a1<-c(3.6, 3.8, 3.7, 3.5) a2<-c(4.3, 3.9, 4.2, 3.9, 4.4, 4.7 ) a3<-c(4.2, 4.5, 4.0, 4.1, 4.5, 4.4) D<-c(a1,a2,a3) K<-c(rep(1,length(a1)),rep(2,length(a2)),rep(3,length(a3))) r<-3 alpha<-0.05 n<-length(D) n1<-length(a1) n2<-length(a2) n3<-length(a3) (ni<-c(n1,n2,n3)) #Testy o normalite shapiro.test(a1) shapiro.test(a2) shapiro.test(a3) #H0 nezamitame na hladine vyznamnosti alpha=0.05 #Testy o rozptylu library(lawstat) levene.test(D,K) M1.<-mean(a1) M2.<-mean(a2) M3.<-mean(a3) (Mi.<-c(M1.,M2.,M3.)) X..<-sum(D) (M..<-mean(D)) (SA<-sum(ni*(Mi.-M..)^2)) fA<-r-1 (ST<-sum((D-M..)^2)) fT<-n-1 SE<-ST-SA fE<-n-r Fa<-(SA/fA)/(SE/fE) (tabulka<-round(data.frame(SA=SA,fA=fA,SE=SE,fE=fE,ST=ST,fT=n-1,Fa=Fa),digits=3)) #Testovani kritickym oborem (Kmin<-qf(1-alpha,r-1,n-r)) #Kriticky obor <3.8;Inf) H0 zamitame na hl.vyzn.alpha=0.05 #Testovani p-hodnotou h1<-pf(Fa,r-1,n-r) h2<-1-h1 min(h1,h2) #Scheffeho metoda: meli bychom ji aplikovat 3x: mi1=mi2; mi1=m3; mi2=mi3. #Overeni H0:mi1=mi2 oproti H1: mi1 nerovna se mi2. Sh<-sqrt(SE/fE) Scheffe.L1<-abs(M1.-M2.) Scheffe.R1<-Sh*sqrt((r-1)*(1/n1+1/n2)*qf(1-alpha,r-1,n-r)) Scheffe.L1 Scheffe.R1 Scheffe.L1>=Scheffe.R1 #L>P -> H0 o shode strednich hodnot zamitame na hl.vyzn. 0.05. #Obdobne bychom potom pro H0:mi1=mi3 a H0:mi2=mi3. #Vysledek H0:mi1=mi3 zamitame na hl.vyzn. alpha=0.05 #H0:mi2=mi3 nezamitame na hl.vyzn. alpha=0.05 #ZAVER: Na zaklade testovani muzeme rici, ze vykony prvniho uchazece jsou #vyznamne odlisne od zbylych dvou uchazecu. Z tabulky vidime, ze jeho hodnoty #jsou nizsi nez hodnoty zbylych dvou, tedy prvni uchazec pracuje vyznamne rychleji nez #zbyli dva uchazeci a je tedy zhavym kandidatem na prijeti. :)