Numerical Methods for Differential Equations

YA YAN LU
Department of Mathematics
City University of Hong Kong
Kowloon, Hong Kong

Contents

1 ODE IVP: Explicit One-step Methods

1.1 Introduction e e
1.2 Eulerand Runge-Kutta Methods
1.3 Localtruncation errorandorder e
1.4 Embedded Runge-Kuttamethods

2 ODE IVP: Implicit One-step Methods
2.1 Stiffequations L e e e
2.2 Implicitone-stepmethods e

3 ODE IVP: Multi-step Methods
3.1 Explicit multi-stepmethods
3.2 Implicit multi-stepmethods e

4 ODE IVP: Stability Concepts
4.1 Zerostability e
4.2 Absolutestability e

5 ODE Boundary Value Problems
5.1 Theshootingmethod e
5.2 Finitedifferencemethods e
5.3 Thefiniteelementmethod

6 Finite Difference Methods for Parabolic PDEs
6.1 Introduction e e e
6.2 Classical explicitmethod e
6.3 Crank-Nicolsonmethod e
6.4 Stabilityanalysis e e e e
6.5 Alternating direction implicit method

7 Finite Difference Methods for Hyperbolic PDEs

7.1 Firstorder hyperbolic equations
7.2 Explicit methods for wave equation e
7.3 Maxwell'sequations

17
17
21

23
23
26

29
29
31

34
34
37
39

42
42
43
44
45
48

8 Finite Difference Methods for Elliptic PDEs

8.1
8.2
8.3
8.4

Finite difference method for Poisson equation 60
Fast Poisson solverbasedon FFT 61
Classical iterative methods e 62
Conjugate gradientmethod 64
8.4.1 1-Doptimization problem, 64
8.4.2 Subspace minimization problem oL 65
8.4.3 Orthogonalresidual 66
8.4.4 The next conjugate direction 66
845 Themethod 7
8.4.6 Rateofconvergence 67

Chapter 1

ODE IVP: Explicit One-step Methods

1.1 Introduction

In this chapter, we study numerical methods for initial waproblems (IVP) of ordinary differential
equations (ODE). The first step is to re-formulate your ODB agstem of first order ODESs:

%: f(t,y) for t>tp 1.2
with the initial condition

y(to) = Yo (1.2)

wheret is the independent variablg= y(t) is the unknown function df y; is the given initial condition,
and f is a given function ot andy which describes the differential equation. High orderedéhtial
equations can also be written as a first order system by imntind the derivatives as new functions. Our
numerical methods can be used to solve any ordinary diffietezguations. We only need to specify
the functionf.

The variablet is discretized, say for j =0,1,2,..., then we determing; ~ y(t;) for j =1,2,3, ...
The first class of methods (Runge-Kutta methods) involvestap. Ify; is calculated, then we construct
yj+1 fromy;. Previous values such gg_; are not needed. Since this is an IVP and for the first step, we
haveyg only atty, then we can fings, y», ..., in a sequence. The one-step methods are vary natural. A
higher order method gives a more accurate numerical saoltlien a lower order method for a fixed step
size. But a higher order one-step method requires moreati@hs of thef function. For example, the
first order Euler's method requires only one evaluatiof,afe., f (t;,y;), but a fourth order Runge-Kutta
method requires four evaluations bf

For a large scale problem, the computationf afould be time consuming. Thus, it is desirable to
have high order methods that require only one evaluatidniofach step. This is not possible in a one-
step method. But it is possible in a multi-step method. Tioees the main advantage of the multi-step
method is that they are efficient. However, they are morecdiffito use.

For one-step methods, we will introduce implicit methodbe3e are methods designed for the so-
called “stiff” ODEs. If an explicit method is used for a stffDE and the step size is hot small enough,
the error (between the exact and the numerical solution) gnay very fast. For these stiff ODESs, the

implicit methods are useful. The situation is the same foltinstep methods. We also need implicit
multi-step methods for stiff ODEs.

We will also introduce the embedded Runge-Kutta methodgsé lare methods that combine two
methods together, so that the step size can be automatitedsen for a desired accuracy. There are
also multi-step methods that allow automatic selectiorhefdtep size. But they are more complicated
and we will not cover them.

Consider the following example. We have the following difietial equation fou = u(t):

. u
u” +sin(t)/1+ (u")2u + = =12 (1.3)

fort > 0, with the initial conditions:

u0)=1, U0 =2, u’(0)=3. (1.4)

We can introduce a vectgr

and write down the equation fgras

Y = f(ty) = 1
—sin(t)/1+ (U)2 U —u/(1+e) +12

The initial condition isy(0) = [1,2,3]. Here is a simple MATLAB program for the above functién

function k = £(t, y)
% remember y is a column vector of three components.
k = zeros(3,1);

k(1) = y(2);
k(2) = y(3);
k(3) = -sin(t) * sqrt(1+y(3)°2) * y(2) - y(1)/(1 + exp(-t)) + t~2;

In the MATLAB program,y (1), y(2), y(3) are the three components of the vecyorThey are
u(t), u'(t) andu’(t), respectively. They are different frogil), y(2) andy(3) which are the vectorg
evaluated at = 1,t = 2 andt = 3. Notice that we also hawg0), which is the initial value of. But we
do not havey (0). Anyway, the components gfare only used inside the MATLAB programs.

A numerical method is usually given for the general systerti-{12). We specify the system of
ODEs by writing a program for the functiofy then the same numerical method can be easily used for
solving many different differential equations.

1.2 Euler and Runge-Kutta Methods
Numerical methods start with a discretizatiort diy to, t;, to, ..., say

ti=to+jh

whereh is thestep size Numerical methods are formulas for, y», ys, ..., wherey; is the approximate
solution att;. We usey(t;) to denote the (unknown) exact solution, thus

Please notice that whetis a vectorys, y», ..., are also vectors. In particulg,is not the first component
of y vector,y, is not the 2nd component of tlyevector. The components gfare only explicitly given
inside the MATLAB programs ag(1), y(2), etc.

Euler's method:

Yi+1 =Y+ hf(tjy;). (1.5)

Sinceyy is the known initial condition, the above formula allows ufinal y;, y», etc, in a sequence. The
Euler's method can be easily derived as follows. First, weameh is small and consider the Taylor
expansion:

y(t1) = y(to+h) = y(to) +hy (to) + ...

Now, we know thaty' (to) = f(to,y(to)). If we keep only the first two terms of the Taylor series, we
obtain the first step of Euler’s method:

V1= y0—|—hf(t07YO)7

wherey(t,) is replaced by the “numerical solutioyi, etc. The general step frotptot;, 1 is similar.
Here is a MATLAB program for the Euler's method:

function yl1 = eulerstep(h, t0, y0)

% This is one step of the Euler’s method. It is
% given for the first step, but any other step

% is just the same. You need the MATLAB function
% f to specify the system of ODEs.

yl = yO + h* £(t0, y0)

Now, let us solve (1.3-1.4) from= 0 tot = 1 with the step sizé = 0.01. For this purpose, we need
to write a main program. In the main program, we specify tlitéairconditions, initial timetp, final time
and the total number of steps. The step size can then be at@lduHere is the MATLAB program.

% The main program to solve (1.3)-(1.4) from t=0 to
% t =1 by Euler’s method.

% initial time
t0 = 0;

% final time
tfinal = 1;

% number of steps
nsteps = 100;

% step size

h = (tfinal - t0)/ nsteps;

% initial conditions

y = [1’ 2, 3]’;
% set the variable t.
t = t0

% go through the steps.
for j= 1 : nsteps
y = eulerstep(h, t, y)
t=t+h
% saved output for u(t) only, i.e. the first component of y.
tout(j) = t;
u(j) = y@);
end
% draw a figure for the solution u.

plot(tout, u)

Now, insider MATLAB, in a folder containing the three progra: f .m, eulerstep.m, eulermain.m,
if we type eulermain, we will see a solution curve. That is the solid curve in FidL. IThis is for the

Numerical solutions by Euler's method using h=0.01, 0.1, 0.2
5 T T T T T T T

45F b

u()

Figure 1.1: Numerical solutions of (1.3) and (1.4) by Ewderiethod. The solid curve is for= 0.01.
The “+”is for h=0.1 and the “0” is forh = 0.2.

case ofth = 0.01. We also want to see what happenhk i§ 0.2 and 01. For this purpose, we change
nsteps to 5 and 10, then usglot (tout, u, ’o0’) andplot(tout, u, ’+’) to show the results.
All three plots are shown in the Fig. 1.1.

The Euler's method is not very accurate. To obtain a numiesadation with an acceptable accuracy,
we have to use a very small step sizeA small step sizdr implies a larger number of steps, thus more

computing time. It is desirable to develop methods that aseeraccurate than Euler's method. If we
look at the Taylor series again, we have

2 3
V1) = Yo+ h) = y(to) +hy to) + =¥/ (t0) + =" (1) + .

This can be written as

YY))+ Dyig)+ oy) - (16)

Actually, the right hand side is a more accurate approxiondgiory' (to+ h/2), since

2
Y (to+ 2) =Y (to) + gw(to) + %)/”(to) +.

The first two terms on the right hand sides of the above twot@nsare identical, although the third
terms involvingy” (to) are different. Thus,

y(ta) —y(to) ;y(t") ~Y (to+ g) =f (to+ g,y(to+ g)>

The right hand side now involvegty + h/2). Of course, this is how known, because we only have
y(tp). The idea is that we can use Euler's method (with half step I8i2) to get an approximate
y(to+h/2), then use the above to get an approximatiop(taf). The Euler approximation for(to+h/2)
isy(to) + h/2f (to,yo). Therefore, we have

ki = f(to,yo) (1.7)
h h

ko = f(t0+§,y0+§k1) (1.8)

Vi = VYo+hk. (1.9

This is the first step of the so-calleddpoint method. The general step is obtained by simply replacing
to, Yo andys by tj, yj andy; 1, respectively.
The right hand side of (1.6) can also be approximatedytiyo) + Y (t1))/2, because

Y(to) +y(ta)

—Y(to)+ 1y)+ Ty (1)
2 =Yo)+ 5y {lo 4 o)+

Therefore, we have
y(t) —y(to) _¥(to) +y(t)
h 2 '
We can replace/ (tp) andy'(t1) by f(to,y(to)) and f(t1,y(t1)), but of course, we do not know(t;),
because that is what we are trying to solve. But we can use'&niethod to get the first approximation
of y(t1) and use itinf (t1,y(t1)), then use the above to get the second (and better) appraoimudiy(t;).

This can be summarized as

ki = f(to,Yo) (1.10)

ke = f(to+hyo+hk) (1.11)
h

yi = y0+§(k1+k2). (1.12)

This is the first step of the so-calledodified Euler's method. The general step frapto tj; is easily
obtained by replacing the subscripts 0 and 1jland j + 1, respectively.
Similarly, the right hand side of (1.6) can be approximated b

AY (to) +BY (to +ah),

wherea is a given constant, € a < 1, the coefficient®\ andB can be determined, such that the above
matches the first two terms of the right hand side of (1.6). Wain

1 1
A=1-—, B=_—.
20’ 20

Theny (to+ ah) = f(to+ ah,y(to + ah)) and we use Euler's method to approximgft + ah). That is

y(to +ah) = y(to) +ahf(to,y(to))-

Finally, we obtain the following gener2hd order Runge-Kutta Methods:

ki, = f(tj,yj) (1.13)

ko = f(tj+ah,y;+ahk) (1.14)
1 1

Yitr = yj+h{(l—5> k1+£k2} (1.15)

Sincea is an arbitrary parameter, there are infinitely many 2nd oRlenge-Kutta methods. The mid-
point method and the modified Euler's method corresponal +01/2 anda = 1, respectively. In this
formula, k; andk, are temporary variables, they are different for differaaps.

There are many other Runge-Kutta methods (3rd order, 4#r @mad higher order). The following
classical 4th order Runge-Kuttamethod is widely used, because it is quite easy to remember.

ki, = f(tj,yj) (1.16)
h h

k2 = f(tj+§,yj+§k1) (1.17)
h h

6 = 4.+ ok) (1.18)

ki = f(tj+hy;+hk) (1.19)
h

Yit1 = w+émA2b+2@+M) (1.20)

We have mentioned tharder of a method above. This concept will be explained in the negtign.
Next, we consider a MATLAB implementation of the midpointtimed. For this purpose, we write
the following function callechidptstep which is saved in the file callegidptstep.m.

function y1 = midptstep(h, t0, y0)
% This is midpoint method (one of the second order Runge-Kutta methods).
% It is given for the first step, but any other step is just the same.
% You need the MATLAB function f to specify the system of ODEs.

k1 = £(t0, y0);
k2 = £(t0+h/2, yO + (h/2)*k1)
yl = yO + hx k2;

To solve the same differential equation (1.3-1.4), we ndwd darlier MATLAB functionf and a
main program. We can write a main program by copying the maigmameulermain for Euler's
method. The new main progranidptmain is different fromeulermain only in one line. The ling

= eulerstep(h, t, y) isnow replaced by
y = midptstep(h, t, y)

You can see that writing a program for a new method is very,esisge we have separated the differ-
ential equation (irf .m) and the numerical method (bulerstep.m ormidptstep.m) from the main
program. In Fig. 1.2, we show the numerical solutig) for (1.3-1.4) calculated by the midpoint

Numerical solutions by the midpoint method for h=0.01 and h=0.2
5 T T T T T T T

45F b

u()

Figure 1.2: Numerical solutions by the midpoint method. $bkd curve is foth = 0.01. The “0” is for
h=0.2.

method withh = 0.01 andh = 0.2. You can see that the midpoint solution obtained vt 0.2 is

much more accurate than the Euler’s solution with the sAme

1.3 Local truncation error and order

When a numerical method is used to solve a differential éguatve want to know how accurate is the
numerical solution. We will denote the exact solutioryés, thusy(t;) is the exact solution df. The
numerical solution & is denoted agj, therefore, we are interested in the following error:

e = |y(tj) — yjl-

We do not expect to be able to knaw exactly, because we do not have the exact solution in general
Therefore, we will be happy to have some estimates (such@exmate formulas or inequalities) for
;. However, even this is not so easy. The reason is that theascomulates. Let us look at the steps.

