Surface plasmon resonance

S2004 Methods for characterization of biomolecular interactions – classical versus modern

Mgr. Josef Houser, Ph.D. houser@mail.muni.cz

Surface plasmon resonance (SPR)

(Rezonance povrchového plasmonu) – collective oscillation of free electrons on metal-dielectric interface

SPR – Basic principles

• At the conditions of total internal reflexion (angle, wavelength) the incoming beam evokes exponential wave spread in opticaly less dense environment.

- At certain combination of incident angle and wavelength the free electrons on the metal surface are excited, what causes decrease in reflected light intensity.
- This effect depends on refractive index that varies with the analyte binding to the surface-bound ligand.

SPR – Basic principles

Refractive index change = change in light intensity at certain wavelength.

Corresponds also to change of mass on the chip surface = protein/ligand binding. (1 RU ~ 1 pg/mm²)

SPR – Basic principles

One binding partner immobilized on the chip surface (ligand), second is free in solution (analyte).

Association

Dissociation

Simple binding - kinetics

["] Typical binding curve – association and dissociation phase, (surface regeneration)

Binding experiment – steady state

 $v_{(association)} = k_a * [analyte]_{(solution)}$ $v_{(dissociation)} = k_d * [analyte]_{(bound)}$

 $[analyte]_{(solution)} >> [analyte]_{(bound)}$ $v_{(association)} >> v_{(dissociation)} association phase$

 $v_{(association)} = v_{(dissociation)}$ steady state -> response is proportional to K_D and R_{max}

 $[analyte]_{(solution)} << [analyte]_{(bound)}$ v_(association) << v_(dissociation) **dissociation phase**

Receptor ligand interaction

$$\frac{d[\mathbf{MX}]}{dt} = k_a[\mathbf{M}][\mathbf{X}] - k_d[\mathbf{MX}]$$

$$equilibrium: \frac{d[MX]}{dt} = 0$$

$$K_{D} = \frac{1}{K_{A}} = \frac{k_{d}}{k_{a}} = \frac{[M][X]}{[MX]}$$

Surface plasmon resonance (SPR)

- Kinetics of interaction
- Steady state

Same affinity but different kinetics

- " All 4 compounds have the same affinity $K_D = 10 \text{ nM} = 10^{-8} \text{ M}$
- ["] The binding kinetic constants vary by 4 orders of magnitude

Same affinity but different kinetics

Kinetics vs. affinity in Drug design

BUT

May be caused by high k_a and k_d = fast dissociation (!)

Kinetics – lower k_a AND k_d may mean longer effect

This fact is known but usually not considered !

Experimental results

Simple binding - kinetics

["] Typical binding curve – association and dissociation phase, (surface regeneration)

Fast complex association and dissociation Slow complex association and dissociation Fast equilibrium ⇔ K_A, K_D Kinetic constants k_a, k_d ⇒ K_A, K_D specificity 300 RU Ligand 3 Ligand 1 500 RU 400 200 concentration concentration 300 200 100 100 Ligand 2 ſ 0 200 600 400 800 0 100 200 700 300 400 500 600 0 time [s] time [s]

Simple binding – steady state

i.

Fast association and dissociation data are not easy to fit

BUT

v_(association) = v_(dissociation) steady state -> response is proportional to K_D and R_{max}

Direct binding assay

Factors influencing binding and response

- " Density of the molecules on chip
- " Concentration of molecules in solution
- "Strength of interaction between both molecules
- " Total mass of interacting partner
- Portion of active molecules present proper sample characterization needed, changes upon immobilization – site accessibility restriction, conformational changes, intermolecular distance

Which binding partner to immobilize?

- " Stability
- " Availability
- " Molecular mass

$$\operatorname{Response}_{\max} = \operatorname{Response}_{\lambda \text{igand}} x \frac{Mr_{\text{analyte}}}{Mr_{\lambda \text{igand}}} x \frac{\left(\frac{\partial n}{\partial c}\right)_{\text{analyte}}}{\left(\frac{\partial n}{\partial c}\right)_{\lambda \text{igand}}}$$

- " Immobilization technique
- " Multivalency

SPR Chip – rough scheme

User-defined biospecific surface

"Biocompatible

- Low non-specific binding
- " Robust
- ["] More than 100 runs on the same surface

Various immobilization techniques

High flexibility in creating biospecific surfaces

" Direct: covalent coupling

- ″ Amine
- ″ Thiol
- ″ Aldehyde
- " Carboxyl

- ⁷ Streptavidin Biotin
- ″ NTA-Ni2+-His
- ["] Anti-his-His
- ["] RaM Fc MAb
- Anti-GST- GST

