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Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics that
provides a broad introduction to the entire field. Written specifically for a life science
audience, the basics of bioinformatics are explained, followed by discussions of the state-
of-the-art computational tools available to solve biological research problems. All key areas
of bioinformatics are covered including biological databases, sequence alignment, gene
and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics,
and proteomics. The book emphasizes how computational methods work and compares
the strengths and weaknesses of different methods. This balanced yet easily accessible text
will be invaluable to students who do not have sophisticated computational backgrounds.
Technical details of computational algorithms are explained with a minimum use of math-
ematical formulas; graphical illustrations are used in their place to aid understanding. The
effective synthesis of existing literature as well as in-depth and up-to-date coverage of all
key topics in bioinformatics make this an ideal textbook for all bioinformatics courses
taken by life science students and for researchers wishing to develop their knowledge of
bioinformatics to facilitate their own research.
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Preface

With a large number of prokaryotic and eukaryotic genomes completely sequenced
and more forthcoming, access to the genomic information and synthesizing it for
the discovery of new knowledge have become central themes of modern biological
research. Mining the genomic information requires the use of sophisticated com-
putational tools. It therefore becomes imperative for the new generation of biol-
ogists to be familiar with many bioinformatics programs and databases to tackle
the new challenges in the genomic era. To meet this goal, institutions in the United
States and around the world are now offering graduate and undergraduate students
bioinformatics-related courses to introduce them to relevant computational tools
necessary for the genomic research. To support this important task, this text was writ-
ten to provide comprehensive coverage on the state-of-the-art of bioinformatics in a
clear and concise manner.

The idea of writing a bioinformatics textbook originated from my experience of
teaching bioinformatics at Texas A&M University. I needed a text that was compre-
hensive enough to cover all major aspects in the field, technical enough for a college-
level course, and sufficiently up to date to include most current algorithms while at
the same time being logical and easy to understand. The lack of such a comprehen-
sive text at that time motivated me to write extensive lecture notes that attempted to
alleviate the problem. The notes turned out to be very popular among the students
and were in great demand from those who did not even take the class. To benefit a
larger audience, I decided to assemble my lecture notes, as well as my experience and
interpretation of bioinformatics, into a book.

This book is aimed at graduate and undergraduate students in biology, or any prac-
ticing molecular biologist, who has no background in computer algorithms but wishes
to understand the fundamental principles of bioinformatics and use this knowledge
to tackle his or her own research problems. It covers major databases and software
programs for genomic data analysis, with an emphasis on the theoretical basis and
practical applications of these computational tools. By reading this book, the reader
will become familiar with various computational possibilities for modern molecular
biological research and also become aware of the strengths and weaknesses of each
of the software tools.

The reader is assumed to have a basic understanding of molecular biology and bio-
chemistry. Therefore, many biological terms, such as nucleic acids, amino acids, genes,
transcription, and translation, are used without further explanation. One exception is
protein structure, for which a chapter about fundamental concepts is included so that
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algorithms and rationales for protein structural bioinformatics can be better under-
stood. Prior knowledge of advanced statistics, probability theories, and calculus is of
course preferable but not essential.

This book is organized into six sections: biological databases, sequence alignment,
genes and promoter prediction, molecular phylogenetics, structural bioinformatics,
and genomics and proteomics. There are nineteen chapters in total, each of which
is relatively independent. When information from one chapter is needed for under-
standing another, cross-references are provided. Each chapter includes definitions
and key concepts as well as solutions to related computational problems. Occasion-
ally there are boxes that show worked examples for certain types of calculations. Since
this book is primarily for molecular biologists, very few mathematical formulas are
used. A small number of carefully chosen formulas are used where they are abso-
lutely necessary to understand a particular concept. The background discussion of
a computational problem is often followed by an introduction to related computer
programs that are available online. A summary is also provided at the end of each
chapter.

Most of the programs described in this book are online tools that are freely available
and do not require special expertise to use them. Most of them are rather straightfor-
ward to use in that the user only needs to supply sequences or structures as input,
and the results are returned automatically. In many cases, knowing which programs
are available for which purposes is sufficient, though occasionally skills of interpret-
ing the results are needed. However, in a number of instances, knowing the names
of the programs and their applications is only half the journey. The user also has to
make special efforts to learn the intricacies of using the programs. These programs
are considered to be on the other extreme of user-friendliness. However, it would be
impractical for this book to try to be a computer manual for every available software
program. That is not my goal in writing the book. Nonetheless, having realized the
difficulties of beginners who are often unaware of or, more precisely, intimidated by
thenumerous software programs available,  have designed anumber of practical Web
exercises with detailed step-by-step procedures that aim to serve as examples of the
correct use of a combined set of bioinformatics tools for solving a particular problem.
The exercises were originally written for use on a UNIX workstation. However, they
can be used, with slight modifications, on any operating systems with Internet access.

In the course of preparing this book, I consulted numerous original articles and
books related to certain topics of bioinformatics. I apologize for not being able to
acknowledge all of these sources because of space limitations in such an introductory
text. However, a small number of articles (mainly recent review articles) and books
related to the topics of each chapter are listed as “Further Reading” for those who
wish to seek more specialized information on the topics. Regarding the inclusion of
computational programs, there are often a large number of programs available for
a particular task. I apologize for any personal bias in the selection of the software
programs in the book.
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One of the challenges in writing this text was to cover sufficient technical back-
ground of computational methods without extensive display of mathematical formu-
las. I strived to maintain a balance between explaining algorithms and not getting
into too much mathematical detail, which may be intimidating for beginning stu-
dents and nonexperts in computational biology. This sometimes proved to be a tough
balance for me because I risk either sacrificing some of the original content or losing
thereader. To alleviate this problem, I chose in many instances to use graphics instead
of formulas to illustrate a concept and to aid understanding.

I would like to thank the Department of Biology at Texas A&M University for the
opportunity of letting me teach a bioinformatics class, which is what made this book
possible. I thank all my friends and colleagues in the Department of Biology and
the Department of Biochemistry for their friendship. Some of my colleagues were
kind enough to let me participate in their research projects, which provided me with
diverse research problems with which I could hone my bioinformatics analysis skills.
I am especially grateful to Lisa Peres of the Molecular Simulation Laboratory at Texas
A&M, who was instrumental in helping me set up and run the laboratory section
of my bioinformatics course. I am also indebted to my former postdoctoral mentor,
Carl Bauer of Indiana University, who gave me the wonderful opportunity to learn
evolution and phylogenetics in great depth, which essentially launched my career in
bioinformatics. Also importantly, I would like to thank Katrina Halliday, my editor
at Cambridge University Press, for accepting the manuscript and providing numer-
ous suggestions for polishing the early draft. It was a great pleasure working with
her. Thanks also go to Cindy Fullerton and Marielle Poss for their diligent efforts in
overseeing the copyediting of the book to ensure a quality final product.

Jin Xiong

Xi
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CHAPTER ONE

Introduction

Quantitation and quantitative tools are indispensable in modern biology. Most bio-
logical research involves application of some type of mathematical, statistical, or
computational tools to help synthesize recorded data and integrate various types
of information in the process of answering a particular biological question. For exam-
ple, enumeration and statistics are required for assessing everyday laboratory exper-
iments, such as making serial dilutions of a solution or counting bacterial colonies,
phage plaques, or trees and animals in the natural environment. A classic example in
the history of genetics is by Gregor Mendel and Thomas Morgan, who, by simply count-
ing genetic variations of plants and fruit flies, were able to discover the principles of
geneticinheritance. More dedicated use of quantitative tools may involve using calcu-
lus to predict the growth rate of a human population or to establish a kinetic model for
enzyme catalysis. For very sophisticated uses of quantitative tools, one may find appli-
cation of the “game theory” to model animal behavior and evolution, or the use of mil-
lions of nonlinear partial differential equations to model cardiac blood flow. Whether
the application is simple or complex, subtle or explicit, it is clear that mathemati-
cal and computational tools have become an integral part of modern-day biological
research. However, none of these examples of quantitative tool use in biology could be
considered to be partofbioinformatics, whichis also quantitative in nature. To help the
reader understand the difference between bioinformatics and other elements of quan-
titative biology, we provide a detailed explanation of what is bioinformatics in the
following sections.

Bioinformatics, which will be more clearly defined below, is the discipline of quan-
titative analysis of information relating to biological macromolecules with the aid of
computers. The development of bioinformatics as a field is the result of advances in
both molecular biology and computer science over the past 30-40 years. Although
these developments are not described in detail here, understanding the history of this
discipline is helpful in obtaining a broader insight into current bioinformatics re-
search. A succinct chronological summary of the landmark events that have had major
impacts on the development of bioinformatics is presented here to provide context.

The earliest bioinformatics efforts can be traced back to the 1960s, although the
word bioinformatics did not exist then. Probably, the first major bioinformatics project
was undertaken by Margaret Dayhoffin 1965, who developed a first protein sequence
database called Atlas of Protein Sequence and Structure. Subsequently, in the early
1970s, the Brookhaven National Laboratory established the Protein Data Bank for
archiving three-dimensional protein structures. At its onset, the database stored less
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than a dozen protein structures, compared to more than 30,000 structures today.
The first sequence alignment algorithm was developed by Needleman and Wunsch
in 1970. This was a fundamental step in the development of the field of bioinfor-
matics, which paved the way for the routine sequence comparisons and database
searching practiced by modern biologists. The first protein structure prediction algo-
rithm was developed by Chou and Fasman in 1974. Though itis rather rudimentary by
today’s standard, it pioneered a series of developments in protein structure prediction.
The 1980s saw the establishment of GenBank and the development of fast database
searching algorithms such as FASTA by William Pearson and BLAST by Stephen
Altschul and coworkers. The start of the human genome project in the late 1980s
provided a major boost for the development of bioinformatics. The development and
the increasingly widespread use of the Internet in the 1990s made instant access to,
and exchange and dissemination of, biological data possible.

These are only the major milestones in the establishment of this new field. The
fundamental reason that bioinformatics gained prominence as a discipline was the
advancement of genome studies that produced unprecedented amounts of biological
data. The explosion of genomic sequence information generated a sudden demand
for efficient computational tools to manage and analyze the data. The development
of these computational tools depended on knowledge generated from a wide range of
disciplines including mathematics, statistics, computer science, information technol-
ogy, and molecular biology. The merger of these disciplines created an information-
oriented field in biology, which is now known as bioinformatics.

WHAT IS BIOINFORMATICS?

Bioinformatics is an interdisciplinary research area at the interface between com-
puter science and biological science. A variety of definitions exist in the literature
and on the world wide web; some are more inclusive than others. Here, we adopt the
definition proposed by Luscombe et al. in defining bioinformatics as a union of biol-
ogy and informatics: bioinformatics involves the technology that uses computers for
storage, retrieval, manipulation, and distribution of information related to biological
macromolecules such as DNA, RNA, and proteins. The emphasis here is on the use of
computers because most of the tasks in genomic data analysis are highly repetitive or
mathematically complex. The use of computers is absolutely indispensable in mining
genomes for information gathering and knowledge building.

Bioinformatics differs from a related field known as computational biology. Bioin-
formatics is limited to sequence, structural, and functional analysis of genes and
genomes and their corresponding products and is often considered computational
molecular biology. However, computational biology encompasses all biological areas
that involve computation. For example, mathematical modeling of ecosystems, pop-
ulation dynamics, application of the game theory in behavioral studies, and phylo-
genetic construction using fossil records all employ computational tools, but do not
necessarily involve biological macromolecules.
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Beside this distinction, it is worth noting that there are other views of how the two
terms relate. For example, one version defines bioinformatics as the development and
application of computational tools in managing all kinds of biological data, whereas
computational biology is more confined to the theoretical development of algorithms
used for bioinformatics. The confusion at present over definition may partly reflect
the nature of this vibrant and quickly evolving new field.

GOALS

The ultimate goal of bioinformatics is to better understand a living cell and how it
functions at the molecular level. By analyzing raw molecular sequence and structural
data, bioinformatics research can generate new insights and provide a “global” per-
spective of the cell. The reason that the functions of a cell can be better understood
by analyzing sequence data is ultimately because the flow of genetic information is
dictated by the “central dogma” of biology in which DNA is transcribed to RNA, which
is translated to proteins. Cellular functions are mainly performed by proteins whose
capabilities are ultimately determined by their sequences. Therefore, solving func-
tional problems using sequence and sometimes structural approaches has proved to
be a fruitful endeavor.

SCOPE

Bioinformatics consists of two subfields: the development of computational tools and
databases and the application of these tools and databases in generating biological
knowledge to better understand living systems. These two subfields are complemen-
tary to each other. The tool development includes writing software for sequence,
structural, and functional analysis, as well as the construction and curating of biolog-
ical databases. These tools are used in three areas of genomic and molecular biological
research: molecular sequence analysis, molecular structural analysis, and molecular
functional analysis. The analyses of biological data often generate new problems and
challenges that in turn spur the development of new and better computational tools.

The areas of sequence analysis include sequence alignment, sequence database
searching, motif and pattern discovery, gene and promoter finding, reconstruction of
evolutionary relationships, and genome assembly and comparison. Structural anal-
yses include protein and nucleic acid structure analysis, comparison, classification,
and prediction. The functional analyses include gene expression profiling, protein—
protein interaction prediction, protein subcellular localization prediction, metabolic
pathway reconstruction, and simulation (Fig. 1.1).

The three aspects of bioinformatics analysis are not isolated but often interact
to produce integrated results (see Fig. 1.1). For example, protein structure predic-
tion depends on sequence alignment data; clustering of gene expression profiles
requires the use of phylogenetic tree construction methods derived in sequence
analysis. Sequence-based promoter prediction is related to functional analysis of
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Figure 1.1: Overview of various subfields of bioinformatics. Biocomputing tool development is at the
foundation of all bioinformatics analysis. The applications of the tools fall into three areas: sequence
analysis, structure analysis, and function analysis. There are intrinsic connections between different
areas of analyses represented by bars between the boxes.

coexpressed genes. Gene annotation involves a number of activities, which include
distinction between coding and noncoding sequences, identification of translated
protein sequences, and determination of the gene’s evolutionary relationship with
other known genes; prediction of its cellular functions employs tools from all three
groups of the analyses.

APPLICATIONS

Bioinformatics has not only become essential for basic genomic and molecular
biology research, but is having a major impact on many areas of biotechnology
and biomedical sciences. It has applications, for example, in knowledge-based drug
design, forensic DNA analysis, and agricultural biotechnology. Computational studies
of protein-ligand interactions provide a rational basis for the rapid identification of
novelleads for synthetic drugs. Knowledge of the three-dimensional structures of pro-
teins allows molecules to be designed that are capable of binding to the receptor site
of a target protein with great affinity and specificity. This informatics-based approach
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significantlyreduces the time and cost necessary to develop drugs with higher potency;,
fewer side effects, and less toxicity than using the traditional trial-and-error approach.
In forensics, results from molecular phylogenetic analysis have been accepted as evi-
dencein criminal courts. Some sophisticated Bayesian statistics and likelihood-based
methods for analysis of DNA have been applied in the analysis of forensic identity. It
is worth mentioning that genomics and bioinformtics are now poised to revolution-
ize our healthcare system by developing personalized and customized medicine. The
high speed genomic sequencing coupled with sophisticated informatics technology
will allow a doctor in a clinic to quickly sequence a patient’s genome and easily detect
potential harmful mutations and to engage in early diagnosis and effective treatment
of diseases. Bioinformatics tools are being used in agriculture as well. Plant genome
databases and gene expression profile analyses have played an important role in the
development of new crop varieties that have higher productivity and more resistance
to disease.

LIMITATIONS

Having recognized the power of bioinformatics, it is also important to realize its lim-
itations and avoid over-reliance on and over-expectation of bioinformatics output.
In fact, bioinformatics has a number of inherent limitations. In many ways, the role
of bioinformatics in genomics and molecular biology research can be likened to the
role of intelligence gathering in battlefields. Intelligence is clearly very important in
leading to victory in a battlefield. Fighting a battle without intelligence is inefficient
and dangerous. Having superior information and correct intelligence helps to identify
the enemy’s weaknesses and reveal the enemy’s strategy and intentions. The gathered
information can then be used in directing the forces to engage the enemy and win
the battle. However, completely relying on intelligence can also be dangerous if the
intelligence is of limited accuracy. Overreliance on poor-quality intelligence can yield
costly mistakes if not complete failures.

It is no stretch in analogy that fighting diseases or other biological problems using
bioinformaticsislike fightingbattles with intelligence. Bioinformatics and experimen-
tal biology are independent, but complementary, activities. Bioinformatics depends
on experimental science to produce raw data for analysis. It, in turn, provides useful
interpretation of experimental data and important leads for further experimental
research. Bioinformatics predictions are not formal proofs of any concepts. They
do not replace the traditional experimental research methods of actually testing
hypotheses. In addition, the quality of bioinformatics predictions depends on the
quality of data and the sophistication of the algorithms being used. Sequence data
from high throughput analysis often contain errors. If the sequences are wrong or
annotations incorrect, the results from the downstream analysis are misleading as
well. That is why it is so important to maintain a realistic perspective of the role of
bioinformatics.
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Bioinformatics is by no means a mature field. Most algorithms lack the capabil-
ity and sophistication to truly reflect reality. They often make incorrect predictions
that make no sense when placed in a biological context. Errors in sequence align-
ment, for example, can affect the outcome of structural or phylogenetic analysis. The
outcome of computation also depends on the computing power available. Many
accurate but exhaustive algorithms cannot be used because of the slow rate of compu-
tation. Instead, less accurate but faster algorithms have to be used. This is a necessary
trade-off between accuracy and computational feasibility. Therefore, it is important
tokeep in mind the potential for errors produced by bioinformatics programs. Caution
should always be exercised when interpreting prediction results. It is a good practice
to use multiple programs, if they are available, and perform multiple evaluations. A
more accurate prediction can often be obtained if one draws a consensus by compar-
ing results from different algorithms.

NEW THEMES

Despite the pitfalls, there is no doubt that bioinformatics is a field that holds great
potential for revolutionizing biological research in the coming decades. Currently, the
field is undergoing major expansion. In addition to providing more reliable and more
rigorous computational tools for sequence, structural, and functional analysis, the
major challenge for future bioinformatics development is to develop tools for eluci-
dation of the functions and interactions of all gene products in a cell. This presents
a tremendous challenge because it requires integration of disparate fields of biolog-
ical knowledge and a variety of complex mathematical and statistical tools. To gain
a deeper understanding of cellular functions, mathematical models are needed to
simulate a wide variety of intracellular reactions and interactions at the whole cell
level. This molecular simulation of all the cellular processes is termed systems biology.
Achieving this goal will represent a major leap toward fully understanding a living sys-
tem. Thatis why the system-level simulation and integration are considered the future
of bioinformatics. Modeling such complex networks and making predictions about
their behavior present tremendous challenges and opportunities for bioinformati-
cians. The ultimate goal of this endeavor is to transform biology from a qualitative
science to a quantitative and predictive science. This is truly an exciting time for
bioinformatics.
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CHAPTER TWO

Introduction to Biological Databases

One of the hallmarks of modern genomic research is the generation of enormous
amounts of raw sequence data. As the volume of genomic data grows, sophisticated
computational methodologies are required to manage the data deluge. Thus, the very
firstchallenge in the genomics erais to store and handle the staggering volume of infor-
mation through the establishment and use of computer databases. The development
of databases to handle the vast amount of molecular biological data is thus a funda-
mental task of bioinformatics. This chapter introduces some basic concepts related to
databases, in particular, the types, designs, and architectures of biological databases.
Emphasis is on retrieving data from the main biological databases such as GenBank.