10

We start withyo = y(to) which is exact, then we calculage which approximateg(t;), then we calculate
y2 which approximateg(t,), etc. Notice that when we calculagg, we usey;, noty(t;). The numerical
solutiony; has some error, this error will influengg. Therefore, the errog, depends om;. Similarly,
the error at the third step, i.e3, depends on the error at step 2, etc. As a result, it is raiffaudt to
estimatee;.

The numerical methods given in the previous sections canritiewin the following general form:

yj+l :(p(tjah>yj)a (121)

where@is some function related to the functidrwhich defines the differential equation. For example,
the Euler's method is

@ty hy;) =y; +hf(t;,y;).

The midpoint method is
h h
(p(tj,h,yj) =Yj +hf tj+ E,yj +§f(tj,yj) .

If we have the exact solution, we can put the exact solugiphinto (1.21). That is, we replacg and
Yj+1 by y(tj) andy(tj;1) in (1.21). When this is done, the two sides of (1.21) will nqual, so we
should consider

Ti+1 = Y(tj+1) — @(tj, h,y(t))). (1.22)
The aboveTj 1 is the so-calledocal truncation error . If we know the exact solutiog(t), then we can
calculateT;. In reality, we do not know the exact solution, but we can usidéd howTj 1 depends on
step sizeh by studying the Taylor series @§..1. We are interested in the local truncation error because
it can be estimated and it gives information on the true efifberefore, we will try to do a Taylor series
for Tj1 attj, assumindnis small. In fact, we only need to calculate the first non-zerm of the Taylor
series:

Tj+1 = Cthrl + ...

where the integep is the order of the methodC is a coefficient that depends ap y(tj), Y(t;),
f(tj,y(t;)), etc. ButC does not depend on the step dizé he above formula fofj1 gives us informa-
tion on howT;; varies with the step size. Becauseé is supposed to be small, we notice that a larger
p implies that|Tj 1| will be smaller. Therefore, the method will be more accuifieis larger.

We notice thaiT;| = e;, because/y = y(to), thusys = @(to,h,yo) = @(to, h,y(tp)). However, it is
clear that|Tj| # e for j > 1.

When we try to work out the first non-zero term of the TayloreseofT;_ 1, we work on the general
equation (1.1). This is for the local truncation errotat;. But the general case 8t has no real
difference with the special casetat If we work out the Taylor series fdF, we automatically know the
result atTj, ;. The integerp (that is the order of the method) should be the same. In thificeat C,
we just need to repladg, y(to), f(to,y(to)), ... bytj, y(tj), f(tj,y(t))), ...

Now, let us work out the local truncation error for Euler's tmed. The method igj;1 =y, +
hf(tj,yj) = q)(tj,h,yj). Thus,

T =y(t1) — @(to, h,y(to)) = y(t1) — y1.

11

We have a Taylor expansion fgft;) atto:

2
Yitr) = (o) + hy to) + 2/ (t0) +
Notice thaty'(to) = f(to,y(to)). Therefore,

h2
Ty = E)//(to) +

The power ohis p+ 1 for p= 1. Therefore, the Euler's method is a first order method.
We can show that the local truncation error of the generald@ddr Runge-Kutta methods is

h /2 of
Ti=—|(2—al]y’+ay’'=—
|Gy

As an example, we prove the result for the midpoint metfoe- (L/2). The local truncation error is

1 1 ,0f
Tl — h3 [z‘yu _y/ :| + O(h4)
t=tp

Proof: First, since the differential equationys= f(t,y). We use thehain rule and obtain:
y' = fi+fyy ="fi+ff
y' =t fyy + [+) = o+ iy [fo+ By 1Ty + ffy + Y]
=yt 2f foy+ F2Hy -+ [fo + T fy = o +2F foy + T2 fyy + 'y

Now for y; using the midpoint method, we have

ki = f(to,yo) =Y (to)
ke = f('[o+D Yo+ b|<1) = f(to+D Yo+ D)/(to))-
2’ 2 2’ 2
Now, we needlaylor expansionfor functions of two variables. In general, we have

ft+08,y+A) = f(t,y)+06f(t,y)+Afy(t,y)
b A2
+ fi(t,y) + 0A Ty (t,y) + > fyy(t,y) +

Now, for ky, apply the above Taylor formula and uséo denotef (to,yo) = ¥ (o), we have

h h2 h2 h2 2
ke = f+4+3 ft+)/fy+§ftt+ yfty+ (g/)

Yy Sy oy o)

Herey, f and their derivatives are all evaluated@tNotice thaty(tp) = yo. Therefore,

fyy+O(h®)

2 h
yi=y+hle=y+hy+2y'+2 " -yt +0(h%)

Use the Taylor expansion

R
y(ta) =y(to+h) =y+hy + "+ =y +0(h*)

and the definition foif;, we have

3 3
T = %y// _ %[y// _y/ fy] +O(h4) — h3 |:2_14y// + %y/ fy:| —|—O(h4).

12

1.4 Embedded Runge-Kutta methods

Some differential equations may have solutions that chaagiely in some time intervals and change
relatively slowly in other time intervals. As an example, gansider the Van der Pol equation:

U +u=pl—uiu, t>0.

Forp= 6 and the initial conditionsi(0) = 1, U'(0) = 0, we use the midpoint method with= 0.04 and
solve the equation frorh= 0 tot = 40. The solution is given in Fig. 1.3. It appears that we Sthowlt

Solution of the Van der Pol equation
25 T T T

u(t)

5 10 15 20 25 30 35 40

Figure 1.3: A solution of the Van der Pol equation fo& 6 andu(0) = 1, u/(0) = 0.

keep the step sizeas a constant. Rather, we should only use a smaten the solution changes with
time rapidly. A numerical method that automatically sedeitte step size in each step is an adaptive
method.

A class of adaptive method for solving differential equasids the so-called embedded Runge-Kutta
methods. An embedded Runge-Kutta method uses two ordinamgdrKutta methods for comparing
the numerical solutions and selecting the step size. Meredwe two methods in an embedded method
typically share the evaluation df (we are solvingy = f(t,y)). Therefore, the required computation
effort is minimized.

Here is a 3rd order Runge-Kutta method

ke = f(ty)) (1.23)
k2 = f(tj+h,yj+hk1) (1.24)
h h
ks = f(tj+§a)’j+z(k1+k2)) (1.25)
h
Yi+1 = Yj+6(k1+4k3+k2) (1.26)

13

The cost of this method is mainly related to the calculatibkypk, andks. That is, three evaluations of
f. With the abovek; andky, we can use the 2nd order Runge-Kutta mettwoe (1, the modified Euler’s
method) to get a less accurate solutio; a:

h
Yier =Y+ 5 (ki ko). (1.27)

Although we are not going to use, , as the numerical solution gt_;, we can still usg/, ; to compare
with the 3rd order solutiog;, . If their difference is too large, we reject the solution arse a smaller
stepsizeh to repeat the calculation. If their difference is small eglouwe will accepty; 1. But we
also use this information to suggest a step size for the nemt &\ user must specify a small numiger
(called the error tolerance) to control the error for séthecthe step size. The difference betwegn;

andyj, , is
h
e=[lyj+1—Yjall = gllk — Zks +hel|. (1.28)
Sincey may be a vector, we have used a vector norm above.

To understand the formula for changing the step size, waaenthe first step and the exact solution
y(t1) atty. The local truncation errors give us

y(tl)—y{ = C1h3+...
y(tl)—yl = C2h4+...

for someC; andC; related to the solution &, its derivatives, the functiorfi and its partial derivatives
att;. Thus, we have

V1 —y; = C1h3+
Therefore,
e~ ||Cy||h®. (1.29)

Although we do not knowC,, the above relationship allows us to design a stepsizetssiemethod
based on the user specified error toleranic e < €, we accepl, otherwise, we reject; and repeat
this step. The current step size used for calculagingndy; is h, how should we choose a new step
size? We have

Enew~ ||Ca[Nfew < €.

Compare this with (1.29), we have
||Cl|| hﬁew €

ICf[h® e

hrew< h (z) e

or

To satisfy the above inequality, we use
e\ 1/3
h:=0.9h (é> (1.30)

to reset the stepsize. Now,af< €, we accept; = tg+ h andy, but we also use formula (1.30) to reset
the stepsize. This gives rise to the possibility to incrahsestepsize when the originalis too small
(so thateis much smaller thams).

Algorithm: to solvey = f(t,y) fromtg to teng With error tolerance and initial conditiony(tp) = o,

14

initialize t =tg, y = Yo, €, h (initial step size)
while t < teng
ki = f(t,y)
ko= f(t+h,y+hky)
ks = f(t+h/2,y+ (ki + ko))
e=3||ki — 2ks + ko]
if e<eg, then
y=y+ g(k1+4k3+k2)
t=t+h
outputt, y
end if
h=0.9h(¢/e)/3
end

Notice that the formula for resettingis outside the “if...end if” loop. That is, whether the cdition
is accepted or noh will always be changed.
As an example, we consider

y=y-ty?, t>0, (1.31)
with initial conditiony(0) = 1. If we usee = 10~° and the initial step sizk = 0.5, we get
ki =1, ko =0.375 k3~ 0.8286 e 0.047.
Sincee > ¢, this step is rejected. We have the new step Bize0.0269 and
ko ~0.9985 k3~ 0.9996 e~ 6.4194x 10°°.
Thus, the new step is accepted and

t; ~ 0.0269 y; ~ 1.0268

The numerical solution of this differential equation iswimdn Fig. 1.4. A MATLAB program érk23.m)
for the embedded Runge-Kutta method is given below.

function [tout, yout] = erk23(t0, tfinal, yO, tiny, hO)

% This is the embedded Runge-Kutta method using a 3rd order
% Runge-Kutta method and a 2nd order Runge-Kutta method.

% We are solving y’ = f(t, y), where y is a column vector

% of functions of t.

% Input: tO, the initial time

o tfinal, the final time

% yO, a column vector of the initial conditions, i.e., y(t0) = yO.
yA tiny, the small parameter for error tolerance

h hO, initial time step

% Output: tout, a row vector for the discrete time steps

15

1.5 T T
1.4F o
1.3 O o i
12t o © g

11 © ©

y(t)
N
O
Il

09f o |

0.8 O

0.7 4

0.6 4

05 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Figure 1.4: Numerical solution of (1.31) by embedded Rukgtda method.

b yout, a matrix for solutions of y at various various time.
t = t0;
y = y0;
h = ho;
tout = tO0;
yout = yO;
while t < tfinal

k1 = £(t, y);
k2 = f(t+h, y + hxkl);
k3 = f(t+h/2, y + h*x(k1+k2)/4);

E = (h/3)*norm(k1-2*xk3 +k2);
if E <= tiny

y =y + (W/6)*x(kl + 4xk3 + k2);
t =1t + h;
tout = [tout, t];
yout = [yout, yl;
end
h=0.9 * h * (tiny/E)~(1/3);

end

This program requires.m which specifies the differential equation.

16

Chapter 2

ODE IVP: Implicit One-step Methods

2.1 Stiff equations

The Euler's method and the Runge-Kutta methods in previectsons arexplicit methods. For the step

from t; to tj.1, the numerical solutioy;;; has arexplicit formula. In the section on local truncation

errors, we write down such a formula By, 1 = @(tj,h,y;). It turns out that the explicit methods have

some difficulties for some differential equations. Thesethe so-calledtiff differential equations.
First, we consider the following example:

y +sin(t) = —200(y — cogt)), (2.2)

with initial conditiony(0) = 0. The exact solution is

y(t) = cogt) —e 209,

As t increases, the exact solution converges tqtgaspidly. Let us use the Euler's method for this
equation. The numerical solutions are obtained wmith 0.008 andh = 1/99 in Fig. 2.1. We observe
that the numerical solution looks reasonable for largfeh = 0.008. There are large errors at the first
a few steps, then the error decrease rapidly. In fact, thisiesforh < 0.01. If h=1/99, we can see
that the error oscillates and grows exponentially. if we replace the Euler's method by a higher order
Runge-Kutta (explicit) method, we still have similar ditfltes.

