

BIOMARKERS AND TOXICITY MECHANISMS 09 – Mechanisms Nuclear Receptors

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Various signalling types ... now focus on nuclear receptors

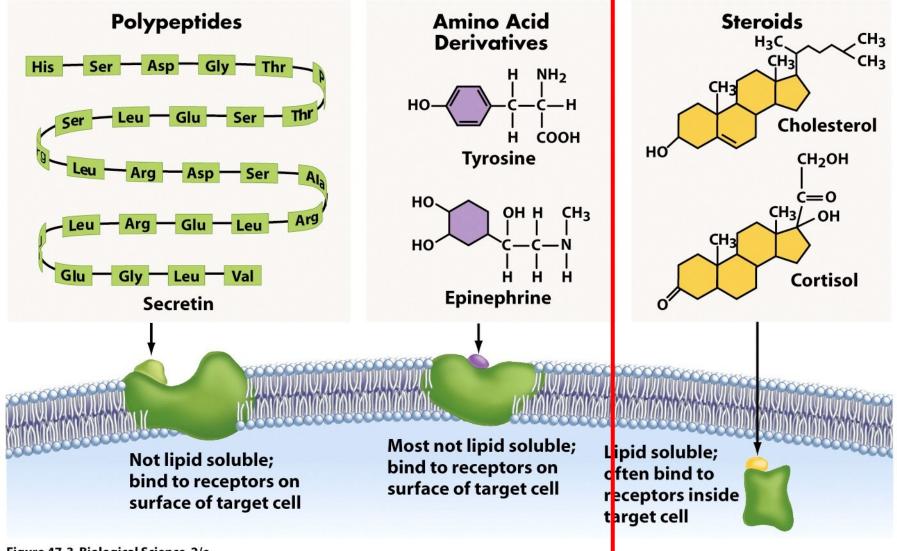


Figure 47-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

NUCLEAR (Intracellular) RECEPTORS in summary

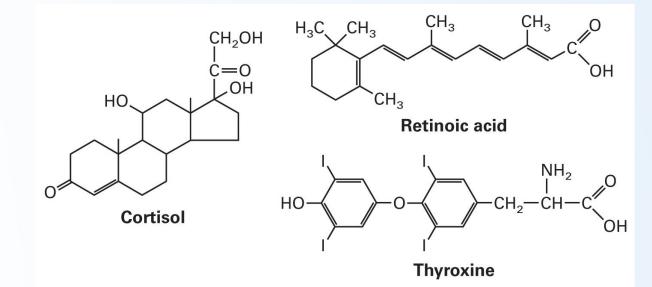
- Important physiological functions, and
- Important roles in pathologies and chemical toxicity
 - Endocrine disruption
 - Dioxin-like toxicity,etc.
- All NRs share similar structure and mechanisms of action
 - Act as direct transcription factors on DNA
- Natural ligands are small lipophilic hormones (steroids, thyroids, retinoids)
 - Role in toxicity NR are modulated (activated/inhibited) by structurally close xenobiotics

Natural ligands of NR

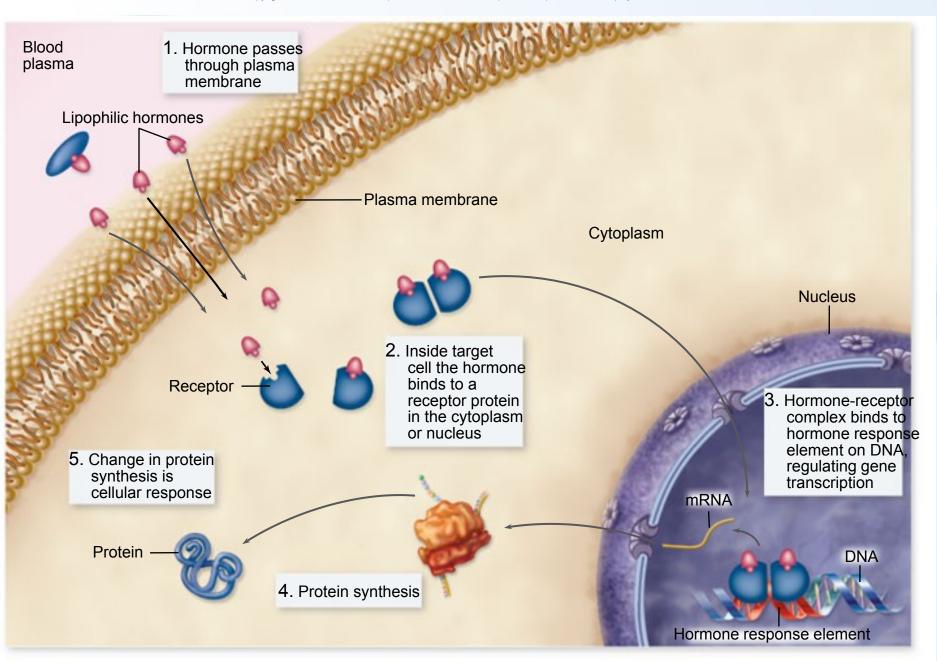
Small, lipid-soluble molecules

 Diffuse through plasma and nuclear membranes and interact directly with the transcription factors they control.

- STEROID HORMONES:

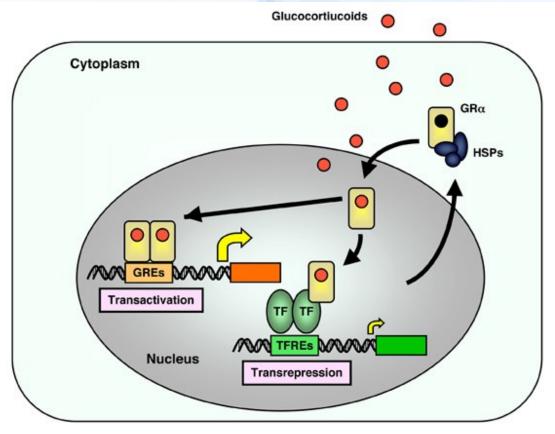

- sex steroids (estrogen, progesterone, testosterone)
- corticosteroids (glucocorticoids and mineralcorticoids)

OTHER HORMONES and ligands


Thyroid hormone, vitamin D3, retinoic acid, ligands of AhR

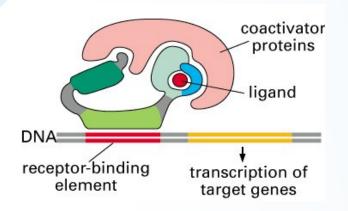
Small molecules - gases

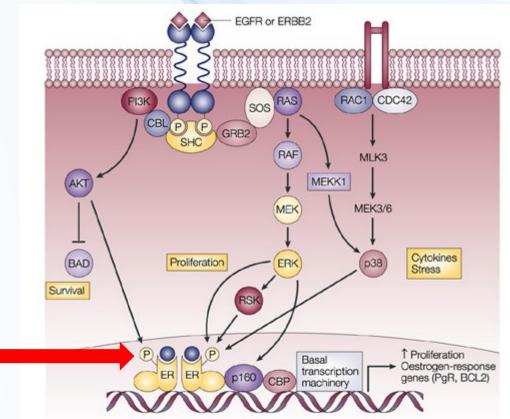
e.g. NO (signaling for immune reactions)


Fate and action of HORMONES activating NRs

- Circulation in the blood bound to transport proteins
- Dissociation from carrier at target cells
- Passing through cell membrane
- Binding to an intracellular receptor (either in the cytoplasm or the nucleus)
- Hormone-receptor complex binds to hormone responsive elements in DNA
 - \rightarrow Regulation of gene expression
- → De-regulation at any level described above = TOXICITY

NR signalling is complex ... examples of complexity (1)

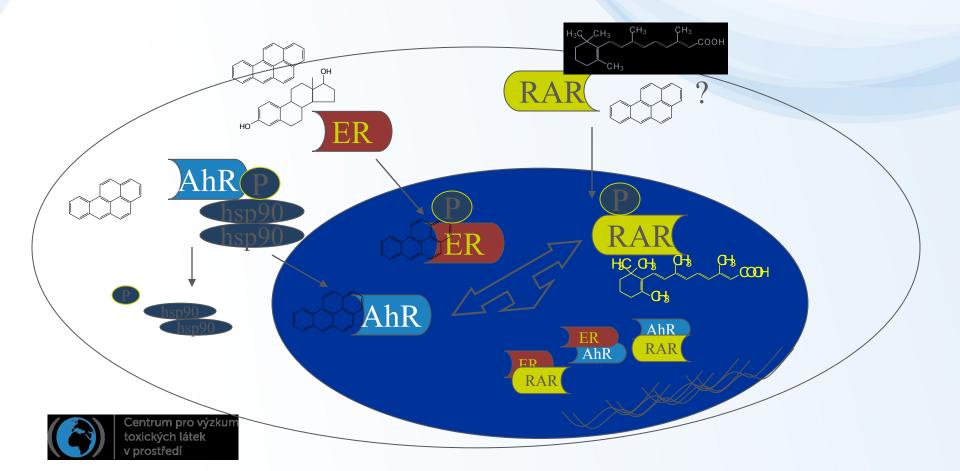

- 1. Receptor activation is dependent not only on "ligand" (**glucocorticoid**) but also on "inhibitor" protein (**HSPs**)
- 2. Dimerization (after the activation) is often needed for proper action (binding to **GREs** *glucocorticoid responsive elements*)
- 3. Receptor with ligand can activate its own targets (GREs) as well as "repress" other binding sites (TFREs)



NR signalling is complex ... examples of complexity 2

4. "Co-activator" proteins are needed for proper action on DNA

 Nuclear receptor action are (also) controlled - stimulated / suppressed by other signalling pathways (e.g. phosphorylation by protein kinases)