WHAT IS A DATABASE?

A database is a computerized archive used to store and organize data in such a way
that information can be retrieved easily via a variety of search criteria. Databases
are composed of computer hardware and software for data management. The chief
objective of the development of a database is to organize data in a set of structured
records to enable easy retrieval of information. Each record, also called an entry,
should contain a number of fields that hold the actual data items, for example, fields
for names, phone numbers, addresses, dates. To retrieve a particular record from the
database, a user can specify a particular piece of information, called value, to be found
in a particular field and expect the computer to retrieve the whole data record. This
process is called making a query.

Although data retrieval is the main purpose of all databases, biological databases
often have a higher level of requirement, known as knowledge discovery, which refers
to the identification of connections between pieces of information that were not
known when the information was first entered. For example, databases containing
raw sequenceinformation can perform extra computational tasks to identify sequence
homology or conserved motifs. These features facilitate the discovery of newbiological
insights from raw data.

TYPES OF DATABASES

Originally, databases all used a flat file format, which is a long text file that contains
many entries separated by a delimiter, a special character such as a vertical bar (|).
Within each entry are a number of fields separated by tabs or commas. Except for the
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raw values in each field, the entire text file does not contain any hidden instructions
for computers to search for specific information or to create reports based on certain
fields from each record. The text file can be considered a single table. Thus, to search
a flat file for a particular piece of information, a computer has to read through the
entire file, an obviously inefficient process. This is manageable for a small database,
but as database size increases or data types become more compley, this database style
canbecome very difficult forinformationretrieval. Indeed, searches through such files
often cause crashes of the entire computer system because of the memory-intensive
nature of the operation.

To facilitate the access and retrieval of data, sophisticated computer software
programs for organizing, searching, and accessing data have been developed. They
are called database management systems. These systems contain not only raw data
records but also operational instructions to help identify hidden connections among
data records. The purpose of establishing a data structure is for easy execution of the
searches and to combine different records to form final search reports. Depending
on the types of data structures,these database management systems can be classified
into two types: relational database management systems and object-oriented database
management systems. Consequently, databases employing these management sys-
tems are known as relational databases or object-oriented databases, respectively.

Relational Databases

Instead of using a single table as in a flat file database, relational databases use a set
of tables to organize data. Each table, also called a relation, is made up of columns
and rows. Columns represent individual fields. Rows represent values in the fields of
records. The columns in a table are indexed according to a common feature called
an attribute, so they can be cross-referenced in other tables. To execute a query in
a relational database, the system selects linked data items from different tables and
combines the information into one report. Therefore, specific information can be
found more quickly from a relational database than from a flat file database.

Relational databases can be created using a special programming language called
structured query language (SQL). The creation of this type of databases can take a great
deal of planning during the design phase. After creation of the original database, a
new data category can be easily added without requiring all existing tables to be mod-
ified. The subsequent database searching and data gathering for reports are relatively
straightforward.

Here is a simple example of student course information expressed in a flat file
which contains records of five students from four different states, each taking a dif-
ferent course (Fig. 2.1). Each data record, separated by a vertical bar, contains four
fields describing the name, state, course number and title. A relational database
is also created to store the same information, in which the data are structured as
a number of tables. Figure 2.1 shows how the relational database works. In each
table, data that fit a particular criterion are grouped together. Different tables can
be linked by common data categories, which facilitate finding of specific information.



Flat File Bioinformatics|Jane Doe, Kansas, Bich 441, Biochemistry|William Brown,
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Name, States, Course number, Course name|John Smith, Texas, Biol 689,

lllinois, Chem 289, Organic Chemistry|Jennifer Taylor, New York, Hort 201,
Horticulture|Howard Douglas, Texas, Math 172, Calculus

Table A Table B Table C
Student # Name State Student#| Course # Course # Course name
1 John Smith Texas 1 Biol 689 Biol 689 Bioinformatics
2 Jane Doe Kansas 2 Bich 441 Bich 441 Biochemistry
3 William Brown lllinois 3 Chem 289 Chem 289| Organic chemistry
4 Jennifer Taylor | New York 4 Hort 201 Hort 201 Horticulture
5 Howard Douglas Texas 5 Math 172 Math 172 Calculus

Figure 2.1: Example of constructing a relational database for five students’ course information originally
expressed in a flat file. By creating three different tables linked by common fields, data can be easily
accessed and reassembled.

For example, if one is to ask the question, which courses are students from Texas
taking? The database will first find the field for “State” in Table A and look up for
Texas. This returns students 1 and 5. The student numbers are colisted in Table B,
in which students 1 and 5 correspond to Biol 689 and Math 172, respectively. The
course names listed by course numbers are found in Table C. By going to Table C, exact
course names corresponding to the course numbers can be retrieved. A final report is
then given showing that the Texans are taking the courses Bioinformatics and Calcu-
lus. However, executing the same query through the flat file requires the computer to
read through the entire text file word by word and to store the information in a tempo-
ray memory space and later mark up the data records containing the word Texas. This
is easily accomplishable for a small database. To perform queries in a large database
using flat files obviously becomes an onerous task for the computer system.

Object-Oriented Databases

One of the problems with relational databases is that the tables used do not describe
complex hierarchical relationships between data items. To overcome the problem,
object-oriented databases have been developed that store data as objects. In an
object-oriented programming language, an object can be considered as a unit that
combines data and mathematical routines that act on the data. The database is struc-
tured such that the objects are linked by a set of pointers defining predetermined rela-
tionships between the objects. Searching the database involves navigating through the
objects with the aid of the pointers linking different objects. Programming languages
like C++ are used to create object-oriented databases.

The object-oriented database system is more flexible; data can be structured based
on hierarchical relationships. By doing so, programming tasks can be simplified for
datathat are known to have complexrelationships, such as multimedia data. However,
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State Object

Student Object

students
A

student # =1
studnet name =
John Smith

course 4

Course Object

p-course # = Math 172
| course # = Hort 201

|course #=Chem 289 [~

| course # = Bich 441 B

course # = Biol 689  [-------
course name =
Bioinformatics

students

Figure 2.2: Example of construction and query of an object-oriented database using the same student
information as shown in Figure 2.1. Three objects are constructed and are linked by pointers shown
as arrows. Finding specific information relies on navigating through the objects by way of pointers. For
simplicity, some of the pointers are omitted.

this type of database system lacks the rigorous mathematical foundation of the
relational databases. There is also arisk that some of the relationships between objects
may be misrepresented. Some current databases have therefore incorporated features
of both types of database programming, creating the object-relational database man-
agement system.

The above students’ course information (Fig. 2.1) can be used to construct an
object-oriented database. Three different objects can be designed: student object,
course object, and state object. Their interrelations are indicated by lines with arrows
(Fig. 2.2). To answer the same question — which courses are students from Texas
taking — one simply needs to start from Texas in the state object, which has pointers
that lead to students 1 and 5 in the student object. Further pointers in the student
object point to the course each of the two students is taking. Therefore, a simple
navigation through the linked objects provides a final report.

BIOLOGICAL DATABASES

Current biological databases use all three types of database structures: flat files,
relational, and object oriented. Despite the obvious drawbacks of using flat files in
database management, many biological databases still use this format. The justifica-
tion for this is that this system involves minimum amount of database design and the
search output can be easily understood by working biologists.



INTRODUCTION TO BIOLOGICAL DATABASES

Based on their contents, biological databases can be roughly divided into three
categories: primary databases, secondary databases, and specialized databases.
Primary databases contain original biological data. They are archives of raw sequence
or structural data submitted by the scientific community. GenBank and Protein Data
Bank (PDB) are examples of primary databases. Secondary databases contain com-
putationally processed or manually curated information, based on original infor-
mation from primary databases. Translated protein sequence databases containing
functional annotation belong to this category. Examples are SWISS-Prot and Pro-
tein Information Resources (PIR) (successor of Margaret Dayhoff’s Atlas of Protein
Sequence and Structure [see Chapter 1]). Specialized databases are those that cater
to a particular research interest. For example, Flybase, HIV sequence database, and
Ribosomal Database Project are databases that specialize in a particular organism
or a particular type of data. A list of some frequently used databases is provided in
Table 2.1.

Primary Databases

There are three major public sequence databases that store raw nucleic acid sequence
data produced and submitted by researchers worldwide: GenBank, the European
Molecular Biology Laboratory (EMBL) database and the DNA Data Bank of Japan
(DDBJ), which are all freely available on the Internet. Most of the data in the databases
are contributed directly by authors with aminimallevel of annotation. A small number
of sequences, especially those published in the 1980s, were entered manually from
published literature by database management staff.

Presently, sequence submission to either GenBank, EMBL, or DDB]J is a precondi-
tion for publication in most scientific journals to ensure the fundamental molecular
data to be made freely available. These three public databases closely collaborate
and exchange new data daily. They together constitute the International Nucleotide
Sequence Database Collaboration. This means that by connecting to any one of
the three databases, one should have access to the same nucleotide sequence data.
Although the three databases all contain the same sets of raw data, each of the indi-
vidual databases has a slightly different kind of format to represent the data.

Fortunately, for the three-dimensional structures of biological macromolecules,
there is only one centralized database, the PDB. This database archives atomic coor-
dinates of macromolecules (both proteins and nucleic acids) determined by x-ray
crystallography and NMR. It uses a flat file format to represent protein name, authors,
experimental details, secondary structure, cofactors, and atomic coordinates. The
web interface of PDB also provides viewing tools for simple image manipulation.
More details of this database and its format are provided in Chapter 12.

Secondary Databases

Sequence annotation information in the primary database is often minimal. To
turn the raw sequence information into more sophisticated biological knowledge,
much postprocessing of the sequence information is needed. This begs the need for
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TABLE 2.1. Major Biological Databases Available Via the World Wide Web

Databases and
Retrieval
Systems Brief Summary of Content URL
AceDB Genome database for www.acedb.org
Caenorhabditis elegans
DDBJ Primary nucleotide sequence www.ddbj.nig.ac.jp
database in Japan
EMBL Primary nucleotide sequence www.ebi.ac.uk/embl/index.html
database in Europe
Entrez NCBI portal for a variety www.ncbi.nlm.nih.gov/gquery/gquery.fcgi
of biological databases
ExPASY Proteomics database http://us.expasy.org/
FlyBase A database of the Drosophila http://flybase.bio.indiana.edu/
genome
FSSP Protein secondary structures www.bioinfo.biocenter.helsinki.fi:8080/dali/index.html
GenBank Primary nucleotide sequence www.ncbi.nlm.nih.gov/Genbank
database in NCBI
HIV databases  HIV sequence data and related =~ www.hiv.lanl.gov/content/index
immunologic information
Microarray DNA microarray data and www.ebi.ac.uk/microarray
gene analysis tools
expression
database
OMIM Genetic information of human  www.ncbi.nlm.nih.gov/entrez/query.fcgi2db=OMIM
diseases
PIR Annotated protein sequences http://pir.georgetown.edu/pirwww/pirhome3.shtml
PubMed Biomedical literature www.ncbi.nlm.nih.gov/PubMed
information
Ribosomal Ribosomal RNA sequences and  http://rdp.cme.msu.edu/html
database phylogenetic trees derived
project from the sequences
SRS General sequence retrieval http://srs6.ebi.ac.uk
system
SWISS-Prot Curated protein sequence www.ebi.ac.uk/swissprot/access.html
database
TAIR Arabidopsis information www.arabidopsis.org

database

secondary databases, which contain computationally processed sequence informa-
tion derived from the primary databases. The amount of computational process-
ing work varies greatly among the secondary databases; some are simple archives of
translated sequence data from identified open reading frames in DNA, whereas others
provide additional annotation and information related to higher levels of information
regarding structure and functions.

A prominent example of secondary databases is SWISS-PROT, which provides
detailed sequence annotation that includes structure, function, and protein fam-

ily assignment. The sequence data are mainly derived from TrEMBL, a database of
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translated nucleic acid sequences stored in the EMBL database. The annotation of
each entry is carefully curated by human experts and thus is of good quality. The pro-
tein annotation includes function, domain structure, catalytic sites, cofactor binding,
posttranslational modification, metabolic pathway information, disease association,
and similarity with other sequences. Much of this information is obtained from scien-
tific literature and entered by database curators. The annotation provides significant
added value to each original sequence record. The data record also provides cross-
referencing links to other online resources of interest. Other features such as very low
redundancy and high level of integration with other primary and secondary databases
make SWISS-PROT very popular among biologists.

Arecent effort to combine SWISS-PROT, TrEMBL, and PIR led to the creation of the
UniProt database, which haslarger coverage than any one of the three databases while
at the same time maintaining the original SWISS-PROT feature of low redundancy,
cross-references, and a high quality of annotation.

There are also secondary databases that relate to protein family classification
according to functions or structures. The Pfam and Blocks databases (to be described
in Chapter 7) contain aligned protein sequence information as well as derived motifs
and patterns, which can be used for classification of protein families and inference
of protein functions. The DALI database (to be described in Chapter 13) is a pro-
tein secondary structure database that is vital for protein structure classification and
threading analysis (to be described in Chapter 15) to identify distant evolutionary
relationships among proteins.

Specialized Databases

Specialized databases normally serve a specific research community or focus on a par-
ticular organism. The content of these databases may be sequences or other types of
information. The sequences in these databases may overlap with a primary database,
but may also have new data submitted directly by authors. Because they are often
curated by experts in the field, they may have unique organizations and additional
annotations associated with the sequences. Many genome databases that are taxo-
nomic specific fall within this category. Examples include Flybase, WormBase, AceDB,
and TAIR (Table 2.1). In addition, there are also specialized databases that contain
original data derived from functional analysis. For example, GenBank EST database
and Microarray Gene Expression Database at the European Bioinformatics Institute
(EBI) are some of the gene expression databases available.

Interconnection between Biological Databases

As mentioned, primary databases are central repositories and distributors of raw
sequence and structure information. They support nearly all other types of biological
databases in a way akin to the Associated Press providing news feeds to local news
media, which then tailor the news to suit their own particular needs. Therefore, in
the biological community, there is a frequent need for the secondary and specialized
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databases to connect to the primary databases and to keep uploading sequence infor-
mation. In addition, a user often needs to get information from both primary and sec-
ondary databases to complete a task because the information in a single database is
often insufficient. Instead of letting users visiting multiple databases, it is convenient
for entries in a database to be cross-referenced and linked to related entries in other
databases that contain additional information. All these create a demand for linking
different databases.

The main barrier to linking different biological databases is format incompati-
bility current biological databases utilize all three types of database structures — flat
files, relational, and object oriented. The heterogeneous database structures limit
communication between databases. One solution to networking the databases is
to use a specification language called Common Object Request Broker Architecture
(COBRA), which allows database programs at different locations to communicate in
a network through an “interface broker” without having to understand each other’s
database structure. It works in a way similar to HyperText Markup Language (HTML)
for web pages, labeling database entries using a set of common tags.

A similar protocol called eXtensible Markup Language (XML) also helps in bridging
databases. In this format, each biological record is broken down into small, basic com-
ponents that are labeled with a hierarchical nesting of tags. This database structure
significantly improves the distribution and exchange of complex sequence anno-
tations between databases. Recently, a specialized protocol for bioinformatics data
exchange has been developed. It is the distributed annotation system, which allows
one computer to contact multiple servers and retrieve dispersed sequence annota-
tion information related to a particular sequence and integrate the results into a single
combined report.

PITFALLS OF BIOLOGICAL DATABASES

One of the problems associated with biological databases is overreliance on
sequence information and related annotations, without understanding the reliabi-
lity of the information. What is often ignored is the fact that there are many errors in
sequence databases. There are also high levels of redundancy in the primary sequence
databases. Annotations of genes can also occasionally be false or incomplete. All
these types of errors can be passed on to other databases, causing propagation of
€errors.

Most errors in nucleotide sequences are caused by sequencing errors. Some of
these errors cause frameshifts that make whole gene identification difficult or protein
translation impossible. Sometimes, gene sequences are contaminated with sequences
from cloning vectors. Generally speaking, errors are more common for sequences pro-
duced before the 1990s; sequence quality has been greatly improved since. Therefore,
exceptional care should be taken when dealing with more dated sequences.

Redundancy is another major problem affecting primary databases. There is
tremendous duplication of information in the databases, for various reasons. The
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causes of redundancy include repeated submission of identical or overlapping
sequences by the same or different authors, revision of annotations, dumping of
expressed sequence tags (EST) data (see Chapter 18), and poor database management
that fails to detect the redundancy. This makes some primary databases excessively
large and unwieldy for information retrieval.

Steps have been taken to reduce the redundancy. The National Center for Biotech-
nology Information (NCBI) has now created a nonredundant database, called RefSeq,
in which identical sequences from the same organism and associated sequence frag-
ments are merged into a single entry. Proteins sequences derived from the same
DNA sequences are explicitly linked as related entries. Sequence variants from the
same organism with very minor differences, which may well be caused by sequencing
errors, are treated as distinctly related entries. This carefully curated database can be
considered a secondary database.

As mentioned, the SWISS-PROT database also has minimal redundancy for protein
sequences compared to most other databases. Another way to address the redundancy
problem is to create sequence-cluster databases such as UniGene (see Chapter 18)
that coalesce EST sequences that are derived from the same gene.

The other common problem is erroneous annotations. Often, the same gene
sequence is found under different names resulting in multiple entries and confu-
sion about the data. Or conversely, unrelated genes bearing the same name are found
in the databases. To alleviate the problem of naming genes, reannotation of genes and
proteins using a set of common, controlled vocabulary to describe a gene or protein
is necessary. The goal is to provide a consistent and unambiguous naming system for
all genes and proteins. A prominent example of such systems is Gene Ontology (see
Chapter 17).

Some of the inconsistencies in annotation could be caused by genuine disagree-
ment between researchers in the field; others may result from imprudent assignment
of protein functions by sequence submitters. There are also some errors that are sim-
ply caused by omissions or mistakes in typing. Errors in annotation can be particularly
damaging because the large majority of new sequences are assigned functions based
on similarity with sequences in the databases that are already annotated. Therefore, a
wrong annotation can be easily transferred to all similar genes in the entire database.
It is possible that some of these errors can be corrected at the informatics level by
studying the protein domains and families. However, others eventually have to be
corrected using experimental work.

