaceϕ in (5.1) byφk, for k = 1,2, ...,n. This gives

rise ton equations for then unknownsu1, u2, ...,un. These equations can be written as

n+1

∑
j=0

ak ju j = bk

where

ak j =

Z b

a

[

−φ′k(x)φ
′
j (x)+ p(x)φk(x)φ′j(x)+q(x)φk(x)φ j (x)

]

dx, bk =

Z b

a
φk(x)r(x) dx.

for k = 1,2, ...,n. If | j − k| > 1, we observe thatφk andφ j are non-zero only on intervals that do not

overlap. This leads to

ak j = 0 if | j −k|> 1.

Therefore, we have











a11 a12

a21 a22
. . .

. an−1,n

an,n−1 ann





















u1

u2
...

un











=

















b1−a10u0

b2
...

bn−1

bn−an,n+1un+1

















.

This is a tridiagonal system that can be solved inO(n) operations by a special version of Gaussian

elimination with partial pivoting. The formula forak j can be further simplified if we integrate as much

as possible and use approximations forp(x) andq(x) when necessary. We have

akk ≈ −1
h
− 1

H
+

1
2

[

p(xk−1/2)− p(xk+1/2)
]

+
1
3

[

h q(xk−1/2)+H q(xk+1/2)
]

ak,k−1 ≈ 1
h
− 1

2
p(xk−1/2)+

h
6

q(xk−1/2)

ak,k+1 ≈ 1
H

+
1
2

p(xk+1/2)+
H
6

q(xk+1/2)

bk ≈ 1
2

[

h r(xk−1/2)+H r(xk+1/2)
]

40

where

h = xk−xk−1 H = xk+1−xk xk±1/2 =
1
2
(xk +xk±1)

The above formulae are exact whenp andq are constants. For the more generalp andq, we have used

their midpoint values on each interval. Furthermore, ifp(x) = 0, the resulting tridiagonal coefficient

matrix is symmetric.

41

Chapter 6

Finite Difference Methods for Parabolic

PDEs

6.1 Introduction

For scientitic and engineering applications, it is often necessary to solve partial differential equations.

Most partial differential equations for practical problems cannot be solved analytically. Therefore, nu-

merical methods for partial differential equations are extremely important. In this chapter, we study

numerical methods for simple parabolic partial differential equations.

The simplest parabolic partial differential equation (PDE) is

ut = auxx, (6.1)

wherea is a positive constant. Often, this is called the heat equation, whenu represents the temperature

of a thin rod. Here,x is the spatial variable along the axis of the rod. We assume that the cross section

of the rod is very small and the temperature in the cross section is constant. Then,u is only a function

of x and timet. Equation (6.1) is also called the diffusion equation. In this case, we consider a thin tube

with water and ink inside. The variableu then represents the density of ink in the tube. As the tube is

assumed to have a very small cross section,u is assumed to depend only onx andt. Because of this

interprtetation, the coefficienta is called the diffusion coefficient.

Equation (6.1) must be solved with some boundary conditionsand an initial condition. Assume that

the rod is given by 0< x< L (the length of the rod isL), we solve (6.1) with the following two boundary

conditions:

u(0, t) = α, u(L, t) = β, (6.2)

and the following initial condition:

u(x,0) = g(x). (6.3)

Here,α andβ are given constants,g is a given function ofx. As t → ∞, the temperature setttles down to

a time independent (i.e., steady) solution:

lim
t→∞

u(x, t) = u∞(x) = α+
x
L

(β−α).

42

The above solution gives a linear profile that changes fromu = α at one end of the rod tou = β at the

other end of the rod. Fort < ∞, we have the following time dependent solution:

u(x, t) = u∞(x)+
∞

∑
k=1

cke
−a(kπ/L)2t sin

kπx
L

,

where the coefficients{ck} can be determined from the intial conditionu(x,0) = g(x).

If the rod is not uniform in thex direction (different part of the rod may be made from differen-

tial materials), the coefficienta is no longer a constant. Therefore, we consider the following general

parabolic equation:

ut = a(x)uxx+b(x)ux +c(x)u+d(x), 0 < x < L. (6.4)

Here,a, b, c andd are given functions ofx, the termd(x) corresponds to some heat source in the rod.

We can solve the above equation with the initial condition (6.3), the boundary conditions (6.2) or the

following boundary conditions:

ux(0, t) = e0u(0, t)+ f0, ux(L, t) = e1u(L, t)+ f1, (6.5)

wheree0, f0, e1 and f1 are given constants.

6.2 Classical explicit method

We consider equation (6.4) with the boundary conditions (6.2) and the initial condition (6.3). First, we

discretizex andt by

x j = j∆x, ∆x =
L

n+1
, tk = k∆t

for some integern and some∆t > 0. We will use the notationuk
j to represent the numerical solution.

That is,

uk
j ≈ u(x j , tk).

From the initial condition (6.3), we have

u0
j = g(x j), j = 0,1,2, ...,n+1.

From the boundary conditions (6.2), we obtain

uk
0 = α, uk

n+1 = β.

Our objective is to finduk
j for k > 0 and for j = 1,2, ...,n.

For the derivatives in (6.4), we have the following difference approximantions:

ut(x j , tk) ≈ u(x j , tk+1)−u(x j , tk)

∆t
,

ux(x j , tk) ≈ u(x j+1, tk)−u(x j−1, tk)

2∆x
,

uxx(x j , tk) ≈ u(x j+1, tk)−2u(x j , tk)+u(x j−1, tk)

(∆x)2 .

43

Notice that for the time derivative, we only use the first order forward difference formula. If we insert

these difference formulas into the differential equation (6.4) and replaceu(x j , tk) by uk
j , etc, we obtain:

1
∆t

(uk+1
j −uk

j) =
a j

(∆x)2 (uk
j+1−2uk

j +uk
j−1)+

b j

2∆x
(uk

j+1−uk
j−1)+c ju

k
j +d j (6.6)

Here,a j = a(x j), b j = b(x j), c j = c(x j) andd j = d(x j). The above is anexplicit formula for uk+1
j .

Numerical implementation of the above is very simple. We need a loop ink, for k = 0,1,2, Inside

this loop, we need another loop forj. It is for j = 1,2, ...,n.

Since we have used the first order forward difference formulato approximateut , we have anO(∆t)

error from the discretization oft. We have used the second order central difference formulas for ux

anduxx, thus we have anO((∆x)2) error from the discretization ofx. If we keep∆t = O((∆x)2), then

the errors from the discretizations oft andx are roughly the same magnitude. This suggests that the

time step should be small. However, there are more serious reasons. Notice that the forward difference

approximation corresponds to Euler’s method for ODE. It is not suitable forstiff differential equations.