Nature Reviews | Cancer

NR signalling is complex ... examples of complexity 3

6. Interaction (crosstalk) among various NRs

"antiestrogenicity" of AhR ligands
fast clearance of retinoids after AhR activation
Immunosuprresions after ER activations

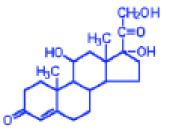
Details - specificities of NRs

- Regulation of transcription activity mechanisms may vary
 - Steroid receptors often dimerize with a partner to activate gene transcription
 - Receptors for vitamin D, retinoic acid and thyroid hormone form heterodimers and then bind to responsive elements on DNA
 - Second component of the heterodimer is RXR monomer (i.e, RXR-RAR; RXR-VDR)

NR dimers

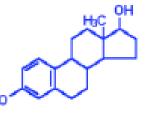
- <u>Heterodimeric receptors</u> exclusively nuclear;
 - without ligand represses transcription (by binding to their cognate sites in DNA)
- Homodimeric receptors
 - mostly cytoplasmic without ligands → hormone binding leads to nuclear translocation of receptors

STEROIDs - most studied ligands detailed view

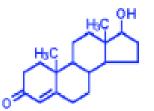


Steroid hormones - a review

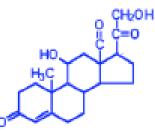
Steroid hormones are derived from cholesterol metabolism in mitochondria


Cortisol

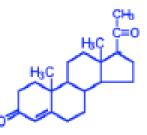
The dominant glucocorticoid in humans. Synthesized from progesterone in the zona fasciculata of the adrenal cortex. Involved in stress adaptation, elevates blood pressure and Na* uptake. Immunomodulation.


Estradiol

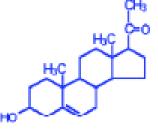
An estrogen, principal female sex hormone, produced in the ovary, responsible for secondary female sex characteristics. After menopause estrogen is H produced from testosterone in the adrenal glands.

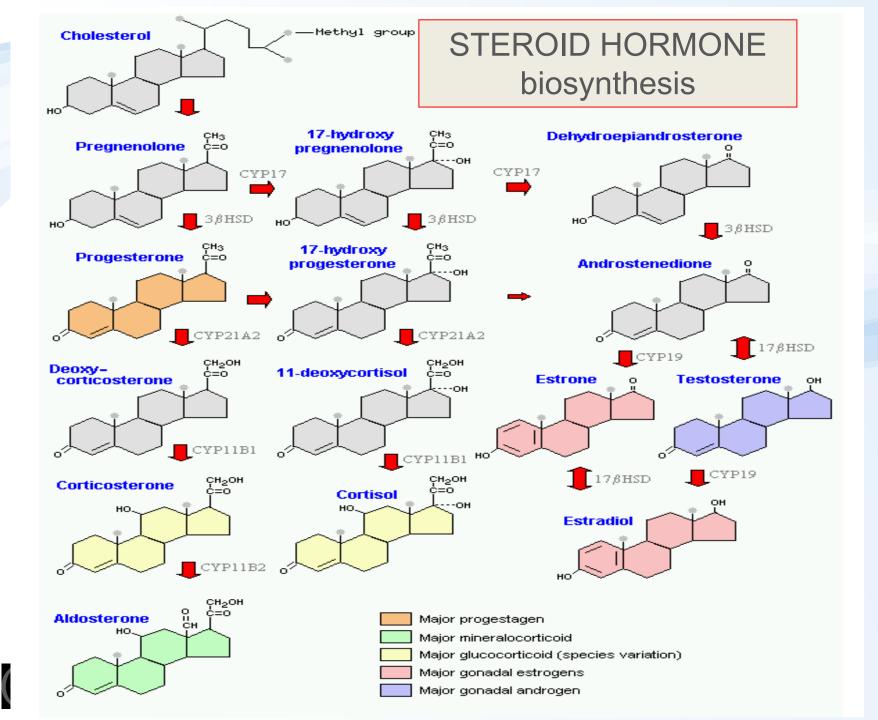

Testosterone

An androgen, male sex hormone synthesized in the testes from progesterone. Responsible for secondary male sex characteristics.


Aldosterone

Principal mineralocorticoid. Produced from progesterone in the zona glomerulosa of adrenal cortex, raises blood pressure and fluid volume, increases Na* uptake.


Progesterone


Produced from pregnenolone and secreted from the corpus luteum. Responsible for changes associated with luteral phase of the menstrual cycle, differentiation factor for mammary glands

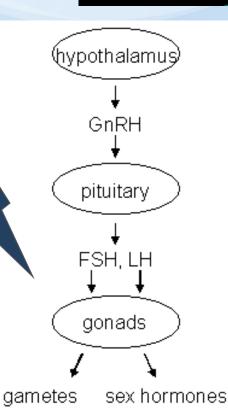
Pregnenolone

Made directly from cholesterol, the precusor molecule for all C₁₈, C₁₉ and C₂₁ steroids

Why are NR important?

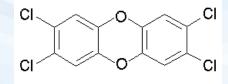
→ common mediators of Endocrine Disruption

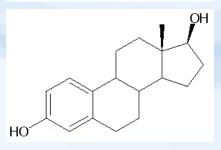
Endocrine disruption

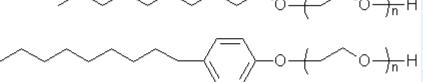

Interference of xenobiotics with normal functioning of hormonal system

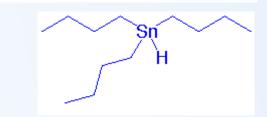
Known consequences

- → Disruption of homeostasis, reproduction, development, and/or behavior (and other hormone-controlled processes), such as
 - Shift in sex ratio, defective sexual development
 - Low fecundity/fertility
 - Hypo-immunity, carcinogenesis
 - Malformations
 - etc.




Endocrine disrupters in the environment?


EDCs...

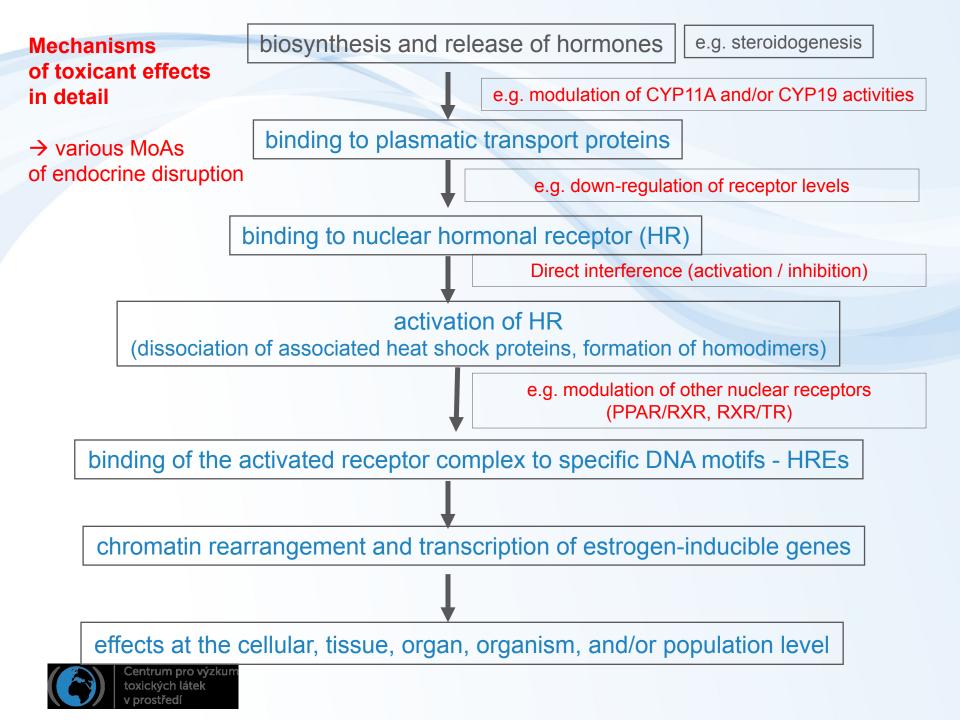

- Persistent Organic Compounds (POPs and their metabolites)
- steroid hormones and their derivatives from contraception pills
- alkylphenols
- organometallics (butyltins)
- pharmaceuticals
- Pesticides
- + number of unknowns ...

Toxicants interact with hormonal system at different levels

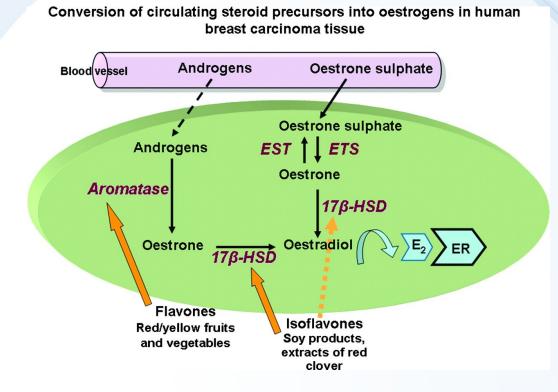
Transport

Interaction with receptors

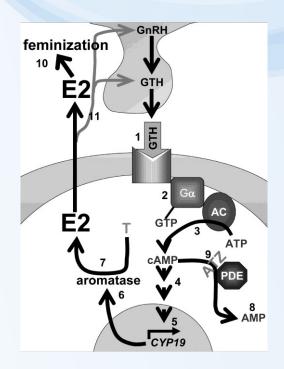
Metabolization


Consequences (both negative!)