INFORMATION RETRIEVAL FROM BIOLOGICAL DATABASES

As mentioned, a major goal in developing databases is to provide efficient and user-
friendly access to the data stored. There are a number of retrieval systems for bio-
logical data. The most popular retrieval systems for biological databases are Entrez
and Sequence Retrieval Systems (SRS) that provide access to multiple databases for
retrieval of integrated search results.
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To perform complex queries in a database often requires the use of Boolean oper-
ators. This is to join a series of keywords using logical terms such as AND, OR, and
NOT to indicate relationships between the keywords used in a search. AND means
that the search result must contain both words; OR means to search for results con-
taining either word or both; NOT excludes results containing either one of the words.
In addition, one can use parentheses () to define a concept if multiple words and
relationships are involved, so that the computer knows which part of the search to
execute first. [tems contained within parentheses are executed first. Quotes can be
used to specify a phrase. Most search engines of public biological databases use some
form of this Boolean logic.

Entrez

The NCBI developed and maintains Entrez, a biological database retrieval system.
It is a gateway that allows text-based searches for a wide variety of data, including
annotated genetic sequence information, structural information, as well as citations
and abstracts, full papers, and taxonomic data. The key feature of Entrez is its ability to
integrate information, which comes from cross-referencing between NCBI databases
based on preexisting and logical relationships between individual entries. This is
highly convenient: users do not have to visit multiple databases located in disparate
places. For example, in a nucleotide sequence page, one may find cross-referencing
links to the translated protein sequence, genome mapping data, or to the related
PubMed literature information, and to protein structures if available.

Effective use of Entrez requires an understanding of the main features of the search
engine. There are several options common to all NCBI databases that help to narrow
the search. One option is “Limits,” which helps to restrict the search to a subset of a
particular database. It can also be set to restrict a search to a particular database (e.g.,
the field for author or publication date) or a particular type of data (e.g., chloroplast
DNA/RNA). Another option is “Preview/Index,” which connects different searches
with the Boolean operators and uses a string of logically connected keywords to per-
form anewsearch. The search can also be limited to a particular search field (e.g., gene
name or accession number). The “History” option provides a record of the previous
searches so that the user can review, revise, or combine the results of earlier searches.
There is also a “Clipboard” that stores search results for later viewing for a limited
time. To store information in the Clipboard, the “Send to Clipboard” function should
be used.

One of the databases accessible from Entrez is a biomedical literature database
known as PubMed, which contains abstracts and in some cases the full text articles
fromnearly 4,000 journals. An important feature of PubMed is the retrieval of informa-
tion based on medical subject headings (MeSH) terms. The MeSH system consists of a
collection of more than 20,000 controlled and standardized vocabulary terms used for
indexing articles. In other words, it is a thesaurus that helps convert search keywords
into standardized terms to describe a concept. By doing so, it allows “smart” searches
in which a group of accepted synonyms are employed so that the user not only gets
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TABLE 2.2. Several Selected PubMed Tags and Their Brief Descriptions

Tag Name Description

AB Abstract Abstract

AD Affiliation Institutional affiliation and address of the first author and
grant numbers

AID Article identifier Article ID values may include the PII (controlled publisher
identifier) or doi (digital object identifier)

AU Author Authors

DP Publication date The date the article was published

JID Journal ID Unique journal ID in the National Library of Medicine’s
catalog of books, journals, and audiovisuals

LA Language The language in which the article was published

PL Place of publication Journal’s country of publication

PT Publication type The type of material the article represents

RN EC/RN number Number assigned by the Enzyme Commission to designate
a particular enzyme or by the Chemical Abstracts Service
for Registry Numbers

SO Source Composite field containing bibliographic information

TA Journal title Standard journal title abbreviation

abbreviation
TI Title The title of the article
VI Volume Journal volume

Source: www.ncbinlm.nih.gov/entrez/query/static/help/pmhelp.html.

exact matches, but also related matches on the same topic that otherwise might have
been missed. Another way to broaden the retrieval is by using the “Related Articles”
option. PubMed uses a word weight algorithm to identify related articles with similar
words in the titles, abstracts, and MeSH. By using this feature, articles on the same
topic that were missed in the original search can be retrieved.

For a complex search, a user can use the Boolean operators or a combination of
Limits and Preview/Index features to conduct complex searches. Alternatively, field
tags can be used to improve the efficiency of obtaining the search results. The tags
are identifiers for each field and are placed in brackets. For example, [AU] limits the
search for author name, and [JID] for journal name. PubMed uses a list of tags for
literature searches. The search terms can be specified by the tags which are joined by
Boolean operators. Some frequently used PubMed field tags are given in Table 2.2.

Another unique database accessible from Entrez is Online Mendelian Inheritance
inMan (OMIM), whichisanon-sequence-based database ofhuman disease genes and
human genetic disorders. Each entry in OMIM contains summary information about
aparticular disease as well as genes related to the disease. The text contains numerous
hyperlinks to literature citations, primary sequence records, as well as chromosome
loci of the disease genes. The database can serve as an excellent starting point to study
genes related to a disease.

NCBI also maintains a taxonomy database that contains the names and taxonomic
positions of over 100,000 organisms with at least one nucleotide or protein sequence
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represented in the GenBank database. The taxonomy database has a hierarchical clas-
sification scheme. The root level is Archaea, Eubacteria, and Eukaryota. The database
allows the taxonomic tree for a particular organism to be displayed. The tree is based
on molecular phylogenetic data, namely, the small ribosomal RNA data.

GenBank

GenBank is the most complete collection of annotated nucleic acid sequence data
for almost every organism. The content includes genomic DNA, mRNA, cDNA, ESTs,
high throughput raw sequence data, and sequence polymorphisms. There is also a
GenPept database for protein sequences, the majority of which are conceptual trans-
lations from DNA sequences, although a small number of the amino acid sequences
are derived using peptide sequencing techniques.

There are two ways to search for sequences in GenBank. One is using text-based
keywords similar to a PubMed search. The other is using molecular sequences to
search by sequence similarity using BLAST (to be described in Chapter 5).

GenBank Sequence Format

To search GenBank effectively using the text-based method requires an understanding
of the GenBank sequence format. GenBank is a relational database. However, the
search output for sequence files is produced as flat files for easy reading. The resulting
flat files contain three sections — Header, Features, and Sequence entry (Fig. 2.3).
There are many fields in the Header and Features sections. Each field has an unique
identifier for easy indexing by computer software. Understanding the structure of the
GenBank files helps in designing effective search strategies.

The Header section describes the origin of the sequence, identification of the organ-
ism, and unique identifiers associated with the record. The top line of the Header
section is the Locus, which contains a unique database identifier for a sequence loca-
tion in the database (not achromosome locus). The identifier is followed by sequence
length and molecule type (e.g., DNA or RNA). This is followed by a three-letter code
for GenBank divisions. There are 17 divisions in total, which were set up simply based
on convenience of data storage without necessarily having rigorous scientific basis;
for example, PLN for plant, fungal, and algal sequences; PRI for primate sequences;
MAM for nonprimate mammalian sequences; BCT for bacterial sequences; and EST
for EST sequences. Next to the division is the date when the record was made public
(which is different from the date when the data were submitted).

The following line, “DEFINITION,” provides the summary information for the
sequence record including the name of the sequence, the name and taxonomy of
the source organism if known, and whether the sequence is complete or partial. This
is followed by an accession number for the sequence, which is a unique number
assigned to a piece of DNA when it was first submitted to GenBank and is perma-
nently associated with that sequence. This is the number that should be cited in
publications. It has two different formats: two letters with five digits or one letter with
six digits. For a nucleotide sequence that has been translated into a protein sequence,
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[ LOCUS Q9ZGET 440 aa linear  BCT 15-JUN-2002
DEFINITION Light-independent protochlorophyllide reductase subunit N (LI-POR
subunit N) (DPOR subunit N).
ACCESSION Q9ZGES
VERSION Q9ZGEI  GI:18203677
DESOURCE swissprot: locus BCHN_HELMO, accession Q9ZGE9;
class: standard.
created: Oct 16, 2001.
sequence updated: Oct 16, 2001.
annotation updated: Jun 15, 2002.
xrefs: gi: 3820536, gi: 3820556
xrefs (non-sequence databases): InterProIPRO00510, PfamPF00148
KEYWORDS Photosynthesis; Bacteriochlorophyll biosynthesis; Oxidoreductase.
SOURCE Heliobacillus mobilis
ORGANISM Heliobacillus mobilis
Bacteria; Firmicutes; Clostridia; Clostridiales; Heliobacteriaceae;
Helicbacillus.
REFERENCE 1 (residues 1 to 440)
AUTHORS Xiong,J., Inoue,K. and Bauer,C.E.
Header TITLE Tracking molecular evolution of photosynthesis by characterization
of a major photosynthesis gene cluster from Heliobacillus mobilis
JOURMNAL:  Proc. Natl. Acad. Sci. U.S.A. 35 (25), 14851-14856 (1938)
MEDLINE 33061957
PUBMED 9843379
REMARK SEQUENCE FROM N.A&.

COMMENT
This SWISS-PROT entry is copyright. It is produced through a
collaboration betwsen the Swiss Institute of Bicinformatics and
the EMBL outstation - the Eurcopean Biocinformatics Institute.
The original entry is available from http://www.expasy.ch/sprot
and http://www.ebi.ac.uk/sprot
[FUNCTION] Uses Mg-ATP and reduced ferredoxin to reduce ring D of
protochlorophyllide (Pchlide)} to form chlorophyllide a {Chlide) (By
similarity). This reaction is light-independent.
[PATHWAY] Light-independent bacteriochlorophyll biosynthesis.
[SUBUNIT] Protochlorophyllide reductase is thought to be composed
of three subunits; bchL, bchN and bchB. Could form a heterotetramer
of two bchB and two bchN subunits.
— [SIMILARITY] BELONGS TO THE BCHN / CHLN FAMILY.
—— FEATURES Location/pualifiers
source 1..440
forganism="Heliobacillus mobilis"”
/db_xref="taxon:28064"
ene 1..440
Features /gene="BCHN"
Protein 1..440

/gene="BCHN"
/product="Light-independent protochlorophyllide reductase
subunit N"
/EC_number="1.18.-.-"
[ ORIGIN
1 merverengc fhtfcpiasv awlhrkikds fflivgthte ahfigtaldv mvyahsrfgf
61 avleesdlvs aspteelgkv vgguvdewhp kvifvlstes vdilkmdlev sckdlstrfg
121 fpvlpastsg idrsftgged avlhallpfv pkeapavepv eckkprwfsf gkesekekae
Sequence 181 parnlvliga vtdstigglg welkglglpk vdvipdgdir kmpvinegtv vvplgpylnd
241 tlatirrerr akvlstvipi gpdgtarfle aiclefgldt srikekeaga wrdlepglgi
301 lrgkkimflg dnllelplar fltscdvgvv eagtpyihsk dlggelellk erdvrivesp
361 dftkqlgrmg eykpdlvvag lgicnpleam gfttawsief tfagihgfvn aidliklftk
421 pllkrgalme hgwaeagwle

— !/
Figure 2.3: NCBI GenBank/GenPept format showing the three major components of a sequence file.

a new accession number is given in the form of a string of alphanumeric characters.
In addition to the accession number, there is also a version number and a gene index
(gi) number. The purpose of these numbers is to identify the current version of the
sequence. If the sequence annotation is revised at a later date, the accession num-
ber remains the same, but the version number is incremented as is the gi number. A
translated protein sequence also has a different gi number from the DNA sequence it
is derived from.

The next line in the Header section is the “ORGANISM” field, which includes the
source of the organism with the scientific name of the species and sometimes the
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tissue type. Along with the scientific name is the information of taxonomic classi-
fication of the organism. Different levels of the classification are hyperlinked to the
NCBI taxonomy database with more detailed descriptions. This is followed by the
“REFERENCE” field, which provides the publication citation related to the sequence
entry. The REFERENCE part includes author and title information of the published
work (or tentative title for unpublished work). The “JOURNAL” field includes the cita-
tion information as well as the date of sequence submission. The citation is often
hyperlinked to the PubMed record for access to the original literature information.
The last part of the Header is the contact information of the sequence submitter.

The “Features” section includes annotation information about the gene and gene
product, as well as regions of biological significance reported in the sequence, with
identifiers and qualifiers. The “Source” field provides the length of the sequence,
the scientific name of the organism, and the taxonomy identification number. Some
optional information includes the clone source, the tissue type and the cell line. The
“gene” field is the information about the nucleotide coding sequence and its name.
For DNA entries, there is a “CDS” field, which is information about the boundaries of
the sequence that can be translated into amino acids. For eukaryotic DNA, this field
also contains information of the locations of exons and translated protein sequences
is entered.

The third section of the flat file is the sequence itself starting with the label
“ORIGIN.” The format of the sequence display can be changed by choosing options
at a Display pull-down menu at the upper left corner. For DNA entries, there is a BASE
COUNT report that includes the numbers of A, G, C, and T in the sequence. This
section, for both DNA or protein sequences, ends with two forward slashes (the “//”
symbol).

Inretrieving DNA or protein sequences from GenBank, the search can be limited to
different fields of annotation such as “organism,” “accession number,” “authors,” and
“publication date.” One can use a combination of the “Limits” and “Preview/Index”
options as described. Alternatively, a number of search qualifiers can be used, each
defining one of the fields in a GenBank file. The qualifiers are similar to but not the
same as the field tags in PubMed. For example, in GenBank, [GENE] represents field
for gene name, [AUTH] for author name, and [ORGN] for organism name. Frequently
used GenBank qualifiers, which have to be in uppercase and in brackets, are listed in
Table 2.3.

” o«

Alternative Sequence Formats

FASTA. In addition to the GenBank format, there are many other sequence formats.
FASTA is one of the simplest and the most popular sequence formats because it con-
tains plain sequence information that is readable by many bioinformatics analysis
programs. It has a single definition line that begins with a right angle bracket (>)
followed by a sequence name (Fig. 2.4). Sometimes, extra information such as gi
number or comments can be given, which are separated from the sequence name
by a

uln

symbol. The extra information is considered optional and is ignored by
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TABLE 2.3. Search Field Qualifiers for GenBank

Qualifier

Field Name

Definition

[ACCN]

[ALL]
[AUTH]

[ECNO]

[FKEY]

[GENE]
[JOUR]

[KYWD]

[MDAT]

[MOLWT]

[ORGN]

[PROP]

[PROT]
[PDAT]
(SQID]
[SLEN]

[WORD]
[TITL]

Accession

All fields
Author name

EC/RN number

Feature key

Gene name
Journal name

Keyword

Modification date

Molecular weight

Organism

Properties

Protein name
Publication date
SeqlD

Sequence length

Text word
Title word

Contains the unique accession number of the sequence
or record, assigned to the nucleotide, protein,
structure, or genome record.

Contains all terms from all searchable database fields in
the database.

Contains all authors from all references in the database
records.

Number assigned by the Enzyme Commission or
Chemical Abstract Service to designate a particular
enzyme or chemical, respectively.

Contains the biological features assigned or annotated
to the nucleotide sequences. Not available for the
protein or structure databases.

Contains the standard and common names of genes
found in the database records.

Contains the name of the journal in which the data were
published.

Contains special index terms from the controlled
vocabularies associated with the GenBank, EMBL,
DDB]J, SWISS-Prot, PIR, PRE or PDB databases.

Contains the date that the most recent modification to
that record is indexed in Entrez, in the format
YYYY/MM/DD.

Molecular weight of a protein, in daltons (Da),
calculated by the method described in the Searching
by Molecular Weight section of the Entrez help
document.

Contains the scientific and common names for the
organisms associated with protein and nucleotide
sequences.

Contains properties of the nucleotide or protein
sequence. For example, the nucleotide database’s
properties index includes molecule types, publication
status, molecule locations, and GenBank divisions.

Contains the standard names of proteins found in
database records.

Contains the date that records are released into Entrez,
in the format YYYY/MM/DD.

Contains the special string identifier for a given
sequence.

Contains the total length of the sequence.

Contains all of the “free text” associated with a record.

Includes only those words found in the definition line of
arecord.

Note: Some of these qualifiers are interchangeable with PubMed qualifiers.
Source: www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html.
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>gi|18203677|sp|Q9ZGEY | BCHN
MERVERENGCFHTFCPIASVAWLHRKIKDSFFLIVGTHTCAHFIQTALDVMVYAHSRFGFAVLEESDLVS
ASPTEELGKVVQOVVDEWHPKVIFVLSTCSVDILKMDLEVSCKDLSTRFGEFPVLPASTSGIDRSEFTQGED
AVLHALLPFVPKEAPAVEPVEEKKPRWFSFGKESEKEKAEPARNLVLIGAVTDSTIQQLOWELKQLGLPK
VDVFPDGDIRKMPVINEQTVVVPLOQPYLNDTLATIRRERRAKVLSTVFPIGPDGTARFLEAICLEFGLDT
SRIKEREAQAWRDLEPQLOILRGKKIMFLGDNLLELPLARFLTSCDVQVVEAGTPYIHSKDLOQQELELLK
ERDVRIVESPDFTKQLORMOEYKPDLVVAGLGICNPLEAMGFTTAWSIEFTFAQIHGFVNAIDLIKLFTK
PLLEKRQALMEHGWAEAGWLE

Figure 2.4: Example of a FASTA file.

sequence analysis programs. The plain sequence in standard one-letter symbols starts
in the second line. Each line of sequence data is limited to sixty to eighty characters
in width. The drawback of this format is that much annotation information is lost.

Abstract Syntax Notation One. Abstract Syntax Notation One (ASN.1) is a data mark-
up language with a structure specifically designed for accessing relational databases. It
describes sequences with each item of information in a sequence record separated by
tags so that each subportion of the sequence record can be easily added to relational
tables and later extracted (Fig. 2.5). Though more difficult for people to read, this
format makes it easy for computers to filter and parse the data. This format also
facilitates the transimission and integration of data between databases.

Conversion of Sequence Formats

In sequence analysis and phylogenetic analysis, there is a frequent need to convert
between sequence formats. One of the most popular computer programs for sequence
format conversion is Readseq, written by Don Gilbert at Indiana University. It recog-
nizessequencesin almostany formatand writesanewfilein an alternative format. The
web interface version of the program can be found at: http://iubio.bio.indiana.edu/
cgi-bin/readseq.cgi/.