While the above example appears to be a toy problem, we alsorhare realistic examples. Let us
consider the heat equation

h=Uy O<x<L, t>0. (2.2)

This is one of the simplest partial differential equatioR®Es) and it will be studied again in Chapter
6. This equation is usually solved with two boundary conditi and one initial condition. For example,
we have

ulOit)=a and u(L,t)=b, t>0,

u(x,0) = f(x), O0<x<L,

17

step size h = 0.008
2 T T T T T T T T T

A AR
2 o VIV VYV VYTV

t

Figure 2.1: Comparison of the exact and the numerical swistiof equation (2.1). The numerical
solutions are obtained by the Euler's method

wheref is a given function ok. We can solve thifitial and boundary value problerny separation of
variables. We have

_ S 6 sin ™) g (imu
u(x,t)_uw(x)+glg,sm< 3 >e :

where L)
Uo(X) =at (b—a)~, §= 3/ [£(X) — Uo (¥)] SiN (ﬂx> dx
L L Jo L
Notice that the solution converges rapidly to the time-patedent (steady) solutiam, ast — «. The
steady solution is determined by the boundary conditiomgamd it is a linear function of. In Chapter
6, we will study a number of numerical methods for this equrati~or the moment, we will use a simple
method to discretize the variabteand approximate this PDE by a system of ODEs. We discratize

. . L
x=iAx for i=0,14,2,..m+1 and Ax=——,
m+1

denotey; = u(x;,t) and approximateiy(x;,t) by

Ui—1 — 2Uj + Uit
(&x)? ’

UXX(Xi 7t) ~

18

then the heat equation is approximated by the followingesystf ODES:

Uy r—2 1 7]
1) 1 -2 1
d : 1 1
dt| ~ | (Ax)?
Um-1 -2 1 Um-1
| Um | L 1 -2] L Um

(B2

b

(2.3)

Since onlyx is discretized, we call the above approximatioseai-discretization Originally, the heat
equation is defined on the two-dimensional domfdt)|0 < x < L,t > 0}, now we are approximating

u only on the lines:x = x; for t > 0. We call such a process that turns PDE to a system of ODEs the
method of lines In the following, we lel. = 1,a=1,b=2 andf(x) =0 for 0< x < L, and solve the
above system by the 4th order classical Runge-Kutta mefftoelright hand side of the ODE system is

giveninf .m:

function k=f(t,u)

% ODE system for semi-discretized heat equation.
% u_t = u_xx, 0<x<L, t>0,

% u=a at x=0, u=b at x=L.

global L a b

m = length(u);

dx = L/ (m+1);

s = 1/(dx)"2;

k(1) =s*(a-2*xu(1)+u(2));
k(m)=s*(u(m-1)-2*xu(m)+b) ;
k(2:m-1)=s*(u(1:m-2)-2*%u(2:m-1)+u(3:m)) ;

The 4th order classical Runge-Kutta method is givenk#step . m:

function y1 = rk4dstep(h,t0,y0);

k1 = £(t0,y0);

k2 = f(t0+h/2, yO + (h/2)*k1);

k3 = £(t0+h/2, yO + (h/2)*k2);

k4 = f(t0+h, yO+ h*k3);

y1 = yO + (h/6)*(k1+2xk2+2xk3+k4) ;

The main program is given below.

global L a b
L=1; a=1; b=2;

% discretizing x by m points in (O,L)

m = 99;
dx = L/ (m+1);
x = dx*x(1:m);

% simple initial condition u = 0.

19

u = zeros(1l,m);
% solve from t=0 to t=0.05 with nsteps
tzero = 0; tfinal = 0.05;
nsteps = 718; % try 717, 716
h = (tfinal - tzero)/nsteps
for j=l:nsteps
t = (j-1)*h;
rk4step(h,t,u);

u
end
% draw the solution at t=tfinal

plot([0,x,L], [a,u,b])

We have tried two steps= 0.05/718~ 6.964x 10~° andh = 0.05/716~ 6.983x 10~°. The smaller
h gives a satisfactory solution, while the largeigives an incorrect solution with wild oscillations.
Compared with the grid sizAx = 0.01, the time step sizk = 6.964 x 10~° appears to be extremely

u(x,0.05)
o
a1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.2: Numerical solutions of the heat equatioh at0.05 by a 4th order Runge-Kutta method
with step sizéh = 0.05/718 andch = 0.05/716.

small.

The concept of “stiff” differential equation is not rigorsly defined. Suppose we have an exact
solutiony(t) of a differential equation. Fix a timg, the differential equation has infinitely many other
solutions fort > t.. If these other solutions convergey@) rapidly fort > t,, then we may say that this
differential equation is stiff at.. If a nearby solution, say(f), converges tg(t) rapidly, the derivative
of § can be large (in absoluate value). Numerically, this caniffiewlt to catch. For explicit method,
the error can decrease if the step size is sufficiently srBait.the error may increase exponentially, if
the step size is not small enough.

20

2.2 Implicit one-step methods

For stiff differential equations, we need the “implicit” theds. One step implicit methods can be
written as

Yir1=@t;,h Y}, Yjea). (2.4)
Notice thaty;. 1 is what we want to calculate, but it also appears in the rigintohside. To be more
precise, thg/j1 in the right hand side only appears inside the functioRemember that we are trying
to solvey’ = f(t,y). The method is called implicit, because we do not have anaixfdrmula fory;. 1.
Instead, we have to solve an equation to fmd,. If the differential equation is complicated, an implicit
method can be very difficult to use.

When applied to stiff differential equations, the implisiethods behave better. We can use a large
step size. Of course, if the step size is large, the numesmation may be not very accurate. But at
least the error is under control. Next, we list some one stggicit methods.

Backward Euler's method:

Yi+1 =Yj+hf(tj1,Yj41). (2.5)

This is a first order implicit method. Notice thgt, 1 also appears in the right hand sidefin
Trapezoid method:

h
Yit1=Yj +§[f(tj7Yj)+ f(ti+1,Yj+1)] (2.6)

This is one of the most widely used implicit method. It is a 2nder method.
Implicit midpoint method:

h 1
Yj+1=Y;+hf (tj + > E(Yj +Yj+1)> (2.7)

Again, this is a 2nd order implicit method. Notice that ; also appears in the right hand side. The
implicit midpoint method is equavelent to the so-caltrdl order Gauss method

h h
Yi+1 = Yj+hk. (2.9)

This time,k; is implicitly given in the first equation. If we eliminatq, the method can still be written
as (2.10).

Now, let us solve the differential equation (2.1) by the immipmidpoint method. Using the step size
h = 0.02, we obtain the numerical results shown as the little erdh Fig. 2.3. Besides the first a few
steps, the numerical solutions are pretty accurate.

The implicit methods given in this section are one-step watBincey; 1 depends oly; only (does
not depend on earlier solutions, suchyas;). The local truncation error and the order of the method
can be defined as before. For the general implicit metho®)2vle first calculatey;” 1 by changingy;
to the exact solutioy(t;), i.e.,

Vi+1 = @t hy(t;), ¥i+1)
then the local truncation error is
Tjr1 = Y(tj+1) — Yj+1-

21

oS
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2.3: Comparision of the exact solution and the nuragsolution by the implicit midpoint
method withh = 0.02 for (2.1).

This definition is somewhat complicated, singe;"must be solved from an equation. Notice that a
one-step implicit method can be written as

Yir1 =@t 0y}, Yjp1) = Vi +h®(t;,y;,¥j11), (2.10)
where® is related tof. We can approximatgj ', by
Yiv1 = 0(tj, hy(t)), y(tj+1)) = y(tj) + hd(t;, y(t;), y(tj41))-
Notice thatyj, 1 is given explicitly. This gives rise to the modified definitiof local truncation error:
Tiva = Y(tjs1) = Vi1 = Y(tjr1) — oy, hy(t)), ¥(tj 1))

It appears that we just need to insert the exact solution ttlbonumerical formula to get the local
truncation error. It can be proved that the original and tleelifired definitions give the same first non-
zero term in their Taylor expansions. That is, if we assuradithe stegh is small and work out the first

a few terms of the Taylor expansions, then

Tis1 = ChPHlyDhPr24

Tija = ChPPlypDhPt2y
Since we are only interested in the first non-zero term of dlealltruncation error, we can u?@l to
replace the originalj 1. As before, the method has ordey if the first non-zero term of the Taylor

series of the local truncation error is proportionahfd®. For example, the local truncation error of the
backward Euler's method is

R h?

T =y(tjr1) = y(t) —hftj 1,y 41) = y(tj) = y(t) —hy (1) = —E)/ (tj) + ..

Therefore, the backward Euler's method is a first order noetho

22

Chapter 3

ODE IVP: Multi-step Methods

3.1 Explicit multi-step methods

In Runge-Kutta methods, the solutiontat; is based on the solution gt That isyj, is calculated
from y;j. In multi-step methodsy; 1 is calculated from the solutiong, y;—1, etc. Multi-step methods
are more difficult to program, but they are more efficient tteRunge-Kutta methods. To present the
multi-step methods, we need the following notation:

fk = f(tk, Yk

for any integek. The Adams-Bashforth methods are the most widely usedagxplulti-step methods:
AB2 (2nd order)

3 1
Yi+1=Yj+h [5 fj— > fjl] (3.2)

AB3 (3rd order)

23 16 5
Vi =yeh [1—2“ Tt 1—2“2] | &2
AB4 (4th order)
55 59 37 9
Vi =vith [ﬂf’ T2ali T ag 2T zﬂﬂ} &9

The Adams-Bashforth methods are derived in the followiegst

1. The following formula is exact
tj+1 tj1
[y dt=yta -y = [)
i j
2. Find a polynomial interpolation for based on the points
(t17 f])7 (tj—17 fj—l)7

3. Replacef by its polynomial aproximation in step 2, then integrate.

23

The method AB2 is a 2-step method, and it is also a second andédrod. The concept of order is
related to the concept of local truncation error (LTE). If wete an explicit multi-step method as

Yj+1 - (P(tj7h7Yj7Yj—lv---)

for some functionprelated to the differential equatigh= f(t,y), the LTE is defined as

Tj+l = y(tJJrl) - (p(tj>h>y(tl)>y(tjfl)>)

wherey(t) is the exact solution of differential equation. As an example consider the method AB2.
We have

oty hy(t)), y(tj-1)) = y(tj)+hEf(IhY(tj))—%f(tj—LY(tj—l))}
— Y)+h| Y- 3V

To find the order, we need the first non-zero term of the Taydes of the LTE. Since

2
Y(ti-1) =Yt —h) =Y () -hy'(t;) + h?)/”(tj) + .
we obtain
h? h3
Gt h (), Y(ti-1) = Y(t) +hY (t) + Y (t) = ZV" () + ..
On the other hand,

h? h3
Y(tiva) = y(t +h) = y(t) +hy (t) + Y (t) + ZY"(t) + .

Therefore, .
5h
Tj+1 — ﬁ)///(t]) +
If the LTE is related td as
Tjs1=ChPtiy

then the order of the numerical methodpisFor AB2, the order is 2. In other words, AB2 is a second
order method.

Let us consider the method AB4 (which is a fourth order methda evaluatey; 1, we needf;,
fi_1, fj_> and f;_3. However, we only need to calculafg¢in this step, because the other three values
of f (i.e. fj_1, fj_» and f;_3) are already calculated in the previous steps. In comparish each
step of the 4th order Runge-Kutta method, we need to evalu&ber times (i.e. ki, ko, k3 andky).

For large scale problems, usually the most expensive pdheofalculation is to evaluate the function
f. Therefore, AB4 is roughly four times faster than a 4th of@enge-Kutta method. A MATLAB
program for the method AB4 is given below:

% We implement the 4th order Adams-Bashforth’s method here. A
% constant step size h is used. The differential equation is y’ = f(t,y),

% where f is the name (a string) of the function f(t,y). Notice that y

24

% and f are supposed to be column vectors.

% Input:

b t0 --- the intial time

% yO --- the initial values (a column vector)

yA tfinal --- the final time

yA steps -—- the total number of steps.

% Output:

b t --- a row vector for the discretized time

b y --- a matrix for solutions at various time

function [t, y] = myab4(tO, yO, tfinal, f, steps)
% setup the step size.
h = (tfinal - t0)/steps;

% setup the vector for output.

n = length(y0);

t = t0 : h: tfinal;

y = zeros(n, steps+1);
y(:,1) = y0;

% first 3 steps by the classical 4th order Runge-Kutta method.
[y(:,2), f1] myrk4a(f, h, y(:,1), t(1));

[y(:,3), f2] = myrkda(f, h, y(:,2), t(2));

[y(:,4), £3] = myrk4a(f, h, y(:,3), t(3));

% calculate the remaining steps by AB4

for j=4:steps
f4 = feval(f, t(j), y(:,3));
y(:,3+1) = y(:,j) + (h/24)*(-9*%f1 + 37*f2-59+f3+55%f4);

f1 = £2;

f2 = £3;

£3 = f4;
end

% The 4th order classical Runge-Kutta method
function [y1, k1] = myrk4a(f, h, y, t)

k1 = feval(f, t, y);

k2 = feval(f, t+0.5%h, y+0.5%h*k1);

k3 = feval(f, t+0.5%h, y+0.5%h*k2);

k4 = feval(f, t+h, y+h*k3);

yl =y + (b/6) * (k1 + 2*k2 + 2*k3 + k4);

Next, we use AB4 to solve the following Lorenz system:

yi = 10(y2—y1)

25

Yo = —Y1¥3+281—Yo

8
)/3 = yly2—§)’3-

This is implemented in the following MATLAB programorenz . m:

% The Lorenz system
function k = lorenz(t,y)
k = zeros(3,1);
k(1) = 10 * (y(2) - y(1));
k(2) = - y()*y(3) + 28xy(1) - y(2);
k(3) = y(1) *x y(2) - (8/3) * y(3);

Now, we solve the Lorenz system fram= 0 tot = 40 with the following main program.

% the main program to solve the Lorenz system by AB4.

% initial time

t0 = 0;
% final time
tfinal = 40;

% initial conditions (column vector):

yO = [-11.3360, -16.0335, 24.4450]° ;

% total number of steps

steps = 2000;

% call the function myab4

[t, y] = myab4(t0, yO, tfinal, ’lorenz’, steps);

The solutions are plotted in Fig. 3.1. The Lorenz systemi@tehthaos If you think about the solution
as a trajectory in the 3-D space 9f, y» andys, then the trajectory does not approach a fixed point
or a closed loop. If the trajectory approaches a fixed poig, solutions (as functions o¢f tend to
constants. If the trajectory approaches a closed loop,ttiesolutions become periodic tas» . But

the solutions of the Lorenz equation is non-periodit as .

