

# Interspecific Interactions

# Types of interactions

#### DIRECT

| o     | _    |
|-------|------|
| s 2   | ies  |
| cie   | peci |
| spe   | of s |
| o     | SS ( |
| ffect | itne |
| Eŧ    | ij   |

#### Effect of species 1 on fitness of species 2

|   |          | 1        | NI. C.J | <b>D</b> |
|---|----------|----------|---------|----------|
| L |          | Increase | Neutral | Decrease |
|   | Increase | + +      |         |          |
|   | Neutral  | 0 +      | 0 0     |          |
|   | Decrease | + -      | - 0     |          |

- ++ .. mutualism (plants and pollinators)
- 0 + .. commensalism (saprophytism, parasitism, phoresis)
- + .. predation (herbivory, parasitism), mimicry
- 0 .. amensalism (allelopathy)
- - .. competition

INDIRECT Apparent competition

Facilitation

**Exploitation competition** 

## Niche measures

Niche breadth

### Levin's index (D):

- $p_k$  .. proportion of individuals in class k
- & does not include resource availability
- $\mathbf{R} \quad 1 < D < \infty$

#### Smith's index (FT):

- $-q_k$ .. proportion of available individuals in class k
- -0 < FT < 1

$$D = \frac{1}{\sum_{k=1}^{n} p_k^2}$$

$$FT = \sum_{k=1}^{n} \sqrt{p_k q_k}$$

▶ Niche overlap

## Pianka's index (a):

- & does not account for resource availability
- 80 < a < 1

## Lloyd's index (L):

$$\Re 0 < L < \infty$$

$$a = \frac{\sum p_{1k} p_{2k}}{\sqrt{\sum p_{1k} \sum p_{2k}}}$$

$$L = \sum \frac{p_{1k} p_{2k}}{q_k}$$

# Model of competition

- based on the logistic differential model
- assumptions:

 $\frac{\mathrm{d}N}{\mathrm{d}t} = Nr \left( 1 - \frac{N}{K} \right)$ 

- all parameters are constant
- individuals of the same species are identical
- environment is homogenous, differentiation of niches is not possible & only exact compensation is present
- ▶ model of Lotka (1925) and Volterra (1926)

**species 1**: 
$$N_1$$
,  $K_1$ ,  $r_1$ 



**species 2**: 
$$N_2$$
,  $K_2$ ,  $r_2$ 

$$\frac{dN_1}{dt} = N_1 r_1 \left( 1 - \frac{N_1 + N_2}{K_1} \right)$$

$$\frac{dN_2}{dt} = N_2 r_2 \left( 1 - \frac{N_1 + N_2}{K_2} \right)$$

total competitive effect (intra + inter-specific)

 $(N_1 + \alpha N_2)$  where  $\alpha$  .. coefficient of competition

 $\alpha = 0$  .. no interspecific competition

 $\alpha$  < 1 .. species 2 has lower effect on species 1 than species 1 on itself  $\alpha$  = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of

species 2)

 $\alpha = 1$ .. both species has equal effect on the other one

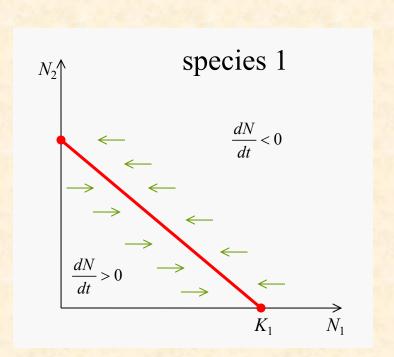
 $\alpha > 1$  .. species 2 has greater effect on species 1 than species 1 on itself

species 1: 
$$\frac{dN_1}{dt} = N_1 r_1 \left( 1 - \frac{N_1 + \alpha_{12} N_2}{K_1} \right)$$
species 2: 
$$\frac{dN_2}{dt} = N_2 r_2 \left( 1 - \frac{\alpha_{21} N_1 + N_2}{K_2} \right)$$