SRS

Sequenceretrieval system (SRS; available at http://srs6.ebi.ac.uk/) isaretrieval system
maintained by the EBI, which is comparable to NCBI Entrez. It is not as integrated
as Entrez, but allows the user to query multiple databases simultaneously, another
good example of database integration. It also offers direct access to certain sequence
analysis applications such as sequence similarity searching and Clustal sequence
alignment (see Chapter 5). Queries can be launched using “Quick Text Search” with
only one query box in which to enter information. There are also more elaborate
submission forms, the “Standard Query Form” and the “Extended Query Form.” The
standard form allows four criteria (fields) to be used, which are linked by Boolean
operators. The extended form allows many more diversified criteria and fields to be
used. The search results contain the query sequence and sequence annotation as well
as links to literature, metabolic pathways, and other biological databases.
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name "Tracking molecular evolution of photosynthesis by
characterization of a major photosynthesis gene cluster from Heliocbacillus
mobili=s." }
authors {

NAameES
std {
i
name
name {
last "Ziong"
initials "J." + 3} ,
{
name
name {
last "Inoue"
initials "K." } } .
i
name
name 4
last "Bauer"
initials "C.E." } } 1} ,
affil

str "Department of Biolegy, Indiana University, Bleomington, IN
47405, USA." }
from
Jjournal {
title {
iso-jta "Proc. Natl. Acad. Sci. U.S.a." ,
ml-jta "Proc Natl Acad Sci U 8 a°
is=n "0027-8424"
name "Proceedings of the National Academy of Sciences of the
United States of America." }

imp {
date
std [
vear 1938
month 12 ,

day 8 }
wolume "35"
iz=zue "25" ,
pages "148G51-148L6"
language "eng" 3+ 3,
ids §
pubmed 5843379 ,
medline F3061357 3+ 3+
pmid 9843975 }
comment "SEQUENCE FROM N.A." 1 1}
inst {
repr raw ,
mol az ,
length 440
seq-data
nchieaa "MERVERENGCFHTFCPIASVAWLHRKIKDEFFLIVGTHTCAHF IQTATDVMYYAHERFGFAVL
EESDLVEASPTEELGKV VOOV DENHPEY IFVLE TCSVD ILENDLEVSCKDLE TREFGFPVLPASTSGIDRSFTQGEDA
VLHALLPFVPEEAPAVEPVEEEKPRHNFEFGRESEEERAEPA RNLVL IGAVTDS T I QOLOWELEOLGLPEV DV FPDGED T
REMEV INEQTWVW U PLOPYLNDTLATITRRERRAKVLSTVFRIGFDGTARFLEA ICLEFGLDTSRIKEKEAQAWNRDLERD
Lo ILRGEK IMFLGDNLLELPLARFLTS CDVOVVEAGTPY THS KD LOOFELELDKERDVRIVES PDFTEQLORMOEYEPD
LVVAGLGICHNPLEAMGFTTAWS IEFTFAQ THOFVNAIDL IKLF TKPLLKRQAILMEHGWAERGHLE " &

Figure 2.5: A portion of a sequence file in ASN.1 format.
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SUMMARY

Databases are fundamental to modern biological research, especially to genomic stud-
ies. The goal of a biological database is two fold: information retrieval and knowledge
discovery. Electronic databases can be constructed either as flat files, relational, or
object oriented. Flat files are simple text files and lack any form of organization to
facilitate information retrieval by computers. Relational databases organize data as
tables and search information among tables with shared features. Object-oriented
databases organize data as objects and associate the objects according to hierar-
chical relationships. Biological databases encompass all three types. Based on their
content, biological databases are divided into primary, secondary, and specialized
databases. Primary databases simply archive sequence or structure information; sec-
ondary databases include further analysis on the sequences or structures. Special-
ized databases cater to a particular research interest. Biological databases need to be
interconnected so that entries in one database can be cross-linked to related entries
in another database. NCBI databases accessible through Entrez are among the most
integrated databases. Effective information retrieval involves the use of Boolean oper-
ators. Entrez has additional user-friendly features to help conduct complex searches.
One such option is to use Limits, Preview/Index, and History to narrow down the
search space. Alternatively, one can use NCBI-specific field qualifiers to conduct
searches. To retrieve sequence information from NCBI GenBank, an understanding
of the format of GenBank sequence files is necessary. It is also important to bear in
mind that sequence data in these databases are less than perfect. There are sequence
and annotation errors. Biological databases are also plagued by redundancy prob-
lems. There are various solutions to correct annotation and reduce redundancy, for
example, merging redundant sequences into a single entry or store highly redundant
sequences into a separate database.
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SECTION TWO

Sequence Alignment






CHAPTER THREE

Pairwise Sequence Alighment

Sequence comparison lies at the heart of bioinformatics analysis. It is an important
first step toward structural and functional analysis of newly determined sequences. As
newbiological sequences arebeinggenerated at exponential rates, sequence compari-
sonisbecomingincreasinglyimportant to draw functional and evolutionary inference
ofanew protein with proteins already existing in the database. The most fundamental
process in this type of comparison is sequence alignment. This is the process by which
sequences are compared by searching for common character patterns and establish-
ing residue-residue correspondence among related sequences. Pairwise sequence
alignment is the process of aligning two sequences and is the basis of database sim-
ilarity searching (see Chapter 4) and multiple sequence alignment (see Chapter 5).
This chapter introduces the basics of pairwise alignment.

EVOLUTIONARY BASIS

DNA and proteins are products of evolution. The building blocks of these biologi-
cal macromolecules, nucleotide bases, and amino acids form linear sequences that
determine the primary structure of the molecules. These molecules can be consid-
ered molecular fossils that encode the history of millions of years of evolution. During
this time period, the molecular sequences undergo random changes, some of which
are selected during the process of evolution. As the selected sequences gradually
accumulate mutations and diverge over time, traces of evolution may still remain in
certain portions of the sequences to allow identification of the common ancestry. The
presence of evolutionary traces is because some of the residues that perform key func-
tional and structural roles tend to be preserved by natural selection; other residues
that may be less crucial for structure and function tend to mutate more frequently.
For example, active site residues of an enzyme family tend to be conserved because
they are responsible for catalytic functions. Therefore, by comparing sequences
through alignment, patterns of conservation and variation can be identified. The
degree of sequence conservation in the alignment reveals evolutionary relatedness of
different sequences, whereas the variation between sequences reflects the changes
that have occurred during evolution in the form of substitutions, insertions, and
deletions.

Identifying the evolutionary relationships between sequences helps to characterize
the function of unknown sequences. When a sequence alignment reveals significant
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similarity among a group of sequences, they can be considered as belonging to the
same family (protein families will be further described in Chapter 7). If one member
within the family has a known structure and function, then that information can be
transferred to those that have not yet been experimentally characterized. Therefore,
sequence alignment can be used as basis for prediction of structure and function of
uncharacterized sequences.

Sequence alignment provides inference for the relatedness of two sequences under
study. If the two sequences share significant similarity, it is extremely unlikely that
the extensive similarity between the two sequences has been acquired randomly,
meaning that the two sequences must have derived from a common evolutionary
origin. When a sequence alignment is generated correctly, it reflects the evolutionary
relationship of the two sequences: regions that are aligned but not identical repre-
sent residue substitutions; regions where residues from one sequence correspond to
nothing in the other represent insertions or deletions that have taken place on one of
the sequences during evolution. It is also possible that two sequences have derived
from a common ancestor, but may have diverged to such an extent that the com-
mon ancestral relationships are not recognizable at the sequence level. In that case,
the distant evolutionary relationships have to be detected using other methods (see
Chapter 15).

SEQUENCE HOMOLOGY VERSUS SEQUENCE SIMILARITY

An important concept in sequence analysis is sequence homology. When two
sequences are descended from a common evolutionary origin, they are said to have a
homologous relationship or share homology. A related but different term is sequence
similarity, which is the percentage of aligned residues that are similar in physiochem-
ical properties such as size, charge, and hydrophobicity.

It is important to distinguish sequence homology from the related term sequence
similarity because the two terms are often confused by some researchers who use them
interchangeably in scientific literature. To be clear, sequence homology is an inference
or a conclusion about a common ancestral relationship drawn from sequence simi-
larity comparison when the two sequences share a high enough degree of similarity.
On the other hand, similarity is a direct result of observation from the sequence
alignment. Sequence similarity can be quantified using percentages; homology is a
qualitative statement. For example, one may say that two sequences share 40% simi-
larity. Itis incorrect to say that the two sequences share 40% homology. They are either
homologous or nonhomologous.

Generally, if the sequence similarity level is high enough, a common evolutionary
relationship canbeinferred. In dealingwith real research problems, theissue of at what
similaritylevel can one infer homologousrelationships is not always clear. The answer
depends on the type of sequences being examined and sequence lengths. Nucleotide
sequences consist of only four characters, and therefore, unrelated sequences have
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Figure 3.1: The three zones of protein sequence alignments. Two protein sequences can be regarded
as homologous if the percentage sequence identity falls in the safe zone. Sequence identity values below
the zone boundary, but above 20%, are considered to be in the twilight zone, where homologous rela-
tionships are less certain. The region below 20% is the midnight zone, where homologous relationships
cannot be reliably determined. (Source: Modified from Rost 1999).

at least a 25% chance of being identical. For protein sequences, there are twenty
possible amino acid residues, and so two unrelated sequences can match up 5% of
the residues by random chance. If gaps are allowed, the percentage could increase to
10-20%. Sequence length is also a crucial factor. The shorter the sequence, the higher
the chance that some alignment is attributable to random chance. The longer the
sequence, the less likely the matching at the same level of similarity is attributable to
random chance.

This suggests that shorter sequences require higher cutoffs for inferring homolo-
gous relationships than longer sequences. For determining a homology relationship
of two protein sequences, for example, if both sequences are aligned at full length,
which is 100 residues long, an identity of 30% or higher can be safely regarded as
having close homology. They are sometimes referred to as being in the “safe zone”
(Fig. 3.1). If their identity level falls between 20% and 30%, determination of homolo-
gous relationships in this range becomes less certain. This is the area often regarded
as the “twilight zone,” where remote homologs mix with randomly related sequences.
Below 20% identity, where high proportions of nonrelated sequences are present,
homologous relationships cannot be reliably determined and thus fall into the “mid-
night zone.” It needs to be stressed that the percentage identity values only provide a
tentative guidance for homologyidentification. This is not a precise rule for determin-
ing sequence relationships, especially for sequences in the twilight zone. A statistically
more rigorous approach to determine homologous relationships is introduced in the
section on the Statistical Significance of Sequence Alignment.

SEQUENCE SIMILARITY VERSUS SEQUENCE IDENTITY

Another set of related terms for sequence comparison are sequence similarity and
sequence identity. Sequence similarity and sequence identity are synonymous for
nucleotide sequences. For protein sequences, however, the two concepts are very
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different. In a protein sequence alignment, sequence identity refers to the percent-
age of matches of the same amino acid residues between two aligned sequences.
Similarity refers to the percentage of aligned residues that have similar physicochem-
ical characteristics and can be more readily substituted for each other.

There are two ways to calculate the sequence similarity/identity. One involves the
use of the overall sequence lengths of both sequences; the other normalizes by the
size of the shorter sequence. The first method uses the following formula:

S=1[(Ls x2)/(La+ Lp)] x 100 (Eq.3.1)

where S is the percentage sequence similarity, L is the number of aligned residues
with similar characteristics, and L, and L}, are the total lengths of each individual
sequence. The sequence identity (I%) can be calculated in a similar fashion:

I=[(Li x 2)/(La + Lp)] x 100 (Eq.3.2)

where Lj is the number of aligned identical residues.
The second method of calculation is to derive the percentage of identical/similar
residues over the full length of the smaller sequence using the formula:

1()% = Lis)/La % (Eq. 3.3)

where L, is the length of the shorter of the two sequences.

METHODS

The overall goal of pairwise sequence alignment is to find the best pairing of two
sequences, such that there is maximum correspondence among residues. To achieve
this goal, one sequence needs to be shifted relative to the other to find the position
where maximum matches are found. There are two different alignment strategies that
are often used: global alignment and local alignment.

Global Alignment and Local Alighment

In global alignment, two sequences to be aligned are assumed to be generally simi-
lar over their entire length. Alignment is carried out from beginning to end of both
sequences to find the best possible alignment across the entire length between the two
sequences. This method is more applicable for aligning two closely related sequences
of roughly the same length. For divergent sequences and sequences of variable
lengths, this method may not be able to generate optimal results because it fails
to recognize highly similar local regions between the two sequences.

Local alignment, on the other hand, does not assume that the two sequences in
question have similarity over the entire length. It only finds local regions with the
highest level of similarity between the two sequences and aligns these regions with-
out regard for the alignment of the rest of the sequence regions. This approach can be
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seql EARDF-NQYYSSIKRSGSIQ

seq2 LPKLFIDQYYSSIKRTMG-H

Figure 3.2: An example of pairwise sequence com-
parison showing the distinction between global and
local alignment. The global alignment (top) includes
all residues of both sequences. The region with the
highest similarity is highlighted in a box. The local
alignment only includes portions of the two sequences
that have the highest regional similarity. In the line

global sequence alignment

seql NQYYSSIKRS

between the two sequences, “:” indicates identical
residue matches and “.” indicates similar residue e,
matches. seq2 DQYYSSIKRT

local sequence alignment

used for aligning more divergent sequences with the goal of searching for conserved
patterns in DNA or protein sequences. The two sequences to be aligned can be of
different lengths. This approach is more appropriate for aligning divergent biological
sequences containing only modules that are similar, which are referred to as domains
or motifs. Figure 3.2 illustrates the differences between global and local pairwise
alignment.

Alignment Algorithms

Alignment algorithms, both global and local, are fundamentally similar and only differ
in the optimization strategy used in aligning similar residues. Both types of algorithms
can be based on one of the three methods: the dot matrix method, the dynamic pro-
gramming method, and the word method. The dot matrix and dynamic programming
methods are discussed herein. The word method, which is used in fast database sim-
ilarity searching, is introduced in Chapter 4.

Dot Matrix Method
The most basic sequence alignment method is the dot matrix method, also known
as the dot plot method. 1t is a graphical way of comparing two sequences in a two-
dimensional matrix. In a dot matrix, two sequences to be compared are written in
the horizontal and vertical axes of the matrix. The comparison is done by scanning
each residue of one sequence for similarity with all residues in the other sequence.
If a residue match is found, a dot is placed within the graph. Otherwise, the matrix
positions are left blank. When the two sequences have substantial regions of similarity,
many dots line up to form contiguous diagonal lines, which reveal the sequence
alignment. If there are interruptions in the middle of a diagonal line, they indicate
insertions or deletions. Parallel diagonal lines within the matrix represent repetitive
regions of the sequences (Fig. 3.3).

A problem exists when comparing large sequences using the dot matrix method,
namely, the high noise level. In most dot plots, dots are plotted all over the graph,
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obscuring identification of the true alignment. For DNA sequences, the problem is
particularly acute because there are only four possible characters in DNA and each
residue therefore has a one-in-four chance of matching aresidue in another sequence.
To reduce noise, instead of using a single residue to scan for similarity, a filtering
technique has to be applied, which uses a “window” of fixed length covering a stretch
of residue pairs. When applying filtering, windows slide across the two sequences to
compare all possible stretches. Dots are only placed when a stretch of residues equal
to the window size from one sequence matches completely with a stretch of another
sequence. This method has been shown to be effective in reducing the noise level.
The window is also called a fuple, the size of which can be manipulated so that a clear
pattern of sequence match can be plotted. However, if the selected window size is too
long, sensitivity of the alignment is lost.

There are many variations of using the dot plot method. For example, a
sequence can be aligned with itself to identify internal repeat elements. In the self-
comparison, there is a main diagonal for perfect matching of each residue. If repeats
are present, short parallel lines are observed above and below the main diagonal. Self-
complementarity of DNA sequences (also called inverted repeats) — for example, those
that form the stems of a hairpin structure — can also be identified using a dot plot.
In this case, a DNA sequence is compared with its reverse-complemented sequence.
Parallel diagonals represent the inverted repeats. For comparing protein sequences,
a weighting scheme has to be used to account for similarities of physicochemical
properties of amino acid residues.

The dot matrix method gives a direct visual statement of the relationship between
two sequences and helps easy identification of the regions of greatest similarities. One
particular advantage of this method is in identification of sequence repeat regions
based on the presence of parallel diagonals of the same size vertically or horizontally
in the matrix. The method thus has some applications in genomics. It is useful in
identifying chromosomal repeats and in comparing gene order conservation between
two closely related genomes (see Chapter 17). It can also be used in identifying nucleic
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acid secondary structures through detecting self-complementarity of a sequence (see
Chapter 16).

The dot matrix method displays all possible sequence matches. However, it is often
up to the user to construct a full alignment with insertions and deletions by linking
nearby diagonals. Another limitation of this visual analysis method is that it lacks
statistical rigor in assessing the quality of the alignment. The method is also restricted
to pairwise alignment. It is difficult for the method to scale up to multiple alignment.
The following are examples of web servers that provide pairwise sequence comparison
using dot plots.

Dotmatcher (bioweb.pasteur.fr/seqanal/interfaces/dotmatcher.html) and Dottup
(bioweb.pasteur.fr/seqanal/interfaces/dottup.html) are two programs of the EMBOSS
package, which have been made available online. Dotmatcher aligns and displays dot
plots of two input sequences (DNA or proteins) in FASTA format. Awindow of specified
length and a scoring scheme are used. Diagonal lines are only plotted over the position
of the windows if the similarity is above a certain threshold. Dottup aligns sequences
using the word method (to be described in Chapter 4) and is capable of handling
genome-length sequences. Diagonal lines are only drawn if exact matches of words
of specified length are found.

Dothelix (www.genebee.msu.su/services/dhm/advanced.html) is a dot matrix
program for DNA or protein sequences. The program has a number of options for
length threshold (similar to window size) and implements scoring matrices for pro-
tein sequences. In addition to drawing diagonal lines with similarity scores above a
certain threshold, the program displays actual pairwise alignment.

MatrixPlot (www.cbs.dtu.dk/services/MatrixPlot/) is a more sophisticated matrix
plot program for alignment of protein and nucleic acid sequences. The user has the
option of adding information such as sequence logo profiles (see Chapter 7) and
distance matrices from known three-dimensional structures of proteins or nucleic
acids. Instead of using dots and lines, the program uses colored grids to indicate
alignment or other user-defined information.

Dynamic Programming Method

Dynamic programming is a method that determines optimal alignment by match-
ing two sequences for all possible pairs of characters between the two sequences.
It is fundamentally similar to the dot matrix method in that it also creates a two-
dimensional alignment grid. However, it finds alignmentin a more quantitative way by
converting a dot matrix into a scoring matrix to account for matches and mismatches
between sequences. By searching for the set of highest scores in this matrix, the best
alignment can be accurately obtained.