3.2 Implicit multi-step methods

The Adams-Bashforth methods, like the explicit Runge-Kutiethods, have difficulties for stiff differ-
ential equations. Some one-step implicit methods aredowed in Chapter 2. In the following, we
develop some implicit multi-step methods.
The Adams-Moulton methods are implicit multi-steps methadd they are derived similarly as the
Adams-Bashforth methods. We start with
t+1
Yt -yt = [ftym)a

t

and use polynomial interpolation fdr. For Adams-Moulton methods, we includg. 1, fj11) as an
interpolation point. If we only use two pointgt;, f;) and(tj;1, fj+1) for approximatingf, then we get

26

20

101 .y

yl
o
T

-10

40

20 N

y2
o
T

Figure 3.1: Solutions of the Lorenz system by AB4.

a single-step implicit method. This is the Trapezoid metbivdn in section 2.2 (which can be regarded
as AM1).
If fis approximated by its polynomial interpolation using theee points:

(tj+a, fja), (4,), (G2, fj-2)

we get the following 2-step Adams-Moulton meth@M?2):

5 8 1
Yj+l:yj+h[1_2fj+l+l—2fj—1—2fjl] : (3.4)

The above is a 3rd order method. The 3-step Adams-MoultomadefAM3) has a fourth order of
accuracy. It is given as follows:
19 5 1

fj_z} |

Yisr=Yith gl ogli=ozti-1t 5

The Admas-Moulton methods are useful when they are usedhtgeith the Admas-Bashforth
methods as the so-call&tedictor-Corrector methods. In this a method, an explicit method is used to
calculate a solution df, 1, sayyj.1, then it is improved by an implicit method. In the implicit thed,

27

fi11is replaced byf (tj11,¥j+1). Here is the 3rd order Adams predictor-corrector method

~ 23 16 5

Vivr = Yj+h{1—2fj—1—2fj—1+l—2fj—2} (3.9)
5 . 8 1

i = W[e+ ot i 3.6

Overall, this is still an explicit method. Notice that theomnethods involed in the above predictor-
corrector method both are 3rd order and the resulting meathaldo 3rd order.

A class of useful implicit multi-step method is tlackward Differentiation Formulas (BDF).
The derivation is as follows:

1. Write down a polynomia@)(t) that interpolates

(tj+17Yj+1)7 (tj7y])7 (tj—17Yj—1)7---
BDF2 is a 2-step method, €@ is based on the above three points. BDF3 is a 3-step method, so
(tj_2,Yj-2) is also needed.
2. Replace/ = f(t,y) attj;1 by
Q(tjr1) = f(tjr1.Yj41)
Consider BDF2, we have

(t—t;)(t—tj_1) (=) (t—t 1) Tty (t—tp)(t—tj1)
G =t —timn) 7 G~ —time) 7 G —t) (ot

Take a derivative and set=t; 1, we get

Q(t) =yjs1

3 2 1
%Yjﬂ — HYj + %Yj—l = f(tj4+1,Yj+1)

or
4 1 2h
Yi+1— §Yj + §Yj—1 =3 f(tj+1,Yj+1)

The methodBDF3 can be similarly derived. We have
18 2 6
Vier— Vit ypYict ppYi-e = s yic)-
For an implicit multi-step method, given as
Yit1 =@t hyii1,Yj,Yi-1,--)
the local truncation error is defined as
T2 = Y(tj+1) — @ty h y(tj+1), y(t)), y(tj-1),)
Going through a Taylor series, we may find
Tj+1 == Chp+l +

then the order of the method s

28

Chapter 4

ODE IVP: Stability Concepts

4.1 Zero stability

There are many other multi-step methods. Some of them hareihbrder than the methods in the
previous chapter (for the same number of steps). The fatigwikplicit multi-step method

Yj+1+4yj —5Yj-1 = h{afj +2f; 4] (4.1)
is a third order 2-step method. This can be verified by calitigats local truncation error. We have

Tia = Y(tjpa) +4y(t)) —Sy(tj—a) —h[4F(t;,y(t))) + 2f (tj—1, y(tj—1))]
= Y(tje1) +4y() —5y(tj-1) —h[4y () + 2y (tj-1)] -
Now, if we insert the Taylor series gftj. 1), y(tj—1) andy'(tj_1) att =t;, we obtain

T = gy(() + .

Since the power dfiis 4= 3+ 1, this is a third order method.

Notice that the 2-step AB2 is only a second order method. u$ teems that the above method
would be more useful than AB2. This is not the case, sincentraat solve the simplest differential
equation

y =0
The solution of the above should pe- const. If the initial condition ig/(to) = Yo, theny(t) =y, for all
t. For the 2-step method (4.1), we must assumeythaty(t;) is also given. We assume that

Y1~ Yo, but y17#Yo

This can happen, if we have somehow compuytedith a small error. Then (4.1) is simple
Yi+1+4Yj—5yj-1=0

for j =1,2,3,.... This linear recurrence relationship can be solved. Theigdsolution is

yj = CiA} +CoMl,

29

whereC; andC; are constantsy; andA, are the solutions of
N +4\N—-5=0.

Therefore,
AM=1 A =-5

Thus the general solution is
Vi = C]_—|—C2(—5)J.

Now, we can try to determin@; andC, from

Yo = C+C
y1 = C1—-5C.
We have 5
Yo+ Y1 Yo—Y1
Ci=—"—" GCo=""".
1 6 2 6
If Yo 75 Y1, thenC, 75 0, thus
lim |yj| = oo.

J~>oo
Therefore, the error grows exponentially fast and the ne(dl) is useless.

Let us write a numerical method for ODE IVPs in the followingngral form:
k
Z}GIYM = OKYjtk + ... + 01Yj41+ 0oy = hP(Yjik, ..., Vj+1,Yj, tj h). (4.2)
|=

This is ak-step method. The right hand side is related to the functiare., the right hand side of the
ODE. In general, the above method is implicit, singey is also in the right hand side. Furthermore,
we may require thatty = 1. Notice that we have shifted the subscripts, so that teikesy| 1 do not
appear. In fact, method (4.1) is now written as

Yi+2+4yj1—By; = h[4fj 1 + 2fj].

In any case, we may ask when the general method (4.2) is zdie stf the method is applied =0,
then we just have the left hand side:

OKYj+k + ... +01Yj41+ Ogyj = 0. (4.3)

Consider a special solution = Zj, we obtain

k
pQ) =Y ail' =0.
=0

For zero-stability, we require that all solutions of theckm recurrence (4.3) must be bounded forjall
and for all initial conditions. Therefore, the roots of th@ymomialp({), i.e. the zeros of the polynomial
p(Q) or the solutions of the above equation, must satisfy

|/ <1, and |{J=1 onlyifisasimple roat

30

4.2 Absolute stability

For stiff differential equations, it is desirable to ha¥estable numerical methods. A numerical method
is calledA-stable (which means absolutely stable)when it is applied to

y=ay, t>0, y(0)=yp,

where a is any complex number with(Re< 0, the numerical solutionjy— 0 as j— o, for any step
size h> 0. Notice that the exact solution of the above equation

y(t) = yoeat —0, as t— oo,

since Réa) < 0. Therefore, the A-stable numerical methods have the ciopehavior for large. An
explicit numerical method can never be A-stable. When afi@xmethod is applied to/ = ay, the
numerical solution converges to zeradhifs small enough, otherwise, the numerical solution diverge
exponentially.

The implicit methods presented in Chapter 2 are all A-stableen applied ty’ = ay, the backward
Euler's method gives

1
Yj+1= 1_—ath7
or
1 J
= [1—ah] Yo-
Since R¢a) <0, |[1—ah| > 1, thusyj — 0 asj — . For the implicit midpoint method and the Trapzoid
method, we get

~_14ah2
Vi =1 gn i
Therefore, _
~ [1+ah/2]]
1= 1=an2]
Since Ré¢a) < 0, we have
UM
2 2|

Thereforeyj; — 0 asj — oo,

Other implicit methods may or may not be A-stable. In face fdams-Moulton methods are not
A-stable. Let us consider the third order method AM2. If welgghe method to/ = ay, whereaiis a
complex constant with a negative real part, we get

(1—59)yj+1— (1+8s)yj +sYj-1=0,
wheres= ah/12. The general solution of the linear recurrence relakignis
y; = A\ +BAS
whereA; andA; satisfies

(1—-59)A> — (14 89)A +s=0.

31

If Ay or A, satisfiegA| > 1 for somes, then|y;| — o« asj — o for the givens (thus the given step si#g.
If that is the case, the method will not be A-stable. This @eied the case for realk 0 whens < —1/2
orh > —6/a. Therefore, the method is not A-stable.

The 2-step BDF formula (i.e., BDF2) i&-stable, but thé-step BDF formulae fok > 3 are not
A-stable. Furthermore, for BDF formulae, we also need takhbeir zero-stability. It turns out that
the BDF formulae are zero-stable only if the number of stegs6. Although the BDF formulae are
not A-stable for 3< k < 6, they areA(0)-stable. A numerical method is called(0)-stable, ifwhen it is
applied to y = ay for anyreal and negative a, the numerical solution always satisfies-¥0 as j— oo
for any step size b- 0. It is clear thatA(0)-stable is a weaker condition th@astable. If a method is
A-stable, then it is certainl(0)-stable, but the reverse is not true. Notice thatAbhstable condition
checks the solution for alomplex a with a real and negative imaginary part, but it includes & aces
a special case.

Actually, we can have more information if we calculate thgion of absolute stability of a nu-
merical method. This concept is again related/te- ay for complexa, but it is also related to the
step sizen. As we see from the earlier calculations, the numericaltswidfor this equation is closely
related toz = ah. Therefore, we define the region of absolute stability asgéorein the complexz
plane, where = ah. It is defined as those valueso$uch that the numerical solutionsyof= ay satisfy
yj — 0 asj — o for any initial conditions. For the explicit Runge-Kutta theds in Chapter 1, the
Adams-Bashforth methods, the Adams-Moulton methods, l@dBDF methods, we show the regions
of absolute stability in the extra handout. What about theghmplicit methods in Chapter 2? The
backward Euler's method is identified as BDF1, the trapemo@hod is identified as AM1, and the
region of absolute stability for implicit midpoint methos identical to that of the trapezoid method.
With this concept, we realize that a methoddistable, if its region of absolute stability includes the
left half of the complexz-plane, and a method 5(0)-stable, if its region of absolute stability includes
the negative half of the real line in the compleplane. Furthermore, we can say that one method is
more stable than the other method, if the first method hagyadabsolute stability region. As a little
exercise, we consider the interval of absolute stabilitttanreal axis oz. Fory = ay, the 4th order
Runge-Kutta method gives

2 6 24
On the real axig = ahis real, the interval is thus defined as

(z 2z f)
Visr=(1+Z2+ 5+ =+ 57 Y

142424242 <1
26 247

We solve the end points of the interval from

Hi+f+£+f—il
2 6 24 7

The case of 1 gives= 0 andz= —2.7853, the case 1 has no real roots. Therefore, the interval on the
real axis (of the region of absolute stability)-i®.7853< z < 0.

While our numerical methods are designed for the generaldiider systeny = f(t,y) wherey is
in general a vector, we only considered the absolute dfabiincept fory = aywherey is a scalar and

32

ais a constant. Therefore, it is natural to ask whether thicept is relevant. First, we consider the
linear equations:

y =Ay

whereA is a square matrix and it tsindependent. In that case, the mattixas eigenvalues, Ao, ...,
the corresponding right eigenvectgps, pz, ..., and left eigenvectons], wj, ..., where' denotes the
transpose operation. That is

Apj:)\jpj, ijA:)\jij, j:1,2,...
Asy is a column vector of functions, we can multiply the row veMg'S and obtain
Wiy =w] Ay=Awly,

If we define a scalar functiog; = WJ-Ty, theng’j = Ajg;. This equation has the same form as the simple
equationy = ay studied earlier. If we assume Rg) < 0 for all j, then the analytic solution satisfies
y — 0 ast — . In order to have numerical solutions that converge to ageomust make sure thagh,
for all j, are in the region of absolute stability. This type of argatrgoes though for the linear system
of ODEs with an inhomogeneous term:

y = Ay+b,

whereb is a vector. This is exactly the semi-discretized form (2f¥)eat equation discussed in section
2.1. At that time, we did not explain why the method is stablestep sizéh = 0.05/718 and unstable
for h=0.05/716. We can explain this, if we calculate the eigenvalueefficient matrix in (2.3) and
then consider the region of absolute stability of the 4tteoiRlunge-Kutta method. Actually, since the
eigenvalues are real, we only need to consider the intéosect the absolute stability region with the
real axis. If the eigenvalues ake (all real and negative), then the numerical method is stiilie step
sizeh satisfies

|Aj|h < 2.7853
It turns out that the eigenvalues of the coefficient matrigir3) are

Tt

4
Aj=— in? j=1,2,..,m
] (AX)Z Si 2(m+1)7 J & 7m

The one with the largest absolute valuéjs Form=99,Ax = 0.01, we have
Am~ —3999013.

Therefore, we need 3999013h < 2.7853 orh < 6.964968x 10~°. This is satisfied foh = 0.05/718
but noth = 0.05/717 orh = 0.05/716.

For the more general systeyh= f(t,y), the absolute stability concept is useful if we think of
approximatingf (t,y) at any fixed time; by a linear system of ODEs using Taylor expansion. But the
approximate linear system changesjashanges.

33

Chapter 5

ODE Boundary Value Problems

5.1 The shooting method

Consider a 2nd order ordinary differential equation witle twoundary conditions

Yy =f(xyy), a<x<b
y(a) =a
y(b) =B,

wherea, b, a, B are given constantg,is the unknown function o, f is a given function that specifies
the differential equation. This is a two-point boundaryueaproblem. An initial value problem (IVP)
would require that the two conditions be given at the samaevaf x. For exampley(a) = a and
y(a) = y. Because the two separate boundary conditions, the abavpdimt boundary value problem
(BVP) is more difficult to solve.

The basic idea of “shooting method” is to replace the abov@® BY an IVP. But of course, we do
not know the derivative of atx = a. But we can guess and then further improve the guess itelativ
More precisely, we treaf' (a) as the unknown, and use secant method or Newton’s methodher o
methods for solving nonlinear equations) to deternyiifa).

We introduce a functiom, which is a function of, but it also depends on a paramdteNamely,
u=u(xt). We useu’ andu” to denote the partial derivative of with respect toc. We wantu to be
exactlyy, if t is properly chosen. Bui is defined for any, by

u’ = f(x,u,u)
u(at) =a
u(ajt) =t.
If you choose somé, you can then solve the above IVP wf In generalu is not the same ag since

U(a) =t #Yy(a). Butiftisy(a), thenuisy. Since we do not know'(a), we determine it from the
boundary condition a = b. Namely, we solve from:

@t) =u(b;t)—p=0.

