

BIOMARKERS AND TOXICITY MECHANISMS 10 - BIOMARKERS Introduction

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

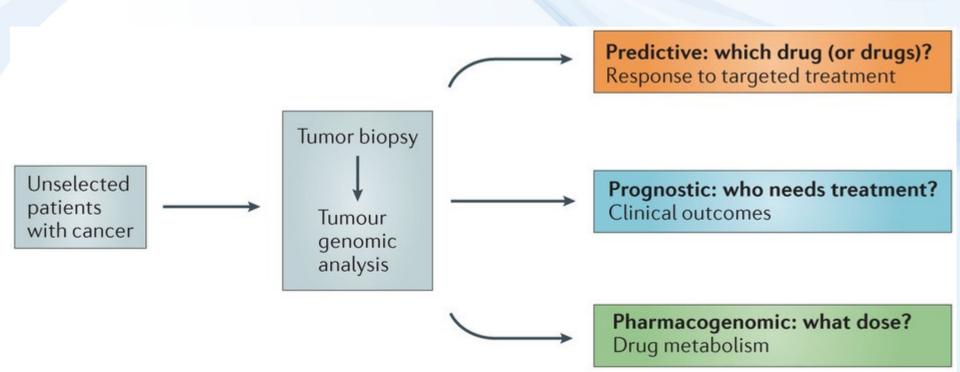
Definition and applications

 markers in biological systems with a sufficently long half-life which allow location where in the biological system change occur and to quantify the change.

Various definitions and applications of "biomarkers"

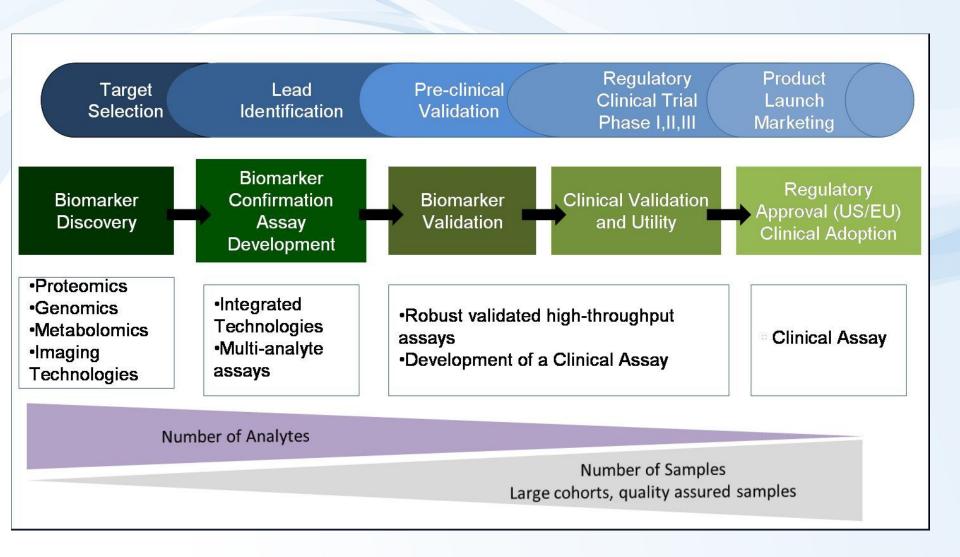
- Ecology / Geology
- Human health and diseases
- Toxicology (special focus in this class)