Dynamic programming works by first constructing a two-dimensional matrix
whose axes are the two sequences to be compared. The residue matching is according
to a particular scoring matrix. The scores are calculated one row at a time. This starts
with the first row of one sequence, which is used to scan through the entire length
of the other sequence, followed by scanning of the second row. The matching scores
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are calculated. The scanning of the second row takes into account the scores already
obtained in the first round. The best score is put into the bottom right corner of an
intermediate matrix (Fig. 3.4). This process is iterated until values for all the cells are
filled. Thus, the scores are accumulated along the diagonal going from the upper left
corner to the lower right corner. Once the scores have been accumulated in matrix,
the next step is to find the path that represents the optimal alignment. This is done
by tracing back through the matrix in reverse order from the lower right-hand corner
of the matrix toward the origin of the matrix in the upper left-hand corner. The best
matching path is the one that has the maximum total score (see Fig. 3.4). If two or
more paths reach the same highest score, one is chosen arbitrarily to represent the
best alignment. The path can also move horizontally or vertically at a certain point,
which corresponds to introduction of a gap or an insertion or deletion for one of the
two sequences.

Gap Penalties. Performing optimal alignment between sequences often involves
applying gaps that represent insertions and deletions. Because in natural evolu-
tionary processes insertion and deletions are relatively rare in comparison to sub-
stitutions, introducing gaps should be made more difficult computationally, reflect-
ing the rarity of insertional and deletional events in evolution. However, assigning
penalty values can be more or less arbitrary because there is no evolutionary theory
to determine a precise cost for introducing insertions and deletions. If the penalty
values are set too low, gaps can become too numerous to allow even nonrelated
sequences to be matched up with high similarity scores. If the penalty values are
set too high, gaps may become too difficult to appear, and reasonable alignment
cannot be achieved, which is also unrealistic. Through empirical studies for globular
proteins, a set of penalty values have been developed that appear to suit most align-
ment purposes. They are normally implemented as default values in most alignment
programs.

Another factor to consideris the cost difference between opening a gap and extend-
ing an existing gap. It is known that it is easier to extend a gap that has already been
started. Thus, gap opening should have a much higher penalty than gap extension.
This is based on the rationale that if insertions and deletions ever occur, several adja-
cent residues are likely to have been inserted or deleted together. These differential
gap penalties are also referred to as affine gap penalties. The normal strategy is to use
preset gap penalty values for introducing and extending gaps. For example, one may
use a —12/ — 1 scheme in which the gap opening penalty is —12 and the gap exten-
sion penalty —1. The total gap penalty (W) is a linear function of gap length, which is
calculated using the formula:

W=v+dx((k-1) (Eq. 3.4)

where vy is the gap opening penalty, ¢ is the gap extension penalty, and k is the length
of the gap. Besides the affine gap penalty, a constant gap penalty is sometimes also
used, which assigns the same score for each gap position regardless whether it is
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Figure 3.4: Example of pairwise alignment of two sequences using dynamic programming. The score
for the lower right square (A) of a 2 x 2 matrix is the maximum score from the one of other three
neighboring squares (X, Y, and Z) plus and minus the exact single residue match score (a) for the lower
right corner and the gap penalty (g.p.), respectively. A matrix is set up for the two short sequences.
A simple scoring system is applied in which an identical match is assigned a score of 1, a mismatch a
score 0, and gap penalty (see below) is —1. The scores in the matrix are filled one row at a time and
one cell at a time beginning from top to bottom. The best scores are filled to the lower right corner of a
submatrix (grey boxes) according to this rule. When all the cells are filled with scores, a best alignment
is determined through a trace-back procedure to search for the path with the best total score. When a
path moves horizontally or vertically, a penalty is applied.
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opening or extending. However, this penalty scheme has been found to be less realistic
than the affine penalty.

Gaps at the terminal regions are often treated with no penalty because in reality
many true homologous sequences are of different lengths. Consequently, end gaps
can be allowed to be free to avoid getting unrealistic alignments.

Dynamic Programming for Global Alignment. The classical global pairwise align-
ment algorithm using dynamic programming is the Needleman-Wunsch algorithm.
In this algorithm, an optimal alignment is obtained over the entire lengths of the
two sequences. It must extend from the beginning to the end of both sequences to
achieve the highest total score. In other words, the alignment path has to go from the
bottom right corner of the matrix to the top left corner. The drawback of focusing on
getting a maximum score for the full-length sequence alignment is the risk of missing
the best local similarity. This strategy is only suitable for aligning two closely related
sequences that are of the same length. For divergent sequences or sequences with
different domain structures, the approach does not produce optimal alignment. One
of the few web servers dedicated to global pairwise alignment is GAP.

GAP (http://bioinformatics.iastate.edu/aat/align/align.html) is a web-based pair-
wise global alignment program. It aligns two sequences without penalizing terminal
gaps so similar sequences of unequal lengths can be aligned. To be able to insert long
gaps in the alignment, such gaps are treated with a constant penalty. This feature is
useful in aligning cDNA to exons in genomic DNA containing the same gene.

Dynamic Programming for Local Alignment. In regular sequence alignment, the
divergence level between the two sequences to be aligned is not easily known. The
sequence lengths of the two sequences may also be unequal. In such cases, identi-
fication of regional sequence similarity may be of greater significance than finding
a match that includes all residues. The first application of dynamic programming in
local alignment is the Smith—-Waterman algorithm. In this algorithm, positive scores
are assigned for matching residues and zeros for mismatches. No negative scores are
used. A similar tracing-back procedure is used in dynamic programming. However,
the alignment path may begin and end internally along the main diagonal. It starts
with the highest scoring position and proceeds diagonally up to the left until reaching
a cell with a zero. Gaps are inserted if necessary. In this case, affine gap penaltyis often
used. Occasionally, several optimally aligned segments with best scores are obtained.
As in the global alignment, the final result is influenced by the choice of scoring sys-
tems (to be described next) used. The goal of local alignment is to get the highest
alignment score locally, which may be at the expense of the highest possible overall
score for afull-length alignment. This approach may be suitable for aligning divergent
sequences or sequences with multiple domains that may be of different origins. Most
commonly used pairwise alignment web servers apply the local alignment strategy;,
which include SIM, SSEARCH, and LALIGN.
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SIM (http://bioinformatics.iastate.edu/aat/align/align.html) is a web-based pro-
gram for pairwise alignment using the Smith—-Waterman algorithm that finds the best
scored nonoverlapping local alignments between two sequences. It is able to han-
dle tens of kilobases of genomic sequence. The user has the option to set a scoring
matrix and gap penalty scores. A specified number of best scored alignments are
produced.

SSEARCH (http://pir.georgetown.edu/pirwww/search/pairwise.html) is a simple
web-based programs that uses the Smith-Waterman algorithm for pairwise alignment
of sequences. Only one best scored alignment is given. There is no option for scoring
matrices or gap penalty scores.

LALIGN (www.ch.embnet.org/software/LALIGN_form.html) is a web-based pro-
gram that uses a variant of the Smith-Waterman algorithm to align two sequences.
Unlike SSEARCH, which returns the single best scored alignment, LALIGN gives a
specified number of best scored alignments. The user has the option to set the scor-
ing matrix and gap penalty scores. The same web interface also provides an option
for global alignment performed by the ALIGN program.

SCORING MATRICES

In the dynamic programming algorithm presented, the alighment procedure has to
make use of a scoring system, which is a set of values for quantifying the likelihood of
oneresidue beingsubstituted by anotherin analignment. The scoring systemsis called
a substitution matrix and is derived from statistical analysis of residue substitution
data from sets of reliable alignments of highly related sequences.

Scoring matrices for nucleotide sequences are relatively simple. A positive value
or high score is given for a match and a negative value or low score for a mismatch.
This assignment is based on the assumption that the frequencies of mutation are
equal for all bases. However, this assumption may not be realistic; observations show
that transitions (substitutions between purines and purines or between pyrimidines
and pyrimidines) occur more frequently than transversions (substitutions between
purines and pyrimidines). Therefore, a more sophisticated statistical model with dif-
ferent probability values to reflect the two types of mutationsis needed (see the Kimura
model in Chapter 10).

Scoring matrices for amino acids are more complicated because scoring has to
reflect the physicochemical properties of amino acid residues, as well as the likelihood
of certain residues being substituted among true homologous sequences. Certain
amino acids with similar physicochemical properties can be more easily substituted
than those without similar characteristics. Substitutions among similar residues are
likely to preserve the essential functional and structural features. However, substi-
tutions between residues of different physicochemical properties are more likely to
cause disruptions to the structure and function. This type of disruptive substitution
is less likely to be selected in evolution because it renders nonfunctional proteins.
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Forexample, phenylalanine, tyrosine, and tryptophan all share aromatic ring struc-
tures. Because of their chemical similarities, they are easily substituted for each other
without perturbing the regular function and structure of the protein. Similarly, argi-
nine, lysine, and histidine are all large basic residues and there is a high probability
of them being substituted for each other. Aspartic acid, glutamic acid, asparagine,
and glutamine belong to the acid and acid amide groups and can be associated with
relatively high frequencies of substitution. The hydrophobic residue group includes
methionine, isoleucine, leucine, and valine. Small and polar residues include serine,
threonine, and cysteine. Residues within these groups have high likelihoods of being
substituted for each other. However, cysteine contains a sulthydryl group that plays
a role in metal binding, active site, and disulfide bond formation. Substitution of
cysteine with other residues therefore often abolishes the enzymatic activity or desta-
bilizes the protein structure. It is thus a very infrequently substituted residue. The
small and nonpolar residues such as glycine and proline are also unique in that their
presence often disrupts regular protein secondary structures (see Chapter 12). Thus,
substitutions with these residues do not frequently occur. For more information on
grouping amino acids based on physicochemical properties, see Table 12.1.

Amino Acid Scoring Matrices

Amino acid substitution matrices, which are 20 x 20 matrices, have been devised to
reflect the likelihood of residue substitutions. There are essentially two types of amino
acid substitution matrices. One type is based on interchangeability of the genetic
code or amino acid properties, and the other is derived from empirical studies of
amino acid substitutions. Although the two different approaches coincide to a certain
extent, the first approach, which is based on the genetic code or the physicochemical
features of amino acids, has been shown to be less accurate than the second approach,
which is based on surveys of actual amino acid substitutions among related proteins.
Thus, the empirical approach has gained the most popularity in sequence alignment
applications and is the focus of our next discussion.

The empirical matrices, which include PAM and BLOSUM matrices, are derived
from actual alignments of highly similar sequences. By analyzing the probabilities
of amino acid substitutions in these alignments, a scoring system can be devel-
oped by giving a high score for a more likely substitution and a low score for a rare
substitution.

For a given substitution matrix, a positive score means that the frequency of amino
acid substitutions found in a data set of homologous sequences is greater than would
have occurred byrandom chance. Theyrepresent substitutions of very similar residues
oridenticalresidues. Azero score means that the frequency of amino acid substitutions
found in the homologous sequence data set is equal to that expected by chance. In
this case, the relationship between the amino acids is weakly similar at best in terms
of physicochemical properties. A negative score means that the frequency of amino
acid substitutions found in the homologous sequence data set is less than would
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have occurred by random chance. This normally occurs with substitutions between
dissimilar residues.

The substitution matrices apply logarithmic conversions to describe the probabil-
ity of amino acid substitutions. The converted values are the so-called log-odds scores
(orlog-odds ratios), which are logarithmic ratios of the observed mutation frequency
divided by the probability of substitution expected by random chance. The conversion
can be either to the base of 10 or to the base of 2. For example, in an alignment that
involves ten sequences, each having only one aligned position, nine of the sequences
are F (phenylalanine) and the remaining one I (isoleucine). The observed frequency
of I being substituted by F is one in ten (0.1), whereas the probability of I being sub-
stituted by F by random chance is one in twenty (0.05). Thus, the ratio of the two
probabilities is 2 (0.1/0.05). After taking this ratio to the logarithm to the base of 2, this
makes the log odds equal to 1. This value can then be interpreted as the likelihood of
substitution between the two residues being 2 !, which is two times more frequently
than by random chance.

PAM Matrices

The PAM matrices (also called Dayhoff PAM matrices) were first constructed by
Margaret Dayhoff, who compiled alignments of seventy-one groups of very closely
related protein sequences. PAM stands for “point accepted mutation” (although
“accepted point mutation” or APM may be a more appropriate term, PAM is easier to
pronounce). Because of the use of very closely related homologs, the observed muta-
tions were not expected to significantly change the common function of the proteins.
Thus, the observed amino acid mutations are considered to be accepted by natural
selection.

These protein sequences were clustered based on phylogenetic reconstruction
using maximum parsimony (see Chapter 11). The PAM matrices were subsequently
derived based on the evolutionary divergence between sequences of the same cluster.
One PAM unit is defined as 1% of the amino acid positions that have been changed.
To construct a PAM1 substitution table, a group of closely related sequences with
mutation frequencies corresponding to one PAM unit is chosen. Based on the col-
lected mutational data from this group of sequences, a substitution matrix can be
derived.

Construction of the PAM1 matrix involves alignment of full-length sequences and
subsequent construction of phylogenetic trees using the parsimony principle. This
allows computation of ancestral sequences for each internal node of the trees (see
Chapter 11). Ancestral sequence information is used to count the number of sub-
stitutions along each branch of a tree. The PAM score for a particular residue pair
is derived from a multistep procedure involving calculations of relative mutability
(which is the number of mutational changes from a common ancestor for a particular
amino acid residue divided by the total number of such residues occurring in an
alignment), normalization of the expected residue substitution frequencies by ran-
dom chance, and logarithmic transformation to the base of 10 of the normalized
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TABLE 3.1. Correspondence of PAM Numbers with Observed Amino
Acid Mutational Rates

PAM Number Observed Mutation Rate (%) Sequence Identity (%)

0 0 100

1 1 99
30 25 75
80 50 50
110 40 60
200 75 25
250 80 20

mutability value divided by the frequency of a particular residue. The resulting value is
rounded to the nearest integer and entered into the substitution matrix, which reflects
the likelihood of amino acid substitutions. This completes the log-odds score com-
putation. After compiling all substitution probabilities of possible amino acid muta-
tions, a 20 x 20 PAM matrix is established. Positive scores in the matrix denote sub-
stitutions occurring more frequently than expected among evolutionarily conserved
replacements. Negative scores correspond to substitutions that occur less frequently
than expected.

Other PAM matrices with increasing numbers for more divergent sequences are
extrapolated from PAM1 through matrix multiplication. For example, PAM80 is pro-
duced by values of the PAM1 matrix multiplied by itself eighty times. The mathe-
matical transformation accounts for multiple substitutions having occurred in an
amino acid position during evolution. For example, when a mutation is observed as
F replaced by I, the evolutionary changes may have actually undergone a number
of intermediate steps before becoming I, such as in a scenario of F - M — L — L.
For that reason, a PAM80 matrix only corresponds to 50% of observed mutational
rates.

A PAM unit is defined as 1% amino acid change or one mutation per 100 residues.
The increasing PAM numbers correlate with increasing PAM units and thus evolution-
ary distances of protein sequences (Table 3.1). For example, PAM250, which corre-
sponds to 20% amino acid identity, represents 250 mutations per 100 residues. In the-
ory, the number of evolutionary changes approximately corresponds to an expected
evolutionary span of 2,500 million years. Thus, the PAM250 matrix is normally used
for divergent sequences. Accordingly, PAM matrices with lower serial numbers are
more suitable for aligning more closely related sequences. The extrapolated values of
the PAM250 amino acid substitution matrix are shown in Figure 3.5.

BLOSUM Matrices

In the PAM matrix construction, the only direct observation of residue substitutions
is in PAM1, based on a relatively small set of extremely closely related sequences.
Sequence alignment statistics for more divergent sequences are not available. To fill
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Figure 3.5: PAM250 amino acid substitution matrix. Residues are grouped according to physicochem-
ical similarities.

in the gap, a new set of substitution matrices have been developed. This is the
series of blocks amino acid substitution matrices (BLOSUM), all of which are derived
based on direct observation for every possible amino acid substitution in multiple
sequence alignments. These were constructed based on more than 2,000 conserved
amino acid patterns representing 500 groups of protein sequences. The sequence
patterns, also called blocks, are ungapped alignments of less than sixty amino acid
residues in length. The frequencies of amino acid substitutions of the residues in
these blocks are calculated to produce a numerical table, or block substitution
matrix.

Instead of using the extrapolation function, the BLOSUM matrices are actual per-
centage identity values of sequences selected for construction of the matrices. For
example, BLOSUMS62 indicates that the sequences selected for constructing the matrix
share an average identity value of 62%. Other BLOSUM matrices based on sequence
groups of various identity levels have also been constructed. In the reversing order
as the PAM numbering system, the lower the BLOSUM number, the more divergent
sequences they represent.

The BLOSUM score for a particular residue pair is derived from the log ratio of
observed residue substitution frequency versus the expected probability of a particu-
lar residue. The log odds is taken to the base of 2 instead of 10 as in the PAM matrices.
The resulting value is rounded to the nearest integer and entered into the substi-
tution matrix. As in the PAM matrices, positive and negative values correspond to
substitutions that occur more or less frequently than expected among evolutionarily
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Figure 3.6: BLOSUM®62 amino acid substitution matrix.

conserved replacements. The values of the BLOSUMG62 matrix are shown in Fig-
ure 3.6.

Comparison between PAM and BLOSUM

There are a number of differences between PAM and BLOSUM. The principal dif-
ference is that the PAM matrices, except PAM1, are derived from an evolutionary
model whereas the BLOSUM matrices consist of entirely direct observations. Thus,
the BLOSUM matrices may have less evolutionary meaning than the PAM matri-
ces. This is why the PAM matrices are used most often for reconstructing phyloge-
netic trees. However, because of the mathematical extrapolation procedure used, the
PAM values may be less realistic for divergent sequences. The BLOSUM matrices
are entirely derived from local sequence alignments of conserved sequence blocks,
whereas the PAM1 matrix is based on the global alignment of full-length sequences
composed of both conserved and variable regions. This is why the BLOSUM matrices
may be more advantageous in searching databases and finding conserved domains in
proteins.

Several empirical tests have shown that the BLOSUM matrices outperform the PAM
matrices in terms of accuracy of local alignment. This could be largely because the
BLOSUM matrices are derived from a much larger and more representative dataset
than the one used to derive the PAM matrices. This renders the values for the BLOSUM
matrices more reliable. To compensate for the deficiencies in the PAM system, newer
matrices using the same approach have been devised based on much larger data sets.
These include the Gonnet matrices and the Jones-Taylor-Thornton matrices, which
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Figure 3.7: Gumble extreme value distribution for alignment scores. The distribution can be expressed
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have been shown to have equivalent performance to BLOSUM in regular alignment,
but are particularly robust in phylogenetic tree construction.