34

If a solutiont is found such thatyt) = O, that meansi(b;t) = 3. Therefore,u satisfies the same two
boundary conditions at=a andx = b, asy. In other wordsu =y. Thus, the solution of @(t) =0
must bet =y (a).

If we can solve the IVP ofi (for arbitraryt) analytically, we can write down a formula fgit) =
u(b;t) — B. Of course, this is not possible in general. However, witheruanalytic formula, we can
still solve @(t) = 0 numerically. For any, a numerical method for IVP af can be used to find an
approximate value aifi(b;t) (thusg(t)). The simplest method is to use the secant method.

L—ti_1
1 =tj—
ot;) — @tj-1)

For that purpose, we need two initial guesdgsindt;. We can also use Newton’s method:

tj .
thrl:tj—((:;((—tJj))? J:O,1,2,...

We need a method to calculate the derivatpf®. Sinceg(t) = u(b;t) — 3, we have

o), j=123..

9 = 2 i) —0= b,

If we definev(x;t) = du/at, we have the following IVP fov:

V' = fu(x,u,u’) v+ fy(x,u,u’) vV
v(ait) =0
V(at) = 1.

HereV andV’ are the first and 2nd order partial derivativesvpfvith respect tox. The above set of
equations are obtained from taking partial derivative wétbpect tox for the system fou. The chain

rule is used to obtain the differential equatiorvoiNow, we havep (t) = v(b;t). Here is the algorithm
for the shooting method which involves Newton’s method favisg ¢(t) = 0:

to = initial guess fory'(a).
forj=0,1,2,...
solve the following system numerically from=atox=>b
u = f(x,u,u)

Ux—a =d
U/|X:a:tj
V' = fu(x,u,u)v+ i (X u, U)V
V|x=a =0
V|x=a = 1.
set
=t — Ubcb=B

V|x:b

If we want to use the methods developed in the previous chapsolve the above system of two 2nd
order equations fou andv, we need to introduce a vectar= (u,u’,v,v')" and write the differential
equation ag = F(x,2) for some vectoF. The initial condition isz(a) = (a,t;,0,1)T.

35

The shooting method is also applicable to eigenvalue pnoble

y' =f(xy,Y,\), a<x<b,
y(@ =0, y(b)=0,

wheref satisfies the conditiorfi(x,0,0,A) = 0 and more generally, is homogeneous iy i.e.,

f(x,cy,cy,A) =cf(x,y,Y,\).

for any constant. Notice thaty = 0 is always a solution of the above boundary value problenfadp

an eigenvalue problem is a special boundary value problgisfysag (1) y = 0 is always a solution,
(2) there is a parameter call@din the equation (or boundary condition). The eigenvalueiam is

to determine non-zero solutions which exist only for spegdues ofA. The solutions of eigenvalue
problems are the paifs\,y(x) }, whereA is the eigenvalue anglis the eigenfunction. Usually, there are
many (may be infinite) eigenvalues and eigenfunctions. oths shooting method, we consider the
initial value problem

u' = f(x,u,u,N), x>a,
u(aA) =0,
u(aA) =1,

where) is considered as a parameter. Since the solution depersamuse the notation = u(x;A),
butu’ andu” represent the first and second order derivatives with ré$pec For any giver\, we can
solve the above initial value problem. Now suppassatisfies the condition

O(A) = u(b;A) =0,

theny(x) = u(x,A) is the eigenfunction we are looking for, andis the corresponding eigenvalue.
Therefore, we just have to use secant or Newton's methodlte adrom the equationp(A) = 0. If a
secant method is used, we just have to solve initial valuelenas for different iterates &f. If Newton’s
method is used, we must evalugté\) for givenA. Therefore, we need

V(X;A) = %(x;)\).

We need an initial value problem fer This can be obtained by taking partial derivative with extgo
A for the initial value problem ofi. We have

V= fu(xu, U ANV fy (xu U ANV + fy (X u, U N), x> a,
v(a;A) =0,
V(a;A) =0.

Notice that we have been using the chain rule (of Calculuggtdhe equation for. Now, you can solve
the initial value problem fov (together withu), then evaluatg/(A) for any givenA.

36

5.2 Finite difference methods

The basic idea of “finite difference method” is to replace deeivatives in a differential equation by
“difference approximations”.

To approximate the derivativE (Xp), we can use the left side of the following equations:

1. Forward difference:

f(X0+h)_f(X0)_ / h "
» _f(xo)+§f (Xo0) + -
2. Backward difference: f(x0) — f() h
Xo)— T(Xo— _ ! I 1/
: = 1(x0) — 5" (%) + ..
3. Central difference: £ o . w2
X+n)—T(X— _ Woem
h —f&®+6f&®+m

4. Central difference using half step:

f (o + 0.5h) — f(xo — 0.5h) h?

—f " i
b (mﬂj4 (x0) +

5. Three-point formulas:

_ _ 2
Hm+mﬂ4;m+m 3f(x0) szw—gV%®+m
f(xo—2h)—4f(xo—h)+3f(x0) h? .,

oh = f(xo)—gf (Xo0) + ...

For the second order derivative, we have:

_ _ 2
f(xo+h) 2fé§0)+f(xo h):f//(xo)+2—2f(4)(Xo)+...

We consider the following two-point BVP of a linear 2nd ordaDE:

Y +pXY +aqx)y=r(x), a<x<b

y(@) =a
y(b) =B.
Let
Xo=a, Xj =X+ Jh, and X1 =Db,
we obtain
h_b—a
n+1
We are looking fory; for j =1,2,...,n, where
yj & Y(X;).

We also letyp = y(Xo) = y(a) = o andyni1 = Y(Xn+1) = Y(b) = B. Thus,yp andy,1 are known. The
derivatives ak; can be approximated by

Y (%) Y(Xj+1)2—hY(Xj—l)
V%) ~ Y(Xj—l)—zytg;(j)+Y(Xj+1).

These are the central difference approximations. Thexefoe 2nd order differential equation is dis-

cretized by
i — _|_ . . —Vi_
Yi-1 2h)£1 YJ+1+p(Xj)YJ+12hYJ l+Q(Xj)Yj —r(x))

for j =1,2,...,n. This can be written as

[1— gp(xj-)} Yi-1+ [—2+hq(x))ly; + [1+ EP(XJ)} Yir1 = h?r(x).

2
We define
aj = —2+h%q(x)
bj = 1-p(xj)h/2
ci = 1+p(xj)h/2
dj = hzr(xj)
and obtain) L) }
a ¢ y1 di — b1y(a)
b2 a C Y2 d2
by . Y3 | = ds
’ . Ch—1
I bn an] LYn] [dn—cCay(b)

If we have the boundary condition

y(b)=p
then we let
Xo=a, Xj=Xo+jh, andx,=Dh.
Thus b
h:;a
n

While yp = y(Xo) = y(a) = a is known, y, = y(%,) = y(b) is not known. Therefore, we have time
unknowns:

y1>y27 "‘ayna

wherey; ~ y(x;). Imagine that there i%,,1 = b+h andyn1 ~ y(X.;1), then we can write down the
approximation of the differential equationyat b as

bnYn—l + AnYn + Ch¥nt+1 = dn

38

whereaj, bj, ¢; andd; are defined by the same set of formulas (even thogdtere is different). The
boundary conditiory' (b) = B can be discretized as

Ynt1—Yn-1 o o
Ity (b) =B

We can then solvg,, 1 and subsititute to the equation obtained earlier. Thisd¢ad
(bn + Cn)yn—l + anyn = dn - ZBhCn

Therefore, with this new boundary conditionxat- b and the new definition df andx;, we have

a1 © Y1 [d1—by(a)
b, a © Yo do
by . T y3| = ds
' . Cn1l | :
I bhtch @] [Ynl [dh—2hcy(b)

5.3 The finite element method
Consider the following linear second order ODE boundaryeairoblem:

U+ pX)u +g(x)u=r(x) for a<x<b
u(a) =a, u(b) =B,

wherea, b, a andp are given constantf, g andr are given functions. We start with the discretization:
a=Xg <X <... <X 1 <Xy <Xnr1=Db,
then try to find numerical solutions on the grid:
uj~u(x;) for j=0,1,...,n,n+1.

From the boundary conditions, we hawg= a, u,.1 = . Thus the unknowns ang, U, ...,u,. The
finite element method provides us an approach for computiegeh unknowns.

The finite element method relies on an integral relationveerifrom the differential equation. Let
¢ be a differentiable function af satisfying¢(a) = ¢(b) = 0, we can multiply$ to the differential
equation ofu and integrate. That is

[0001+ p09ud +a09u—r(x) de=0

If we use integration by parts for the term involving, we obtain

b
/ [0’V + p(X)dU’ +a(x)pu—r(x)9] dx= 0. (5.1)
a
Now, we consider the basis functign(x) defined as theontinuous piecewise linedunction satisfying

(%) =1 @) =0 if k#j.

39

More precisely, we have
(X=Xj-1)/ (X =Xj-1), Xj-1 <X<X;,
@ () =9 Xj+1—X)/(Xj+1— X)), Xj <X<Xjp1,
0, otherwise.
The derivative of this function is piecewise constant. Weeha
/(X —Xj—1), Xj—1 < X<X;,
@) =1 —1/(Xjr1—X), Xj <X< X1,
0, otherwise.
The piecewise linear function obtained by connectingu;) by line segments is

n+1

U) =Y ugi(%) (5.2)
J;) 1%

Obviously,u™ is an approximation fou(x). If we plugu™ into the differential equation, we will not
get an exact identity. In facy™ does not even have derivative at the the grid points. In thitefin
element method, we replacen (5.1) byu™ and replace in (5.1) by, for k= 1,2, ...,n. This gives
rise ton equations for th@ unknownsus, Uy, ..., U,. These equations can be written as

n+1
%akjuj = by
J:

where

b b
= [6006 09+ PGS () +AB0 (0] ax b= [r(x) ax

fork=1,2,..,n. If |j —k| > 1, we observe thap and¢; are non-zero only on intervals that do not
overlap. This leads to

a;=0 if |j—k>1
Therefore, we have

b1 —ajoUo
a1 a2 Uz

a1 axp Uz
An-1n
dhn-1 ann Un

bnfl
bh — @nnt1Unst
This is a tridiagonal system that can be solveddifn) operations by a special version of Gaussian
elimination with partial pivoting. The formula fa; can be further simplified if we integrate as much
as possible and use approximations fiox) andq(x) when necessary. We have

1 1 1 1
d N —r-o T [P(%-1/2) — P(Xicr1/2)] + 3 [h a(1/2) +H q(%ci1/2)]

1 1 h
k-1 X F 3 P(X—1/2) + G q(X-1/2)
1 1 H
Akrr ~ g5 Pi1/2) T 5 A%12)
1
be ~ 5 [hr(x%1/2) +H r(Xg1/2)]

40

where

1
h=Xc—X-1 H=Xq1—% Xzx1/2= 75X+ Xct1)
/272

The above formulae are exact whemandq are constants. For the more gengraindg, we have used

their midpoint values on each interval. Furthermorep(ik) = O, the resulting tridiagonal coefficient
matrix is symmetric.

41

Chapter 6

Finite Difference Methods for Parabolic
PDEs

6.1 Introduction

For scientitic and engineering applications, it is oftegassary to solve partial differential equations.
Most partial differential equations for practical problerannot be solved analytically. Therefore, nu-
merical methods for partial differential equations arer@xiely important. In this chapter, we study
numerical methods for simple parabolic partial differehéiquations.

The simplest parabolic partial differential equation (BZE

Ut = ey, (6.1)

whereais a positive constant. Often, this is called the heat eqonativhenu represents the temperature
of a thin rod. Herex is the spatial variable along the axis of the rod. We assumiettie cross section

of the rod is very small and the temperature in the cross@ediconstant. Them is only a function

of xand timet. Equation (6.1) is also called the diffusion equation. s ttase, we consider a thin tube
with water and ink inside. The variablethen represents the density of ink in the tube. As the tube is
assumed to have a very small cross sectiois, assumed to depend only arandt. Because of this
interprtetation, the coefficiertis called the diffusion coefficient.

Equation (6.1) must be solved with some boundary conditgmsan initial condition. Assume that
the rod is given by G x < L (the length of the rod ik), we solve (6.1) with the following two boundary
conditions:

u(o,t) =a, u(L,t) =, (6.2)

and the following initial condition:
u(x,0) = g(x). (6.3)

Here,a andf3 are given constantg,is a given function ok. Ast — oo, the temperature setttles down to
a time independent (i.e., steady) solution:

i U(x,t) = Ua(X) = @+ 7 (B0,

42

The above solution gives a linear profile that changes fuoma at one end of the rod to = 3 at the
other end of the rod. Fdr< o, we have the following time dependent solution:

uX,t) = Uo(X) + § ce &
X

L)t i KT
L
where the coefficientécy } can be determined from the intial conditiatx,0) = g(x).
If the rod is not uniform in the direction (different part of the rod may be made from differe
tial materials), the coefficierd is no longer a constant. Therefore, we consider the follgvganeral
parabolic equation:

U = a(X)Uxx + b(X)ux + c(x)u+d(x), O<x<L. (6.4)

Here,a, b, c andd are given functions o%, the termd(x) corresponds to some heat source in the rod.
We can solve the above equation with the initial conditiorB),6the boundary conditions (6.2) or the
following boundary conditions:

Ux(0,t) = egu(0,t) + fo, Ux(L,t) = equ(L,t) + fy, (6.5)

whereey, fg, €1 and f; are given constants.

6.2 Classical explicit method

We consider equation (6.4) with the boundary conditiong)(énd the initial condition (6.3). First, we
discretizex andt by

L
Xj = JAX, AX=——, tx=KAt
] J) n+17 k

for some integen and someAt > 0. We will use the notatioml'j‘ to represent the numerical solution.
That is,
k
uj ~ U(Xj,tk).