Here, we have a PDE, but if we discretizex first by the central difference formulas (and keep the original

continuoust), we obtain a system of ODEs. If we then discretize the systemby Euler’s method, we get

exactly the same method as (6.6). It turns out that our systemof ODEs (obtained with a discretization

in x only) is a stiff system. Thus, if∆t is not small, the error will growexponentially. To avoid the use

of very small∆t, we need an implicit method.

6.3 Crank-Nicolson method

If we define the half time step:

tk+1/2 = tk +
∆t
2

,

then
u(x j , tk+1)−u(x j , tk)

∆t
≈ ut(x j , tk+1/2)

is a second order formula. To discretize (6.4), we use the same difference formulas for thex-derivatives,

but also do an average between thetk andtk+1 time levels. More precisely, we have

1
∆t

(uk+1
j −uk

j) =
a j

2(∆x)2 (uk
j+1−2uk

j +uk
j−1 +uk+1

j+1−2uk+1
j +uk+1

j−1)

+
b j

4∆x
(uk

j+1−uk
j−1+uk+1

j+1−uk+1
j−1)+

c j

2
(uk

j +uk+1
j)+d j . (6.7)

For boundary conditions (6.2), we have

uk
0 = α, uk

n+1 = β

for all k. We can then re-write the above numerical method as

A











uk+1
1

uk+1
2
...

uk+1
n











= B











uk
1

uk
2
...

uk
n











+~p, (6.8)

44

whereA andB are tridiagonal matrices given by

a j j = 1+
a j∆t
(∆x)2 −

c j∆t
2

, (6.9)

a j, j−1 = − a j∆t

2(∆x)2 +
b j∆t

4∆x
, (6.10)

a j, j+1 = − a j∆t

2(∆x)2 −
b j∆t

4∆x
, (6.11)

b j j = 1− a j∆t
(∆x)2 +

c j∆t
2

= 2−a j j , (6.12)

b j, j−1 =
a j∆t

2(∆x)2 −
b j∆t
4∆x

= −a j, j−1, (6.13)

b j, j+1 =
a j∆t

2(∆x)2 +
b j∆t
4∆x

= −a j, j+1 (6.14)

and~p is the following vector

~p =

















d1∆t −a10u
k+1
0 +b10uk

0

d2∆t
...

dn−1∆t

dn∆t −an,n+1uk+1
n+1 +bn,n+1uk

n+1

















=

















d1∆t −2a10α
d2∆t

...

dn−1∆t

dn∆t −2an,n+1β

















.

Since the matricesA andB are tridiagonal, we have

a jk = 0, b jk = 0, if | j −k| ≥ 2.

Therefore, for each step, we need to solve a linear system with a tridiagonal matrix. This can be done

efficiently in O(n) operations.

The Crank-Nicolson method corresponds to the “implicit midpoint” method for ODE IVP. If we

discretize thex variable only for (6.4), we obtain a system of ODEs. If we thenapply the implicit

midpoint method, we get the Crank-Nicolson method.

6.4 Stability analysis

The stability analysis is to find out for what values of∆t and∆x, the numerical method is stable. Let us

consider the simple constant coefficient heat equation

ut = auxx,

wherea is a positive constant. Letx andt be discretized as

x j = j∆x, tk = k∆t

for integersj andk. Let uk
j be a numerical solution foru(x j , tk). That is

uk
j ≈ u(x j , tk).

45

The classical explicit method described in section 3.1.1 gives

1
∆t

(uk+1
j −uk

j) =
a

(∆x)2 (uk
j+1−2uk

j +uk
j−1). (6.15)

To understand the stability of this method, we consider special solutions of the following form

uk
j = ρkeiβ j∆x, (6.16)

whereβ is an arbitrary constant,ρ is to be determined. If|ρ| > 1, then the solution grows exponentially

in time, so the numerical method is unstable. Otherwise, it is stable. The purpose of stability analysis is

to find out the values of∆t and∆x such that|ρ| ≤ 1. If we insert the (6.16) into (6.15), we can solveρ
in terms ofβ, ∆x and∆t. We have

1
∆t

(ρ−1) =
a

(∆x)2 (eiβ̃ −2+e−iβ̃),

whereβ̃ = β∆x. This can be simplified to

ρ = 1−4
a∆t

(∆x)2 sin2 β̃
2
.

We can see thatρ ≤ 1 for any realβ. However, it is possible to haveρ < −1. For stability, we require

that |ρ| ≤ 1 for all choice ofβ. This is guaranteed if

4
a∆t

(∆x)2 ≤ 2.

This gives rise to

∆t ≤ (∆x)2

2a
.

This is the condition on∆t for stability of the numerical method. If the above is not valid, then, we

can find aβ, such thatρ < −1. In that case, the numerical method becomes unstable. Since there is a

condition on∆t for the method to be stable, we call such a methodconditionally stable.

The following MATLAB program illustrates the stability andinstability for∆t = 1/20000 and∆t =

1/19997 respectively. In this example, we havea = 1 and∆x = 0.01.

% we will solve the heat equation u_t = u_{xx} for 0 < x < 1, with

% zero boundary conditions at x=0 and x=1 and the initial condition:

% u(x, 0) = 1- 2 |x - 0.5|.

% we choose dx = 0.01

dx = 0.01;

x = 0: dx: 1;

m = length(x);

u = 1 - 2 * abs(x - 0.5);

u(1) = 0;

u(m) = 0;

46

% we solve up to t = 1.

steps = 19997; % unstable

% steps = 20000; % stable

dt = 1/steps;

s = dt/(dx*dx);

for k= 0 : steps-1

b = u(1);

for j=2:m-1

a = u(j);

u(j) = a + s*(u(j+1)-2*a+ b);

b = a;

end

end

plot(x, u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
x 10

−5

∆ t = 1/20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
x 10

−5

∆ t = 1/19997

Figure 6.1: Stability of the classical explicit method for the heat equation.

Next, we perform a stability analysis for the Crank-Nicolson method. Forut = auxx, we have the

47

following discrete formula:

1
∆t

(uk+1
j −uk

j) =
a

2(∆x)2 (uk
j+1−2uk

j +uk
j−1 +uk+1

j+1−2uk+1
j +uk+1

j−1). (6.17)

For the special solutionuk
j = ρkeiβ j∆x, we have

1
∆t

(ρ−1) =
a

2(∆x)2 [eiβ̃ −2+e−iβ̃ + ρ(eiβ̃ −2+e−iβ̃)]

This is reduced to

ρ =
1−s
1+s

, s=
2a∆t
(∆x)2 sin2 β̃

2
,

whereβ̃ = β∆x. Clearly,s≥ 0, therefore,

|ρ| ≤ 1

for all choice ofβ, ∆t and∆x. Therefore, Crank-Nicolson is always stable. Since there is no condition

for stability, we call such a methodunconditionally stable.