STATISTICAL SIGNIFICANCE OF SEQUENCE ALIGNMENT

When given a sequence alignment showing a certain degree of similarity, it is often
important to ask whether the observed sequence alignment can occur by random
chance or the alignment is indeed statistically sound. The truly statistically signifi-
cant sequence alignment will be able to provide evidence of homology between the
sequences involved.

Solving this problem requires a statistical test of the alignment scores of two unre-
lated sequences of the same length. By calculating alignment scores of alarge number
of unrelated sequence pairs, a distribution model of the randomized sequence scores
can be derived. From the distribution, a statistical test can be performed based on the
number of standard deviations from the average score. Many studies have demon-
strated that the distribution of similarity scores assumes a peculiar shape that resem-
bles a highly skewed normal distribution with a long tail on one side (Fig. 3.7). The
distribution matches the “Gumble extreme value distribution” for which amathemati-
cal expression is available. This means that, given a sequence similarity value, by using
the mathematical formula for the extreme distribution, the statistical significance can
be accurately estimated.

The statistical test for the relatedness of two sequences can be performed using
the following procedure. An optimal alignment between two given sequences is first
obtained. Unrelated sequences of the same length are then generated through a ran-
domization process in which one of the two sequences is randomly shuffled. A new
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alignment score is then computed for the shuffled sequence pair. More such scores
are similarly obtained through repeated shuffling. The pool of alignment scores from
the shuffled sequences is used to generate parameters for the extreme distribution.
The original alignment score is then compared against the distribution of random
alignments to determine whether the score is beyond random chance. If the score
is located in the extreme margin of the distribution, that means that the alignment
between the two sequences is unlikely due to random chance and is thus considered
significant. A P-value is given to indicate the probability that the original alignment
is due to random chance.

A P-value resulting from the test provides a much more reliable indicator of pos-
sible homologous relationships than using percent identity values. It is thus impor-
tant to know how to interpret the P-values. It has been shown that if a P-value is
smaller than 10719, it indicates an exact match between the two sequences. If the
P-value is in the range of 107 to 1071 it is considered to be a nearly identical
match. A P-value in the range of 107° to 107 is interpreted as sequences having clear
homology. A P-value in the range of 10! to 10~° indicates possible distant homologs.
If P is larger than 107!, the two sequence may be randomly related. However, the
caveat is that sometimes truly related protein sequences may lack the statistical sig-
nificance at the sequence level owing to fast divergence rates. Their evolutionary rela-
tionships can nonetheless be revealed at the three-dimensional structural level (see
Chapter 15).

These statistics were derived from ungapped local sequence alignments. It is not
known whether the Gumble distribution applies equally well to gapped alignments.
However, for all practical purposes, it is reasonable to assume that scores for gapped
alignments essentially fit the same distribution. A frequently used software program
for assessing statistical significance of a pairwise alignment is the PRSS program.

PRSS (Probability of Random Shuffles; www.ch.embnet.org/software/PRSS_form.
html) is a web-based program that can be used to evaluate the statistical signifi-
cance of DNA or protein sequence alignment. It first aligns two sequences using the
Smith-Waterman algorithm and calculates the score. It then holds one sequence in its
original form and randomizes the order of residues in the other sequence. The shuffled
sequence is realigned with the unshuffled sequence. The resulting alignment score is
recorded. This process is iterated many (normally 1,000) times to help generate data
for fitting the Gumble distribution. The original alignment score is then compared
against the overall score distribution to derive a P-value. The major feature of the
program is that it allows partial shuffling. For example, shuffling can be restricted to
residues within a local window of 25-40, whereas the residues outside the window
remain unchanged.

SUMMARY

Pairwise sequence alignment is the fundamental component of many bioinformatics
applications. Itis extremely useful in structural, functional, and evolutionary analyses
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of sequences. Pairwise sequence alignment provides inference for the relatedness of
two sequences. Strongly similar sequences are often homologous. However, a dis-
tinction needs to be made between sequence homology and similarity. The former
is inference drawn from sequence comparison, whereas the latter relates to actual
observation after sequence alignment. For protein sequences, identity values from
pairwise alignment are often used to infer homology, although this approach can be
rather imprecise.

There are two sequence alignment strategies, local alignment and global align-
ment, and three types of algorithm that perform both local and global alignments.
They are the dot matrix method, dynamic programming method, and word method.
The dot matrix method is useful in visually identifying similar regions, but lacks the
sophistication of the other two methods. Dynamic programming is an exhaustive and
quantitative method to find optimal alignments. This method effectively works in
three steps. It first produces a sequence versus sequence matrix. The second step is
to accumulate scores in the matrix. The last step is to trace back through the matrix in
reverse order to identify the highest scoring path. This scoring step involves the use
of scoring matrices and gap penalties.

Scoring matrices describe the statistical probabilities of one residue being sub-
stituted by another. PAM and BLOSUM are the two most commonly used matrices
for aligning protein sequences. The PAM matrices involve the use of evolutionary
models and extrapolation of probability values from alignment of close homologs to
more divergent ones. In contrast, the BLOSUM matrices are derived from actual align-
ment. The PAM and BLOSUM serial numbers also have opposite meanings. Matrices
of high PAM numbers are used to align divergent sequences and low PAM numbers
for aligning closely related sequences. In practice, if one is uncertain about which
matrix to use, it is advisable to test several matrices and choose the one that gives the
best alignment result. Statistical significance of pairwise sequence similarity can be
tested using a randomization test where score distribution follows an extreme value
distribution.
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CHAPTER FOUR

Database Similarity Searching

A main application of pairwise alignment is retrieving biological sequences in
databases based on similarity. This process involves submission of a query sequence
and performing a pairwise comparison of the query sequence with all individual
sequences in a database. Thus, database similarity searching is pairwise alignment
on alarge scale. This type of searching is one of the most effective ways to assign puta-
tive functions to newly determined sequences. However, the dynamic programming
method described in Chapter 3 is slow and impractical to use in most cases. Special
search methods are needed to speed up the computational process of sequence com-
parison. The theoryand applications of the database searching methods are discussed
in this chapter.

UNIQUE REQUIREMENTS OF DATABASE SEARCHING

There are unique requirements for implementing algorithms for sequence database
searching. The first criterion is sensitivity, which refers to the ability to find as many
correct hits as possible. It is measured by the extent of inclusion of correctly identified
sequence members of the same family. These correct hits are considered “true posi-
tives” in the database searching exercise. The second criterion is selectivity, also called
specificity, which refers to the ability to exclude incorrect hits. These incorrect hits are
unrelated sequences mistakenly identified in database searching and are considered
“false positives.” The third criterion is speed, which is the time it takes to get results
from database searches. Depending on the size of the database, speed sometimes can
be a primary concern.

Ideally, one wants to have the greatest sensitivity, selectivity, and speed in database
searches. However, satisfying all three requirements is difficult in reality. What gener-
allyhappensisthatanincreasein sensitivityis associated with decrease in selectivity. A
very inclusive search tends to include many false positives. Similarly, an improvement
in speed often comes at the cost of lowered sensitivity and selectivity. A compromise
between the three criteria often has to be made.

In database searching, as well as in many other areas in bioinformatics, are two
fundamental types of algorithms. One is the exhaustive type, which uses a rigorous
algorithm to find the best or exact solution for a particular problem by examining all
mathematical combinations. Dynamic programming is an example of the exhaustive
method and is computationally very intensive. Another is the heuristic type, which is a
computational strategy to find an empirical or near optimal solution by using rules of



52

DATABASE SIMILARITY SEARCHING

thumb. Essentially, this type of algorithms take shortcuts by reducing the search space
according to some criteria. However, the shortcut strategy is not guaranteed to find
the best or most accurate solution. It is often used because of the need for obtaining
results within a realistic time frame without significantly sacrificing the accuracy of
the computational output.

HEURISTIC DATABASE SEARCHING

Searching a large database using the dynamic programming methods, such as the
Smith-Waterman algorithm, although accurate and reliable, is too slow and impracti-
calwhen computational resources are limited. An estimate conducted nearly adecade
ago had shown that querying a database of 300,000 sequences using a query sequence
of 100 residues took 2-3 hours to complete with a regular computer system at the time.
Thus, speed of searching became an important issue. To speed up the comparison,
heuristic methods have to be used. The heuristic algorithms perform faster searches
because they examine only a fraction of the possible alignments examined in regular
dynamic programming.

Currently, there are two major heuristic algorithms for performing database
searches: BLAST and FASTA. These methods are not guaranteed to find the optimal
alignment or true homologs, but are 50-100 times faster than dynamic programming.
The increased computational speed comes at a moderate expense of sensitivity and
specificity of the search, which is easily tolerated by working molecular biologists.
Both programs can provide a reasonably good indication of sequence similarity by
identifying similar sequence segments.

Both BLAST and FASTA use a heuristic word method for fast pairwise sequence
alignment. This is the third method of pairwise sequence alignment. It works by find-
ing short stretches of identical or nearly identical letters in two sequences. These
short strings of characters are called words, which are similar to the windows used
in the dot matrix method (see Chapter 3). The basic assumption is that two related
sequences must have at least one word in common. By first identifying word matches,
a longer alignment can be obtained by extending similarity regions from the words.
Once regions of high sequence similarity are found, adjacent high-scoring regions can
be joined into a full alignment.

BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

The BLAST program was developed by Stephen Altschul of NCBI in 1990 and has
since become one of the most popular programs for sequence analysis. BLAST uses
heuristics to align a query sequence with all sequences in a database. The objective is
to find high-scoring ungapped segments among related sequences. The existence of
such segments above a given threshold indicates pairwise similarity beyond random
chance, which helps to discriminate related sequences from unrelated sequences in
a database.
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1. Query: MRLIS

2. Scan every three residues to be used in searching BLAST word database.
3. Assuming one of the words finds matches in the database.

Query PYN PYN PYN PYN

Database PYN PFN PFQ PFE e
4. Calculate sums of match scores based on BLOSUM®6G2 matrix.

Query PYN PYN PYN PYN

Database PYN PFN PFQ PFE

Sum of score 20 16 10 10

5. Find the database sequence corresponding to the best word match and
extend alignment in both directions.

Query MRD [pvi) KL IS

Database MHE [PYN| DVPW
extension to left extension to right

6. Determine high scored segment above threshold (22).
Query MRD KLIS
Database MHE [PYN) DVPW

I5 02 20 -11 -% -3

HSP, total score 24

Figure 4.1: lllustration of the BLAST procedure using a hypothetical query sequence matching with
a hypothetical database sequence. The alignment scoring is based on the BLOSUM62 matrix (see
Chapter 3). The example of the word match is highlighted in the box.

BLAST performs sequence alignment through the following steps. The first step is
to create a list of words from the query sequence. Each word is typically three residues
for protein sequences and eleven residues for DNA sequences. The list includes every
possible word extracted from the query sequence. This step is also called seeding. The
second step is to search a sequence database for the occurrence of these words. This
step is to identify database sequences containing the matching words. The matching
of the words is scored by a given substitution matrix. A word is considered a match
if it is above a threshold. The fourth step involves pairwise alignment by extending
from the words in both directions while counting the alignment score using the same
substitution matrix. The extension continues until the score of the alignment drops
below a threshold due to mismatches (the drop threshold is twenty-two for proteins
and twenty for DNA). The resulting contiguous aligned segment pair without gaps is
called high-scoring segment pair (HSP; see working example in Fig. 4.1). In the original
version of BLAST, the highest scored HSPs are presented as the final report. They are
also called maximum scoring pairs.

A recent improvement in the implementation of BLAST is the ability to provide
gapped alignment. In gapped BLAST, the highest scored segment is chosen to be
extended in both directions using dynamic programming where gaps may be intro-
duced. The extension continues if the alignment score is above a certain threshold;
otherwise it is terminated. However, the overall score is allowed to drop below the
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threshold only if it is temporary and rises again to attain above threshold values.
Final trimming of terminal regions is needed before producing a report of the final
alignment.

Variants

BLAST is a family of programs that includes BLASTN, BLASTP, BLASTX TBLASTN,
and TBLASTX. BLASTN queries nucleotide sequences with a nucleotide sequence
database. BLASTP uses protein sequences as queries to search against a protein
sequence database. BLASTX uses nucleotide sequences as queries and translates
them in all six reading frames to produce translated protein sequences, which are
used to query a protein sequence database. TBLASTN queries protein sequences to a
nucleotide sequence database with the sequences translated in all six reading frames.
TBLASTX uses nucleotide sequences, which are translated in all six frames, to search
against a nucleotide sequence database that has all the sequences translated in six
frames. In addition, there is also a bl2seq program that performs local alignment of
two user-provided input sequences. The graphical output includes horizontal bars
and a diagonal in a two-dimensional diagram showing the overall extent of matching
between the two sequences.

The BLAST web server (www.ncbi.nlm.nih.gov/BLAST/) has been designed in such
awayasto simplify the task of program selection. The programs are organized based on
the type of query sequences, protein sequences, nucleotide sequences, or nucleotide
sequence to be translated. In addition, programs for special purposes are grouped
separately; for example, bl2seq, immunoglobulin BLAST, and VecScreen, a program for
removing contaminating vector sequences. The BLAST programs specially designed
for searching individual genome databases are also listed in a separate category.

The choice of the type of sequences also influences the sensitivity of the search.
Generally speaking, there is a clear advantage of using protein sequences in detecting
homologs. This is because DNA sequences only comprise four nucleotides, whereas
protein sequences contain twenty amino acids. This means that there is atleast a five-
fold increase in statistical complexity for protein sequences. More importantly, amino
acid substitution matrices incorporate subtle differences in physicochemical proper-
ties between amino acids, meaning that protein sequences are far more informative
and sensitive in detection of homologs. This is why searches using protein sequences
can yield more significant matches than using DNA sequences. For that reason, if the
input sequence is a protein-encoding DNA sequence, it is preferable to use BLASTX,
which translates it in six open reading frames before sequence comparisons are
carried out.

If one is looking for protein homologs encoded in newly sequenced genomes, one
may use TBLASTN, which translates nucleotide database sequences in all six open
reading frames. This may help to identify protein coding genes that have not yet been
annotated. IfaDNAsequenceistobeused as the query, a protein-level comparison can
be done with TBLASTX. However, both programs are very computationally intensive
and the search process can be very slow.
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Statistical Significance

The BLAST output provides a list of pairwise sequence matches ranked by statis-
tical significance. The significance scores help to distinguish evolutionarily related
sequences from unrelated ones. Generally, only hits above a certain threshold are
displayed.

Deriving the statistical measure is slightly different from that for single pairwise
sequence alignment; thelarger the database, the more unrelated sequence alignments
there are. This necessitates a new parameter that takes into account the total number
ofsequence alignments conducted, whichis proportional to the size of the database.In
BLAST searches, this statistical indicator is known as the E-value (expectation value),
and it indicates the probability that the resulting alignments from a database search
are caused by random chance. The E-value is related to the P-value used to assess
significance of single pairwise alignment (see Chapter 3). BLAST compares a query
sequence against all database sequences, and so the E-value is determined by the
following formula:

E=mxnx P (Eq. 4.1)

where m is the total number of residues in a database, n is the number of residues
in the query sequence, and P is the probability that an HSP alignment is a result of
random chance. For example, aligning a query sequence of 100 residues to a database
containing a total of 10'? residues results in a P-value for the ungapped HSP region
in one of the database matches of 1 x 1720, The E-value, which is the product of
the three values, is 100 x 10'? x 1072, which equals 107. It is expressed as 1le — 6 in
BLAST output. This indicates that the probability of this database sequence match
occurring due to random chance is 1075,

The E-value provides information about the likelihood that a given sequence match
is purely by chance. The lower the E-value, the less likely the database match is a
result of random chance and therefore the more significant the match is. Empirical
interpretation of the E-value is as follows. If E < 1e — 50 (or 1 x 107%°), there should
be an extremely high confidence that the database match is a result of homologous
relationships. If E is between 0.01 and 1e — 50, the match can be considered a result
of homology. If E is between 0.01 and 10, the match is considered not significant, but
may hint at a tentative remote homology relationship. Additional evidence is needed
to confirm the tentative relationship. If E > 10, the sequences under consideration
are either unrelated or related by extremely distant relationships that fall below the
limit of detection with the current method.

Because the E-value is proportionally affected by the database size, an obvious
problem is that as the database grows, the E-value for a given sequence match also
increases. Because the genuine evolutionary relationship between the two sequences
remains constant, the decrease in credibility of the sequence match as the database
grows means that one may “lose” previously detected homologs as the database
enlarges. Thus, an alternative to E-value calculations is needed.
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A bit score is another prominent statistical indicator used in addition to the E-
value in a BLAST output. The bit score measures sequence similarity independent of
query sequence length and database size and is normalized based on the raw pairwise
alignment score. The bit score (S’) is determined by the following formula:

S'=(xS—InkK)/In2 (Eq. 4.2)

where A is the Gumble distribution constant, S is the raw alignment score, and K
is a constant associated with the scoring matrix used. Clearly, the bit score (S’) is
linearly related to the raw alignment score (S). Thus, the higher the bit score, the more
highly significant the match is. The bit score provides a constant statistical indicator
for searching different databases of different sizes or for searching the same database
at different times as the database enlarges.

Low Complexity Regions

For both protein and DNA sequences, there may be regions that contain highly repeti-
tive residues, such as short segments of repeats, or segments that are overrepresented
by a small number of residues. These sequence regions are referred to as low complex-
ity regions (LCRs). LCRs are rather prevalent in database sequences; estimates indicate
that LCRs account for about 15% of the total protein sequences in public databases.
These elements in query sequences can cause spurious database matches and lead
to artificially high alignment scores with unrelated sequences.

To avoid the problem of high similarity scores owing to matching of LCRs that
obscure the real similarities, it is important to filter out the problematic regions in
both the query and database sequences to improve the signal-to-noise ratio, a pro-
cess known as masking. There are two types of masking: hard and soft. Hard masking
involves replacing LCR sequences with an ambiguity character such as N for
nucleotide residues or X for amino acid residues. The ambiguity characters are then
ignored by the BLAST program, preventing the use of such regions in alignments and
thus avoiding false positives. However, the drawback is that matching scores with true
homologs may be lowered because of shortened alignments. Soft masking involves
converting the problematic sequences to lower case letters, which are ignored in con-
structing the word dictionary, but are used in word extension and optimization of
alignments.

SEGis a program that is able to detect and mask repetitive elements before execut-
ing database searches. Itidentifies LCRs by comparing residue frequencies of a certain
region with average residue frequencies in the database. If the residue frequencies of
a sequence region of the query sequence are significantly higher than the database
average, the region is declared an LCR. SEG has been integrated into the BLAST web-
based program. An option box for this low complexity filter needs to be selected to
mask LCRs (either hard or soft masking).

RepeatMasker (http://woody.embl-heidelberg.de/repeatmask/) is an indepen-
dent masking program that detects repetitive elements by comparing the query
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sequence with a built-in library of repetitive elements using the Smith-Waterman
algorithm. If the alignment score for a sequence region is above a certain threshold,
the region is declared an LCR. The corresponding residues are then masked with N'’s
or X's.