Synthesis

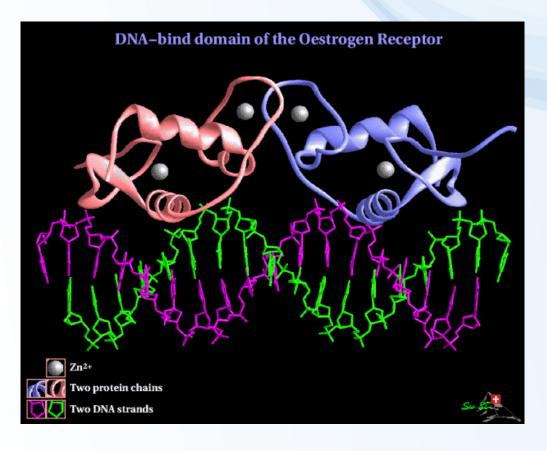

Possible mechanisms of endocrine disruption

- Disruption of the "master" hormones (FSH/LH)
- Decrease of HR cellular levels
- Nonphysiological activation of hormone receptor (HR)
- Binding to HR without activation
- Changes in hormone metabolism (clearance)

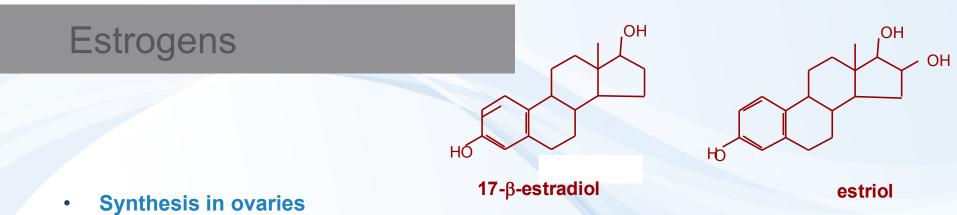


Examples – modulations of (synthetic) enzyme activities

Phytoestrogens promote synthesis of estrogens → feminization

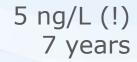


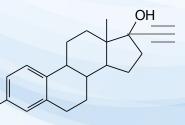
Crosstalk with other signalling pathways (such as **cAMP**), which can be target to toxicants

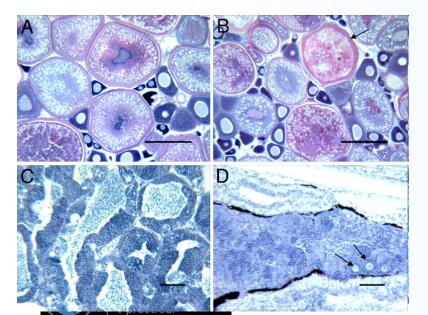


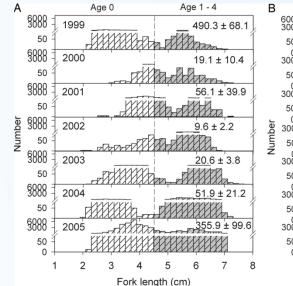
ESTROGEN RECEPTOR – ER the most studied target of EDCs

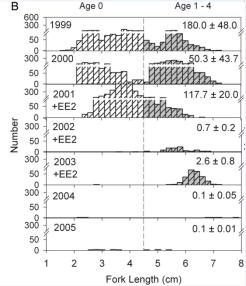
Centrum pro výzkum toxických látek v prostředí


- Functions
 - key roles in female hormone regulation and signalling
 - responsible for metabolic, behavioural and morphologic changes occurring during stages of reproduction
 - involved in the growth, development and homeostasis in a number of tissues
 - control the bone formation, regulation of homeostasis, cardiovascular system and behaviour
 - regulate production, transport and concentration of testicular liquid and anabolic activity of androgens in males
- DISRUPTION OF ESTROGEN SIGNALLING
 → many documented effects in aquatic biota & laboratory organisms



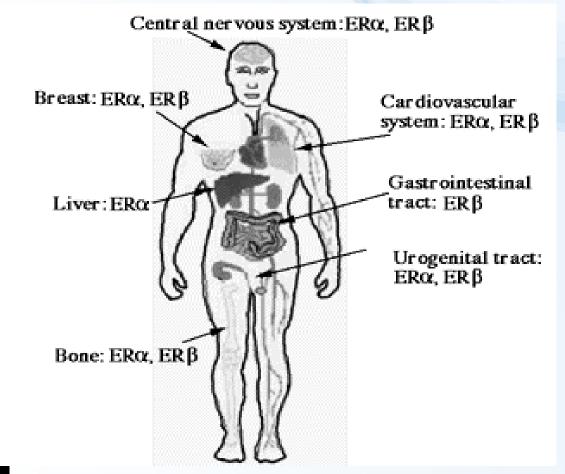

Kidd, K.A. et al. 2007. <u>Collapse of a fish population</u> following exposure to <u>a synthetic estrogen</u>. *Proceedings of the National Academy of Sciences* 104(21):8897-8901





Controls

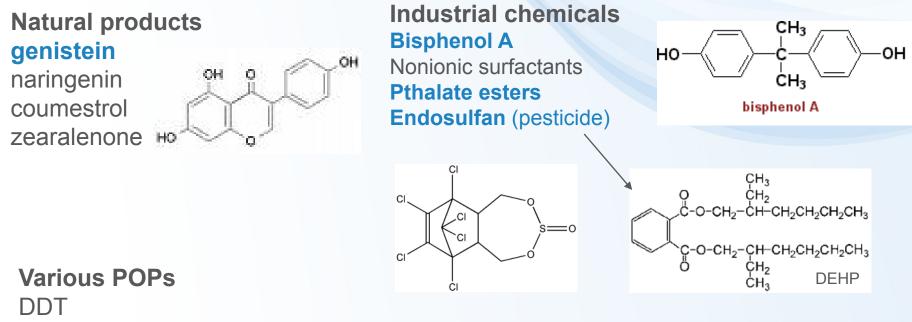
HC


+Ethinylestradiol

ESTROGEN RECEPTORS - subtypes

ER- α (in breast, ovary, brain, liver, bone and cardiovascular system, adrenals, testis and urogenital tract) ER- β (in kidneys, prostate and gastrointestinal tract)

(ER- γ in fish)



Environmental estrogens (xenoestrogens, exoestrogens)

>> Highly diverse group of substances

>> Do not necessarily share structural similarity to the prototypical estrogen 17β-estradiol
>> may act as AGONISTS <u>and/or</u> ANTAGONISTS (depending on situation and concentration!)

Pharmaceuticals

Ethinyl estradiol Diethylstilbestrol gestodene norgestrel

Various POPs DDT kepone PCBs/OH-PCBs PAHs and dioxins

Exoestrogens - Relative Potencies to bind to ERa (REPs)

REP – a measure of toxic potency of a compound (similar also at other NRs)

Chemical group	Substance	REP	
	Estradiol	1	
Endogenous hormones	Estriol	6,3.10-3	
	Testosteron	9,6.10-6	
Phytoestrogens	Cuomestrol	6,8.10-3	
	Genistein	4,9.10-4	
Pesticides	o,p´-DDT	1,1.10-6	
PCBs	2,4,6-trichlorbiphenyl-4'-ol	1.10 ⁻²	
	2,5-dichlorobiphenyl-4'-ol	6,2.10 ⁻³	
	3,3',5,5'tetrachlorobiphenyl-4,4'-diol	1,6.10-4	
alkylphenoles	4-tert-oktylphenol	3,6.10-6	
phthalates	butylbenzylphthalate	4.10 ⁻⁶	

REP (RElative Potencies) of selected compounds related to 17-β-estradiol derived from reporter yeast assay

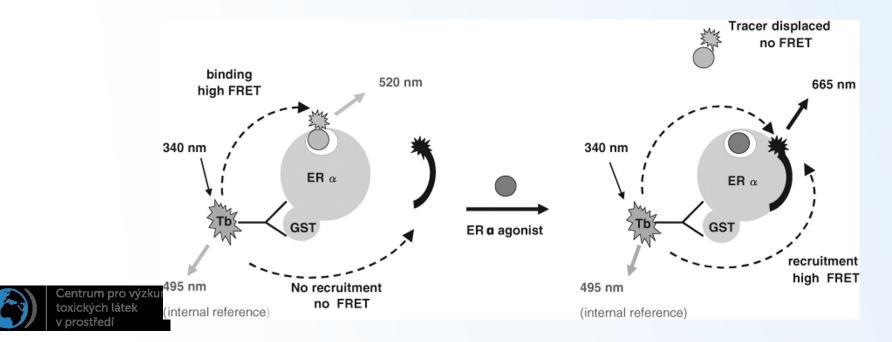
How to assess for ESTROGENICITY?

number of in vivo and in vitro methods available

Assay (ref.)	Exposure type	Detects ER-dependent agents?	Detects non- ER-dependent agents?	Distinguishes agonist versus antagonist?	Pharmacokinetic and metabolism included?
Receptor-based assays					
Receptor binding assay (27)	Cell lysate	Yes	No	No	No
Receptor activation assay (32-34)	Cells in vitro	Yes	No	Yes*	No
In vitro estrogen-regulated response assays					and Million
MCF-7 cell proliferation assay (41)	Cells in vitro	Yes	Limited	Yes"	No
Induction assays (46,48)	Cells in vitro	Yes	Limited	Yes*	No
DNA synthesis assays (47)	Cells in vitro	Yes	Limited	Yes"	No
In vivo estrogen-regulated response assays					- -
Uterotrophic response assay (49)	Whole animal	Yes	Limited	Yes ^a	Yes
Vaginal cornification assay (50)	Whole animal	Yes	Limited	Yes"	Yes
Vaginal opening (11)	Whole animal	Yes	Limited	Yes*	Yes
Uterine fluid imbibition (11)	Whole animal	Yes	Limited	Yes*	Yes
Uterine epithelial hypertrophy (51)	Whole animal	Yes	Limited	Yes ^a	Yes
Inhibition of steroid synthesis assays			L		
In vitro ovarian steroid assay (55)	Minced tissue	No	Yes	Yes	No
Ex vivo ovarian steroid assay (56)	Whole animal	No	Yes	Yes	Yes

"Detection of antagonists requires use of additional groups with test material + estradiol,

Janošek, J., Hilscherová, K., Bláha, L., and Holoubek, I. (2006). Environmental xenobiotics and nuclear receptors-Interactions, effects and in vitro assessment. *Toxicology in Vitro* 20, 18-37.