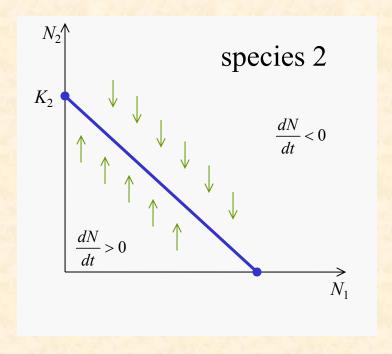
▶ if competing species use the same resource then interspecific competition is equal to intraspecific

## Equilibrium analysis of the model

- examination of the model behaviour using null isoclines
- used to describe change in any two variables in coupled differential equations by projecting orthogonal vectors
- ▶ identification of isoclines: a set of abundances for which the change in populations is 0:



$$\frac{dN}{dt} = 0$$



> species 1

$$r_1N_1 \left(1 - \left[N_1 + \alpha_{12}N_2\right] / K_1\right) = 0$$

$$r_1N_1 \left(\left[K_1 - N_1 - \alpha_{12}N_2\right] / K_1\right) = 0$$
trivial solution if  $r_1, N_1, K_1 = 0$ 
and if  $K_1 - N_1 - \alpha_{12}N_2 = 0$ 
then  $N_1 = K_1 - \alpha_{12}N_2$ 

if 
$$N_1 = 0$$
 then  $N_2 = K_1/\alpha_{12}$   
if  $N_2 = 0$  then  $N_1 = K_1$ 

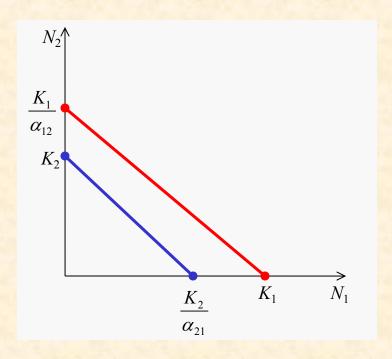
species 2

$$r_2N_2 (1 - [N_2 + \alpha_{21} N_1] / K_2) = 0$$
  
 $N_2 = K_2 - \alpha_{21}N_1$ 

trivial solution if  $r_2$ ,  $N_2$ ,  $K_2 = 0$ 

if 
$$N_2 = 0$$
 then  $N_1 = K_2/\alpha_{21}$   
if  $N_1 = 0$  then  $N_2 = K_2$ 

## **Isoclines**

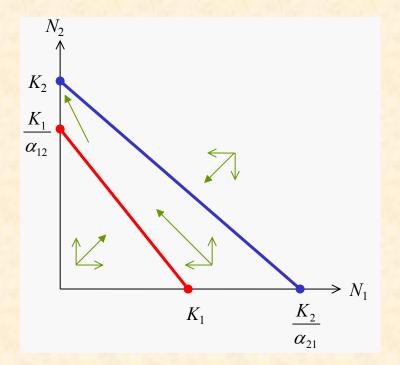


- $\blacktriangleright$  above isocline  $i_1$  and below  $i_2$  competition is weak
- in-between  $i_1$  and  $i_2$  competition is strong

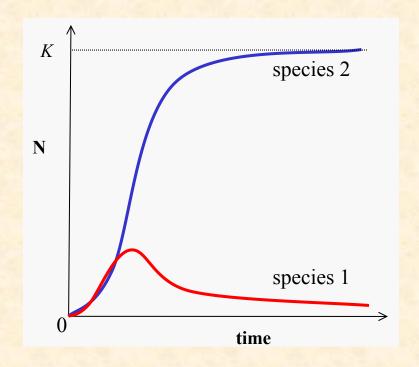
## 1. Species 2 drives species 1 to extinction