Biomarkers in ECOLOGY / GEOLOGY

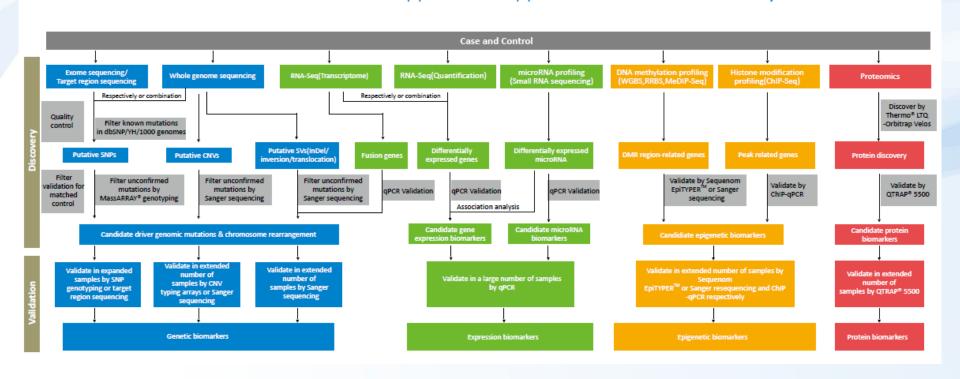

Molecular Biomarker	Known or postulated source	Application
Alkenones	Haptophyte Algae	UK ₃₇ ' → Sea surface and lake temperatures δ¹³C → Paleo-pCO ₂ . δD → Hydrography, salinity
Soprenoidal GDGTs	Thaumarchaeota	TEX ₈₆ → Sea surface and lake temperatures MI → Anaerobic oxidation of methane
Long chain Diols	Eustigmatophytes	DIX → Sea surface temperatures
Branched GDGTs	Anaerobic soil and peat bacteria	BIT → Relative inputs of terrestrial material MBT → Terrestrial Temperature (MAT) CBT → pH
Plant Waxes	Higher Land Plants	Land plant organic matter inputs. δ¹³C → Changes in carbon cycle/ reservoirs δD → P/E, hydrography, paleotopography
Hopanes	Soil bacteria	δ¹3C → Changes in methanogen populations

Biomarkers in HUMAN HEALTH

Potential applications of biomarkers:



Nature Reviews | Drug Discovery


Biomarkers in HUMAN HEALTH ... a lot of work

Biomarkers in HUMAN HEALTH ... a lot of work

Overview of Multi-omic Approaches Applied in Biomarker Discovery

Biomarkers in TOXICOLOGY

Identification of markers of long-term risks

- Human: health, toxicology and carcinogenesis
- Ecotoxicology: early markers of toxic effects

BIOMARKER

 Change which occurs as response to "stressors" (xenobiotics, disease, temperature...) extending the adaptive response beyond the normal range

In vivo biomarkers:

- changes measured in stressed organisms ("classical biomarkers")

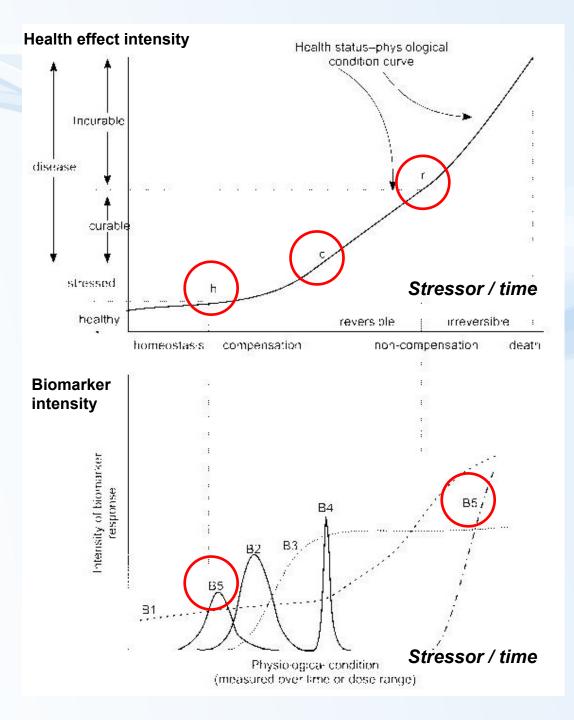
In vitro biomarkers

- in vitro testing characterizing potencies of xenobiotic to induce specific biological activity (or toxicity mechanism)
 - = biological potencies (markers of potential hazards)