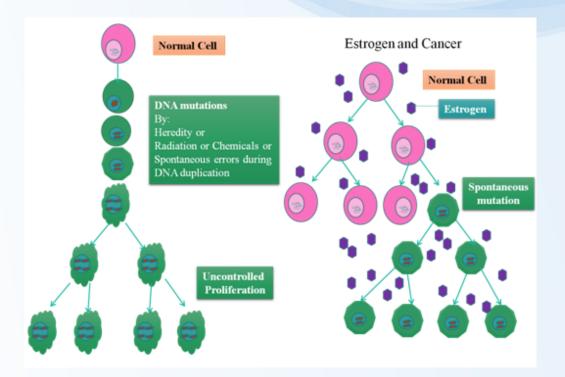


In vitro assays for estrogenicity

Level 1 – interaction of toxicant with the protein (receptor)

INTERACTION (BINDING) to the receptor

- competitive ligand binding assays
 - Various variants (e.g. displacement of radioactive substrate, fluorescence resonance energy transfer (*FRET*) techniques etc.
- → information only about "binding potency" but the effect remains unknown (? Activation / suppression / no effect ?)


In vitro assays for estrogenicity

Level 2 - effects at cellular level

 \rightarrow interference with receptor biological activity

Cell proliferation assays

Estrogens induce proliferation

In vitro assays for estrogenicity

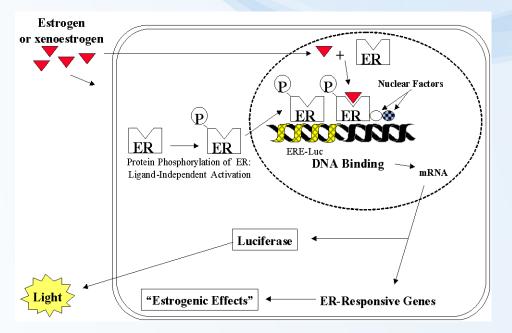
Level 2 - effects at cellular level

→ interference with receptor biological activity

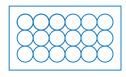
- Endogenous protein expression (or enzyme activity) assays
 - Often reporter gene assays

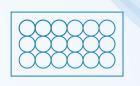
Cell assays in vitro

•Cells (e.g. breast carcinoma) naturally carrying functional ER.


•Genetic modification - stable transfection with firefly **luciferase gene**: under the control of ER

•Estrogens in media \rightarrow light induction


Centrum pro výzkum toxických látek v prostředí


Luciferase reporter assay for estrogenicity in brief

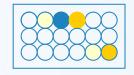
96 microwell plate cultivation of transgenic cell lines

ER: breast carcinoma MVLN cells

Exposure (6 – 24 h) standards / samples

Similar principle for other NRs activities

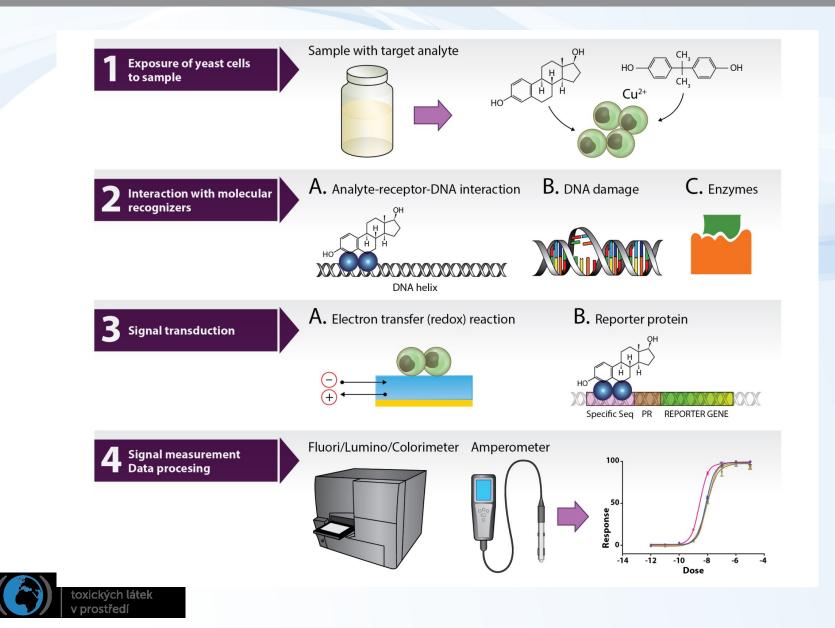
Mammalian cells


- * AhR H4IIE.luc cells (CALUX)
- * AR MDA.kb2 cells
- * RAR/RXR P19/A15 cells

Yeast models

- * Luciferase based
- * Also beta-galactosidase etc.

Centrum pro výzkum toxických látek v prostředí Cell lysis \rightarrow extraction of induced luciferase



Lumino

Luminescence determination (microplate luminescence reader)

Bioassay (biosensor) for NR-modulator based on yeast cells

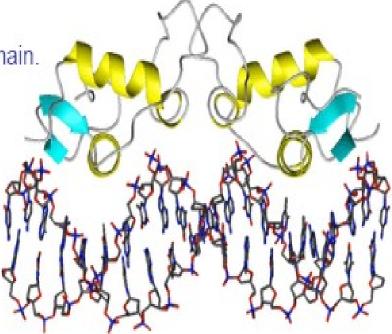
IN VIVO ASSAYS FOR ESTROGENICITY

- uterotropic assay
- vaginal cornification assay

Estrogen exposure

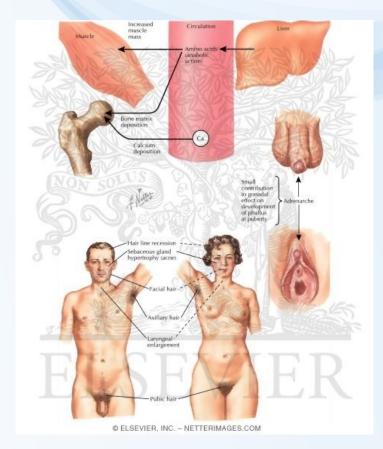
 production of estrogen-inducible proteins (e.g. vitellogenin and zona radiata protein)

→ also discussed at "biomarkers" part


- standard (in vivo) test procedures for reproductive and developmental toxicity
 - using mice, rats, fish, amphibians etc.

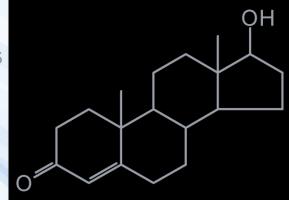
Centrum pro výzkum toxických látek v prostředí

ANDROGEN RECEPTOR (AR) role in toxicity confirmed ... but less explored than ER


Androgen receptor DNA binding domain.

Androgens

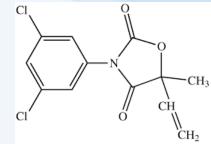
- Role in males similar to the of estrogens in females
 - development of male sexual characteristics
 - stimulating protein synthesis, growth of bones
 - cell differenciation, spermatogenesis
 - male type of behaviour



Androgens

- Endogenous ligands androgen hormones
 - Two key androgens
 - testosterone (T)
 - dihydrotestosterone (DHT)
 - <u>Other androgens</u> androstanediol, dehydroepiandrosterone, androstenedione
- T: synthesis in testis (Leydig cells)
 - in lesser extent in adrenals
- DHT: Formed extratesticulary from T
 - In several tissues (seminal vesicles, prostate, skin)
 higher affinity to androgen receptor than T
 - Daily production 5-10% of testosterone

Testosterone



Mechanisms of androgen signalling disruption

1) Binding to AR

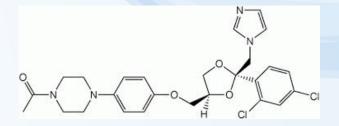
- Mostly competitive inhibition
- xenobiotics mostly DO NOT activate AR-dependent transcription
- Only few compounds able to activate AR in the absence of androgen hormones but they are anti-androgenic in the presence of strong androgens like T or DHT

- metabolites of fungicide vinclozoline, some PAHs

2) FSH/LH (gonadotropins) signalling disruption – less explored

- FSH/LH expression - regulation via negative feedback by testosterone

vinclozoline


- Suppression \rightarrow alterations of spermatogenesis

Mechanisms of androgen signalling disruption

3) Alterations of testosterone synthesis

- Inhibition of P450scc needed for side chain cleavage of cholesterol or inhibitions of 17-beta-hydroxylase and other CYPs
 - fungicide ketoconazol

4) Testosterone metabolic clearance

- Induction of detoxification enzymes (UDPglucuronosyltransferase or monooxygenases CYP1A, 1B)
 - Pesticides endosulfan, mirex, o-p'-DDT

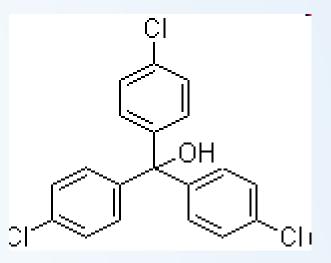
Effects of male exposure to antiandrogens

- Exposure during prenatal development:
 - malformations of the reproductive tract
 - reduced anogenital distance
 - hypospadias (abnormal position of the urethral opening on the penis)
 - vagina development
 - undescendent ectopic testes
 - atrophy of seminal vesicles and prostate gland

• Exposure in prepubertal age:

- delayed puberty
- reduced seminal vesicles
- reduced prostate

• Exposure in adult age:


- oligospermia
- azoospermia
- loss of sexual libido

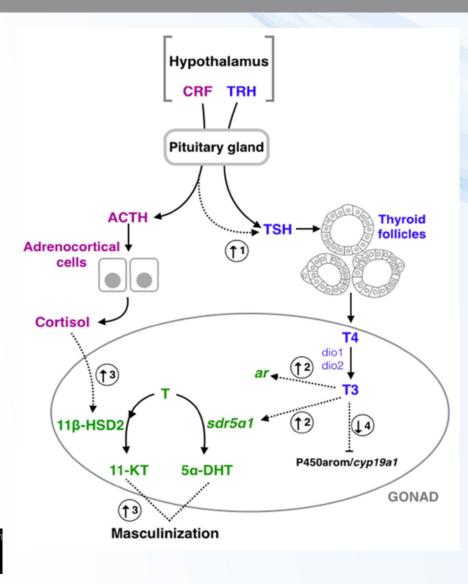
Search google for illustrations

Antiandrogenic compound

- tris-(4-chlorophenyl)-methanol
 - Ubiquitous contaminant of uncertain origin
 - Probable metabolite of DDT-mixturec
 - Levels in human blood serum cca. 50nM
 - antiAR potency EC50 cca. 200nM

AR-binding – potencies - reference **DHT: EC50 ~ 0.1** μ **M**)

Compound	IC_{50} (μ M)
Benz[a]anthracene	3.2
Benzo[a]pyrene	3.9
Dimethylbenz[a]anthracene	10.4
Chrysene	10.3
Dibenzo[a,h]anthracene	activation in range 0.1-10µM
Bisphenol A	5
vinclozolin metabolites	9.7
hydroxyflutamide	5
Aroclor typical values	0.25-1.11
Individual PCBs typical values	64 - 87
tris-(4-chlorophenyl)-methanol	0.2



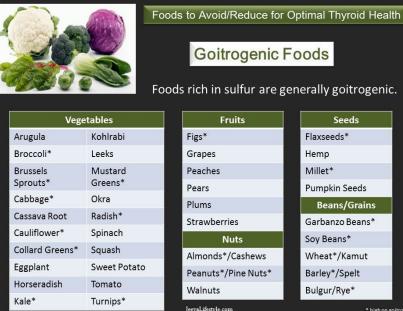
(Anti)androgenicity assessment

- In vivo Hershberger assay
 - castrated rats treated with examined substance
 - Endpoint after 4-7 days seminal vesicles and ventral prostate weight
- In vivo measurement of testosterone blood levels
- In vitro cell proliferation assays
 - cells with androgen-dependent growth: mammary carcinoma cell lines
 - prostatic carcinoma cell lines
- Receptor-reporter assays
 - Gene for luciferase (or GFP) under control of AR
 - AR-CALUX (human breast carcinoma T47D)
 - PALM (human prostatic carcinoma PC-3)
 - CHO515 (Chinese hamster ovary CHO)
 - Yeast transfected cells
 - beta-galactosidase reporter

THYROID SIGNALLING

Thyroid hormones

- Crucial roles in metabolism, development and maturation
 - Regulation of metabolism
 - increasing oxygen consumption
 - modulating levels of other hormones (insulin, glucagon, somatotropin, adrenalin)
 - Important in cell differenciation
 - Crucial role in development of CNS, gonads and bones
- EDC compounds interfering with thyroid signalling "GOITROGENS"
- Many food (vegetables) contain goitrogens



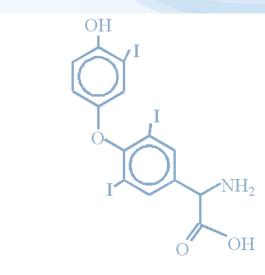
HYPOTHYROIDISM

Centrum pro výzkum toxických látek v prostředí

Thyroid hormones

NH₂

OH


Thyroxine (T4)

Also called tetraiodothyronine Contains 4 iodide ions

OН

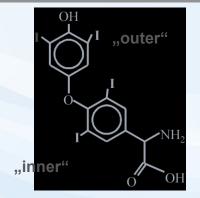
Triiodothyronine (T3)

Contains 3 iodide ions -Most T3 produced by deiodination in target tissues (deiodinases)

T4 – prohormone 5 -deiodination \rightarrow active form, T3

entrum pro výzku

oxických látek



Thyroxine (T₄)

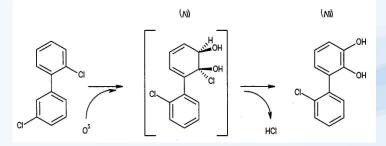
3,5,3'-Triiodothyronine (T₃)

Enzymes involved in Thyroid hormone metabolism

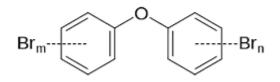
- Thyroid peroxidases
 - iodination of tyrosyl residues
 - coupling of iodinated tyrosyl residues
- Thyroid deiodinases
 - D1, D2 activation of T4 into T3 via deiodination on "outer" ring
 - D3 deactivation into rT3 via deiodination on "inner" ring
- Many goitrogens affect expression, activities and outcomes of these key enzymes
 - PTU propylthiouracil
 →effect deiodinases
 - Thiocyanate ([SCN]⁻) or perchlorate (NaClO₄)
 →effect on iodine uptake

	iyroid land T4
PTU 🚽 D	01/D2 deiodinase
	T3 D3 deiodinase T2
Physiological/elevated (hyperthyroidism) T3 level: Inhibits SC proliferation Promotes SC differentiation	Reduced (hypothyroidism) T3 level: Promotes SC proliferation Delays SC differentiation Delays BTB assembly

Transport of thyroid hormones in blood


SPECIFIC TRANSPORTERS in blood

- regulating free T4 and T3 levels
- 3 types :
 - Thyroid-binding prealbunin (transthyretin) (20-25%)
 - Albumin (5-10%)
 - Thyroid binding globulin (**TBP**, 75%)


• NUMBER OF EDCs → act on transport proteins

- OH-PCBs, brominated and chlorinated flame retardants, DDT, dieldrin
- OH-PCBs equal affinity to TBP as T4 and T3 (!!!)
- Increased levels of "free T4" in blood
 - negative feedback to TSH release
 - \rightarrow increased depletion
 - \rightarrow increased weight,
 - histological changes in thyroid gland
 - Documented after exposures to POPs in mammals, birds, fish

Hydroxylated PCB formation

Polybrominated diphenyl ethers (PBDEs) – flame retardants

Other mechanisms of goitrogens' toxicity

- Competitive binding to TR
 - Probably less important than binding to TBP
 - Chemicals that affect thyroid signalling in vivo mostly don't bind to TR (DDT, PCBs) or bind with much lesser affinity than T3 (OH-PCBs – 10000x)
- Accelerated depletion of hormones
 - UDP-glucuronosyltransferase detoxification enzyme (II.biotransformation phase)
 - Induced by PCBs and dioxins
 → indirect goitrogens


Effects of thyroid disruption

Exposures during prenatal stages

- severe damage of CNS (cretenism, delayed eye opening, cognition)
- Megalotestis
- Histological changes in thyroid gland (goitre)

Exposures during development

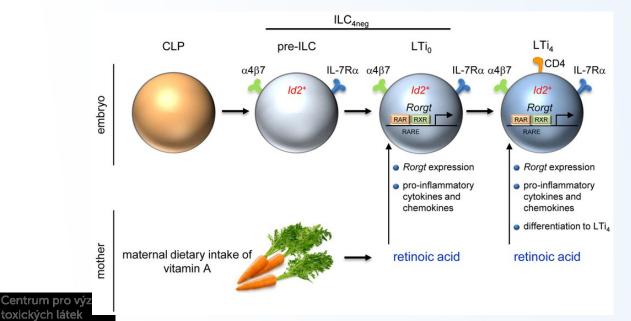
- nervous system fails to develop normally
- mental retardation
- skeletal development

Assessment of goitrogen effects

(For information only)

In vivo approaches

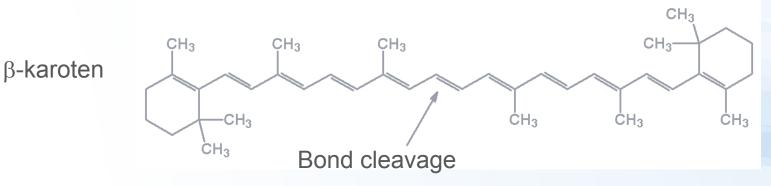
- TH serum levels simple, nondestructive x variation within time of day, age, sensitive to other than biochemical stresses
- Thyroid gland weight and folicular cells number
- Developmental toxicity assays delayed eye opening, abnormalities in brain development and cognition, increased testis weight and sperm counts
- Perchlorate discharge test (TH synthesis)
- Hepatic UDP-glucuronosyltransferase activity (marker of enhanced TH clearance from serum)

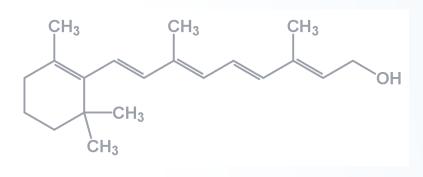

In vitro

- Enzyme inhibition assays (thyroid peroxidase, deiodinases) assessment of thyroid metabolism
- Competitive binding assays with TBP
- TH- dependent proliferation assay (pituitary tumor GH3, thyroid tumors like FRTL-5 cell line) or TSH-dependent proliferation assay (thyroid tumors)
- Receptor-reporter gene assays with luciferase (monkey kidney CV-1, chinese hamster ovary CHO or insect Sf9 cell lines)

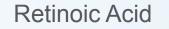
Vitamin A and its derivatives RETINOIDS

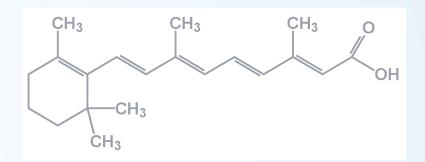
(role in toxicity - still in the research phase)