- K and  $\alpha$  determine the model behaviour
- ▶ disregarding initial densities species 2 (stronger competitor) will outcompete species 1 (weaker competitor)
- equilibrium  $(0, K_2)$

$$K_2 > \frac{K_1}{\alpha_{12}} \qquad K_1 < \frac{K_2}{\alpha_{21}}$$



$$K_1 = K_2$$
  $r_1 = r_2$   
 $\alpha_{12} > \alpha_{21}$   $N_{01} = N_{02}$ 

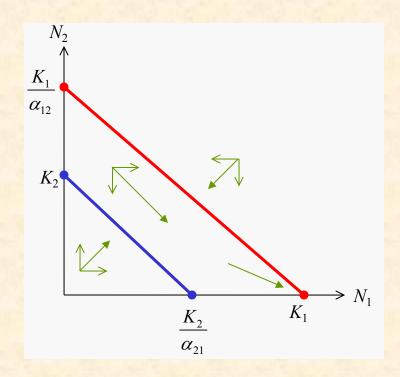


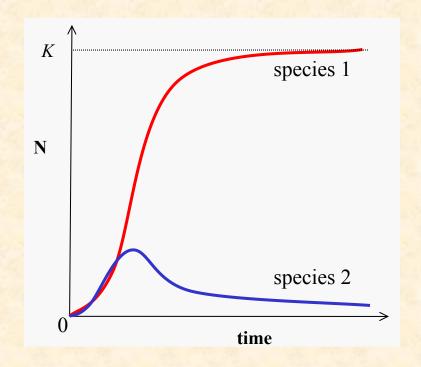
## 2. Species 1 drives species 2 to extinction

- ▶ species 1 (stronger competitor) will outcompete species 2 (weaker competitor)
- equilibrium  $(K_1, 0)$

$$K_1 > \frac{K_2}{\alpha_{21}}$$
  $K_2 < \frac{K_1}{\alpha_{12}}$ 

$$r_1 = r_2$$
  $K_1 = K_2$   
 $N_{01} = N_{02}$   $\alpha_{12} < \alpha_{21}$ 

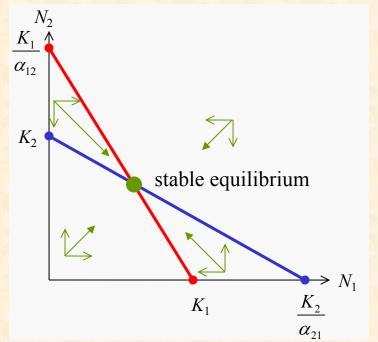




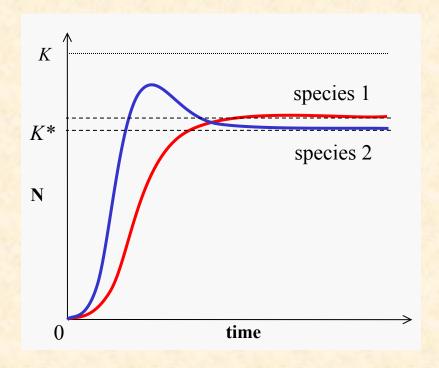
## 3. Stable coexistence of species

- disregarding initial densities both species will coexist at stable equilibrium (where isoclines cross)
- at at equilibrium population density of both species is reduced
- both species are weak competitors
- equilibrium  $(K_1^*, K_2^*)$

$$K_1 < \frac{K_2}{\alpha_{21}} \qquad K_2 < \frac{K_1}{\alpha_{12}}$$



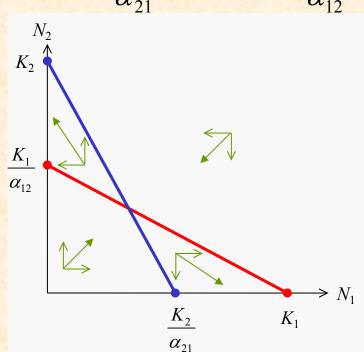
$$r_1 < r_2$$
  $K_1 = K_2$   
 $N_{01} = N_{02}$   $\alpha_{12}, \alpha_{21} < 1$ 

