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Density-dependent growth

» includes all mechanisms of population growth that
change with density
R population structure is ignored
R extrinsic effects are negligible
R response of A and » to N is immediate

» A and r decrease with population density either because
natality decreases or mortality increases or both
- negative feedback of the 1st order

» K .. carrying capacity
- upper limit of population growth
where A=1o0orr=20
- 1s a constant



Discrete (difference) model

- there 1s linear dependence of A on N

Nt+1:Ntﬂ“ Nt :1
Nt+1 /7“
N4
y =a+x Db Nt+1: (ﬂ,—l)N
1 1+ d
1 1Y) K
L A K
= if az:E then
K
N A
Nt+1: :
1/4 1+aN,




X

0 \ time

when N, > K then

/ Py

1+aN,

* population returns to K

when N, — 0 then

A

~ A
1+aN,

* N0 competition
 exponential growth

when N, — K then

ﬂ/ ~
l1+aN,

1

* density-dependent control
 S-shaped (sigmoid) growth




Continuous (differential) model

» logistic growth
» first used by Verhulst (1838) to describe growth of human population

- there 1s linear dependence of » on N

-when N > K then »—> 0

d_N — N]/(l — Ej
dt K

dN /dt*1/N

Solution of the differential equation

— KNO
(K—N,y)e™ "™ + N,

N

t




Exammation of the logistic model

Damping oscillations (r = 1.9)
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Model equilibria

1. N=0 .. unstable equilibrium
2. N=K .. stable equilibrium .. if 0 <r <2

» “Monotonous increase” and “Damping oscillations™ has a stable
equilibrium

» “Limit cycle” and “Chaos” 100
has no equilibrium

GO0L
r <2 .. stable equilibrium 5004
r=2.. 2—p01nF hmlt .cycle v 400
r=2.5 .. 4-point limit cycle

r=2.692 .. chaos SO0,
» chaos can be produced by 2004
deterministic process
» density-dependence is
stabilising only when i
r is rather low [

1004




Observed population dynamics

a) yeast (logistic curve)

b) sheep (logistic curve

with oscillations)

c) Callosobruchus

(damping oscillations)

d) Parus (chaos)
¢) Daphnia

» of 28 insect species

1n one species chaos
was identified, one
other showed limit

cycles, all other were 1n

stable equilibrium

Number of adult beetles Amount of yeast

Number of animals

g 3 6 9

Il | | | L |

12 15 18 21 @
Time (hr) ;

| |

0 5 : w0
Generations ; :

|

0 0 & B0 8 100

Time (days)

Number of sheep
{thousands)

Pairs/10 hectares

(b)
2000 —
1000 —

1 | L | L | 1 | L | !

1820 '40 '60 '80 1900 ‘20

‘ Year

(d)
8
6..—
4
3.—
2-—

1 llllllllllllllllllllllllllllllll

1915 1920 1925 1930 1935 1940
Year



Evidence of DD

» 1n case of density-independence A is constant — independent of N
» in case of DD A 1s changing with N: 1n(ﬁ) =a—DbN,
» plot In(A) against N,

» estimate A and K
a
/1 _ ea K =——
max b
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General logistic model

» Hassell (1975) proposed general model for DD
- r 1s not linearly dependent on N

N A ’
Ny = t 0 d_N:rN 1_(Ej
(1+aNt) drt K

where 6.. the strength of competition

» 6 <1 ..scramble competition
(over-compensation), strong DD, N
leads to fluctuations around K

» 6=1 .. contest competition
(exact compensation), stable density

» 6 >> 1 .. under-compensation

- weak DD, population will return to K



Models with time-lags

> species response to resource change is not immediate (as in case of
hunger) but delayed due to maternal effect, seasonal effect, predator
pressure

» appropriate for species with long generation time where reproductive rate
1s dependent on the past (previous generations)

» time lag (d or 7) .. negative feedback of the 2nd order

discrete model continuous model
N A N
Niy=— AN _ 1= e
1+aN, t—d dt K

» many populations of mammals cycle with 3-4 year periods
» time-lag provokes fluctuations of certain amplitude at certain periods
» period of the cycle in continuous model is always 47



Solution of the continuous model:

”j r T <1 — monotonous increase
K r 1 <3 — damping fluctuations

r T <4 — limit cycle fluctuations
r 1> 5 — extinction

2500
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Harvesting

» Maximum Sustainable Harvest (MSH)
R to harvest as much as possible with the least negative effect on N

R ignore population structure
; 4 dN N
R ignore stochasticity —=Nr|1-——|=0
dt K
K
local maximum: N*=—
2
= i Amount of MSH (V,,....):
= i at K/2:
| rK

0 K/2 N



» Robinson & Redford (1991)
- Maximum Sustainable Yield (MSY)

MSY = a(ﬁK — K) where a = 0.6 for longevity <5

a = 0.4 for longevity = (5,10)
a = 0.2 for longevity > 10

» Surplus production (catch-effort) models
- when r, A and K are not known
- effort and catch over several

years 1s known
- Schaefer quadratic model

catch=a + BE + yE*

- local maximum of the function
identifies optimal effort (OF)

Catch (kg x 10°6)




Alee effect

» individuals in a population may cooperate in hunting, breeding —
positive effect on population increase

» Allee (1931) — discovered inverse DD
R genetic inbreeding — decrease in fertility
R demographic stochasticity — biased sex ratio
R small groups — cooperation in foraging, defence, mating,
thermoregulation

» K, .. extinction threshold, increase
- unstable equilibrium
» population increase is slow

. . . 0
at low density but fast at higher density decrease \

N - A
dt Kl K2 K, K,