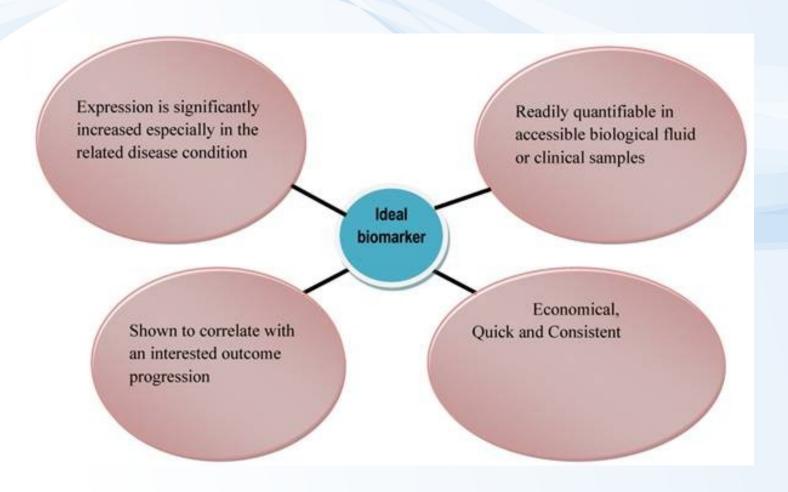
Biomarkers & Exposure

h: homeostatic conditions

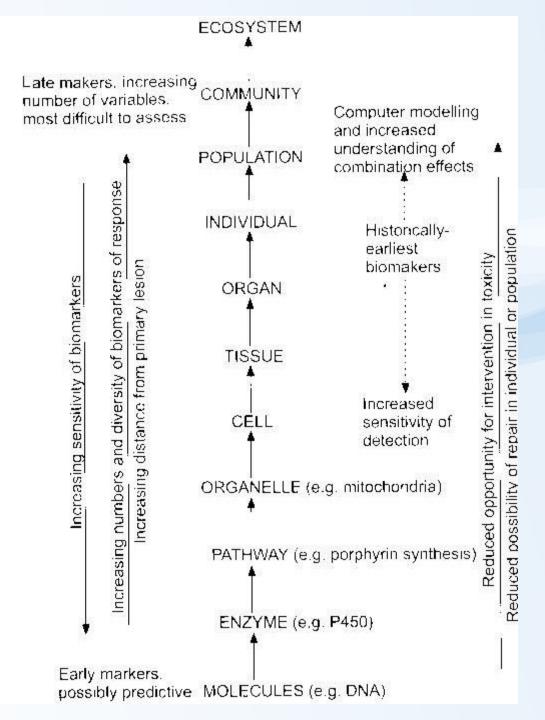
c: reversible stage


r: irreversible effects of pollutants

Various biomarker profiles


- temporal changes-B2; B4
- repeated occurrence (**B5**)
- continuous increase (B1)
- increase with maximum (B3)

: B1 + B3 are candidate biomarkers!



Ideal biomarker

Biomarkers at different levels of biological organisation

Biomarkers - classification

Categorization by US National Academy of Sciences

- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

Continuum exists among biomarkers

example: adducts of toxicant to DNA

? biomarker of exposure / ? response

Various biomarker types

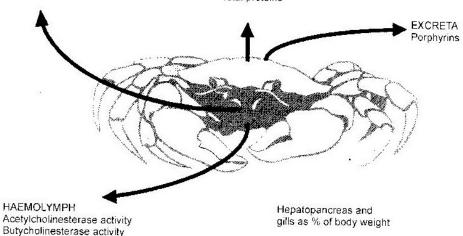
- Specific (selective) in vivo biomarkers
 - ➤ Biomarkers selectively reflecting specific types (mechanisms) of toxicity
 - E.g. inhibition of AcCholE : exposure = organophosphates; effect = neurotoxicity
 - + provides specific information
 - multiple biomarkers must be measured in parallel
- Non-specific (non-selective) in vivo biomarkers
 - Biomarkers of general stress
 - E.g. induction of Heat Shock Proteins (hsp)
 - + general information about stress
 - sensitive to many "stressors" (temperature, salinity ...)

Sampling biological materials for biomarker analyses

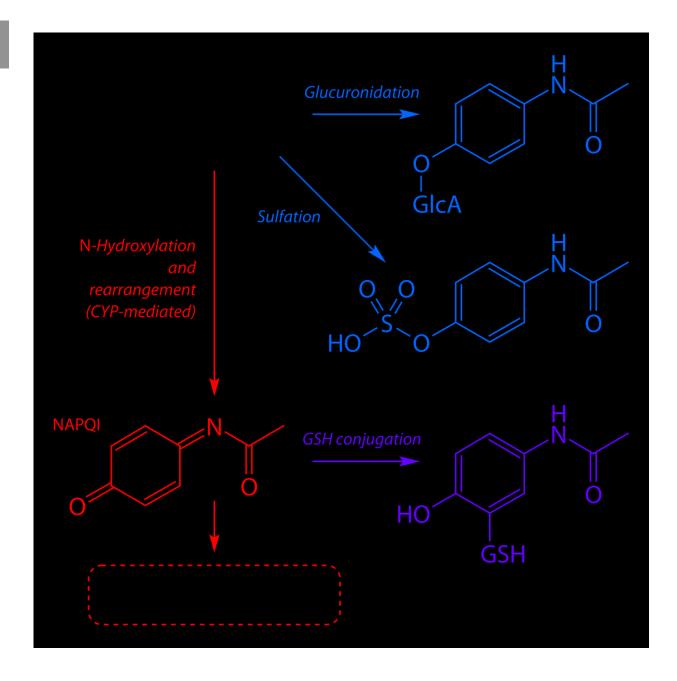
Non-destructive (non-invasive)

- blood / haemolymph collection & analyses
- skin, feather, hair ...(life of the organism not affected)

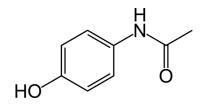
Destructive (invasive)