6.5 Alternating direction implicit method

In this section, we consider the heat equation with two spatial varriables:

ut = a(uxx+uyy), (x,y) ∈ Ω, t > 0. (6.18)

The initial condition is

u(x,y,0) = f (x,y), (x,y) ∈ Ω. (6.19)

We assume thatu satisfy the so-called Dirichlet boundary condition.

u(x,y, t) = g(x,y), (x,y) ∈ ∂Ω. (6.20)

That is,u is given on∂Ω — the boundary ofΩ. We will consider the case whereΩ is the square:

Ω = {(x,y) | 0 < x < L, 0 < y < L}.

We can discretizex andy by

xi = ih, y j = jh, h =
L

n+1
, i, j = 0,1, ...,n,n+1

and discretizet by tk = k∆t for k = 0,1,2,

As in the previous section, we have a classical explicit method that uses forward difference approx-

imation forut and central difference approximation foruxx anduyy. This gives rise to

uk+1
i j −uk

i j

∆t
=

a
h2

(

uk
i−1, j +uk

i+1, j +uk
i, j−1 +uk

i, j+1−4uk
i j

)

, (6.21)

whereuk
i j ≈ u(xi ,y j , tk), etc. The method is very easy to use. Given the numerical solutions at time level

tk, we can simply evaluateuk+1
i j for i = 1,2, ...,n and j = 1,2, ...,n to obtain the numerical solutions at

time leveltk+1. However, this method is only stable when∆t satisfies

∆t ≤ h2

4a
.

48

The method is unstable if∆t > h2/(4a). In any event, since there is a condition on∆t for stability, we

say that this method is “conditionally” stable. This stability condition is derived for constant coefficient

a and the boundary condition is ignored. Notice that∆t must be related to the square ofh for stability.

Therefore, we have to use a very small time step.

Similar to the previous section, we also have the Crank-Nicolson method:

uk+1
i j −uk

i j

∆t
=

a
2h2

(

uk
i−1, j +uk

i+1, j +uk
i, j−1 +uk

i, j+1−4uk
i j +uk+1

i−1, j +uk+1
i+1, j +uk+1

i, j−1 +uk+1
i, j+1−4uk+1

i j

)

.

This is an implicit method. Given the solution attk, we must solven2 unknowns:uk+1
i j for i = 1,2, ...,n

and j = 1,2, ...,n. If we put all thesen2 unknowns into one long vector of lengthn2, we have a linear

system of equations with a coefficient matrix of sizen2×n2. It is not so easy to solve this large system

efficiently. This is particularly the case whena is repplaced bya(x,y) or ai j = a(xi ,y j) in the discrtized

numerical method. As before, Crank-Nicolson method has good stability property. That is, the method

is always stable, or unconditionally stable.

Here, we introduce a method which is a lot easier to solve and is also unconditionally stable. This

is the Alternating Direction Implicit (ADI) method. The method was originally developed in the 50’s.

Instead of solving one large linear system ofn2 unknowns, we need to solven linear systems each with

n unknowns. This is achieved by separating thex andy directions. We present the method without

discretizingx andy. If t is discretized, the Crank-Nicolson method is

uk+1−uk

∆t
=

a
2
(∂2

x + ∂2
y)(u

k+1 +uk),

whereuk is a function ofx andy, anduk ≈ u(x,y, tk). Thus,
[

1− a∆t
2

(∂2
x + ∂2

y)

]

uk+1 =

[

1+
a∆t
2

(∂2
x + ∂2

y)

]

uk. (6.22)

The Crank-Nicolson method has a second order error. If we putthe exact solution into the above

equation, then the error term isO((∆t)3). That is,
[

1− a∆t
2

(∂2
x + ∂2

y)

]

u(x,y, tk+1) =

[

1+
a∆t
2

(∂2
x + ∂2

y)

]

u(x,y, tk)+O((∆t)3).

Now, we add
a2(∆t)2

4
∂2

x∂2
yuk+1

to the left hand side of (6.22) and add
a2(∆t)2

4
∂2

x∂2
yuk

to the right hand side of (6.22). Then, we can factor both sides of the new equation and obtain
(

1− a∆t
2

∂2
x

)(

1− a∆t
2

∂2
y

)

uk+1 =

(

1+
a∆t
2

∂2
x

)(

1+
a∆t
2

∂2
y

)

uk. (6.23)

Sinceu(x,y, tk+1) = u(x,y, tk)+O(∆t), we have

a2(∆t)2

4
∂2

x∂2
yu(x,y, tk+1)−

a2(∆t)2

4
∂2

x∂2
yu(x,y, tk)+O((∆t)3).

49

This implies that (6.23) is still a 2nd order method. Lets= a∆t/2, we have

uk+1 =
(

1−s∂2
y

)−1
(

1+s∂2
x

1−s∂2
x

)

(

1+s∂2
y

)

uk. (6.24)

This gives rise to following procedure for computinguk+1:

1. evaluatev by

v = uk +s∂2
yuk. (6.25)

2. evlautew by

w = v+s∂2
xv. (6.26)

3. solve a newv from

v−s∂2
xv = w. (6.27)

4. solveuk+1 from

uk+1−s∂2
yu

k+1 = v. (6.28)

Now, let us consider each of these sub-steps. Let us discretize thex andy variables as before. For (6.25),

we use central difference approximation for the second derivative iny. This leads to

vi j = uk
i j +

s
h2

(

uk
i, j−1−2uk

i j +uk
i, j+1

)

.

We can simply evaluatevi j for i = 1,2, ...,n and for j = 1,2, ...,n. Similarly, for w in (6.26), we have

wi j = vi j +
s
h2 (vi−1, j −2vi j +vi+1, j) .

We can evaluatewi j for i = 1,2, ...,n and for j = 1,2, ...,n. Notice that we needv0 j andvn+1, j . These

are related to the boundary conditions foru. We simply use the boundary condition ofu as the boundary

condition ofv. Now, for the newv satisfying (6.27), we are solving a boundary value problem.Since

they-derivative is not involved. We can solve for eachy j separately. That is, we solvev1 j , v2 j , ..., vn j

from

vi j −
s
h2 (vi−1, j −2vi j +vi+1, j) = wi j , i = 1,2, ...,n.

This can be writted as a linear system forn unknowns. That is











c b

b c
.. .

. b

b c





















v1 j

v2 j
...

vn j











=











w1 j

w2 j
...

wn j











+











−bv0 j

0
...

−bvn+1, j











where

c = 1+
2s
h2 , b = − s

h2 .