From the initial condition (6.3), we have

W=g(x), j=012..,n+1

From the boundary conditions (6.2), we obtain

k K
Up =0, Uyq=0.

Our objective is to findJ‘J? fork>0andforj=12,...,n.
For the derivatives in (6.4), we have the following diffecerapproximantions:

U(XJ ’tk+1) - U(XJ >tk)

U (Xj,tk) ~ A ;

U(Xjr1,tk) —U(Xj_1,tk
bt~ W)Ut

U(Xi1,tk) — 2u(X;,tk) + u(Xj_1,tk
UXX(Xjatk) ~ (]+) (]) (])

(Ax)?

43

Notice that for the time derivative, we only use the first orfieward difference formula. If we insert
these difference formulas into the differential equatié) and replace(x;,tx) by u etc, we obtain:

1

At !

8

(AX) (j+1 K

20+ U) + ztgx(qu— u_p) + e+ d (6.6)
Here,a; = a(xj), bj = b(X;j), ¢; = c(x;) andd; = d(x;). The above is aexplicit formula foru"+1
Numerical implementation of the above is very simple. Wednedoop ink, for k=0,1,2,.... InS|de
this loop, we need another loop forltis for j =1,2,...,n

Since we have used the first order forward difference forntmkgpproximatax, we have arO(At)
error from the discretization df We have used the second order central difference formolas,f
anduyx, thus we have a®((Ax)?) error from the discretization of. If we keepAt = O((Ax)?), then
the errors from the discretizations bandx are roughly the same magnitude. This suggests that the
time step should be small. However, there are more seri@s®ns. Notice that the forward difference
approximation corresponds to Euler's method for ODE. Itassuitable forstiff differential equations.
Here, we have a PDE, but if we discretizéirst by the central difference formulas (and keep the oabin
continuoug), we obtain a system of ODESs. If we then discretize the sy$tgiBuler's method, we get
exactly the same method as (6.6). It turns out that our syefe@DESs (obtained with a discretization
in x only) is a stiff system. Thus, it is not small, the error will grovexponentially. To avoid the use
of very smallAt, we need an implicit method.

6.3 Crank-Nicolson method

If we define the half time step:
At

t =t + —
k+1/2 = W+ 5

then
u(Xj, ticra) — U(Xj, t)
At
is a second order formula. To discretize (6.4), we use the shiference formulas for the-derivatives,

but also do an average between thandty, 1 time levels. More precisely, we have

~ W (Xj, by 1/2)

1 1k L kil o kil | kL
E(uj —uj) = 2(BX)2 (11— 2u +u U207 upy)
b;
+ J(Tﬂ 11+UTH Ulj(+i)+ (+Uk+1)+dj (6.7)
4NX 2
For boundary conditions (6.2), we have
ug=a, Us,=p
for all k. We can then re-write the above numerical method as
uktt uk
utt ul
Al ° =B| | +p (6.8)
uk+l uk

44

whereA andB are tridiagonal matrices given by

- ajAt cjAt
ajAt bjAt
ai. = — it 6.10
b= 2ox)2 T anx (6.10)
ajAt b;At
a - _ _ = 6.11
ajAt cjAt
bjj = 1- (AX)Z—FT:Z—a”, (6.12)
ajAt bjAt
bii_1 =] = =g 6.13
ji-1 2(Mx? 4bx .15 (6.13)
ajAt b At
bt = paeE tamx I (6:14)
andpis the following vector
I di At — alou'(‘,” + bloug i [diAt — 281000]
doAt doAt
p= : = :
dnflAt dnflAt
| dn/At — an7n+luﬁi:][_ + bn,n+1uﬁ+1_ | dnAt — 28 418 |

Since the matriceA andB are tridiagonal, we have
ak=0, bkx=0, if | —k >2

Therefore, for each step, we need to solve a linear systemantitidiagonal matrix. This can be done
efficiently in O(n) operations.

The Crank-Nicolson method corresponds to the “implicit poitit” method for ODE IVP. If we
discretize thex variable only for (6.4), we obtain a system of ODEs. If we tlaaply the implicit
midpoint method, we get the Crank-Nicolson method.

6.4 Stability analysis

The stability analysis is to find out for what valuesidfandAx, the numerical method is stable. Let us
consider the simple constant coefficient heat equation

U = alkx,
wherea is a positive constant. Letandt be discretized as
Xj = JAX, tx = KAt
for integersj andk. Let u‘f be a numerical solution far(x;,tc). That is

Ulj(~ U(Xj).

45

The classical explicit method described in section 3.lvagi

1 a
U = k-) 619

To understand the stability of this method, we considerigpsolutions of the following form
Uk = prePix, (6.16)

wherep is an arbitrary constang is to be determined. Ip| > 1, then the solution grows exponentially
in time, so the numerical method is unstable. Otherwiss,dtable. The purpose of stability analysis is
to find out the values oit andAx such thatp| < 1. If we insert the (6.16) into (6.15), we can sojve
in terms off3, Ax andAt. We have

1 a i i
—1) = B_ —iB
At(p 1) = < (eF—2+e),

Wherefs = BAXx. This can be simplified to

aAt . ,P
=1-4—_sinf<.
P 2" 2
We can see thagi < 1 for any real. However, it is possible to hayg< —1. For stability, we require
that|p| < 1 for all choice off. This is guaranteed if

aAt

7 =%

This gives rise to
(&%)

2a
This is the condition o\t for stability of the numerical method. If the above is notidathen, we
can find aB, such thap < —1. In that case, the numerical method becomes unstablee 8iate is a
condition onAt for the method to be stable, we call such a metbodditionally stable.

The following MATLAB program illustrates the stability ardstability for At = 1/20000 and\t =

1/19997 respectively. In this example, we have 1 andAx = 0.01.

At <

% we will solve the heat equation u_t = u_{xx} for 0 < x < 1, with
% zero boundary conditions at x=0 and x=1 and the initial condition:
%hu(x, 0) = 1- 2 |x - 0.5].

% we choose dx = 0.01

dx = 0.01;

0: dx: 1;

length(x);
u=1-2x%abs(x - 0.5);
u(l) = 0;

u(m) = 0;

X

m

46

% we solve up to t = 1.
steps = 19997; % unstable
% steps = 20000; % stable
dt = 1/steps;
s = dt/(dx*dx);
for k= 0 : steps-1
b = u(l);
for j=2:m-1
a=u(j);
u(j) = a + sx(u(j+1)-2*a+ b);

end

plot(x, u)

x 10

4+ At=1/20000 7]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4r At=1/19997 N

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.1: Stability of the classical explicit method fhetheat equation.

Next, we perform a stability analysis for the Crank-Niceolsnethod. Fol; = au, we have the

47

following discrete formula:

1
_(ul.(Jrl _ ul.(—

a
m V= SN2 S (Ul g — 20Ul g+ - 2uk+1+uk+1) (6.17)

j+1

For the special solution = p*eP1*X, we have

1

~(p-1)= €F —21ePypEf-21e)

_a
2(Ax)2
This is reduced to

1-s [3
T1rs T (Am S¥

wherefﬂ = BAx. Clearly,s > 0, therefore,
pl<1

for all choice off3, At andAx. Therefore, Crank-Nicolson is always stable. Since thermicondition
for stability, we call such a methaghconditionally stable.

6.5 Alternating direction implicit method

In this section, we consider the heat equation with two apatirriables:
U =a(uy+Uy), (Xy)e€Q, t>0. (6.18)

The initial condition is
uxy,0) = f(xy), (xy) €Q. (6.19)

We assume that satisfy the so-called Dirichlet boundary condition.
ux,y,t) =g(xy), (xy)€oQ. (6.20)
That is,u is given ondQ — the boundary of2. We will consider the case whefgis the square:
Q={(xy)|0<x<L, O<y<L}.
We can discretize andy by

=ih, yj=jh, h= , ,j=0,1,...nn+1

n+1
and discretizé by ty = kAt fork=0,1,2,....

As in the previous section, we have a classical explicit waithat uses forward difference approx-
imation foru, and central difference approximation fag anduyy. This gives rise to

Ut — Uk

ij a/k k k k k
N e (ui—l,j UG g T U1 — 4uij) ; (6.21)
whereu}‘j ~ U(x,Yj,t), etc. The method is very easy to use. Given the numericaiisodat time level
tk, we can simply evaluata{‘j+1 fori=1,2,....nandj = 1,2,...,n to obtain the numerical solutions at
time levelty, 1. However, this method is only stable whansatisfies

h2

At < —.
~ 4a

48

The method is unstable &t > h?/(4a). In any event, since there is a condition Ainfor stability, we
say that this method is “conditionally” stable. This stabitondition is derived for constant coefficient
a and the boundary condition is ignored. Notice thatmust be related to the squaretofor stability.
Therefore, we have to use a very small time step.

Similar to the previous section, we also have the CrankJsa@omethod:

k+1

At

Kk

2;;2 (ug(fl,j U UG U — A U U U U - 4uikj+l> :
This is an implicit method. Given the solutiontgtwe must solve®? unknowns: u"Jrl fori=12,.
andj=1,2,...,n. If we put all these?* unknowns into one long vector of Iengtﬁ, we have a Ilnear
system of equations with a coefficient matrix of sifex n?. It is not so easy to solve this large system
efficiently. This is particularly the case wharis repplaced by(x,y) or a;; = a(x;,y;) in the discrtized
numerical method. As before, Crank-Nicolson method hasl gtability property. That is, the method
is always stable, or unconditionally stable.

Here, we introduce a method which is a lot easier to solve siatsd unconditionally stable. This
is the Alternating Direction Implicit (ADI) method. The nietd was originally developed in the 50’s.
Instead of solving one large linear systerméunknowns, we need to solvelinear systems each with
n unknowns. This is achieved by separating xhendy directions. We present the method without

discretizingx andy. If t is discretized, the Crank-Nicolson method is

U A, ok
whereuX is a function ofx andy, andu® ~ u(x,y,t). Thus,
aAt
[1— —(02+ az)] uktt = [1+ —(02 +02)] (6.22)

The Crank-Nicolson method has a second order error. |If wethmitexact solution into the above
equation, then the error term@((At)3). That is,

[1_ %(02 + 62)} u(X, Y, ter1) = [14— %(0)2(+ 05)] u(x,y,te) + O((At)3)-

Now, we add Y
a“(At
2y 2) oZoqurtt
to the left hand side of (6.22) and add
a(At)? 55 «
Taxayu

to the right hand side of (6.22). Then, we can factor bothssaf¢he new equation and obtain

<1— —az> < %cﬁ) Ukt = <1+ —az> <1+ —az> (6.23)

Sinceu(x,y,tkr1) = u(Xx, Y, tx) + O(At), we have

a?(At)?
4

2 2
203ux Y teen) — 02000k yte) + O((AD)?).

49

This implies that (6.23) is still a 2nd order method. ket aAt/2, we have

ki1 oy -1 (1405 2\ K
= (1-?) (l_sa; (14 92) ok (6.24)
X
This gives rise to following procedure for computidy*:
1. evaluates by
v = U+ s9guk. (6.25)
2. evlautew by
W = V+ 02V (6.26)
3. solve a new from
V— S92V =W, (6.27)
4. solveu“+! from
U — 2 = v, (6.28)

Now, let us consider each of these sub-steps. Let us dzetbiex andy variables as before. For (6.25),
we use central difference approximation for the secondatve iny. This leads to
k . S (K K | K
Vij = Uj s <ui7j—1 —2u; + Ui,j+1) :
We can simply evaluate; fori =1,2,...,nand forj = 1,2,....n. Similarly, forwin (6.26), we have
s

Wij = Vij + 2

(Vie1,j — 2Vij +Vig1j) -

We can evaluatey;j fori =1,2,...,nand forj = 1,2,...,n. Notice that we neetlp; andv,,1 ;. These
are related to the boundary conditions fioiWe simply use the boundary conditionwés the boundary
condition ofv. Now, for the newv satisfying (6.27), we are solving a boundary value probl&imce
the y-derivative is not involved. We can solve for eaghseparately. That is, we solgj, Vzj, .., Vnj
from

s :
Vij = 1 (Vienj = 24 +Vigrj) =wij, T=12...n.

This can be writted as a linear system fonnknowns. That is

c b Vij Wi —bv;
b ¢ . V2 Wo; 0
. . .= . + .
b
b ¢ Vnj Whj —an+17j
where >
S s
C:1+ﬁ7 b:_ﬁ

Furthermore, we need to use the boundary conditiom fzs the boundary condition feragain. We let

voj =9(0,yj), Vni1j=09(L,Yj).

50

For (6.28), we also have a two-point boundary value problemnily one variable. We can discretize
(6.28) as

s
k+1 k+1 k+1 k+1 \ _ . -
Ui _ﬁ<ui,jfl_2uij +ui7j+1> =vVij, j=12,..,n

This can be written as a linear system:

k+1) 1
c b UE i —bu
. 1
b ¢ . Uiy’ Vi2 N 0
b S :
k+1) +1
b C UIJ V|n _b ,n-‘rl

Here,ul§* anduf/!; come from the boundary condition:

u:((;i_l = g(Xi 9 0)7 u:f—ri]_il = g(Xi I L)

If we storeu!‘j“, vij as matrices, the unknowns for a fixed; is actually a row vector. Thus, we can

replace the above system by its transpose.

c b

b ¢ .
(UL U U S = [Viz,Viz, ... ,Vin] + [—bU§™,0,..., —buit]

b ¢

Using matrix notations, ldt/**1, V andW be then x n matrices whoséi, j) entries aral<™, vij and

i
Wwij, respectively, we have
TV=W+B;, UKIT=V 4B,

whereT is the tridiagonal matrix

B, andB; are matrices related to the boundary conditions:

90,y1) 9(0y2) ... 9(0,yn) [9(x1,0) 0 ... 0 g(xa,L)]

0 0 g(x2,0) 0 0 g(x,L)
Bi=-b : : , Ba=-D : :
0 0 : :

g(L.yr) 9Ly2) ... 9(L.yn) 19(%,0) 0 ... 0 g(%,L)]

It can be proved that the ADI method is still unconditionadtable.

