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Mismatch Proportions
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Scales of genome size
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Quality control
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http://wiki.bits.vib.be/index.php/File:OverviewNGSdataanalysis.png

FASTQ format
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¥

‘ Q scores (as ASCII chars)

‘ Base=T, 0=":'=25

The first line starts with '@, followed by the label
The third line starts with '+'. In some variants, the '+' line contains a
second copy of the label

The fourth line contains the Q scores represented as ASCII characters



Basic biological problems

e |dentification of mutations
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e Expression analyses - genes, miRNAs, etc.

An Introduction to Genetic Analysis. 7th edition. Griffiths AJF, Miller JH, Suzuki DT, et al. New York: W. H. Freeman; 2000


http://www.whfreeman.com/

Mutation identification

 Whole exome or whole genome data,
ultra-deep sequencing

e Output: VCF-formaf
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Mutation identification

 Aim: identification of point mutations

e Application: diagnostic of diseases

- inherited (germinal, de-novo mutations)

e.g. familiar hypercholesterolemia, hemophylia, cystic fibrosis...

- gained (somatic mutations)

e.g. cancer, leukemia, ...

De novo based strategy



Germinal mutations

Comparison with reference genome
Expected allele frequency: 30-100%
Softwares: GATK, VarScan, ...

Usage: e.g. prenatal diagnostic



Somatic mutations

Comparison tumor-normal (matched, unmatched)

Expected allele frequency:
>0,2%

Softwares: MuTect, FreeBayes, deepSNYV, ...

Usage: translational research, cancer diagnostic,
personalized medicine,...



Advanced biological problems

e Structural variant discovery

(deletions, duplications, CN variants, insertions,
inversions, translocations)

Deletion Novel sequence insertion Mobile-element insertion
Ref. — - Ref. > Rel.
Mobile
element
Tandem duplication Interspersed duplication
Ref. > Ref =
Inversion Translocation
Ref. = Ref,

===  Ref

Mature Reviews | Genetics



Advanced biological problems

 Chromotripsis = thousands of clustered
chromosomal rearrangements occur in a single
event in localised and confined genomic regions

inoneorafew ess@eerEErErE—
Chromosomes ¢ Single catastrophic

event in cell history

Tensto

- BODONCORONRON 5
chromosome
fragments
I Abberant repair

NJ

Cancer



Expression analyses — RNA-seq

e characterization of gene expression in cells via
measurement of mRNA levels
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e Output: expression level table



RNA-seq

 Aim: identification of genes differentially
expressed in tissues with different conditions
(tumor vs normal, treated vs untreated,
different stages of illness, ...)

e Application: translational research, diagnostic
of diseases




Expression level in RNA-seq

= The number of reads (counts)
mapping to the biological
feature of interest (gene,
transcript, exon, etc.) is
considered to be linearly
related to the abundance of the
target feature

probakbility
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RNA-seq
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What is differential expression?

A gene is declared differentially expressed if
an observed difference or change in read
counts between two experimental conditions
is statistically significant, i.e. whether it is
greater than what would be expected just due
to natural random variation.

e Statistical tools are needed to make such a
decision by studying counts probability
distributions.



Definitions

e Sequencing depth: Total number of reads

mapped to the genome. Library size.

e Gene len

oth: Number of bases.

 Gene counts: Number of reads mapping to

that gene (expression measurement)
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Experimental design

e Pairwise comparisons: Only two experimental
conditions or groups are compared.

e Multiple comparisons: More than 2 conditions
or groups.

Replicates

 Biological replicates. To draw general

conclusions: from samples to population.
 Technical replicates. Conclusions are only valid

for compared samples.




RNA-seq biases

* Influence of sequencing depth: The higher
sequencing depth, the higher counts.

e Dependence on gene length: Counts are
proportional to the transcript length times the
MRNA expression level.

e Differences on the counts distribution among
samples.



Options

1. Normalization: Counts should be previously
corrected in order to minimize these biases.

2. Statistical model should take them into
account.



Normalization methods

RPKM (Mortazavi et al., 2008) = Reads per kilo base per million:
Counts are divided by the transcript length (kb) times the total
number of millions of mapped reads

number of reads of the region

total reads _ region length
1000000 1000

RPKM =

Upper-quartile (Bullard et al., 2010): Counts are divided by upper-
quartile of counts for transcripts with at least one read.

TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values.
Quantiles, as in microarray normalization (lrizarry et al., 2003).

FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software
generates FPKM values (Fragments Per Kilobase of exon per Million
fragments mapped) to estimate gene expression, which are
analogous to RPKM.



Differential expression

 Parametric assumptions: Are they fulfilled?
 Need of replicates.

* Problems to detect differential expression in
genes with low counts.