Furthermore, we need to use the boundary condition foru as the boundary condition forv again. We let

v0 j = g(0,y j), vn+1, j = g(L,y j).

50

For (6.28), we also have a two-point boundary value problem in only one variable. We can discretize

(6.28) as

uk+1
i j − s

h2

(

uk+1
i, j−1−2uk+1

i j +uk+1
i, j+1

)

= vi j , j = 1,2, ...,n.

This can be written as a linear system:











c b

b c
. . .

.. b

b c





















uk+1
i1

uk+1
i2
...

uk+1
in











=











vi1

vi2
...

vin











+











−buk+1
i0

0
...

−buk+1
i,n+1











Here,uk+1
i0 anduk+1

i,n+1 come from the boundary condition:

uk+1
i0 = g(xi ,0), uk+1

i,n+1 = g(xi ,L).

If we storeuk+1
i j , vi j as matrices, then unknowns for a fixedxi is actually a row vector. Thus, we can

replace the above system by its transpose.

[uk+1
i1 ,uk+1

i2 , . . . ,uk+1
in]











c b

b c
. . .

. b

b c











= [vi1,vi2, . . . ,vin]+ [−buk+1
i0 ,0, . . . ,−buk+1

i,n+1]

Using matrix notations, letUk+1, V andW be then×n matrices whose(i, j) entries areuk+1
i j , vi j and

wi j , respectively, we have

TV = W +B1, Uk+1T = V +B2,

whereT is the tridiagonal matrix

T =











c b

b c
. . .

. b

b c











,

B1 andB2 are matrices related to the boundary conditions:

B1 = −b















g(0,y1) g(0,y2) . . . g(0,yn)

0 0
...

...

0 0

g(L,y1) g(L,y2) . . . g(L,yn)















, B2 = −b

















g(x1,0) 0 . . . 0 g(x1,L)

g(x2,0) 0 . . . 0 g(x2,L)
...

...
...

...

g(xn,0) 0 . . . 0 g(xn,L)

















.

It can be proved that the ADI method is still unconditionallystable.

51

Chapter 7

Finite Difference Methods for Hyperbolic

PDEs

7.1 First order hyperbolic equations

In this section, we consider hyperbolic equations given as

ut +a(x, t)ux = 0, (7.1)

and

ut +[f (u)]x = 0. (7.2)

Notice that Eq. (7.1) is a first order linear equation, while Eq. (7.2), wheref is given function ofu,

is a nonlinear equation in general. As an example of the nonlinear hyperbolic equation, we have the

Burger’s equation

ut +uux = 0.

This can be written as (7.2) forf (u) = u2/2.

We start with (7.1) assuming thata is a non-zero constant. Let us consider the following three

numerical methods

uk+1
j −uk

j

∆t
+a

uk
j+1−uk

j−1

2∆x
= 0, (7.3)

uk+1
j −uk

j

∆t
+a

uk
j+1−uk

j

∆x
= 0, (7.4)

uk+1
j −uk

j

∆t
+a

uk
j −uk

j−1

∆x
= 0. (7.5)

In all three methods, the time derivative is approximated bythe forward difference scheme. For the

partial derivative inx, we have used the central difference approximation in (7.3), the forward difference

approximation in (7.4) and the backward difference approximation in (7.5).

To find the stability of these methods, we follow the standardprocedure as in theVon Neumann

stability analysis. We look for a special solution gievn as

uk
j = ρkeiβxj = ρkei j β̃, (7.6)

52

wherex j = j∆x andβ̃ = β∆x. If we insert the special solution into a finite difference method, we obtain

a relation betweenρ and β̃. Now for a fixed∆t, if there is at least onẽβ, such that|ρ| > 1, then the

numerical method is unstable for that∆t. If |ρ| ≤ 1 for all β̃, then the numerical method is stable for that

∆t. Furthermore, if a numerical method is unstable for all∆t > 0, so the method is completely useless,

we call the methodunconditionally unstable. If the method is stable for small∆t (usually given by

an inequality) and unstable for large∆t, then we call the methodconditionally stable. If the method is

stable for all∆t > 0, then we call the methodunconditionally stable. For these three methods, (7.3)

is unconditionally unstable. Ifa > 0, then (7.4) is unconditionally unstable and (7.5) is conditionally

stable. Ifa < 0, then (7.4) is conditionally stable and (7.5) is unconditionally unstable. Here, let us

prove that (7.5) is conditionally stable ifa > 0. Foruk
j given in (7.6), Eq. (7.5) gives

ρ−1+s(1−e−iβ̃) = 0,

wheres= a∆t/∆x. That is

ρ = 1−s+scosβ̃− is sinβ̃.

Therefore,

|ρ|2 = 1−2s(1−s)(1−cosβ̃).

If 0 ≤ s≤ 1, then|ρ|2 ≤ 1, then|ρ| ≤ 1, therefore the numerical method is stable. Ifs > 1, we can

chooseβ̃ = π/2 such that cos̃β = 0, then|ρ|2 = 1−2s(1−s) = 1+2s(s−1) > 1, therefore the method

is unstable. In conclusion, (7.5) is conditionally stable and the stability condition is

s=
a∆t
∆x

≤ 1.

Here, we have already assumeda > 0, thuss> 0.

As a result of the stability analysis, we have to use (7.4) or (7.5) selectively, depending on the sign

of a. For a generala = a(x, t), we have the followingupwind scheme for (7.1):

uk+1
j = uk

j −sk
j(u

k
j+1−uk

j), if a(x j , tk) < 0, (7.7)

uk+1
j = uk

j −sk
j(u

k
j −uk

j−1), if a(x j , tk) > 0, (7.8)

wheresk
j = a(x j , tk)∆t/∆x. For the nonlinear equation (7.2), the upwind scheme is

uk+1
j −uk

j

∆t
+

f (uk
j+1)− f (uk

j)

∆x
= 0, if

f (uk
j+1)− f (uk

j)

uk
j+1−uk

j

< 0, (7.9)

uk+1
j −uk

j

∆t
+

f (uk
j)− f (uk

j−1)

∆x
= 0, if

f (uk
j)− f (uk

j−1)

uk
j −uk

j−1

> 0. (7.10)

The principle here is
∂ f (u)

∂x
= f ′(u)

∂u
∂x

,

therefore,f ′(u) = d f/du plays the role ofa in (7.1). Actually, f ′(u) may change sign, so that the two

conditions

ak
j+ 1

2
=

f (uk
j+1)− f (uk

j)

uk
j+1−uk

j

< 0, ak
j− 1

2
=

f (uk
j)− f (uk

j−1)

uk
j −uk

j−1

> 0,

53

may be satisfied simultaneously. Therefore, we merge the twoequations into one:

uk+1
j = uk

j −
∆t

2∆x

{

[1−sgn(ak
j+1/2)][f (u

k
j+1)− f (uk

j)]+ (1+sgn(ak
j−1/2)][f (u

k
j)− f (uk

j−1)]
}

, (7.11)

where

sgn(z) =







1, z> 0,

0, z= 0,

−1, z< 0.