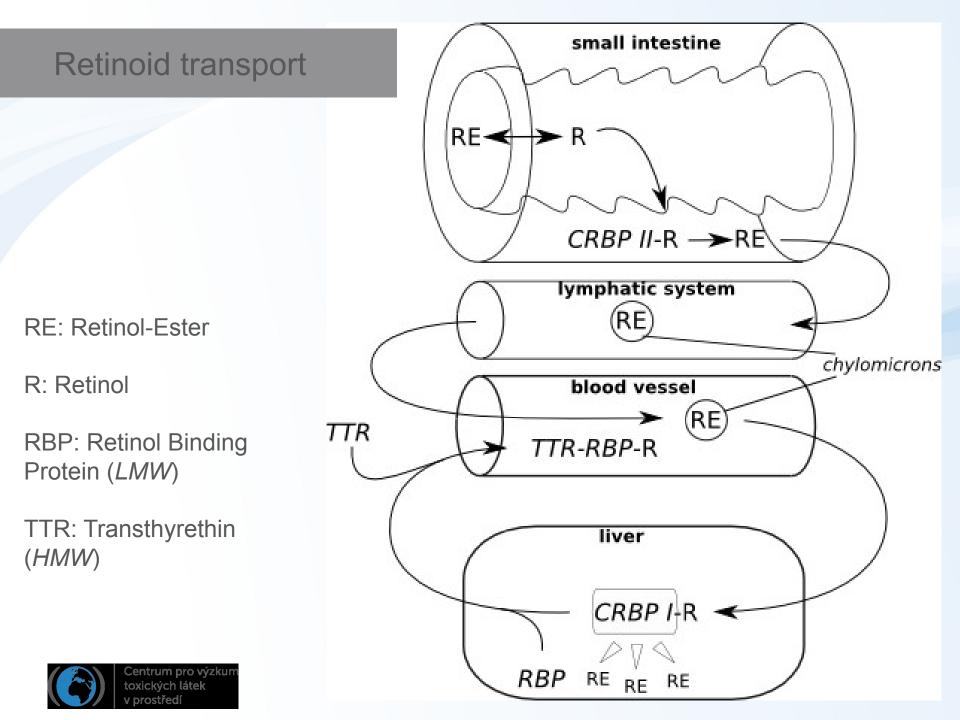

RETINOIDS

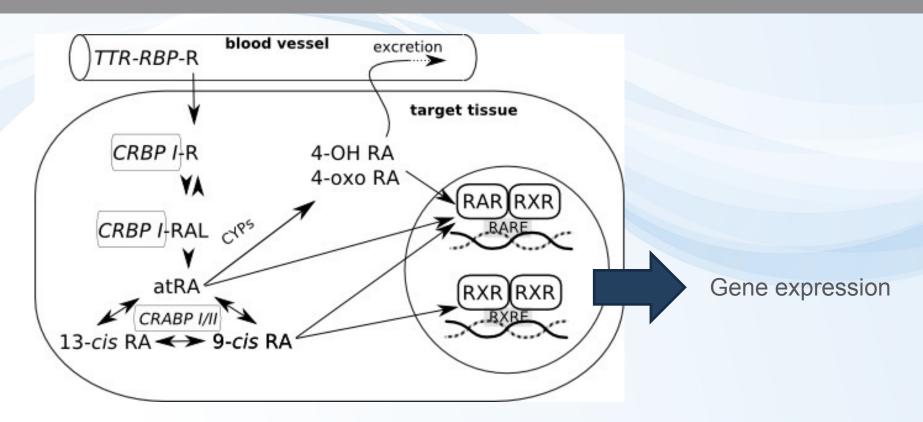
Sources: from diet - dietary hormones


Retinyl esters – animal sources Plant carotenoids




```
Retinol (vitamin A)
```


Retinoids and their functions

- Regulation of development and homeostasis in tissues of vertebrates and invertebrates
- Development of embryonic, epithelial cells (gastrointestinal tract, skin, bones)
- Necessary for vision
- Suppressive effects in cancer development
- Important for cell growth, apoptosis and differenciation
- Antioxidative agent
- Affect nervous and immune function

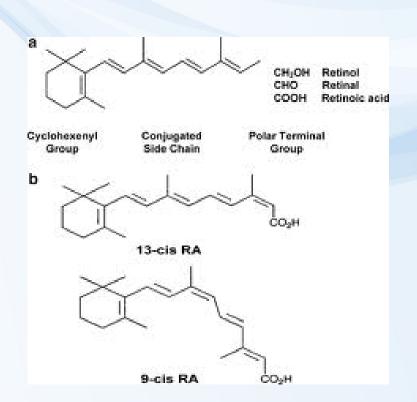
Retinoid fate in the cells

Retinoid binding proteins

CRBP – cellular retinol binding protein

- binding of retinol, immediate decrease of retinol concentration

CRBAP - cellular retinoic acid binding protein


- Controlling the ratio free retinol/free retinoic acid

RAR/RXR and RA

- Isoforms of RAR a RXR
 - Formation of homo- and heterodimers
 - 48 possible RAR-RXR heterodimers
 - \rightarrow sensitive regulation of gene expression
- RXR heterodimers with other receptors
 - − VDR, TR, PPAR ... \rightarrow see crosstalk
- RETINOIC ACID (RA)
- 3 basic subtypes
 - all-trans- (ATRA)
 - 9-cis- and 13-cis-retinoic acid
- All-trans RA (ATRA) binds selectively to RAR
- Cis RA bind to both receptor types

Disruption of retinoid signalling by xenobiotics

- Possible modes of action disruption of retinoid signalling:
 - Metabolization of retinoids by detoxication enzymes
 - Disruption of binding retinoids to transport proteins
 - Retinoids as antioxidants may be consumed by oxidative stress induced by xenobiotics
 - Interference during binding to RAR/RXR

Effects

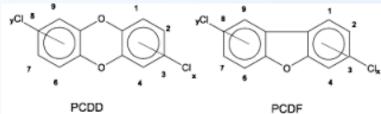
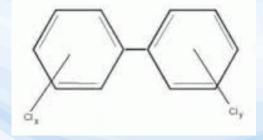
- Decreased retinoid levels in organisms
 - Downregulation of growth factors
 - Xerophtalmia, night blindness
 - Embryotoxicity, developmental abnormalities

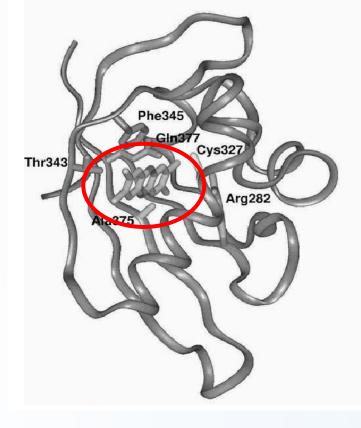
Increased ATRA concentration

• teratogenic effects

Disruption of retinoid signalling by xenobiotics

- Polluted areas
 - mostly decrease of retinoid levels
 - Documented in aquatic birds, mammals and fish
- Disruption of retinoid transport: PCBs
- Effects on retinoid receptors:
 - RAR, RXR binding and/or transactivation
 - pesticides (chlordane, dieldrin, methoprene, tributyltin...)
 - Effect on ATRA mediated response TCDD, PAHs
- Disruption of retinoid metabolism:
 - PCDD/Fs, PAHs, PCBs, pesticides
 - changes of serum concentrations of retinol and RA
 - mobilization of hepatic storage forms

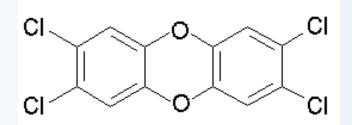




Figure 1. General molecular structure of polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurans (PCDF)

AhR (Arylhydrocarbon receptor)

Derisonet d., Crem Bd. Interact. 141: 3

AhR structure


2,3,7,8-TCDD (dioxin) bound to AhR

Centrum pro výzkum toxických látek v prostředí

AhR

- Ligand-activated transcription factor
 - Similar to all NRs
- AhR has effects on many different genes
- important mediator of toxicity of POPs primary target of planar aromatic substances
 - regulator of xenobiotic metabolism and activation of promutagens
- Crossactivation/crosstalk with other NRs
- Strongest known ligand TCDD
 - (not endogeneous !)

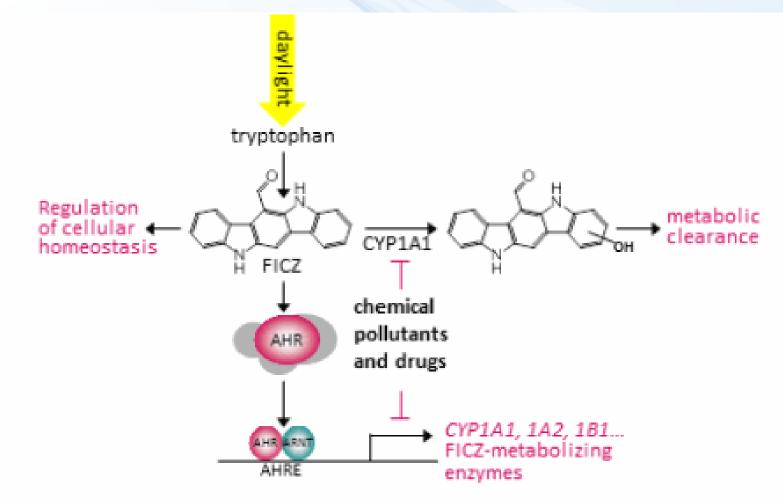
AhR regulated genes

- Many genes contain xenobiotic response elements (XRE) or dioxin responsive elements (DRE) in their promoter region:
 - phase I enzymes CYP 1A1, CYP 1A2, CYP 1B1
 - phase II enzymes UDP-glucuronosyltransferase, GST-Ya, NADP(H):oxidoreductase;

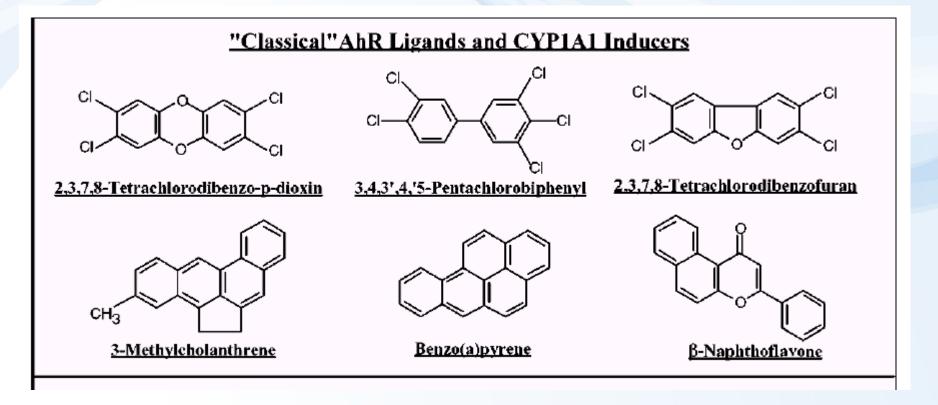
Detoxification upon toxicant exposure ... also with possible toxic consequences (oxidative stress, activation of promutagens accelerated clearance of hormones ...)