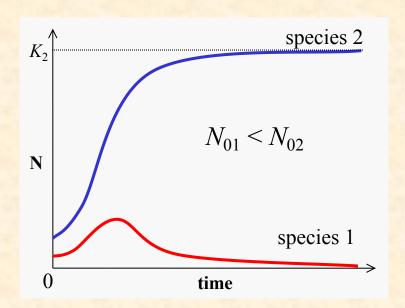


## 4. Competitive exclusion

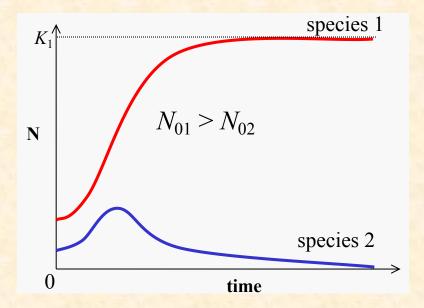
- ▶ one species will drive other to extinction depending on the initial conditions
  - coexistence only for a short time
  - both species are strong competitors
  - equilibrium  $(K_1, 0)$  or  $(0, K_2)$

$$K_1 > \frac{K_2}{\alpha_{21}}$$
  $K_2 > \frac{K_1}{\alpha_{12}}$ 





$$r_1 = r_2$$
  
 $K_1 = K_2$   $\alpha_{12}, \alpha_{21} > 1$ 



## Stability analysis

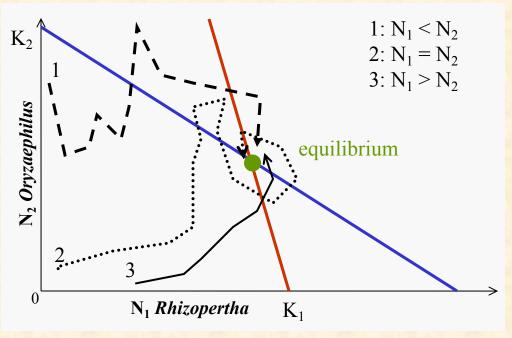
▶ Jacobian matrix of partial derivations for 2dimensional system

$$\mathbf{J} = \begin{pmatrix} \frac{\partial \, \mathrm{d}N_1/\mathrm{d}t}{\partial N_1} & \frac{\partial \, \mathrm{d}N_1/\mathrm{d}t}{\partial N_2} \\ \frac{\partial \, \mathrm{d}N_2/\mathrm{d}t}{\partial N_1} & \frac{\partial \, \mathrm{d}N_2/\mathrm{d}t}{\partial N_2} \end{pmatrix}$$

- evaluation of the derivations for densities close to equilibrium
- estimate eigenvalues of the matrix
- if all eigenvalues < 0 .. locally stable
  - ▶ Lotka-Volterra system is stable for  $\alpha_{12}\alpha_{21} < 1$

## Test of the model

- when *Rhizopertha* and *Oryzaephilus* were reared separately both species increased to 420-450 individuals (= K)
- when reared together *Rhizopertha* reached  $K_1 = 360$ , while Oryzaephilus  $K_2 = 150$  individuals
- ▶ combination resulted in more efficient conversion of grain ( $K_{12} = 510$  individuals)
- three combinations of densities converged to the same stable equilibrium
- prediction ofLotka-Volterra model is correct



# System for discrete generations

▶ solution of the differential model – Ricker's model:

$$N_{1,t+1} = N_{1,t}e^{r_1\left(\frac{K_1 - N_{1,t} - \alpha_{12}N_{2,t}}{K_1}\right)} N_{2,t+1} = N_{2,t}e^{r_2\left(\frac{K_2 - N_{2,t} - \alpha_{21}N_{1,t}}{K_2}\right)}$$

▶ dynamic (multiple) regression is used to estimate parameters from a series of abundances

.. a, b, c – regression parameters

$$\ln\left(\frac{N_{1,t+1}}{N_{1,t}}\right) = r_1 - N_{1,t} \frac{r_1}{K_1} - N_{2,t} \frac{r_1 \alpha_{12}}{K_1}$$

$$\ln\left(\frac{N_{2,t+1}}{N_{2,t}}\right) = r_2 - N_{1,t} \frac{r_2}{K_2} - N_{1,t} \frac{r_2 \alpha_{21}}{K_2}$$

$$r = a$$
  $\alpha = \frac{Kc}{r}$   $K = \frac{r}{b}$