The upwind scheme is only a first order numerical method (firstorder in botht andx). Next, we

introduce the second orderLax-Wendroff method. The basic idea of the Lax-Wendroff method is to

use the Taylor series:

u(x, t + ∆t) = u(x, t)+ ∆t ut(x, t)+
(∆t)2

2
utt(x, t)+ ...

but we only keep the first three terms in the Taylor series. Letus start with (7.1) assuming thata is a

constant. We have

ut = −aux, utt = −autx = a2uxx.

Therefore,

u(x, t + ∆t) ≈ u(x, t)−a∆t ux(x, t)+
(a∆t)2

2
uxx(x, t).

Now, we can use central difference approximations and obtain

uk+1
j = uk

j −
s
2
(uk

j+1−uk
j−1)+

s2

2
(uk

j−1−2uk
j +uk

j+1), (7.12)

wheres= a∆t/∆x. We can carry out a stability analysis for (7.12). Insertuk
j as in (7.6) into (7.12), we

obtain

ρ = 1− is sinβ̃+s2(cosβ̃−1),

and

|ρ|2 = 1+4s2(s2−1)sin4 β̃
2
.

This leads to the conclusion that Lax-Wendroff method is conditionally stable and the stability condition

is |s| ≤ 1 or
|a|∆t
∆x

≤ 1.

Now, let us consider the Lax-Wendroff method for (7.1) wherea varies withx and t. Fromut =

−aux, we obtain

utt = −(aux)t = −atux +a(aux)x.

Therefore,

u(x, t + ∆t) ≈ u−a∆tux +
(∆t)2

2
[−atux +a(aux)x]

= u−∆t(a+
∆t
2

at)ux +
(∆t)2

2
a(aux)x

≈ u−∆ta(x, t + ∆t/2)ux +
(∆t)2

2
a(aux)x,

54

whereu = u(x, t), ux = ux(x, t) and a = a(x, t). Now, we can use the central difference scheme and

obtain

uk+1
j = uk

j −
ν
2

ak+1/2
j (uk

j+1−uk
j−1)+

ν2

2
ak

j

[

ak
j+1/2(u

k
j+1−uk

j)−ak
j−1/2(u

k
j −uk

j−1)
]

, (7.13)

where

ν =
∆t
∆x

, ak
j = a(x j , tk), ak+1/2

j = a(x j , tk +
∆t
2

), ...

Finally, we consider the Lax-Wendroff for the nonlinear equation (7.2). Let us denotea = a(u) =

f ′(u) = d f/du, then fromut = −[f (u)]x, we haveutt = −[f (u)]tx = [a fx]x, and

u(x, t + ∆t) ≈ u−∆t fx +
(∆t)2

2
[a(u) fx]x,

whereu = u(x, t) above. Now, using the centeral difference approximations,we obtain

uk+1
j = uk

j −
ν
2

[

f (uk
j+1)− f (uk

j−1)
]

+
ν2

2

{

a(uk
j+1/2)

[

f (uk
j+1)− f (uk

j)
]

−a(uk
j−1/2)

[

f (uk
j)− f (uk

j−1)
]}

, (7.14)

whereν = ∆t/∆x and

uk
j+1/2 =

uk
j+1 +uk

j

2
, uk

j−1/2 =
uk

j +uk
j−1

2
.

7.2 Explicit methods for wave equation

In this section, we will consider the linear wave equation

utt = c2(x)uxx. (7.15)

As in Chapter 6, we discretizex andt by x j andtk, respectively. The time step size is∆t and the spatial

grid size is∆x. The following method is based on central difference approximations for bothutt anduxx.

Let uk
j ≈ u(x j , tk), we have

uk+1
j −2uk

j +uk−1
j

(∆t)2 = c2(x j)
uk

j+1−2uk
j +uk

j−1

(∆x)2 .

Let

sj =

[

c(x j)∆t

∆x

]2

,

then

uk+1
j = (2−2sj)u

k
j +sj(u

k
j+1 +uk

j−1)−uk−1
j .

This is an explicit 2-step (or three time-level) method. It is an explicit method. Sometimes, it is called

the leap-frog method.

Equation (7.15) is solved with two initial conditions. If westart the equation att = 0, then the two

initial conditions are

u(x,0) = f (x), ut(x,0) = g(x). (7.16)

55

For t0 = 0, we have

u0
j = u(x j , t0) = f (x j).

An approximation att1 can be obtained from the first three terms of the Taylor series:

u(x, t1) ≈ u(x, t0)+ (∆t)ut(x, t0)+
(∆t)2

2
utt(x, t0) = f (x)+ (∆t)g(x)+

(∆t)2

2
c2(x)∂xx f (x).

With a central difference approximation, we obtain

u1
j = f (x j)+g(x j)∆t +

(∆t)2c2(x j)

2(∆x)2 [f (x j−1)−2 f (x j)+ f (x j+1)] .

Next, we perform a stability analysis assuming thatc(x) is a constant. Whenc is a constatn, we have

s= (c∆t/∆x)2. If we insert

uk
j = ρkeiβxj = ρkei j β̃, x j = j∆x, β̃ = β∆x,

into the numerical method, we obtain

ρ = 2−2s+2scosβ̃− 1
ρ
.

This gives rise to

ρ2−2γρ+1 = 0,

where

γ = 1−2ssin2 β̃
2
.

The two solutions ofρ are

ρ = γ±
√

γ2−1.

If |γ| > 1, then we always have oneρ such that|ρ| > 1, thus the method is unstable. If|γ| ≤ 1, then

γ = γ±
√

1− γ2i.

We can see that|γ| = 1 exactly. Therefore, the stability condition is|γ| ≤ 1. Obviously, we haveγ ≤ 1,

but we also needγ ≥ −1. This must be true for anỹβ. Thus, we can choosẽβ = π, so that sinβ̃
2 = 1.

Then, the conditionγ ≥−1 impliess≤ 1. That is

∆t ≤ ∆x
c

. (7.17)

Notice that this stability condition is not so restrictive as the stability condition of the classical explicit

method (forward difference in time) for the heat equation. For the heat equation, we need∆t on the

order of(∆x)2 for stability. Here, we need∆t on the order of∆x for stability. In conclusion, the leap-

frog method isconditionally stable, with the above stability condition. Ifc is a function ofx, we

interprete the above as

∆t ≤ ∆x
maxc(x)

.

56

A generalization of this method for wave equation with two spatial variables is straight forward.