BLAST Output Format

The BLAST outputincludes a graphical overviewbox, amatchinglistand a textdescrip-
tion ofthe alignment (Fig. 4.2). The graphical overview box contains colored horizontal
bars that allow quick identification of the number of database hits and the degrees of
similarity of the hits. The color coding of the horizontal bars corresponds to the rank-
ing of similarities of the sequence hits (red: most related; green and blue: moderately
related; black: unrelated). The length of the bars represents the spans of sequence
alignments relative to the query sequence. Each bar is hyperlinked to the actual pair-
wise alignment in the text portion of the report. Below the graphical box is a list of
matching hits ranked by the E-values in ascending order. Each hit includes the acces-
sion number, title (usually partial) of the database record, bit score, and E-value.

Thislistis followed by the text description, which maybe divided into three sections:
the header, statistics, and alignment. The header section contains the gene index
number or the reference number of the database hit plus a one-line description of
the database sequence. This is followed by the summary of the statistics of the search
output, which includes the bit score, E-value, percentages of identity, similarity (“Pos-
itives”), and gaps. In the actual alignment section, the query sequence is on the top
of the pair and the database sequence is at the bottom of the pair labeled as Subject.
In between the two sequences, matching identical residues are written out at their
corresponding positions, whereas nonidentical but similar residues are labeled with
“+”. Any residues identified as LCRs in the query sequence are masked with Xs or Ns
so that no alignment is represented in those regions.

FASTA

FASTA (FAST ALL, www.ebi.ac.uk/fasta33/) was in fact the first database similarity
search tool developed, preceding the development of BLAST. FASTA uses a “hashing”
strategy to find matches for a short stretch of identical residues with a length of k.
The string of residues is known as ktuples or ktups, which are equivalent to words in
BLAST, but are normally shorter than the words. Typically, a ktup is composed of two
residues for protein sequences and six residues for DNA sequences.

The first step in FASTA alignment is to identify ktups between two sequences by
using the hashing strategy. This strategy works by constructing a lookup table that
shows the position of each ktup for the two sequences under consideration. The posi-
tional difference for each word between the two sequences is obtained by subtracting
the position of the first sequence from that of the second sequence and is expressed
as the offset. The ktups that have the same offset values are then linked to reveal a
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Sequences producing significant alignments:

gil22958938 | ref | ZP_000065! C0G3920: Signal transduction.
gi[22968827 [ref [Z2P_00016409.1] C0G3920: Signal transduction.
94139933087 | re putative signal transduction h.
gi|17935877 | re: two component sensor kinase [A...
gil | ref | : AGR C _3616p [Agrobacterium tum. ..
g 322739 |gb 22926.1| Ches3 [Rhodospirillum centenum]

q: 126793 |ref [NP_421357.1| sensor histidine kinase, putat...
o 127400 | ref | sensor histidine kinase, putat.
gi|15966187 |ref |NP 386540.1| HYPOTHETICAL PROTEIN [Sinorhiz.
gil16264804 |re E] putative two-component sensor .
gi|2808506 |emb|CAAL12536 L ExsG protein [S8inorhizobium meli.
gil13476632|re two-component, sensor histidin.
gil16127278 | re. sensor histidine kinase, putat.
gi|17939110|ref |[NP_535898.1| +two component sensor kinase [A...
9ill3473179 I ref 7 hypothetical protein [Mesorhiz.
gill6119758 | ref AGR_pAT 788p [Agrobacterium tu...
9113488521 |ref sensory transduction histidine.
gil16125089 |ref 9653 sensor histidine kinase, putat.

9i|22957499 [ref[2P_00005199.1| <COG3920: Signal transduction.

|_> 11122968827 |ref |ZP 00016409.1 COG3920: signal transduction histidine kinase [Rhodospirillum
header :ubrum]
Length = 489
s ot Score = 377 bits (968), Expect = e-103
statistics Identities = 235/484 (48%), Positives = 306/484 (63%), Gaps = 14/484 (2%)
Query: 3 PAEIDELRRRLHEAEETLKA IRQGDVDALVVGASDDTDVYV IGGDPDICRSFLDMMEIGA 62
P + ELRRRL EAEETL AIR+G+VDALV+G +V+ IGCGD + R+F++ M+ GA
Sbjct: 4  PVVLSELRRRLAEAEETLNAL ALV 63
allgnment Query: 63 AALDNTGRVLYANAVLADLYGRPLPELEGHRL————- SELTCDPAXXXXKXXXXXKXXKI 117

AA+D GRVLYAN+ L L+ PLP I+4+G L + + I
Sbjet: 64 AAVDEDGRVLYANSALCRLIDHPLPTLOGKPLVSFFDARAAAEIGOMVGKTANDREKVEI 123

Query: 118 PLGVAGAER-QVMLSCGK-LRLGTVSGHAVTFTDFTEQLARERSRONEKAALATIACANE 175
L A + QVL K +RLG V GHAVTFTD TE++ +E + + E+ A AITA ANE
Sbjct: 124 SLKDAATKMAQVFLVSAKPVRLGLVQGHAVTFTDLTERVRSETAERAERTAAATTASANE 183

Query: 176 PVFVCDTLGLITHXXXXXXXXXXXXXXXRPLSEVMDLSVGDGTGLLTLGEIVAQATEGIP 235
V VCD +G+ITH + + + L+ D L++ G++ A G
Sbject: 184 IVVVCDRVGMITHANSAASAIYDGDLIGKMFEDAIPLTFTDAPDLMSGGALIDLALNGDA 243

Query: 236 VQGIEAVMEG'A'PEVmzsumvpcmvsecvxmwgnmmmmnﬂ 293
OGIEA+A SAAPLOV + +SGCV+TMVDLSQRKAAE 0 LL+RELDH
sbjct: 244 RQGIEAIATRAPKVKDYLISMPLQ‘JTEDQIBGCVLWVDLSQRKAABHQQILUIRE.D}I 303

Query: 294 RUKNTLALVMSISRRTMHSEETLEGYQKAFTARIQALAATHNLIADKSWSDISIRDVLVR 353
RV+NILALV+S8IS RT+ +E+TL+G+ +AFT RI LAATH+LLA + W+ +8+ Di+
8bjct: 304 RVRNTLALVLSISNRTLSNEDTLOGFHOAFTORIHGLAATHSLIAKQGWTKLSLHDIVRA 363

Query: 354 ELAPYNEGFSQRILVEVPDVEIEPRSATALGLVIHELATNATKYGSLSTPEGQ--VRVRG 411
ELAPY E R+ +E +V + PR+ATALGL+ HELATNA KYG+LS G V VRG
Sbjct: 364 ELAPYVETDGTRLRL IPRAAIALGLIFHELATNAVKYGAL RG 423

Query: 412 LPGADEPADVVCLEWLERGGPPVSEPTRSGFGQTVIRHAFAYAEGGGAEVSFEPDGVRCR 471

PAD A V +W4E GGP VS P R GFG TVI H+ A¥Y+ GG ++4SF P4+GV C
Sbjct: 424 -PTADGAAMRV--DWVESGGPMVSPPQRKGFGHTVISHSLAYSSKGGTDLSFPPEGVICA 480
Query: 472 VSVP 475

+ +P
Sbjct: 481 LRIF 484

Figure 4.2: An example of a BLAST output showing three portions: the graphical overview box, the list
of matching hits, and the text portion containing header, statistics, and the actual alighment.
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1. Given two amino acid sequences for comparision:

sequence 1 AMPSDGL
sequence?2 GPSDNAT

2. Construct a hashing table:

amino acid sequence position offset
seq 1 seq 2
A 1 6 -5
D 5 4 1
G 6 1 5
L 7 - -
M 2 - -
N - 5 -
P B 2 1
S 4 3 1
T - 7 -

3. Identify residues with the same offset values
(highlighted in grey).

4. Find the matching word of three residues in the order
of 3, 4 and 5 in one sequence and 2, 3,and 4 in the other.

5. This allows establishment of alignment between the
two sequences.

sequence 1 AMPSDGL-

sequence2 -GPSDNAT

Figure 4.3: The procedure of ktup identification using the hashing strategy by FASTA. Identical offset
values between residues of the two sequences allow the formation of ktups.

contiguous identical sequence region that corresponds to a stretch of diagonal in a
two-dimensional matrix (Fig. 4.3).

The second step is to narrow down the high similarity regions between the two
sequences. Normally, many diagonals between the two sequences can be identified
in the hashing step. The top ten regions with the highest density of diagonals are
identified as high similarity regions. The diagonals in these regions are scored using
a substitution matrix. Neighboring high-scoring segments along the same diagonal
are selected and joined to form a single alignment. This step allows introducing gaps
between the diagonals while applying gap penalties. The score of the gapped align-
ment is calculated again. In step 3, the gapped alignment is refined further using the
Smith-Waterman algorithm to produce a final alignment (Fig. 4.4). The last step is to
perform a statistical evaluation of the final alignment as in BLAST, which produces
the E-value.

Similar to BLAST, FASTA has a number of subprograms. The web-based FASTA
program offered by the European Bioinformatics Institute (www.ebi.ac.uk/) allows
the use of either DNA or protein sequences as the query to search against a protein
database or nucleotide database. Some available variants of the program are FASTX,
which translates a DNA sequence and uses the translated protein sequence to query a
protein database, and TFASTX, which compares a protein query sequence to a trans-
lated DNA database.
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Figure 4.4: Steps of the FASTA alignment procedure. In step 1 (left), all possible ungapped alignments
are found between two sequences with the hashing method. In step 2 (middle), the alignments are
scored according to a particular scoring matrix. Only the ten best alignments are selected. In step 3
(right), the alignments in the same diagonal are selected and joined to form a single gapped alignment,
which is optimized using the dynamic programming approach.

Statistical Significance

FASTA also uses E-values and bit scores. Estimation of the two parameters in FASTA
is essentially the same as in BLAST. However, the FASTA output provides one more
statistical parameter, the Z-score. This describes the number of standard deviations
from the mean score for the database search. Because most of the alignments with the
query sequence are with unrelated sequences, the higher the Z-score for a reported
match, the further away from the mean of the score distribution, hence, the more
significant the match. For a Z-score > 15, the match can be considered extremely
significant, with certainty of a homologous relationship. If Z is in the range of 5 to
15, the sequence pair can be described as highly probable homologs. If Z < 5, their
relationships is described as less certain.

COMPARISON OF FASTA AND BLAST

BLAST and FASTA have been shown to perform almost equally well in regular database
searching. However, there are some notable differences between the two approaches.
The major difference is in the seeding step; BLAST uses a substitution matrix to find
matchingwords, whereas FASTA identifiesidentical matching words using the hashing
procedure. By default, FASTA scans smaller window sizes. Thus, it gives more sensitive
results than BLAST, with a better coverage rate for homologs. However, it is usually
slower than BLAST. The use oflow-complexity masking in the BLAST procedure means
that it may have higher specificity than FASTA because potential false positives are
reduced. BLAST sometimes gives multiple best-scoring alignments from the same
sequence; FASTA returns only one final alignment.



SUMMARY

DATABASE SEARCHING WITH THE SMITH-WATERMAN METHOD

As mentioned, the rigorous dynamic programming method is normally not used for
database searching, because itis slow and computationally expensive. Heuristics such
as BLAST and FASTA are developed for faster speed. However, the heuristic methods
are limited in sensitivity and are not guaranteed to find the optimal alignment. They
often fail to find alignment for distantly related sequences. It has been estimated
that for some families of protein sequences, BLAST can miss 30% of truly significant
hits. Recent developments in computation technologies, such as parallel processing
supercomputers, have made dynamic programming a feasible approach to database
searches to fill the performance gap.

For this purpose, the computer codes for the Needleman-Wunsch and Smith-
Waterman algorithms have to be modified to run in a parallel processing environment
so that searches can be completed within reasonable time periods. Currently, the
search speedis still slower than the popular heuristic programs. Therefore, the method
isnotintended for routine use. Nevertheless, the availability of dynamic programming
allows the maximum sensitivity for finding homologs at the sequence level. Empirical
tests have indeed shown that the exhaustive method produces superior results over
the heuristic methods. Below is a list of dynamic programming-based web servers for
sequence database searches.

ScanPS (Scan Protein Sequence, www.ebi.ac.uk/scanps/) is a web-based program
that implements a modified version of the Smith-Waterman algorithm optimized for
parallel processing. The major feature is that the program allows iterative searching
similar to PSI-BLAST (see Chapter 5), which builds profiles from one round of search
results and uses them for the second round of database searching. Full dynamic pro-
gramming is used in each cycle for added sensitivity.

ParAlign (www.paralign.org/) is a web-based server that uses parallel processors
to perform exhaustive sequence comparisons using either a parallelized version of
the Smith-Waterman algorithm or a heuristic program for further speed gains. The
heuristic subprogram first finds exact ungapped alignments and uses them as anchors
for extension into gapped alignments by combining the scores of several diagonals in
the alignment matrix. The search speed of ParAlign approaches to that of BLAST, but
with higher sensitivity.

SUMMARY

Database similarity searching is an essential first step in the functional characteri-
zation of novel gene or protein sequences. The major issues in database searching
are sensitivity, selectivity, and speed. Speed is a particular concern in searching large
databases. Thus, heuristic methods have been developed for efficient database sim-
ilarity searches. The major heuristic database searching algorithms are BLAST and
FASTA. They both use a word method for pairwise alignment. BLAST looks for HSPs
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in a database. FASTA uses a hashing scheme to identify words. The major statistical
measures for significance of database matches are E-values and bit scores. A caveat for
sequence database searching is to filter the LCRs using masking programs. Another
caveat is to use protein sequences as the query in database searching, because they
produce much more sensitive matches. In addition, it is important to keep in mind
that both BLAST and FASTA are heuristic programs and are not guaranteed to find
all the homologous sequences. For significant matches automatically generated by
these programs, it is recommended to follow up the leads by checking the alignment
using more rigorous and independent alighment programs. Advances in computa-
tional technology have also made it possible to use full dynamic programming in
database searching with increased sensitivity and selectivity.
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CHAPTER FIVE

Multiple Sequence Alignment

A natural extension of pairwise alignment is multiple sequence alignment, which is
to align multiple related sequences to achieve optimal matching of the sequences.
Related sequences are identified through the database similarity searching described
in Chapter 4. As the process generates multiple matching sequence pairs, it is often
necessary to convert the numerous pairwise alignments into a single alignment, which
arranges sequences in such a way that evolutionarily equivalent positions across all
sequences are matched.

There is a unique advantage of multiple sequence alignment because it reveals
more biological information than many pairwise alignments can. For example, it
allows the identification of conserved sequence patterns and motifs in the whole
sequence family, which are not obvious to detect by comparing only two sequences.
Many conserved and functionally critical amino acid residues can be identified in
a protein multiple alignment. Multiple sequence alignment is also an essential pre-
requisite to carrying out phylogenetic analysis of sequence families and prediction
of protein secondary and tertiary structures. Multiple sequence alignment also has
applications in designing degenerate polymerase chain reaction (PCR) primers based
on multiple related sequences.

It is theoretically possible to use dynamic programming to align any number of
sequences as for pairwise alignment. However, the amount of computing time and
memory it requires increases exponentially as the number of sequences increases.
As a consequence, full dynamic programming cannot be applied for datasets of
more than ten sequences. In practice, heuristic approaches are most often used. In
this chapter, methodologies and applications of multiple sequence alignment are
discussed.

SCORING FUNCTION

Multiple sequence alignment is to arrange sequences in such a way that a maximum
number of residues from each sequence are matched up according to a particular
scoring function. The scoring function for multiple sequence alignment is based on
the concept of sum of pairs (SP). As the name suggests, it is the sum of the scores of
all possible pairs of sequences in a multiple alignment based on a particular scoring
matrix. In calculating the SP scores, each column is scored by summing the scores
for all possible pairwise matches, mismatches and gap costs. The score of the entire
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sequence 1 (: G Figure 5.1: Given a multiple alignhment of three sequences,
sequence 2 C T the sum of scores.is calculated as the sum o_f.the similarity
sequence 3 s scores of every pair of sequences at each position. The scor-

ing is based on the BLOSUM®62 matrix (see Chapter 3). The
sum of pairs: -2+1+6 = 5 totalscore forthe alignmentis 5, which means that the align-
ment is 25 = 32 times more likely to occur among homologous
sequences than by random chance.

alignmentis the sum of all of the column scores (Fig. 5.1). The purpose of most multiple
sequence alignment algorithms is to achieve maximum SP scores.

EXHAUSTIVE ALGORITHMS

As mentioned, there are exhaustive and heuristic approaches used in multiple
sequence alignment. The exhaustive alignment method involves examining all pos-
sible aligned positions simultaneously. Similar to dynamic programming in pairwise
alignment, which involves the use of a two-dimensional matrix to search for an opti-
mal alignment, to use dynamic programming for multiple sequence alignment, extra
dimensions are needed to take all possible ways of sequence matching into consid-
eration. This means to establish a multidimensional search matrix. For instance, for
three sequences, a three-dimensional matrix is required to account for all possible
alignment scores. Back-tracking is applied through the three-dimensional matrix to
find the highest scored path that represents the optimal alignment. For aligning N
sequences, an N-dimensional matrix is needed to be filled with alignment scores. As
the amount of computational time and memory space required increases exponen-
tially with the number of sequences, it makes the method computationally prohibitive
to use for a large data set. For this reason, full dynamic programming is limited to
small datasets of less than ten short sequences. For the same reason, few multiple
alignment programs employing this “brute force” approach are publicly available. A
program called DCA, which uses some exhaustive components, is described below.

DCA (Divide-and-Conquer Alignment, http://bibiserv.techfak.uni-bielefeld.de/
dca/) is a web-based program that is in fact semiexhaustive because certain steps
of computation are reduced to heuristics. It works by breaking each of the sequences
into two smaller sections. The breaking points are determined based on regional
similarity of the sequences. If the sections are not short enough, further divisions
are carried out. When the lengths of the sequences reach a predefined threshold,
dynamic programming is applied for aligning each set of subsequences. The result-
ing short alignments are joined together head to tail to yield a multiple alignment of
the entire length of all sequences. This algorithm provides an option of using a more
heuristic procedure (fastDCA) to choose optimal cutting points so it can more rapidly
handle a greater number of sequences. It performs global alignment and requires the
input sequences to be of similar lengths and domain structures. Despite the use of
heuristics, the program is still extremely computationally intensive and can handle
only datasets of a very limited number of sequences.
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HEURISTIC ALGORITHMS

Because the use of dynamic programmingis not feasible for routine multiple sequence
alignment, faster and heuristic algorithms have been developed. The heuristic algo-
rithms fall into three categories: progressive alignment type, iterative alignment type,
and block-based alignment type. Each type of algorithm is described in turn.

