

Matrix Analyses

"Populační ekologie živočichů"

Stano Pekár

Net reproductive rate (R_0)

• average total number of offspring produced by a female in her lifetime

$$R_0 = \sum_{x=0}^n l_x m_x$$

Average generation time (T)

- average age of females when they give birth
- not valid for populations with generation overlap

Expectation of life

▶ age specific expectation of life – average age that is expected for particular age class

• *o* .. oldest age

ge
$$e_x = \frac{T_x}{l_x}$$
 where $T_x = \sum_x^o L_x$ $L_x = \frac{l_x + l_{x+1}}{2}$

Growth rates

- Discrete time/generations
- estimate of λ (finite growth rate) from the life table:

where $\tilde{\mathbf{N}}_t$ is vector at stable age distribution λ is dominant positive eigenvalue of A

$$\widetilde{\mathbf{A}}\widetilde{\mathbf{N}}_{t} = \lambda \widetilde{\mathbf{N}}_{t}$$

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$

 $- \text{ or } \lambda \approx \frac{R_0}{T}$

- Continuous time
- r can be estimated from λ
- by approximation

 $r = \ln(\lambda)$

$$r \approx \frac{\ln(R_0)}{T}$$

or by Euler-Lotka method

$$1 = \sum_{x}^{\omega} l_{x} m_{x} e^{-rx}$$

Stable Class distribution (SCD)

relative abundance of different life history age/stage/size categories
 ▶ population approaches stable age distribution:
 N₀: N₁: N₂: N₃:...:N_s is stable

- once population reached SCD it grows exponentially

• \mathbf{w}_1 .. right eigenvector (vector of the dominant eigenvalue)

provides stable age distribution
scale w₁ by sum of individuals

$$\mathbf{A}\mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

$$SCD = \frac{\mathbf{W}_1}{\sum_{i=1}^{S} w_{1i}}$$

Reproductive value (v_x)

 measures relative reproductive potential and identifies age class that contributes most to the population growth
 such class is under highest selection force

• when population increases then early offspring contribute more to v_x than older ones

▶ is a function of fertility and survival

$$\mathbf{v}_1 \mathbf{A'} = \lambda_1 \mathbf{v}_1$$

• \mathbf{v}_1 .. left eigenvector (vector of the dominant eigenvalue of transposed A)

- \mathbf{v}_1 is proportional to the reproductive values and scaled to the first category

$$v_x = \frac{v_{1x}}{v_{11}} \qquad x \neq 1$$

Sensitivity (s)

• identifies which process (p, F, G) has largest effect on the population increase (λ_1)

- examines change in λ_1 given small change in processes (a_{ij})
- sensitivity is larger for survival of early, and for fertility of older classes
- not used for postreproductive census with class 0

$$s_{ij} = \frac{v_{ij} w'_{ij}}{\langle \mathbf{v}, \mathbf{w} \rangle} \leftarrow \text{sum of pairwise products}$$

Elasticity (e)

- weighted measure of sensitivity
- measures relative contribution to the population increase
- impossible transitions = 0

$$e_{ij} = \frac{a_{ij}}{\lambda_1} s_{ij}$$

Conservation biology

to adopt means for population promotion or control

Conservation/control procedure

 Construction of a life table
 Estimation of the intrinsic rates
 Sensitivity analysis - helps to decide where conservation/control efforts should be focused
 Development and application of management plan
 Prediction of future