Protein immobilization

N-ethyl-N'-(3-diethylaminopropyl)karbodiimide

N-hydroxysuccinimide

CM5 chip – surface modified by carboxymethylated dextran

Saccharide immobilization

Ligand

 \dot{NH}_2

Ligand

ŃН

C=O

Ni-NTA utilization

Flexibility in Assay Design

Multiple assay formats providing complementary data

0-80 mM D-galactose

Inhibitor concentration

Lectin from *B. cenocepacia*:

Benzyl- -D-mannoside Á Methyl- -D-mannoside Á D-mannose » L-fucose > D-arabinose > L-galactose > Methyl- -L-fucoside » D-galactose

Two channels necessary - reference

- " Elimination of non-specific interactions
- "Enhancement of weak interaction resolution

" **Possible reference surfaces:**

- " Unmodified surface gold, dextran layer,...
- "Activated and blocked surface without immobilized ligand/protein
- " Inactivated/non-functional protein

Two channels necessary - reference

Multichannel set-up

- " One or more references
- ["] Multiple channels 2, 4, 6, 36,...
- " Multiple detection spots

High throughputParallel reference

detection spots.

detection spots.

Figure 3. Assay flexibility of Biacore \$51 flow cell and hydrodynamic addressing, illustrating three potential assay designs.

Specialized techniques

- " Membrane proteins
- Multi-layer approaches antibodies, protein complexes
- "Whole cell immobilization
- " Thermodynamics measured by SPR
- " Ligand recovery

On-surface reconstitution approach

- ✓ A very quick and easy method for functional reconstitution of immobilized membrane proteins with lipids.
- Conventional immobilization techniques are applicable on membrane proteins.
- ✓ Surfaces with high density of receptor can be prepared.
- ✓ The lipid matrix can be renewed after every cycle.
- ✓ "Lipid bilayers" can be very rapidly and easily built and rebuilt on Pioneer Chip L1 (Biacore).

Immobilize a GPCR-specific mAb on a L1 chip.

Capture a detergent-solublized GPCR on the immobilized mAb surface.

Reconstitute a lipid bilayer around the receptor

Wash the surface with buffer

Establish the integrity of the reconstituted GPCR

Study the kinetics of ligand/receptor interactions

Binding of the chemokine SDF1 α to the reconstituted CXCR4 receptor

Proteomics Study

Main SPR biosensors

- *GE Healtcare* Biacore T200, Biacore 4000, Biacore 3000, etc.
- *" Reichert* SR7000DC
- *[‴] BioRad* ProteOn™ XPR36
- *["] Biosensing Instrument* Bi4000, Bi3000, etc.

Biacore 3000 (GE Healthcare)

Simultaneous 4-channel system

Study of small molecules (200 Da), proteins, complex mixtures, lipids, viruses, prokaryotic and eukaryotic cells

Possibility to isolate binding partners for subsequent MS analysis

Objectives of the SPR experiment

Kinetic Rate Analysis: How FAST?
["] k_a, k_d

$$K_{\rm D} = k_{\rm d} / k_{\rm a} K_{\rm A} = k_{\rm a} / k_{\rm d}$$

• Concentration Analysis: How MUCH?

- Active Concentration
- " Solution Equilibrium
- ⁷ Inhibition

• Affinity Analysis: How **STRONG**?

[‴] Κ_{D,} Κ_Α

Relative Ranking

o Yes/No Data

" Ligand Fishing

SPR technology advantages

- "Non-label
- " Real-time
- " Unique, high quality data on molecular interactions
- " Simple assay design
- "Robust and reproducible
- "Walk-away automation
- " Small amount of sample required

SPR & ITC combination

- Real time measurement
- Fast
- No labeling, no additional detection needed
- Low sample consumption
- o Robust
- Automatization possible
- High sensitivity

- No labeling, no immobilization
- In solution
- Í EliminationÎ of non-specific interactions
- Thermodynamic and affinity parameters within one measurement

Materials for further study

http://www.sprpages.nl/

SPR-Pages				
SPR-Pages	SPR	Pages home		
SPR Overview Kinetics Best results	e v v	Sensorgrams The SPRpages are not affiliated to a specific SPR instruments vendor. Therefore, the SPRpages do not receive money to maintain the site. Donate to the SPRpages and support this valuable community resource. You can also sponsor the SPRpages. Please contact me via the contribute page.	Label free techniques Downloads Weblinks	v
Sensor chips Immobilization Experiments Data fitting Literature	v v v v		Contact Search Site map	▼

Core Facility: Biomolecular Interaction and Crystallization

bic@ceitec.cz www.ceitec.cz/z4

Josef Houser

- +420 549 492 527
- josef.houser@ceitec.cz

Michaela Wimmerová

- +420 549 498 166
- michaela.wimmerova@ceitec.cz