Goal

Based on a count table, we want to detect
differentially expressed genes between
conditions of interest.

We will assign to each gene a p-value (0-1),
which shows us 'how surprised we should be’
to see this difference, when we assume there

is no difference.

O p-value 1
- .
g o
Very big chance there is a difference
Very small chance there is a real difference




Algorithms under active development

Detecting differential expression by count analysis

» edgeR @@ - DE on the gene level from counts - TOP

» DEseqd - DE on the gene level from counts - TOP

» tweeDEseq @ - DE on the gene level from counts

» NEPSeqd - DE on the gene level from counts

» TSPME - DE on the gene level from counts

» SAMseqd - non-parametric method on the gene level from counts - TOP if large number of replicates
» ShrinkSeqd - DE on the gene level from counts

» BBSeq@ - DE on the gene level

» Bayseqd - DE on the gene level from counts - TOP

» DEGseq@ - DE on the gene level

» sydSeqd - improved DE on the gene level for low replicate studies

» DEXSeqd - DE on the exon level

» NOlseqd - Non-parametric method from counts

s CuffLinks & cuffdiff2 - DE on the isoferm level - TOP |

» BitSeqd - DE on the isoform level

» EESeqd - DE on the isoform level from counts

» Myrnai@ - cloud computing for large RNA-seq datasets

» sSeq@d - optimized for small sample size experiments.

» MRFSeq - optimized for small read counts

» QuasiSeqd - apply the QL, QLShrink and QLSpline methods to RMNA-seq data for DE

http://wiki.bits.vib.be/index.php/RNAseq_toolbox#Detecting_differential_expression_by count_analysis



Intuition

Difference is quantified and used for
p-value computation
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Dispersion estimation

 For every gene, a NB is fitted based on the
counts. The most important factor in that model

to be estimated is the dispersion.

e DESeq2 estimates dispersion by 3 steps:
1. Estimates dispersion parameter for each gene

2. Plots and fits a curve
3. Adjusts the dispersion parameter towards the

curve ('shrinking')



dispersion
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Test runs between 2 conditions

 for each gene 2 NB
models (one for each
condition) are made, and
a Wald test decides
whether the difference is
significant (red in plot).

log, fold change

05

0.0

1e+01 1e+02 1e+03 1e+04 1e+05

mean of normalized counts




Test runs between 2 conditions

e N

* for each gene 2 NB i.e. we are going to perform
models (one for each thousands of tests...
condition) are made, and (i we set set a cut-off on the
a Wald test decides p-value of 0,05 and we have
whether the differenceis  performed 20000 tests, 1000
significant (red in plot). genes will appear significant

by chance)



Check the distribution of p-values
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Improve test results
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Improve test results

* Avoid testing = apply a filter before testing, an
independent filtering

* Apply multiple testing correction




Multiple testing corrections

* Bonferroni or Benjamini-Hochberg
correction, to control false discovery

rate (FDR).

* FDR s the fraction of false positives in the
genes that are classified as DE.
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e |f we set athreshold a of 0,05, 20% of
the DE genes will be false positives.



Including different factors

sample strain  treatment day
samplel WT G 1
TreatmentG Treatment AG sampleZ  WT AG '
sample3 WT G 1
sampled WT AG 1
samples UFPC G 1
VV-I— © © Q Q sampleb UPC AG 1
) () Q Q sample? UPC G 1
sampled UFPC AG 1
sampled WT G 2
samplell  WT AG 2
Q O © Q samplell  WT G z
samplelZ WT AG 2
Mutant (UPC) © © Q © samplel3 UPC G z
sampleld UPC AG z
samplels UPC G 2
samplelé  UPC AG z
PN

Dayl Day2 Dayl Day?2 Additional metadata

. (batch factor)
nich genes are DE between UPCand WT?

nich genes are DE between G and AG?
nich genes are DEin WT between G and AG?

===



Statistical model

Gene = strain + treatment + day

e export results for unique comparisons



Galaxy / BITS
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baseMean
236.,95771532567
152. 753854809905
394.18013915485
3840,73677986616
97.9171191032388
292.453306221006
724 .903093908146

log2FoldChange
0.319894269325064
-0.47673982481625
0.545507459785333

-0.675753238608597

0.42580183962291

-0.290563708698689
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IfcSE
0.0795476625084231
0.120420053359006
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0.109195747881053
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0.0523592353116698

pvalue
5.78492554744642e-05
7.52725227015407e-05
1.23732350682432e-07
4, 26668298965338e-28
9.64169841515241e-05
3.55966374624607e-05
6.52789812704274e-05

pad)
0.00484865585947968
0.00561314522325369
2.42600739993209e-05
6.06508986979228e-25
0.00668569477909227
0.00343055051883985
0.00515522621532848



Visualization of results - heatmap
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