51

Chapter 7

Finite Difference Methods for Hyperbolic
PDEs

7.1 First order hyperbolic equations
In this section, we consider hyperbolic equations given as
U +a(x,t)uy =0, (7.1)

and
U+ [F(U)=0. (7.2)

Notice that Eq. (7.1) is a first order linear equation, whilg E7.2), wheref is given function ofu,
is a nonlinear equation in general. As an example of the neati hyperbolic equation, we have the
Burger’s equation
U + Ut = 0.
This can be written as (7.2) fdi(u) = u?/2.

We start with (7.1) assuming thatis a non-zero constant. Let us consider the following three
numerical methods

k+1 kK K k
u:- —ut [A
j j j+1 j-1
a =0 7.3
At + 2AX ’ (7.3)
k+1 kK k k
u:m —us us, ., —Uu
j j j+1 j
a =0 7.4
At + AX ’ (7.4)
LA T R o
a =0. .
At + AX (7.5)

In all three methods, the time derivative is approximatedhwsyforward difference scheme. For the
partial derivative irx, we have used the central difference approximation in (th&)forward difference
approximation in (7.4) and the backward difference appnation in (7.5).

To find the stability of these methods, we follow the standanatedure as in th#on Neumann
stability analysis. We look for a special solution gievn as

Uk = pkePs = keI, (7.6)

52

wherex; = JAX andf& = BAx. If we insert the special solution into a finite differencethuel, we obtain

a relation betweep and [~3 Now for a fixedAt, if there is at least oné, such thatp| > 1, then the
numerical method is unstable for thist If |p| < 1 for all B, then the numerical method is stable for that
At. Furthermore, if a numerical method is unstable forMlt 0, so the method is completely useless,
we call the methodinconditionally unstable. If the method is stable for smalt (usually given by
an inequality) and unstable for larde, then we call the methocbnditionally stable. If the method is
stable for allAt > 0, then we call the methodnconditionally stable. For these three methods, (7.3)
is unconditionally unstable. & > 0, then (7.4) is unconditionally unstable and (7.5) is cbodally
stable. Ifa < 0, then (7.4) is conditionally stable and (7.5) is uncowodislly unstable. Here, let us
prove that (7.5) is conditionally stableaf> 0. Foru'j‘ given in (7.6), Eq. (7.5) gives

p—1+s(l-eB)=o,
wheres= aAt /Ax. That is
p=1—s+scosp—issinp.
Therefore,
Ip|2 = 1— 25(1—s)(1— cosp).

If 0 <s< 1, then|p|? < 1, then|p| < 1, therefore the numerical method is stables i 1, we can
chooseB = 11/2 such that co = 0, then|p|?2 = 1 —25(1—s) = 1+2s(s— 1) > 1, therefore the method
is unstable. In conclusion, (7.5) is conditionally stabte ¢he stability condition is

at
s=— <1
AX —

Here, we have already assumeed 0, thuss > 0.

As a result of the stability analysis, we have to use (7.4 d@)(selectively, depending on the sign
of a. For a generah = a(x,t), we have the followingipwind scheme for (7.1):

Ut — ulj(— Sk(ulj(Jrl — u'j‘), if a(xj ,t) <0, (7.7)

U=l Sl -k), ifalx,t) > 0, (7.8)

where§j‘ = a(X;, t)At/Ax. For the nonlinear equation (7.2), the upwind scheme is

G f) -))
+ =0, |if c — <0, (7.9)
At AX Uj g — U]
K+1 K k k k k
ur —ut fu) - f(uf) f(uf) — f(us_,)
i i] i-v _ :] -1
A + A =0, |if U'j‘—u‘j‘,l > 0. (7.10)
The principle here is
of(u) ., .du
aX - (U) &7
therefore,f’(u) = d f /du plays the role ofin (7.1). Actually, f’(u) may change sign, so that the two
conditions O I U
ut, ;) — f(U uf) — f(u
? Ui — 4 ? i Y1

53

may be satisfied simultaneously. Therefore, we merge theguations into one:

= [sartal 3 (U 0) — T+ (L sartal () — F(u_y)]), (7.1D)

where
1, z>0,
sgnz) =< 0, z=0,
-1 z<O.

The upwind scheme is only a first order numerical method (@irdéer in botht andx). Next, we
introduce the second ordeax-Wendroff method. The basic idea of the Lax-Wendroff method is to
use the Taylor series:

(at)?

u(x,t +At) = u(x,t) + At u (x,t) + 5

Ut (X, 1) +- ...

but we only keep the first three terms in the Taylor series. usestart with (7.1) assuming thatis a
constant. We have

U= —aly, U= —al = aUyy.
Therefore,

alt)?
u(x,t +At) ~ u(x,t) — aAt ux(x,t) + %uxx(x,t).

Now, we can use central difference approximations and obtai

K+l _ k_ S,k k
uj —uj—é(uj+1—uj_1)+—(u

5 (U1 — 2uf U), (7.12)

wheres = aAt/Ax. We can carry out a stability analysis for (7.12). Insu%‘ras in (7.6) into (7.12), we
obtain
p=1—issin-+s?(cosp—1),

and

p|? = 14 48%(s* — l)sin“g.

This leads to the conclusion that Lax-Wendroff method igditionally stable and the stability condition
is|s| <1or

Now, let us consider the Lax-Wendroff method for (7.1) whanearies withx andt. Fromu, =
—au, we obtain

Ut = — (Al = —aUx + a(at)x-

Therefore,

(A;)z [—arUx + a(au)y]

At At)?
= u—At(a+ —at)ux+(2) a(auy)x

2
(At)?
2

ux,t+At) ~ u—altux+

Q

u—Ata(x,t +At/2)uy +

a(au)x,

54

whereu = u(x,t), uy = ux(x,t) anda = a(x,t). Now, we can use the central difference scheme and
obtain

2

k1 kY _k+1/2, K k VT k[Ak k k k K K
uj+ =Uj— 53] (uj+1—uj,1)+?aj aj+1/2(uj+1—uj)—aj_l/z(uj—uj,l) , (7.13)
where At At
_ K_ afvy. k+1/2 _ 0y —
V= 8 =a(Xj,%), 3 = a(Xj,tk+ 2),...

Finally, we consider the Lax-Wendroff for the nonlinear atjon (7.2). Let us denote= a(u) =
f’(u) =df/du, then fromu, = —[f(u)]x, we haveu; = —[f (u)]ix = [afx]x, and

(At)?

u(x,t +At) ~ u— At fy+ >

[a(u) fx]x,
whereu = u(x,t) above. Now, using the centeral difference approximatiam@spbtain
v
U == S () — T)]
s {ald, 1) [Fl) = F)] —ady) [Fu) - fp] (719
2 j+1/2 j+1 i j—1/2 i i—1)| (> .
wherev = At /Ax and
Uk, Uk Uk Uk
S o T B S Bl
j+1/2 2 ’ j—1/2 2 :
7.2 Explicit methods for wave equation
In this section, we will consider the linear wave equation
Ut = € (X) U (7.15)

As in Chapter 6, we discretizeandt by x; andty, respectively. The time step sizeAis and the spatial
grid size isAx. The following method is based on central difference apipnakions for bothuy, anduyy.
Let U ~ u(x;, t), we have

K+l ok k1 K - —2uk4 Uk
u; 2u7 4 uj Uj g — 22U+ Uj_

BTV Y e
Let I
c(X;)At
Sj:[ij] ’
then

k+1 K K K k-1
Ut = (2 255)ulf + 5 (U g+ US4) —u

This is an explicit 2-step (or three time-level) method.slan explicit method. Sometimes, it is called
the leap-frog method.

Equation (7.15) is solved with two initial conditions. If vegart the equation &t= 0, then the two
initial conditions are

u(x,0) = f(x), w(x0)=g(x). (7.16)

55

Forty = 0, we have
W = u(xj,to) = f(x;).

An approximation at; can be obtained from the first three terms of the Taylor series

(At)? (At)2

u(X,t1) & u(x,to) + (At)w (x,to) + Wit (X, to) = (x) + (At)g(X) + C?(X) Oy f (X).
With a central difference approximation, we obtain
At)2c2(x;
= 10+ g8+ S (102~ 2106+ £

Next, we perform a stability analysis assuming (&) is a constant. Wheais a constatn, we have
s= (cAt/Ax)2. If we insert

Uk = pkeP — pkeiB x; = jax, B =pax
into the numerical method, we obtain
~ 1
P =2—2s+2scosP — o

This gives rise to
p?—2yp+1=0,

where ~
y=1—2ssir? g

The two solutions op are
p=yEvy -1

If |y] > 1, then we always have omesuch thatp| > 1, thus the method is unstable.|yf < 1, then

Y=VYE V1V

We can see thay| = 1 exactly. Therefore, the stability condition|ig < 1. Obviously, we havg < 1,
but we also neeg > —1. This must be true for ar@. Thus, we can choosfé: TT, SO that sirg =1.
Then, the conditioly > —1 impliess< 1. That is

At < A—CX. (7.17)
Notice that this stability condition is not so restrictive the stability condition of the classical explicit
method (forward difference in time) for the heat equatior e heat equation, we neédtl on the
order of (Ax)? for stability. Here, we needt on the order ofAx for stability. In conclusion, the leap-
frog method isconditionally stable, with the above stability condition. I€ is a function ofx, we
interprete the above as

AX
At <
maxc(X)

56

A generalization of this method for wave equation with twatigl variables is straight forward.
Consider the wave equation

Ut = C2(X,Y) [Uyc+ Uyy] - (7.18)

If we use the central difference approximation for all setdarivatives in the above equation, we obtain

1 14
e L

k—l] _ Cz(ﬁéyj) [Uk

k K k k k
— 2u; + uj i1 T Uy U+ — AU

Here, we assume thak = Ay = h.

7.3 Maxwell's equations

The 2-D wave equation (7.18) is a special case of the Maxsvetjuations for electromagnetic waves.
Under some simplifying conditions, the Maxwell’'s equatare

oH
OxE = —ps (7.19)

O0E
OxH = &— 7.20
whereE is the electric fieldH is the magnetic field;, is the time,u is the magnetic permeability and
€ is the electric permittivity. In generglyande are functions of the spatial variables:y andz. If we
consider two dimensional case, we assynande are functions ok andy only, andE andH has no

z-dependence (i.&,E = 0 andd,H = 0). In this case, there is a special two solution given by

0 Hy
E=|{0]|, H=|Hy
E, 0

That is to say, the electric fieH has only one non-zero component in theirection, thez-component
of the magnetic fieldH is zero and th& andy components off are non-zero. Heré;; is not the partial
derivative ofE with respect ta, it is thez-component of the vectdt. Similarly, Hy andHy are thex-
andy-components oH. Now, the Maxwell’'s equations can be simplified to

oH, OE
W = -5 (7.21)
oH, OF,
Mo T (722
aEZ . aHy aHX

€ a - ox oy (7.23)

We can eliminatédy andHy. This leads to

aZEZ_ 2 aZEZ OZEZ
oz ax2 o0y)’

wherec = 1/,/glis the speed of light in the medium. While the speed of lighvacuum ¢o) is a
constant, here is the speed of light in the medium and it is still a functiorx@ndy.

57

For the Maxwell's equations, Kane Yee introduced a famuawmsarical method based on central
difference for first order derivatives in 1966. It is convamti to present this method in the first order
system (7.21-7.23). Let us discretizex andy by the step sizét and grid size@x andAy, respectively.
Therefore,

tk =to+KAL, X =Xo+IiAX, yj=Yo+ JAy.

However, we also need to half steps and half grids. Namely,
tk+1/2 =to+ (k+ 0.5)At, Xiy1/2 = X0+ (i+ O.S)AX, Yi+12=Yo+ (] +0.5)Ay.

For E;, we try to calculate its approximation ®{ y; andt,1/,. Namely,

k+1/2
EZ’ij+ 2 Ez(%,Yjstkr1/2)-

Similarly, we have
k k
Huli 172 & Bx(XYj 172,00, Hyliig 2) & Bx(Xii1/2, Y5, t)-

The discretization oE,, Hy andHy are shown in Fig. (7.1)E; are evaluated at the grid points marked
by “0”, Hy are evaluated at the gird points marked by dnd Hy corresponds to+". With this type of

= & = & = & = & =
4.5¢ ¢ & & ¢ 4
4 * o * o * o * o * §
3.5¢ O & & o 4
3P * o * o) * o * o} * §
2.5¢ ¢ & Q Q 4
20 * o * o * o * o * §
1.5¢ & Ng ¢ ¢ 4
1¢ * o * o * o * o * §
0.5¢ & & ¢ 9 4
0% % & % & % & * & *)

0 0.5 1 15 2 25 3 35 4 45 5

Figure 7.1: Discrete grid points f@&, (marked by “0”),Hy (marked by ¥”) and Hy (marked by %”).

staggered grid, we can discretize the Maxwell's equatioitls second order finite difference method.
Yee’s finite difference time domain (FDTD) method is

K k1 k 1 k+1/2 k+1/2
A <Hx|ij+1/2 - Hx|i7j+1/2> = Ty (Ez|i,j+1 —E4fi; /) ; (7.24)

58

K kil k 1 k+1/2 k+1/2
I (Hy\iil/z,j - Hy\i+1/2,j> = A (Ez’iJrl,j =) ; (7.25)
€ k+1/2 k-1/2 1 k k
At <E2|ij — B4) = A (Hy|i+1/2,j - Hy|i—1/27j)
1 k k
"y (HX’i,jJrl/Z_HX‘i,jfl/Z)' (7.26)

This is an explicit method, we can use (7.26) to calculatat time levelty />, we can use (7.24) and
(7.25) to calculatédy andHy at time levelt, 1. The method is in fact identical to the earlier method for
a single scalar wave equation. However, the more generds ¥eethod for full Maxwell's equations
cannot be written in a single unknown function. But this fafation usingHy, Hy andE; allows us to

treat boundary conditions easily.