Consider the wave equation

utt = c2(x,y) [uxx+uyy] . (7.18)

If we use the central difference approximation for all second derivatives in the above equation, we obtain

1
(∆t)2

[

uk+1
i j −2uk

i j +uk−1
i j

]

=
c2(xi ,y j)

h2

[

uk
i−1, j +uk

i+1, j +uk
i, j−1 +uk

i, j+1−4uk
i j

]

.

Here, we assume that∆x = ∆y = h.

7.3 Maxwell’s equations

The 2-D wave equation (7.18) is a special case of the Maxwell’s equations for electromagnetic waves.

Under some simplifying conditions, the Maxwell’s equations are

∇×E = −µ
∂H
∂t

(7.19)

∇×H = ε
∂E
∂t

, (7.20)

whereE is the electric field,H is the magnetic field,t is the time,µ is the magnetic permeability and

ε is the electric permittivity. In general,µ andε are functions of the spatial variables:x, y andz. If we

consider two dimensional case, we assumeµ andε are functions ofx andy only, andE andH has no

z-dependence (i.e.∂zE = 0 and∂zH = 0). In this case, there is a special two solution given by

E =





0

0

Ez



 , H =





Hx

Hy

0



 .

That is to say, the electric fieldE has only one non-zero component in thez direction, thez-component

of the magnetic fieldH is zero and thex andy components ofH are non-zero. Here,Ez is not the partial

derivative ofE with respect toz, it is thez-component of the vectorE. Similarly, Hx andHy are thex-

andy-components ofH. Now, the Maxwell’s equations can be simplified to

µ
∂Hx

∂t
= −∂Ez

∂y
, (7.21)

µ
∂Hy

∂t
=

∂Ez

∂x
, (7.22)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
. (7.23)

We can eliminateHx andHy. This leads to

∂2Ez

∂t2 = c2
(

∂2Ez

∂x2 +
∂2Ez

∂y2

)

.

wherec = 1/
√

εµ is the speed of light in the medium. While the speed of light invacuum (c0) is a

constant, herec is the speed of light in the medium and it is still a function ofx andy.

57

For the Maxwell’s equations, Kane Yee introduced a famuous numerical method based on central

difference for first order derivatives in 1966. It is convenient to present this method in the first order

system (7.21-7.23). Let us discretizet, x andy by the step size∆t and grid sizes∆x and∆y, respectively.

Therefore,

tk = t0 +k∆t, xi = x0 + i∆x, y j = y0 + j∆y.

However, we also need to half steps and half grids. Namely,

tk+1/2 = t0 +(k+0.5)∆t, xi+1/2 = x0 +(i +0.5)∆x, y j+1/2 = y0 +(j +0.5)∆y.

For Ez, we try to calculate its approximation atxi , y j andtk+1/2. Namely,

Ez|k+1/2
i j ≈ Ez(xi ,y j , tk+1/2).

Similarly, we have

Hx|ki, j+1/2 ≈ Hx(xi ,y j+1/2, tk), Hy|ki+1/2, j ≈ Hx(xi+1/2,y j , tk).

The discretization ofEz, Hx andHy are shown in Fig. (7.1).Ez are evaluated at the grid points marked

by “o”, Hx are evaluated at the gird points marked by “⋄” and Hy corresponds to “∗”. With this type of

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7.1: Discrete grid points forEz (marked by “o”),Hx (marked by “⋄”) and Hy (marked by “∗”).

staggered grid, we can discretize the Maxwell’s equations with second order finite difference method.

Yee’s finite difference time domain (FDTD) method is

µ
∆t

(

Hx|k+1
i, j+1/2−Hx|ki, j+1/2

)

= − 1
∆y

(

Ez|k+1/2
i, j+1 −Ez|k+1/2

i, j

)

, (7.24)

58

µ
∆t

(

Hy|k+1
i+1/2, j −Hy|ki+1/2, j

)

=
1

∆x

(

Ez|k+1/2
i+1, j −Ez|k+1/2

i, j

)

, (7.25)

ε
∆t

(

Ez|k+1/2
i j −Ez|k−1/2

i j

)

=
1

∆x

(

Hy|ki+1/2, j −Hy|ki−1/2, j

)

− 1
∆y

(

Hx|ki, j+1/2−Hx|ki, j−1/2

)

. (7.26)

This is an explicit method, we can use (7.26) to calculateEz at time leveltk+1/2, we can use (7.24) and

(7.25) to calculateHx andHy at time leveltk+1. The method is in fact identical to the earlier method for

a single scalar wave equation. However, the more general Yee’s method for full Maxwell’s equations

cannot be written in a single unknown function. But this formulation usingHx, Hy andEz allows us to

treat boundary conditions easily.

59

Chapter 8

Finite Difference Methods for Elliptic

PDEs

8.1 Finite difference method for Poisson equation

Consider the Poisson’s equation in the unit squareΩ = {(x,y)|0 < x < 1,0 < y < 1}:

uxx+uyy = F(x,y) for (x,y) ∈ Ω

with some boundary conditionu = g for (x,y) ∈ ∂Ω. Here,∂Ω denots the four edges of the unit square

andg is a function defined on∂Ω. We can discretize the problem with a second order finite difference

method. Letδ = 1/(n+1) andui j ≈ u(ih, jh), we have the following discretized formula at(ih, jh):

ui−1, j −2ui j +ui+1, j

δ2 +
ui, j−1−2ui j +ui, j+1

δ2 = Fi j = F(iδ, jδ).

or

−4ui j +ui−1, j +ui+1, j +ui, j−1 +ui, j+1 = fi j (8.1)

where fi j = δ2Fi j . Notice that from the boundary conditions, we have known values for

u0 j = u(0, jδ), un+1, j = u(1, jδ), ui0 = u(iδ,0), ui,n+1 = u(iδ,1).

Therefore, we haven2 unknowns and we needn2 equations. This is exactly what we have, if we choose

i = 1,2, ...,n and j = 1,2, ...,n in (8.1). For then2 unknowns, we can order them in a large vector. For

example, we can define

~U = [u11,u21, ...,un1,u12,u22, ...,un2,,unn]
T ,

then (8.1) can be written as

A~U =~b, (8.2)

where~b is related to abi j which is related toFi j and the boundary conditions. In fact,

bi j = δ2Fi j if 1 < i < n, 1 < j < n.

60

But near the boundary, i.e.,i = 1 or i = n or j = 1 or j = n, we need to include some terms from the

boundary conditions.

b1 j = δ2F1 j −u0 j for 1 < j < n

bn j = δ2Fn j −un+1, j for 1 < j < n

bi1 = δ2Fi1−ui0 for 1 < i < n

bin = δ2Fin −ui,n+1 for 1 < i < n.