- other genes regulation of cell cycle and apoptosis
 - Bax (apoptosis control), p27Kip1, Jun B (MAP-kinase), TGF-b (tumor growth factor)
 - \rightarrow Various adverse toxic effects

Physiological role of AhR

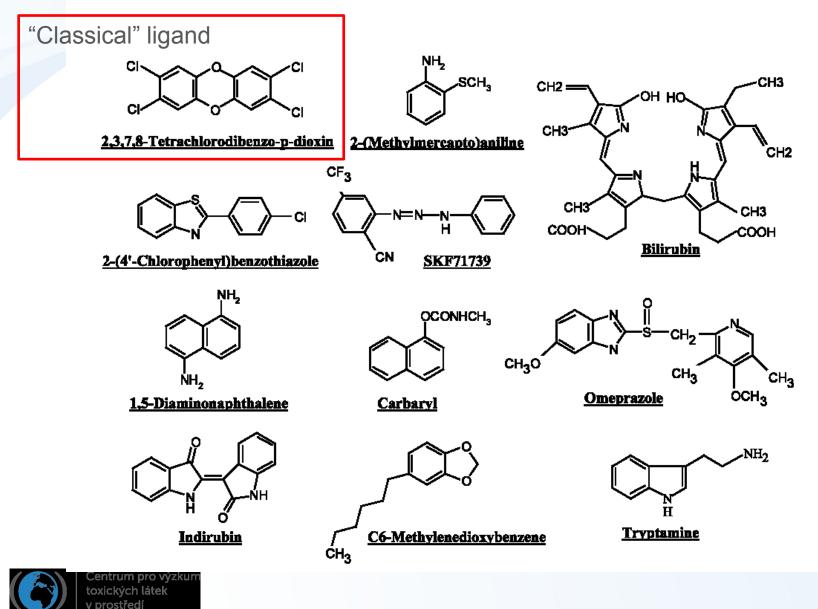

- Physiological role for AhR still not known (?)
 - Most likely "protection" against toxicants → induction of detoxification
- Many adverse effects documented in AhR-deficient mice
 - significant growth retardation;
 - defective development of liver and immune system;
 - retinoid accumulation in liver;
 - abnormal kidney and hepatic vascular structures.
 - resistant to BaP-induced carcinogenesis and TCDD-induced teratogenesis;
 - no inducible expression of CYP 1A1 and 2.

→ this implies presence of natural endogeneous ligand(s) (not only exogeneous toxicants can bind AhR)

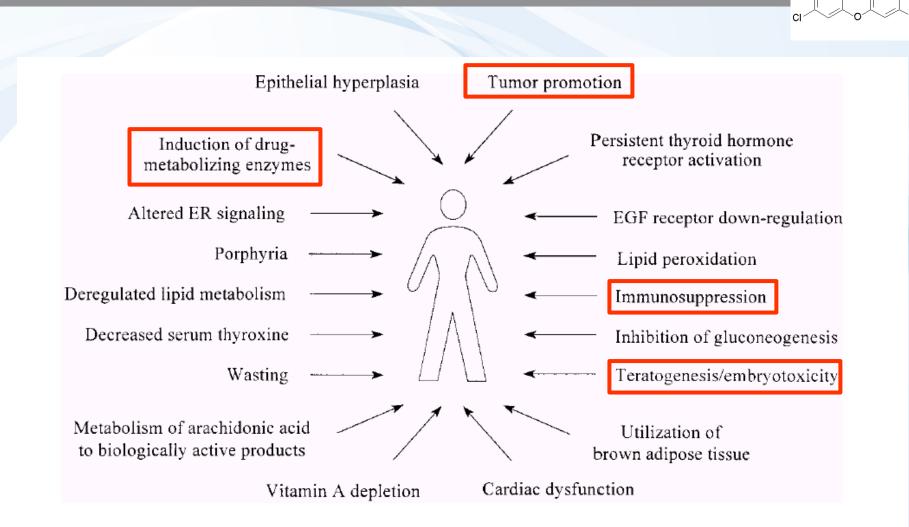

What is the natural (endogenous) physiological ligand of AhR?

Classical and "non-classical" AhR ligands

Classical = planar structures → direct binding to AhR



Denison & Nagy, Annu. Rev. Pharmacol. Toxicol. 43:309



"Non-classical" AhR ligands – various structures

M.S. Denison et al. / Chemico-Biological Interactions 141 (2002) 3-24

Biological responses to TCDD

Figure 1 Biological responses to TCDD. A wide variety of cellular processes have been shown to be affected by TCDD.

Schmidt & Bradfield, Annu. Rev. Cell Dev. Biol. 12:55

CI-

Toxic equivalency factors (TEF)/TEQ concept

- Toxicity of compounds with similar toxicological properties as TCDD (activating AhR) may be evaluated by TEF/TEQ concept
 - TEF = Toxic Equivalency Factor ("characteristic" of the Chemical)
 - TEQ = Toxic Equivalent (sum of TEFs x concentrations)
- **TEFs are consensus values based on REPs (relative potencies)** across multiple species and/or endpoints.
 - TEFs are based upon a number of endpoints, from chronic in vivo toxicity to in vitro toxicity with the former having the greatest importance in determining overall TEF.
- **TEQs provide a simple**, single number that is indicative of **overall toxicity of a sample** (water, sediment, food) containing a mixture of dioxins and dioxin-like compounds.
- The total potency of a mixture can be expressed in TCDD TEQ concentration
 - i.e. TEQ = concentration corresponding to the effect that would be induced by TCDD

 $TEQ = \Sigma \{compound_1 \times TEF_1 + \dots \}$

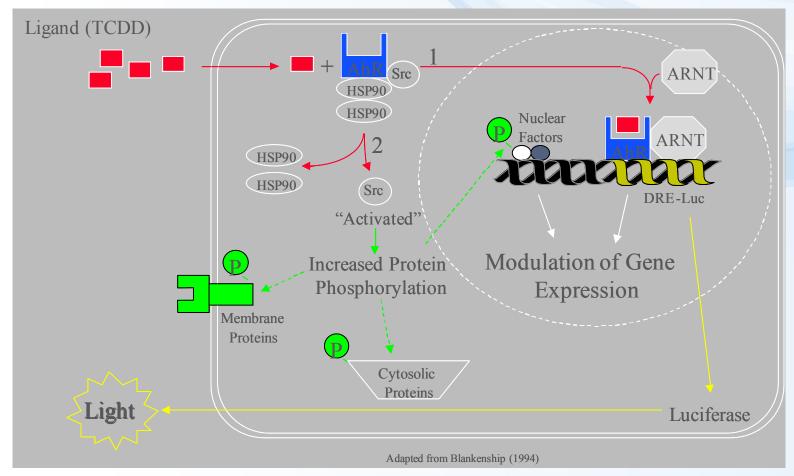
 $+ \operatorname{compound}_n \times \operatorname{TEF}_n \}$

Toxic equivalency factors for PCDDs, PCDFs and PCBs:

PCDD Congener	WHO-TEF	PCDF Congener	WHO-TEF	PCB Congener	WHO-TEF
2,3,7,8-TCDD	(1)	2,3,7,8-TCDF	0.1	Non-ortho	
12,3,7,8-PeCDD	1	12,3,7,8-PeCDF	0.05	PCB#81	0.0005
123478-HxCDD	0.1	23478-PeCDF	0.5	PCB#77	0.0005
123678-HxCDD	0.1	123478-HxCDF	0.01	PCB#126	0.1
12,3,7,89-HxCDD	0.1	123678-HxCDF	0.1	PCB#169	0.01
1234678-HpCDD	0.01	234678-HxCDF	0.1	Mono-ortho	
OCDD	0.0001	12,3,7,89-HxCDF	0.1	PCB#105	0.0001
		1234678-HpCDF	0.01	PCB#114	0.0005
		1234789-HpCDF	0.01	PCB#118	0.0001
		OCDF	0.0001	PCB#123	0.0001
				PCB#156	0.0005
				PCB#157	0.0005
				PCB#167	0.00001
				PCB#189	0.0001

Eljarrat & Barceló, Trends Anal. Chem.22: 655

Final concentration is expressed as "Equivalents of TCDD" (e.g. ng TEQ / kg = ng TCDD / kg)