59

Chapter 8

Finite Difference Methods for Elliptic
PDEs

8.1 Finite difference method for Poisson equation
Consider the Poisson’s equation in the unit square {(x,y)[0 <x< 1,0<y<1}:
U+ Uy =F(xy) for (xy) €Q

with some boundary conditiom= g for (x,y) € 0Q. Here,0Q denots the four edges of the unit square
andg is a function defined 08Q. We can discretize the problem with a second order finiteéfice
method. Le® = 1/(n+ 1) andu;; ~ u(ih, jh), we have the following discretized formula @, jh):

1] 62” EESENLS 62” Lt B F (i3, j5).

or
—AUij Ui A Ui+ U1+ = i) (8.1)

where fj; = 3°F;j. Notice that from the boundary conditions, we have knownesifor
Uo; = U(0,jd), Unt1j=u(1,jd), Upo=1u(id,0), Uiny1=u(id,1).

Therefore, we have? unknowns and we nead equations. This is exactly what we have, if we choose
i=1,2,..,nandj=1,2,...,nin (8.1). For then? unknowns, we can order them in a large vector. For
example, we can define

T T
U= [ulla Uz1,...,Un1,U12,U22, ..., Un2,) Unn])

then (8.1) can be written as
AU =b, (8.2)

whereb is related to dj; which is related td%; and the boundary conditions. In fact,

bij=&F; if 1<i<n 1<j<n.

60

But near the boundary, i.ed.=1ori=nor j=1orj=n, we need to include some terms from the
boundary conditions.

byj = &F;—uy for 1<j<n
bnj = &Faj—Uny1j for 1<j<n
by = &F;—uUp for 1<i<n
bn = &Fn—Upn for 1<i<n

At the four corners, we have to defibg to include two nearby points from the boundary:

bir = &°F11— (Uo1+ Uso)

bri = &Fn1— (Uni11+ Uno)
bin = &Fin— (Uon-+Uin 1)
bin = 8°Fnn— (Unns1+ Unsn).

The vectorb can be obtained frory, j in the same way; is ordered to giv@j .

The coefficient matriA is ann® x n? matrix. It cannot be efficiently solved by Gaussian elimiomat
directly, since the standard Gaussian elimination algoriwill require O((n?)3) = O(n®) operations.
Actually, the matrixA has at most five non-zeros in each row gabas a bandwidth o®(n). Using
Gasssian elimination for banded matrices, the requiredoeunmf operations is reduced @n*).

8.2 Fast Poisson solver based on FFT

Here, we describe a FFT based fast algorithm which requings@(n?logn) operations. The method
uses the discrete sine transform (which is related to ther@ig-ourier Transform) to obtain a system
that can be easily solved.

The discrete sine transform is

n .
. . Jkm .
i = sin—— =12..n
g] kzlgk n+1a J 3 Ly eeey
2 2 . Jkmt
0k = —— isin——, k=12,..n.
gk n+1JZlgj n+17)& I
If we introduce am x n matrix S, whose(j, k) entry is sinr{"T", then
1_ 2
n+1

Now, for ujj andbyj, we will fix i, then use discrete sine transform. We have

n H n
~ . Jkt ~Jkm
U = S Gxsin——-, bjj= Y bxsin—-.
ij kZl ik I’H—l’ ij kZl ik nti1

If we insert these into (8.2), we obtain

n 40 sin Jhet +Gi_1xSin Jkrt + Gir1kSin Jkrt +0 sin(j_l)kn+0- sin(j+l)kn
Zl K T T e T g T
~ J TT
= biksm—.
kzl +1

61

This can be simplified to

n

krt
(—4+ 2c08——

I . . jkm o~ . Jkm
JUik + G- 1+ Gip 1k | SIN—— = 0") fixsin—.
+1 n k; n

& +1 +1

Therefore, }
TT | . L A N
(—4+2aBEIEWW+UFLW+WHk:bW

Fori =1 ori = n, the above equation should be modified to remove the tierpy Or Ui 1 k, respectively.
Now, if we fix k, we can solveuy (for all i) from the above equation.

a 1 Ok b

1 a - 02k E)2k
I I A

1 a l]n k E)n k

for a = —4+Zcos%. This is a tridiagonal system and it can be solvedim) operations. Since
we have to do this for ak, the total operations required hereQ¢n?). But we first need to calculate
Bik from byj, based on the discrete sine transform. This can be dormn'?llog n) operations. Once
we founduix, we can use discrte sine transform to find Again, this require®©(n’logn) operations.
Sincen?logn is larger tham?, the overall operations required to solve the Poisson @qué thus

O(n?logn). This is the FFT based “fast Poisson solver”.

8.3 Classical iterative methods

Although the FFT-based fast Poisson solver is very efficiémtannot be generalized to more general
equations with variable coefficients. Notice that the miafiin Eq. (8.2) is sparse, i.e., most of its
entries are zero and only a few non-zeros in each row or callterative methods produce a sequence
of approximate solutions that converge to the exact salut®ince the matriA is sparse, it is possible
to develop some iterative methods for solvilg = b.

We start by writing the matriX as three parts: the diagora] the strictly lower triangular partL
and the strictly upper triangular pa#fR, such that

A=D-L-R

The minus sign in front oE andR are introduced for convenience. NoW) = bis identical toDU =
(L+R)J +band
U=D}L+RU+D1h,

This leads to thdacobi iterative method
UUY —=pY(L+RUV+D b, j=0,12.. (8.3)

We have to start with an initial guess®, after that we can use (8.3) to calcul&ié), U@, ... We
can prove that for the finite difference approximation of B@sson equation, i.e., for (8.2), Jacobi
iteration converges. To prove the convergence, we needte stat all eigenvalues @ (L +R) have

62

magnitude less than 1. Meanwhile, we can also write (8.2Pas L)U = RU +b. Therefore, we have
the following Gauss-Seidel iterative method

solveU D) from (D —L)GU+Y =RGW +b. (8.4)

Notice thatD — L is a lower triangular matrix, therefore, it is easy to solvénaar system with a
coefficient matrixD — L. Again, for the discrete Poisson equation, we can prove @zatss-Seidel
iterative method converges. For this purpose, it is necgssahow that the eigenvalues @ — L)~ 'R

has megnitude less than 1. Finally, we can multiply (8.2) pgmmetery, then addDU to both sides:

DU 4+ w(D—L —R)J = DU + wb.

This can be written as
(D—wL)U = [(1— w)D+ wR|U + wb.

This leads to the followin@uccessive Overrelaxation (SOR) methodeveloped by Young and Frankel
in 1950:
solveJ (+D from (D —wlL)JU+Y = [(1— w)D+ wRIU D) + wb. (8.5)

For the discrete Poisson equation, SOR method converges ib& 2. The optimal parameter is

2
©= 1+ sin(md)’

whered = 1/(n+1) is the grid size as in section 8.1. These three iterative odstlare all classical
iterative methods.

Theconjugate gradientmethod, introduced by Hestenes and Stiefel in 1952, is a matigative
method with a faster convergence rate. The discrete Pogsamation (8.2) can also be efficiently solved
by themulti-grid method, where the numerical solutions with larger gridsiae used to improve the
approximation of the numerical solution at the smalled gize.

63

8.4 Conjugate gradient method

The conjugate gradient method is a method for soMimg- b, whereA is a symmetric positive definite
matrix. Here the size of is large, thus a direct method by Cholesky decompositiolatée to the

LU decomposition) is expensive. B#tis sparse — only very few non-zeros for each row or each
column, thus it is efficient to multiplyA with any given vector. It is an iterative method that produce
the sequence of approximationg; Xo, X3, LetA bem x m, define the Krylov space by

Kn =< b,Ab A%b, ..., A" b >

This is the vector space spanned by the vedipfsb, ..., A" 1b. It is the “column space” of the Krylov
matrix
Kn = [b,Ab,A%D, ..., A" 1p].

The conjugate gradient method findse %, which solves the minimization problem

; T
min(xX—X,)"' A(X— X,
min(x—x,)TA(X—X.)

wherex, = A~ 1bis the exact solution. However, since

(Xx—%)TAX—x,) =2¢(x) —bTA"th, for @(x) = %XTAX— x'b.

It is equivalent to say that, solves

min @(x).

XE Kn
8.4.1 1-D optimization problem

For a given pointx,_; and a given directiorp,_1, we have a line that passes through, along the
direction ofp,_1. The points on the line are given by

Xn_1+0pn_1 for aeR

Alternatively, we denote this line by
Xn—1+ < Pn-1>

where< p,_1 > is a 1-D vector space. We can minimize the functipalong this line

min @(X) = min@(X,—1+ 0 Pn_1)
ack

XEXn—1+<Pn-1>
Now, @(xn—1 + 0 pn—1) is & quadratic polynomial af, its minimum is reached at
. rI_lpn—l
Pr_1APh-1

n

The minimum is obtained a¢,_1 + 0nPn_1.
If Xo—1 happens to be a conjugate gradient iteration, %£.4 minimizes@(x) in X,_1. The above
procedure gives
Xn = Xn—1+ O0nPn-1
Of coursex, is usually notx, which minimizespin x,. However, we will find a special way of choosing
Pn_1, such thaiy = x.

64

8.4.2 Subspace minimization problem

We now look forx, € %, such that
@(%n) = min@(x)

XE Kn
We assume thak;, has the following basis

Po; P1, .., Pn—-1

Now,
min@x) = min @01Po+02P1+ ... + OnPn_1)

XEXKn 01,02,...,0nE

To find the minimum, we solve the system

@ =0 for i=12,..,n

aq;
In fact,
g—;f = Pl 1A(A1Po+ A2P1 + .. + OnPr-1) — P{_1D
Therefore, we have the system for, ay, ...,0n:
ag pyb
c|| | PP
On p! b
where the(i + 1, j + 1) entry ofC is pf Ap;.
If we assume that
prAp =0 if i# |

then the matrixC is diagonal andl; is easily solved

. piT_lb
_ﬁ'
p|71 p—l

ai

Furthermore, if we assume thio, p1, ..., pi—1} is a basis forx; for all i (we only assume that for=n
earlier), then
Xn—1 =01Po+02P1+ ... +0n-1Pn-2

is the conjugate gradient iteration that minimizgis %, 1 and
Xn = Xn—1+ 0nPn-1

Indeed, you can show that the formula égyhere is equivalent to the formula in last section. Therefore
the subspace minimization problem can be solved by 1-D dqmition process under these assumptions
on the search vectors, pi1, ..., Pr—1-

65

8.4.3 Orthogonal residual

Clearly, we need a simple way to find these vectaysps, It turns out that the following property
on the residual is very important.et x, be the n-th conjugate gradient iteration, + b — Ax, be the
residual, then

rn L Xn.

8.4.4 The next conjugate direction

Supposg; is the conjugate gradient iteration that solves the sulgspagimization problem mig «; ¢(x),
it is not difficult to realize that

Kn =< X1, X2, o0y Xn >=<T0,l1,..0,Tn_1 >
whererg = b— Axy = b. We also assume that
Kj =< Po, P1,-.-,Pj—1> for j<n
The question now is how to choogg, such that
® Kn+1=<Po,P1,-s Pn >
e phApj=0forj=0,1,2,..n—1.

To satisfy the first condition, we realize that=b — Ax, is in .1 (and not inxy), therefore, we
can choose
pn = rn+a component inky,

to satisfy the second condition. The componeniincan be written as
BnPn-1+ (*)Pn—2+ ...+ (*)po

since{po, p1,.-., Pn-1} is & basis ofx,. We use the conditiop] Ap, = pfAp; = 0 (sinceA = AT) to
find the coefficients. Fof < n— 2, we have

0= p]Apn = p] Ara+ (x)p] Ap

Now, pjTArn = rI(Apj) =0, sincep;j € Xn—1 O0r Ap; € X (andry L K, as in the last section), therefore,
(x) = 0. Meanwhile, we obtain

rIAp_1

Pn=rn+PBnpn-1 for Bn= —m

66

8.4.5 The method
We now have the following conjugate gradient method:

e Letxg=0,rg=0b, po=ro.

e FOorn=123,...
Mhafn-1
On —
pn_lAp'lfl
Xn = Xn—1+0nPn-1
' = 1= 0anAph1
8 e
n = T .
M 1fn-1

ph = rn‘f‘Bnpn—l

We notice that the formulas fax, and 3, are different. But they are equivalent to the formulas in
previous sections. One step of this algorithm requires

Evaluatev = Apn_1;

2moperations fop! ;v=p! ;Apn_1;

2m operations fox, = Xn_1 + OnPn_1;

2moperations for, =rp_1 — 0pV="rp_1 — 0pAph_1;

2m operations for/ ry;

2moperations foipn = rn+ Bnpn_1

This is a total of 1én operations, plus one matrix vector multiplication.

Exercise: Using the standard notations for the Conjugate Gradierthodetvherex, is then-th iteration
of the approximate solution (fékx = b, assuming« = 0), r is the residualp,, is then-th A-conjugate
direction, show that

Pr_1b _ Mo 1Pn 1 _ Moafn-1
Gn T A1 PL,Ap1 PrA
Pho1APh-1 Po1APh-1 ProiAPh-1
rrApn_1 rirn
Bn = =

PhaAP1 Fhgfnoa
8.4.6 Rate of convergence

For a vectoly and the symmetric positive definite matdxwe define

[IYlla = VYT Ay.

Now, for the conjugate gradient method, we can prove
[0 =% [<2[f—1}”
X0 —X|[a = [VK+1
wherex, = A~1b, X =0, K = A1/Am, A1 andA, are the largest and smallest eigenvalues,akespec-
tively.

(8.6)

67