At the four corners, we have to definebi j to include two nearby points from the boundary:

b11 = δ2F11− (u01+u10)

bn1 = δ2Fn1− (un+1,1 +un0)

b1n = δ2F1n− (u0n +u1,n+1)

bnn = δ2Fnn− (un,n+1 +un+1,n).

The vector~b can be obtained frombi j in the same wayui j is ordered to give~U .

The coefficient matrixA is ann2×n2 matrix. It cannot be efficiently solved by Gaussian elimination

directly, since the standard Gaussian elimination algorithm will requireO((n2)3) = O(n6) operations.

Actually, the matrixA has at most five non-zeros in each row andA has a bandwidth ofO(n). Using

Gasssian elimination for banded matrices, the required number of operations is reduced toO(n4).

8.2 Fast Poisson solver based on FFT

Here, we describe a FFT based fast algorithm which requires only O(n2 logn) operations. The method

uses the discrete sine transform (which is related to the Discrte Fourier Transform) to obtain a system

that can be easily solved.

The discrete sine transform is

g j =
n

∑
k=1

ĝk sin
jkπ

n+1
, j = 1,2, ...,n,

ĝk =
2

n+1

n

∑
j=1

g j sin
jkπ

n+1
, k = 1,2, ...,n.

If we introduce ann×n matrix S, whose(j,k) entry is sin jkπ
n+1, then

S−1 =
2

n+1
S.

Now, for ui j andbi j , we will fix i, then use discrete sine transform. We have

ui j =
n

∑
k=1

ûik sin
jkπ

n+1
, bi j =

n

∑
k=1

b̂ik sin
jkπ

n+1
.

If we insert these into (8.2), we obtain
n

∑
k=1

[

−4ûik sin
jkπ

n+1
+ ûi−1,k sin

jkπ
n+1

+ ûi+1,k sin
jkπ

n+1
+ ûik sin

(j −1)kπ
n+1

+ ûik sin
(j +1)kπ

n+1

]

=
n

∑
k=1

b̂ik sin
jkπ

n+1
.

61

This can be simplified to

n

∑
k=1

[

(−4+2cos
kπ

n+1
)ûik + ûi−1,k + ûi+1,k

]

sin
jkπ

n+1
= δ2

n

∑
k=1

f̂ik sin
jkπ

n+1
.

Therefore,

(−4+2cos
kπ

n+1
)ûik + ûi−1,k + ûi+1,k = b̂ik

For i = 1 or i = n, the above equation should be modified to remove the term ˆui−1,k or ûi+1,k, respectively.

Now, if we fix k, we can solve ˆuik (for all i) from the above equation.











α 1

1 α . . .
. 1

1 α





















û1k

û2k
...

ûnk











=











b̂1k

b̂2k
...

b̂nk











for α = −4+ 2cos kπ
n+1. This is a tridiagonal system and it can be solved inO(n) operations. Since

we have to do this for allk, the total operations required here isO(n2). But we first need to calculate

b̂ik from bi j , based on the discrete sine transform. This can be done inO(n2 logn) operations. Once

we foundûik, we can use discrte sine transform to findui j . Again, this requiresO(n2 logn) operations.

Sincen2 logn is larger thann2, the overall operations required to solve the Poisson equation is thus

O(n2 logn). This is the FFT based “fast Poisson solver”.

8.3 Classical iterative methods

Although the FFT-based fast Poisson solver is very efficient, it cannot be generalized to more general

equations with variable coefficients. Notice that the matrix A in Eq. (8.2) is sparse, i.e., most of its

entries are zero and only a few non-zeros in each row or column. Iterative methods produce a sequence

of approximate solutions that converge to the exact solution. Since the matrixA is sparse, it is possible

to develop some iterative methods for solvingA~U =~b.

We start by writing the matrixA as three parts: the diagonalD, the strictly lower triangular part−L

and the strictly upper triangular part−R, such that

A = D−L−R.

The minus sign in front ofL andR are introduced for convenience. Now,A~U =~b is identical toD~U =

(L+R)~U +~b and
~U = D−1(L+R)~U +D−1~b,

This leads to theJacobi iterative method:

~U (j+1) = D−1(L+R)~U (j) +D−1~b, j = 0,1,2, ... (8.3)

We have to start with an initial guess~U (0), after that we can use (8.3) to calculate~U (1), ~U (2), ... We

can prove that for the finite difference approximation of thePoisson equation, i.e., for (8.2), Jacobi

iteration converges. To prove the convergence, we need to show that all eigenvalues ofD−1(L+R) have

62

magnitude less than 1. Meanwhile, we can also write (8.2) as(D−L)~U = R~U +~b. Therefore, we have

the followingGauss-Seidel iterative method:

solve~U (j+1) from (D−L)~U (j+1) = R~U (j) +~b. (8.4)

Notice thatD− L is a lower triangular matrix, therefore, it is easy to solve alinear system with a

coefficient matrixD− L. Again, for the discrete Poisson equation, we can prove thatGauss-Seidel

iterative method converges. For this purpose, it is necessary to show that the eigenvalues of(D−L)−1R

has megnitude less than 1. Finally, we can multiply (8.2) by aparameterω, then addD~U to both sides:

D~U + ω(D−L−R)~U = D~U + ω~b.

This can be written as

(D−ωL)~U = [(1−ω)D+ ωR]~U + ω~b.

This leads to the followingSuccessive Overrelaxation (SOR) methoddeveloped by Young and Frankel

in 1950:

solve~U (j+1) from (D−ωL)~U (j+1) = [(1−ω)D+ ωR]~U (j) + ω~b. (8.5)

For the discrete Poisson equation, SOR method converges if 0< ω < 2. The optimal parameter is

ω =
2

1+sin(πδ)
,

whereδ = 1/(n+ 1) is the grid size as in section 8.1. These three iterative methods are all classical

iterative methods.

Theconjugate gradientmethod, introduced by Hestenes and Stiefel in 1952, is a modern iterative

method with a faster convergence rate. The discrete Poissonequation (8.2) can also be efficiently solved

by themulti-grid method, where the numerical solutions with larger grid sizes are used to improve the

approximation of the numerical solution at the smallest grid size.

63

8.4 Conjugate gradient method

The conjugate gradient method is a method for solvingAx= b, whereA is a symmetric positive definite

matrix. Here the size ofA is large, thus a direct method by Cholesky decomposition (related to the

LU decomposition) is expensive. ButA is sparse — only very few non-zeros for each row or each

column, thus it is efficient to multiplyA with any given vector. It is an iterative method that produces

the sequence of approximations:x1, x2, x3, LetA bem×m, define the Krylov space by

Kn =< b,Ab,A2b, ...,An−1b >

This is the vector space spanned by the vectorsb, Ab, ...,An−1b. It is the “column space” of the Krylov

matrix

Kn = [b,Ab,A2b, ...,An−1b].