Biomarkers/bioanalytical methods for AhR toxicity

- In vivo studies
 - liver enlargement, reduction of thymus weight, wasting syndrome, reproductive and developmental disorders
- In vivo biomarkers
 - EROD activity, CYP 1A1 and 1B1 expression (discussed in biomarker section)
- in vitro assessment of chemical potencies
 - EROD (ethoxyresorufin-O-deethylase activity) in cell cultures;
 - CALUX/CAFLUX assays (luciferase expression – reporter gene assays)
 - GRAB assay (AhR-DNA binding)
 - yeast bioassay;
 - immunoassays;
 - detection of CYP1A mRNA (qPCR) or AhR protein (western blotting)

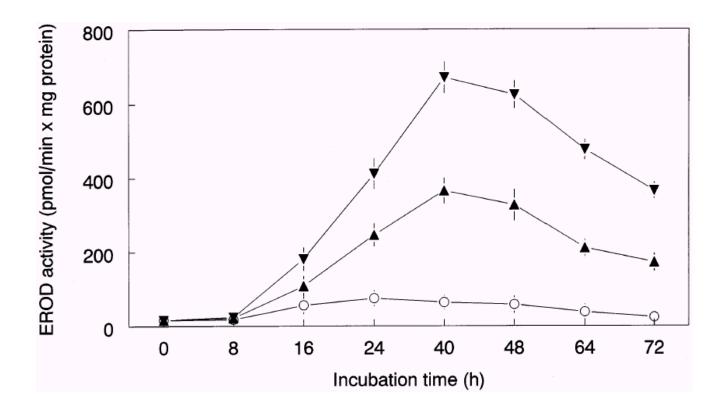
In vitro CALUX/CAFLUX assays

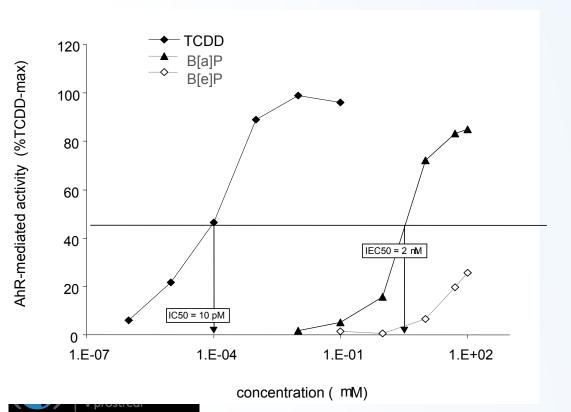
CALUX – Chemical Assisted Luciferase Expression DR-CALUX (Dioxin Responsive CALUX) (i.e. Luciferase Reporter Gene Assay with H4IIE.luc cells)

Centrum pro výzkum toxických látek v prostředí

DETECTION of EROD activity - example

M. Till et al. / Chemico-Biological Interactions 117 (1999) 135-150

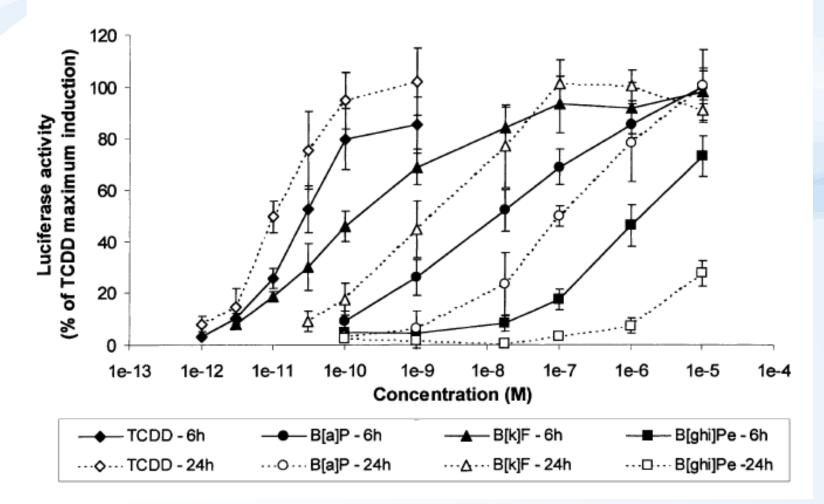



Fig. 2. Time course of induction of CYP1A1-catalyzed 7-ethoxyresorufin *O*-deethylase (EROD) activity in primary cultures of rat hepatocytes, after addition of 1.7×10^{-5} M benzo[*a*]pyrene (- ∇ -), 1.9×10^{-6} M benzo[*k*]fluoranthene (- Δ -) or 9.4×10^{-5} M acenaphthylene (- \bigcirc -). EROD activity was determined in cell homogenates. The data represent means \pm S.D. from four independent experiments.

140

Comparing toxicity of compounds \rightarrow Application in Risk Assessment

- Quantification of effects (EC₅₀)
- Comparison with the effect of reference toxicant (2,3,7,8-TCDD)
 - → relative potencies (REPs) to TCDD
 (= in vitro "Toxic Equivalency Factors" ~ TEFs)


TCDD:	IC ₅₀
PAH:	IEC ₅₀

Relative Potency (REP) = Induction Equivalency Factor IEF = IC₅₀ / IEC₅₀

REP interpretation: How many times is the compound "weaker" inducer than TCDD ?

Example - relative potencies of PAHs (two exposure periods)

M. Machala et al./Mutation Research 497 (2001) 49-62

Table 2

IEFs of PAHs relative to TCDD or B[a]P derived from EC50 or EC25 values in 24 and 6 h exposure assays

Derived from	IEF _{TCDD(24 h)}		IEF _{TCDD(6h)}	IEF _{TCDD(6h)}		IEF _{B[a]P(6 h)}	
	EC50	EC25	EC50	EC25	EC50	EC25	
Flu	ni ^a	ni	ni	ni	ni	ni	
Ant	ni	ni	ni	ni	ni	ni	
Fla	2.27E-8	9.31E-7	9.84E-5	1.11E-4	1.05E-2	5.59E-3	
Py	1.78E-6	3.38E-6	2.59E-5	4.45E-5	7.57E-3	6.21E-3	
B[a]A	7.04E-6	9.60E-6	7.64E-7	2.40E-6	0.39	0.50	
Chry	1.01E-4	1.07E-4	1.41E-2	3.26E-2	3.25	2.04	
B[b]F	3.35E-5	4.82E-5	4.90E-2	2.32E-1	8.83	12.81	
B[k]F	1.64E-3	2.94E-3	0.28	0.57	67.76	36.33	
B[a]P	9.01E-5	1.99E-4	1.11E-2	2.02E-2	1.0	1.0	
DB[ah]A	1.17E-3	1.52E-3	0.06	0.20	11.46	11.72	
I[123-cd]P	2.96E-4	5.01E-4	0.86	1.24	44.20	29.70	
B[ghi]Pe	ni	ni	2.27E-5	4.68E-5	5.47E-3	2.99E-3	
DB[al]P	4.90E-6	1.13E-6	2.52E-5	3.26E-5	2.36E-2	1.88E-2	
NPyr	2.05E-4	3.83E-4	5.80E-3	1.31E-2	1.10	0.88	
CPP	2.48E-7	6.53E-7	6.20E-6	1.72E-5	4.23E-3	3.38E-3	
B[a]Pe	6.19E-6	6.28E-6	2.27E-4	3.05E-4	3.37E-2	1.68E-2	
DB[ae]F	9.30E-6	1.18E-5	2.75E-5	1.33E-4	1.74E-3	6.74E-3	
DB[ai]P	1.65E-4	4.41E-4	4.29E-2	3.82E-2	2.59	1.75	
DB[ae]P	1.80E-5	3.90E-5	1.08E-3	3.90E-3	0.49	0.13	
DB[ah]P	7.14E-5	3.70E-4	2.65E-2	5.43E-2	2.80	2.68	
DB[ak]F	1.23E-3	1.37E-3	1.55E-2	2.02E-2	2.69	1.65	
5-MeChry	9.48E-5	1.59E-4	4.05E-2	5.08E-2	3.07	2.46	
DB[aj]A	3.70E-4	5.21E-4	3.07E-2	4.04E-2	2.16	2.16	
B[j]F	3.68E-4	7.40E-4	4.05E-2	6.33E-2	2.25	2.51	
B[c]Phe	4.49E-7	1.07E-6	6.21E-5	7.51E-5	4.64E-3	3.76E-3	
B[e]P	5.15E-7	6.30E-7	3.71E-5	8.17E-5	2.27E-3	2.86E-3	
DMBA	5.41E-6	1.30E-5	4.71E-2	3.98E-2	0.46	0.9	
1-MePyr	2.07E-6	2.82E-6	4.80E-5	7.20E-5	8.54E-3	6.33E-3	
DB[ac]A	1.92E-4	4.23E-4	3.53E-2	7.80E-2	1.75	2.78	
Pic	4.11E-5	5.54E-5	1.90E-3	5.20E-3	0.12	0.25	

^a ni, no induction observed.

Summary – Nuclear receptors

- Important physiological functions,
- Important roles in pathologies and chemical toxicity (ENDOCRINE DISRUPTION)
- NRs with well studied roles in toxicity: ER and AhR
 - Other NRs (AR, RAR/RXR, ThR) important but less explored
- All NRs share similar structure and mechanisms of action
 - Act as direct transcription factors on DNA
- Natural ligands of NRs are small lipophilic hormones
 - steroids, thyroids, retinoids
 - Various regulatory functions
 - Role in toxicity: NR interact with structurally similar xenobiotics
- Various mechanisms beyond the toxicity
 - Adverse are both STIMULATIONS and INHIBITIONS directly at the receptor site (e.g. "antiandrogenicity)
 - Additional mechanisms transport of hormones in blood (Thyroids), metabolism (Thyroids) clearance (Retinoids), heterodimerization and "crosstalk"
- Other key information to remember
 - REPORTER GENE ASSAYS (principle, use, what is CALUX?)
 - Characterization of chemical "toxic potentials"
 - General concept of "REPs" (valid for activation of all NRs)
 - Specifically for AhR concept of TEFs / TEQs