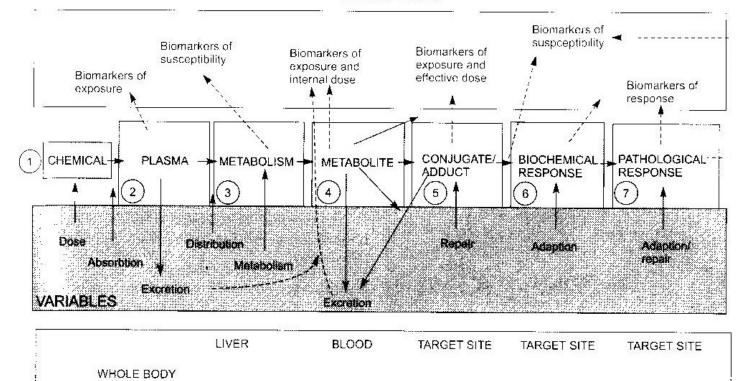

- whole animal
 - → 3R principles: maximum use of the material
- multiple biomarker evaluation

GILLS
Benzopyrene mono-oxygenase activity
NADH ferricyanide reductase activity
Micronuclei (mutagenicity) total proteins


Micronuclei

Total proteins


HEPATOPANCREAS
Benzopyrene mono-oxygenase activity
Ethoxyresorufin-O-deethylase
NADPH cytochrome c reductase
NADH cytochrome c reductase
SDS-PAGE for P450
Alkaline unwinding assay (DNA damage)
Porphyrins
Total proteins



EXAMPLE - Paracetamol

- (1) paracetamol
- (2) parent compound measurement biomarker of exposure

ENVIRONMENT

- (3) activation to reactive metabolite (N-ac-p-benzoquinone, NAPQI) by CYP

 → reaction with GSH / measurement levels of CYPs; levels of GSH susceptibility
- (4) GSH-NAPQI conjugate exposure, susceptibility
- (5) NAPQI-protein adducts → toxicity: **exposure**, **effective dose**
- (6) adaptations: GSH depletion, inhibition of protein synthesis **biomarkers of response**
- (7) protein alkylation → degeneration of hepatocytes: necrosis
 → increase concentrations of bilirubin in plasma + inflammation response / effect

Toxicity biomarkers – examples

Table 1 Examples of different biomarkers illustrated with specific examples and examples of the stressor which may result in the biomarker changes

Type of biomarker	Biomarker	Specific example	Stressor
Exposure	DNA adducts Protein adduct DNA fragments	Styrene oxide- <i>O</i> ⁶ guanine N ⁷ -Guanyl-aflatoxin B ₁ 7,8-Dihydro-8-oxoguanine	Styrene exposure Dietary aflatoxin Reactive oxygen species
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholinesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1,3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alanine aminotransferase) ALP (alkaline phosphatase) CK or CPK (creatine kinase)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/muscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilirubin	Hepatotoxic and nephrotoxic compounds Hepatotoxic compounds Liver injury
	Clotting time Urinary metabolites Raised antioxidant levels Enzyme induction Stress proteins Protective proteins Allergic response	Prothrombin Glucose, raised creatinine, GSH conjugates Liver glutathione P450 induction hsp 60, hsp 70, hsp90 Metallothionein Antibodies, e.g. IgG Dermatitis	Warfarin (rodenticide) Pancreatic abnormalities, kidney damage Reactive oxygen species Polycyclic aromatic hydrocarbons Cadmium, heat Heavy metals, e.g. cadmium Antigens Nickel
	Histology Clinical observations Population studies	Chromosomal aberrations, micronuclei Heart rate, temperature, sleeping time Breeding patterns, migrations	Genotoxic agents Barbiturates Climate change
Susceptibility	Phenotype Oncogenes	Acetylator phenotype (<i>NAT 2</i>) Dominant oncogenes (<i>ras. mic</i>) Recessive suppressor gene (<i>p52</i>)	
	'Cancer' genes	Breast-ovary cancer gene (BRCA 1)	

Other examples

Toxicity biomarkers

Table 9.2 Availability of biomarkers in blood

Biomarker	Blood	Tissue of choice	Comment
AChE inhibition	+?	Brain	Effects in blood more transient
Neurotoxic esterases		Brain	Enzyme is limited to brain
Biogenic amines	-	Brain	Changes in blood too transient
DNA			
Strand breakage	?	Wide range	Nucleated avian red blood cells are possible
Adduct formation	+	Wide range	Haemoglobin is good substitute for DNA
SCE	+	Wide range	Blood lymphocytes can be used
Degree of methylation	?	Wide range	Nucleated avian red blood cells are possible
MFO	-	Liver	Western blotting technique on leucocytes is possible
Гhyroid	+	Thyroid	Circulating levels of T ₃ and T ₄ are sensitive
Retinols	+	Liver	Advances to use plasma are being made
Porphyrins	+?	Liver	Advances to use plasma are likely
ALAD	+	Blood	Tissue of choice
Enzymes	+	Blood	Tissue of choice
Immunotoxic	_	Lymphatic cells, bone marrow	Limited number of tests available for blood