The conjugate gradient method findsxn ∈ Kn which solves the minimization problem

min
x∈Kn

(x−x∗)
TA(x−x∗)

wherex∗ = A−1b is the exact solution. However, since

(x−x∗)
TA(x−x∗) = 2φ(x)−bTA−1b, for φ(x) =

1
2

xTAx−xTb.

It is equivalent to say thatxn solves

min
x∈Kn

φ(x).

8.4.1 1-D optimization problem

For a given pointxn−1 and a given directionpn−1, we have a line that passes throughxn−1 along the

direction ofpn−1. The points on the line are given by

xn−1 + αpn−1 for α ∈ R

Alternatively, we denote this line by

xn−1+ < pn−1 >

where< pn−1 > is a 1-D vector space. We can minimize the functionφ along this line

min
x∈xn−1+<pn−1>

φ(x) = min
α∈R

φ(xn−1 + αpn−1)

Now, φ(xn−1 + αpn−1) is a quadratic polynomial ofα, its minimum is reached at

αn =
rT
n−1pn−1

pT
n−1Apn−1

The minimum is obtained atxn−1 + αnpn−1.

If xn−1 happens to be a conjugate gradient iteration, i.e.,xn−1 minimizesφ(x) in Kn−1. The above

procedure gives

x̃n = xn−1 + αnpn−1

Of course, ˜xn is usually notxn which minimizesφ in Kn. However, we will find a special way of choosing

pn−1, such that ˜xn = xn.

64

8.4.2 Subspace minimization problem

We now look forxn ∈ Kn such that

φ(xn) = min
x∈Kn

φ(x)

We assume thatKn has the following basis

p0, p1, ..., pn−1

Now,

min
x∈Kn

φ(x) = min
α1,α2,...,αn∈R

φ(α1p0 + α2p1 + ...+ αnpn−1)

To find the minimum, we solve the system

∂φ
∂αi

= 0 for i = 1,2, ...,n.

In fact,
∂φ
∂αi

= pT
i−1A(α1p0 + α2p1 + ...+ αnpn−1)− pT

i−1b

Therefore, we have the system forα1, α2, ...,αn:

C











α1

α2
...

αn











=











pT
0 b

pT
1 b
...

pT
n−1b











where the(i +1, j +1) entry ofC is pT
i Apj .

If we assume that

pT
i Apj = 0 if i 6= j

then the matrixC is diagonal andαi is easily solved

αi =
pT

i−1b

pT
i−1Api−1

.

Furthermore, if we assume that{p0, p1, ..., pi−1} is a basis forK i for all i (we only assume that fori = n

earlier), then

xn−1 = α1p0 + α2p1 + ...+ αn−1pn−2

is the conjugate gradient iteration that minimizesφ in Kn−1 and

xn = xn−1 + αnpn−1

Indeed, you can show that the formula forαn here is equivalent to the formula in last section. Therefore,

the subspace minimization problem can be solved by 1-D optimization process under these assumptions

on the search vectorsp0, p1, ..., pn−1.

65

8.4.3 Orthogonal residual

Clearly, we need a simple way to find these vectorsp0, p1, It turns out that the following property

on the residual is very important.Let xn be the n-th conjugate gradient iteration, rn = b−Axn be the

residual, then

rn ⊥ Kn.

8.4.4 The next conjugate direction

Supposex j is the conjugate gradient iteration that solves the subspace minimization problem minx∈K j φ(x),

it is not difficult to realize that

Kn =< x1,x2, ...,xn >=< r0, r1, ..., rn−1 >

wherer0 = b−Ax0 = b. We also assume that

K j =< p0, p1, ..., p j−1 > for j ≤ n

The question now is how to choosepn, such that

• Kn+1 =< p0, p1, ..., pn >;

• pT
n Apj = 0 for j = 0, 1, 2, ...,n−1.

To satisfy the first condition, we realize thatrn = b−Axn is in Kn+1 (and not inKn), therefore, we

can choose

pn = rn +a component inKn

to satisfy the second condition. The component inKn can be written as

βnpn−1 +(∗)pn−2 + ...+(∗)p0

since{p0, p1, ..., pn−1} is a basis ofKn. We use the conditionpT
j Apn = pT

n Apj = 0 (sinceA = AT) to

find the coefficients. Forj ≤ n−2, we have

0 = pT
j Apn = pT

j Arn +(∗)pT
j Apj

Now, pT
j Arn = rT

n (Apj) = 0, sincep j ∈ Kn−1 or Apj ∈ Kn (andrn ⊥ Kn as in the last section), therefore,

(∗) = 0. Meanwhile, we obtain

pn = rn + βnpn−1 for βn = − rT
n Apn−1

pT
n−1Apn−1

66

8.4.5 The method

We now have the following conjugate gradient method:

• Let x0 = 0, r0 = b, p0 = r0.

• For n = 1,2,3, ...

αn =
rT
n−1rn−1

pT
n−1Apn−1

xn = xn−1 + αnpn−1

rn = rn−1−αnApn−1

βn =
rT
n rn

rT
n−1rn−1

pn = rn + βnpn−1

We notice that the formulas forαn and βn are different. But they are equivalent to the formulas in

previous sections. One step of this algorithm requires

• Evaluatev = Apn−1;

• 2m operations forpT
n−1v = pT

n−1Apn−1;

• 2m operations forxn = xn−1 + αnpn−1;

• 2m operations forrn = rn−1−αnv = rn−1−αnApn−1;

• 2m operations forrT
n rn;

• 2m operations forpn = rn + βnpn−1

This is a total of 10m operations, plus one matrix vector multiplication.

Exercise: Using the standard notations for the Conjugate Gradient method, wherexn is then-th iteration

of the approximate solution (forAx= b, assumingx0 = 0), rn is the residual,pn is then-th A-conjugate

direction, show that

αn =
pT

n−1b

pT
n−1Apn−1

=
rT
n−1pn−1

pT
n−1Apn−1

=
rT
n−1rn−1

pT
n−1Apn−1

βn = − rT
n Apn−1

pT
n−1Apn−1

=
rT
n rn

rT
n−1rn−1

.

8.4.6 Rate of convergence

For a vectory and the symmetric positive definite matrixA, we define

||y||A =
√

yTAy.

Now, for the conjugate gradient method, we can prove

||xn−x∗||A
||x0−x∗||A

≤ 2

[√
κ−1√
κ+1

]n

(8.6)

wherex∗ = A−1b, x0 = 0, κ = λ1/λm, λ1 andλm are the largest and smallest eigenvalues ofA, respec-

tively.

67

