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 dN = Nr
dt



includes all mechanisms of population growth that 
change with density
 population structure is ignored 
 extrinsic effects are negligible
 response of  and r to N is immediate

 and r decrease with population density either because 
natality decreases or mortality increases or both
- negative feedback of the 1st order

 K .. carrying capacity
- upper limit of population growth
 where  = 1 or r = 0
- is a constant
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Discrete (difference) model
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- there is linear dependence of  on N
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when Nt  0 then

• no competition
• exponential growth

when Nt  K then

• density-dependent control
• S-shaped (sigmoid) growth

when Nt > K  then

• population returns to K
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- when N  K  then   r  0
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logistic growth 
first used by Verhulst (1838) to describe growth of human population



Solution of the differential equation

Continuous (differential) model
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- there is linear dependence of r on N



Monotonous increase (r = 0.5) Damping oscillations (r = 1.9)

Limit cycle (r = 2.3)

Chaos (r = 3.0)



1. N = 0 .. unstable equilibrium 
2. N = K .. stable equilibrium .. if 0 < r < 2
 “Monotonous increase” and “Damping oscillations” has a stable 
equilibrium
 “Limit cycle” and “Chaos” 
has no equilibrium

r < 2 .. stable equilibrium 
r = 2 .. 2-point limit cycle 
r = 2.5 .. 4-point limit cycle 
r = 2.692 .. chaos 
 chaos can be produced by 
deterministic process
 density-dependence is 
stabilising only when 
r is rather low

Model equilibria
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a) yeast (logistic curve)

b) sheep (logistic curve 
with oscillations)

c) Callosobruchus 
(damping oscillations)

d) Parus (chaos)

e) Daphnia

 of 28 insect species 
in one species chaos 
was identified, one 
other showed limit 
cycles, all other were in 
stable equilibrium



 in case of density-independence  is constant – independent of N
 in case of DD  is changing with N:
 plot ln() against Nt
 estimate  and K
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Hassell (1975) proposed general model for DD
- r is not linearly dependent on N 

where θ.. the strength of competition

  θ < 1 .. scramble competition 
(over-compensation), strong DD, 
leads to fluctuations around K
 
θ = 1 .. contest competition 
(exact compensation), stable density
 
 θ  >> 1 .. under-compensation 
- weak DD, population will return to K
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 species response to resource change is not immediate (as in case of 
hunger) but delayed due to maternal effect, seasonal effect, predator 
pressure
 appropriate for species with long generation time where reproductive rate 
is dependent on the past (previous generations)
 time lag (d or τ) .. negative feedback of the 2nd order 

discrete model continuous model

 many populations of mammals cycle with 3-4 year periods
 time-lag provokes fluctuations of certain amplitude at certain periods
 period of the cycle in continuous model is always 4
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r  < 1  monotonous increase
r  < 3  damping fluctuations
r  < 4  limit cycle fluctuations
r  > 5  extinction

Solution of the continuous model:
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Maximum Sustainable Harvest (MSH) 
 to harvest as much as possible with the least negative effect on N
 ignore population structure
 ignore stochasticity 01
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 Surplus production (catch-effort) models 
- when r,  and K are not known 
- effort and catch over several 
years is known
- Schaefer quadratic model

- local maximum of the function
identifies optimal effort (OE)

Robinson & Redford (1991)
- Maximum Sustainable Yield (MSY)

where a = 0.6 for longevity < 5
a = 0.4 for longevity = (5,10)
a = 0.2 for longevity > 10
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 individuals in a population may cooperate in hunting, breeding – 
positive effect on population increase
Allee (1931) – discovered inverse DD
 genetic inbreeding – decrease in fertility
 demographic stochasticity – biased sex ratio
 small groups – cooperation in foraging, defence, mating, 
thermoregulation 

K2 .. extinction threshold, 
- unstable equilibrium
population increase is slow 
at low density but fast at higher density
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