Progressive Alignment Method

Progressive alignment depends on the stepwise assembly of multiple alignment and is
heuristic in nature. It speeds up the alignment of multiple sequences through a multi-
step process. It first conducts pairwise alignments for each possible pair of sequences
using the Needleman-Wunsch global alignment method and records these similarity
scores from the pairwise comparisons. The scores can either be percent identity or
similarity scores based on a particular substitution matrix. Both scores correlate with
the evolutionary distances between sequences. The scores are then converted into
evolutionary distances to generate a distance matrix for all the sequences involved.
A simple phylogenetic analysis is then performed based on the distance matrix to
group sequences based on pairwise distance scores. As a result, a phylogenetic tree
is generated using the neighbor-joining method (see Chapter 11). The tree reflects
evolutionary proximity among all the sequences.

Itneedstobeemphasized that the resulting tree is an approximate tree and does not
have the rigor of a formally constructed phylogenetic tree (see Chapter 11). Nonethe-
less, the tree can be used as a guide for directing realignment of the sequences. For
that reason, it is often referred to as a guide tree. According to the guide tree, the
two most closely related sequences are first re-aligned using the Needleman-Wunsch
algorithm. To align additional sequences, the two already aligned sequences are con-
verted to a consensus sequence with gap positions fixed. The consensusis then treated
as a single sequence in the subsequent step.

In the next step, the next closest sequence based on the guide tree is aligned with
the consensus sequence using dynamic programming. More distant sequences or
sequence profiles are subsequently added one at a time in accordance with their
relative positions on the guide tree. After realignment with a new sequence using
dynamic programming, a new consensus is derived, which is then used for the next
round of alignment. The process is repeated until all the sequences are aligned
(Fig. 5.2).

Probably the most well-known progressive alignment program is Clustal. Some of
its important features are introduced next.

Clustal (www.ebi.ac.uk/clustalw/) is a progressive multiple alignment program
available either as a stand-alone or on-line program. The stand-alone program, which
runs on UNIX and Macintosh, has two variants, ClustalW and ClustalX. The W version
provides a simple text-based interface and the X version provides a more user-friendly
graphical interface.
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Figure 5.2: Schematic of a typical progressive alignment procedure (e.g., Clustal). Angled wavy lines
represent consensus sequences for sequence pairs A/B and C/D. Curved wavy lines represent a consen-
sus for A/B/C/D.
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One of the most important features of this program is the flexibility of using sub-
stitution matrices. Clustal does not rely on a single substitution matrix. Instead, it
applies different scoring matrices when aligning sequences, depending on degrees of
similarity. The choice of a matrix depends on the evolutionary distances measured
from the guide tree. For example, for closely related sequences that are aligned in
the initial steps, Clustal automatically uses the BLOSUM62 or PAM 120 matrix. When
more divergent sequences are aligned in later steps of the progressive alignment, the
BLOSUM45 or PAM250 matrices may be used instead.

Another feature of Clustal is the use of adjustable gap penalties that allow more
insertions and deletions in regions that are outside the conserved domains, but fewer
in conserved regions. For example, a gap near a series of hydrophobic residues carries
more penalties than the one next to a series of hydrophilic or glycine residues, which
are common in loop regions. In addition, gaps that are too close to one another can
be penalized more than gaps occurring in isolated loci.

The program also applies a weighting scheme to increase the reliability of aligning
divergent sequences (sequences with less than 25% identity). This is done by down-
weighting redundant and closely related groups of sequences in the alignment by a
certain factor. This scheme is useful in preventing similar sequences from dominating
the alignment. The weight factor for each sequence is determined by its branch length
on the guide tree. The branch lengths are normalized by how many times sequences
share a basal branch from the root of the tree. The obtained value for each sequence is
subsequentlyused to multiply the rawalignmentscores of residues from that sequence
so to achieve the goal of decreasing the matching scores of frequent characters in a
multiple alignment and thereby increasing the ones of infrequent characters.

Drawbacks and Solutions

The progressive alignment method is not suitable for comparing sequences of differ-
ent lengths because it is a global alignment-based method. As a result of the use of
affine gap penalties (see Chapter 3), long gaps are not allowed, and, in some cases, this
may limit the accuracy of the method. The final alignment result is also influenced
by the order of sequence addition. Another major limitation is the “greedy” nature
of the algorithm: it depends on initial pairwise alignment. Once gaps introduced in
the early steps of alignment, they are fixed. Any errors made in these steps cannot be
corrected. This problem of “once an error, always an error” can propagate throughout
the entire alignment. In other words, the final alignment could be far from optimal.
The problem can be more glaring when dealing with divergent sequences. To alleviate
some of the limitations, a new generation of algorithms have been developed, which
specifically target some of the problems of the Clustal program.

T-Coffee (Tree-based Consistency Objective Function for alignment Evaluation;
www.ch.embnet.org/software/TCoffee.html) performs progressive sequence align-
ments as in Clustal. The main difference is that, in processing a query, T-Coffee per-
forms both global and local pairwise alignment for all possible pairs involved. The
global pairwise alignment is performed using the Clustal program. The local pairwise
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alignment is generated by the Lalign program, from which the top ten scored align-
ments are selected. The collection of local and global sequence alignments are pooled
to form a library. The consistency of the alignments is evaluated. For every pair of
residues in a pair of sequences, a consistency score is calculated for both global and
local alignments. Each pairwise alignment is further aligned with a possible third
sequence. The result is used to refine the original pairwise alignment based on a
consistency criterion in a process known as library extension. Based on the refined
pairwise alignments, a distance matrix is built to derive a guide tree, which is then
used to direct a full multiple alignment using the progressive approach.

Because an optimal initial alignment is chosen from many alternative alignments,
T-Coffee avoids the problem of getting stuck in the suboptimal alignment regions,
which minimizes errors in the early stages of alighment assembly. Benchmark assess-
ment has shown that T-Coffee indeed outperforms Clustal when aligning moderately
divergent sequences. However, it is also slower than Clustal because of the extra com-
puting time necessary for the calculation of consistency scores. T-Coffee provides
a graphical output of the alignment results, with colored boxes to display degree of
agreement in the alignment library for various sequence regions.

DbClustal (http://igbmc.u-strasbg.fr:8080/DbClustal/dbclustal.html) is a Clustal-
based database search algorithm for protein sequences that combineslocal and global
alignment features. It first performs a BLASTP search for a query sequence. The result-
ing sequence alignment pairs above a certain threshold are analyzed to obtain anchor
points, which are common conserved regions, by using a program called Ballast. A
global alignment is subsequently generated by Clustal, which is weighted toward the
anchor points. Since the anchor points are derived from local alignments, this strategy
minimizes errors caused by the global alignment. The resulting multiple alignment
is further evaluated by NorMD, which removes unrelated or badly aligned sequences
from the multiple alignment. Thus, the final alignment should be more accurate than
using Clustal alone. It also allows the incorporation of very long gaps for insertions
and terminal extensions.

Poa (Partial order alignments, www.bioinformatics.ucla.edu/poa/) is a progressive
alignment program that does not rely on guide trees. Instead, the multiple alignment
is assembled by adding sequences in the order they are given. Instead of using regular
sequence consensus, a partial order graph is used to represent a growing multiple
alignment, in which identical residues in a column are condensed to a node resem-
bling a knot on a rope and divergent residues are allowed to remain as such, allowing
the rope to “bubble” (Fig. 5.3). The graph profile preserves all the information from
the original alignment. Each time a new sequence is added, it is aligned with every
sequence within the partial order graph individually using the Smith—-Waterman algo-
rithm. This allows the formation of a modified graph model, which is then used for
the next cycle of pairwise alignment. By building such a graph profile, the algorithm
maintains the information of the original sequences and eliminates the problem of
error fixation as in the Clustal alignment. Poa is local alignment-based and has been
shown to produce more accurate alignments than Clustal. Another advantage of this
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Figure 5.3: Conversion of a sequence alignment into a graphical profile in the Poa algorithm. Identical
residues in the alignment are condensed as nodes in the partial order graph.

algorithm is its speed. It is reported to be able to align 5,000 sequences in 4 hours
using a regular PC workstation. It is available both as an online program and as a
stand-alone UNIX program.

PRALINE (http://ibivu.cs.vu.nl/programs/pralinewww/) is a web-based progres-
sive alignment program. It first performs preprocessing of the input sequences by
building profiles for each sequence. Profiles (see Chapter 6) can be interpreted as
probability description of a multiple alignment. By default, the profiles are automat-
ically generated using PSI-BLAST database searching (see Chapter 6). Each prepro-
cessed profile is then used for multiple alignment using the progressive approach.
However, this method does not use a guide tree in the successive enlargement of the
alignment, but rather considers the closest neighbor to be joined to alarger alignment
by comparing the profile scores. Because the profiles already incorporate information
of distant relatives of each input sequence, this approach allows more accurate align-
ment of distantly related sequences in the original dataset. In addition, the program
also has the feature to incorporate protein secondary structure information which is
derived from state-of-the-art secondary structure prediction programs, such as PROF
or SSPRO (see Chapter 14). The secondary structure information is used to modify
the profile scores to help constrain sequence matching to the structured regions.
PRALINE is perhaps the most sophisticated and accurate alignment program avail-
able. Because of the high complexity of the algorithm, its obvious drawback is the
extremely slow computation.

Iterative Alignment

The iterative approach is based on the idea that an optimal solution can be found
by repeatedly modifying existing suboptimal solutions. The procedure starts by pro-
ducing a low-quality alignment and gradually improves it by iterative realignment
through well-defined procedures until no more improvements in the alignment scores
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Figure 5.4: Schematic of iterative alignment procedure for PRRN, which involves two sets of iterations.

can be achieved. Because the order of the sequences used for alignment is different
in each iteration, this method may alleviate the “greedy” problem of the progressive
strategy. However, this method is also heuristic in nature and does not have guar-
antees for finding the optimal alignment. An example of iterative alignment is given
below.

PRRN (http://prrn.ims.u-tokyo.ac.jp/) is a web-based program that uses a double-
nested iterative strategy for multiple alignment. It performs multiple alignment
through two sets of iterations: inner iteration and outer iteration. In the outer iteration,
an initial random alignment is generated that is used to derive a UPGMA tree (see
Chapter 11). Weights are subsequently applied to optimize the alignment. In the
inner iteration, the sequences are randomly divided into two groups. Randomized
alignment is used for each group in the initial cycle, after which the alignment posi-
tions in each group are fixed. The two groups, each treated as a single sequence,
are then aligned to each other using global dynamic programming. The process
is repeated through many cycles until the total SP score no longer increases. At
this point, the resulting alignment is used to construct a new UPGMA tree. New
weights are applied to optimize alignment scores. The newly optimized alignment
is subject to further realignment in the inner iteration. This process is repeated over
many cycles until there is no further improvement in the overall alignment scores
(Fig. 5.4).



PRACTICAL ISSUES

Block-Based Alignment

The progressive and iterative alignment strategies are largely global alignment based
and may therefore fail to recognize conserved domains and motifs (see Chapter 7)
among highly divergent sequences of varying lengths. For such divergent sequences
that share only regional similarities, alocal alignment based approach has to be used.
The strategy identifies a block of ungapped alignment shared by all the sequences,
hence, the block-based local alignment strategy. Two block-based alignment pro-
grams are introduced below.

DIALIGN2 (http://bioweb.pasteur.fr/seqanal/interfaces/dialign2.html) is a web-
based program designed to detect local similarities. It does not apply gap penalties
and thus is not sensitive to long gaps. The method breaks each of the sequences down
to smaller segments and performs all possible pairwise alignments between the seg-
ments. High-scoring segments, called blocks, among different sequences are then
compiled in a progressive manner to assemble a full multiple alignment. It places
emphasis on block-to-block comparison rather than residue-to-residue compari-
son. The sequence regions between the blocks are left unaligned. The program has
been shown to be especially suitable for aligning divergent sequences with only local
similarity.

Match-Box (www.sciences.fundp.ac.be/biologie/bms/matchbox_submit.shtml) is
a web-based server that also aims to identify conserved blocks (or boxes) among
sequences. The program compares segments of every nine residues of all possible
pairwise alignments. If the similarity of particular segments is above a certain thresh-
old across all sequences, they are used as an anchor to assemble multiple alignments;
residues between blocks are unaligned. The server requires the user to submit a set of
sequences in the FASTA format and the results are returned by e-mail.

PRACTICAL ISSUES

Protein-Coding DNA Sequences

As mentioned in the Chapter 4, alignment at the protein level is more sensitive than
at the DNA level. Sequence alignment directly at the DNA level can often result in
frameshift errors because in DNA alignment gaps are introduced irrespective of codon
boundaries. Therefore, in the process of achieving maximum sequence similarity at
the DNA level, mismatches of genetic codons occur that violate the accepted evolu-
tionary scenario that insertions or deletions occur in units of codons. The resulting
alignment can thus be biologically unrealistic. The example in Figure 5.5 shows how
such errors can occur when two sequences are being compared at the protein and
DNA levels.

For that reason, sequence alignment at the protein level is much more informative
for functional and evolutionary analysis. However, there are occasions when sequence
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alignment at the DNA level is often necessary, for example, in designing PCR primers
and in constructing DNA-based molecular phylogenetic trees.

Because conducting alignment directly at the DNA level often leads to errors, DNA
can be translated into an amino acid sequence before carrying out alignment to avoid
the errors of inserting gaps within codon boundaries. After alignment of the protein
sequences, the alignment can be converted back to DNA alignment while ensuring
that codons of the DNA sequences line up based on corresponding amino acids.
The following are two web-based programs that allow easy conversion from protein
alignment to DNA alignment.

RevTrans (www.cbs.dtu.dk/services/RevIrans/) takes a set of DNA sequences,
translates them, aligns the resulting protein sequences, and uses the protein align-
ment as a scaffold for constructing the corresponding DNA multiple alignment. It
also allows the user to provide multiple protein alignment for greater control of
the alignment process. PROTA2DNA (http://bioweb.pasteur.fr/seqanal/interfaces/
protal2dna.html) aligns DNA sequences corresponding to a protein multiple align-
ment.

Editing
No matter how good an alignment program seems, the automated alignment often
contains misaligned regions. It is imperative that the user check the alignment care-
fully for biological relevance and edit the alignment if necessary. This involves intro-
ducing or removing gaps to maximize biologically meaningful matches. Sometimes,
portions that are ambiguously aligned and deemed to be incorrect have to deleted.
In manual editing, empirical evidence or mere experience is needed to make correc-
tions on an alignment. One can simply use a word processor to edit the text-based
alignment. There are also dedicated software programs that assist in the process.
BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) is a multifunctional sequence
alignment editor for Windows. It has a coloring scheme for nucleotide or amino acid
residues that facilitates manual editing. In addition, it is able to do BLAST searches,
plasmid drawing, and restriction mapping.



SUMMARY

Rascal (http://igbmc.u-strasbg.fr/PipeAlign/Rascal/rascal.html) is a web-based
program that automatically refines a multiple sequence alignment. It is part of the
PipeAlign package. Itis able to identify misaligned regions and realign them to improve
the quality of the alignment. It works by dividing the input alignment into several
regions horizontally and vertically to identify well-aligned and poorly aligned regions
using an internal scoring scheme. Regions below certain thresholds are considered
misaligned and are subsequently realigned using the progressive approach. The over-
all quality of the alignment is then reassessed. If necessary, certain regions are further
realigned. The program also works in conjunction with NorMD, which validates the
refined alignment and identifies potentially unrelated sequences for removal.

Format Conversion

In many bioinformatics analyses, in particular, phylogenetic analysis, it is often nec-
essary to convert various formats of sequence alignments to the one acceptable by
an application program. The task of format conversion requires a program to be
able to read a multiple alignment in one format and rewrite it into another while
maintaining the original alignment. This is a different task from simply converting
the format of individual unaligned sequences. The BioEdit program mentioned is
able to save an alignment in a variety of different formats. In addition, the Readseq
program mentioned in Chapter 2 is able to perform format conversion of multiple
alignment.

Readseq (http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi/) is a web-based pro-
gram that is able to do both simple sequence format conversion as well as alignment
format conversions. The program can handle formats such as MSE Phylip, Clustal,
PAUP, and Pretty.

SUMMARY

Multiple sequence alignment is an essential technique in many bioinformatics appli-
cations. Many algorithms have been developed to achieve optimal alignment. Some
programs are exhaustive in nature; some are heuristic. Because exhaustive programs
are not feasible in most cases, heuristic programs are commonly used. These include
progressive, iterative, and block-based approaches. The progressive method is a step-
wise assembly of multiple alignment according to pairwise similarity. A prominent
example is Clustal, which is characterized by adjustable scoring matrices and gap
penalties as well as by the application of weighting schemes. The major shortcoming
of the program is its “greediness,” which relates to error fixation in the early steps of
computation. To remedy the problem, T-Coffee and DbClustal have been developed
that combine both global and local alighment to generate more sensitive alignment.
Another improvement on the traditional progressive approach is to use graphic pro-
files, as in Poa, which eliminate the problem of error fixation. Praline is profile based
and has the capacity to restrict alignment based on protein structure information and
is thus much more accurate than Clustal. The iterative approach works by repetitive
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refinement of suboptimal alignments. The block-based method focuses on identify-
ing regional similarities. It is important to keep in mind that no alignment program
is absolutely guaranteed to find correct alignment, especially when the number of
sequences is large and the divergence level is high. The alignment resulting from
automated alignment programs often contains errors. The best approachis to perform
alignment using a combination of multiple alignment programs. The alignment result
can be further refined manually or using Rascal. Protein-encoding DNA sequences
should preferably be aligned at the protein level first, after which the alignment can
be converted back to DNA alignment.
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CHAPTER SIX

Profiles and Hidden Markov Models

One of the applications of multiple sequence alignments in identifying related
sequences in databases is by construction of position-specific scoring matrices
(PSSMs), profiles, and hidden Markov models (HMMs). These are statistical mod-
els that reflect the frequency information of amino acid or nucleotide residues in
a multiple alignment. Thus, they can be treated as consensus for a given sequence
family. However, the “consensus” is not exactly a single sequence, but rather a model
that captures not only the observed frequencies but also predicted frequencies of
unobserved characters. The purpose of establishing the mathematical models is to
allow partial matches with a query sequence so they can be used to detect more dis-
tant members of the same sequence family, resulting in an increased sensitivity of
database searches. This chapter covers the basics of these statistical models followed
by discussion of their applications.

POSITION-SPECIFIC SCORING MATRICES

A PSSM is defined as a table that contains probability information of amino acids or
nucleotides at each position of an ungapped multiple sequence alignment. The matrix
resembles the substitution matrices discussed in Chapter 3, but is more complex in
that it contains positional information of the alignment. In such a table, the rows rep-
resent residue positions of a particular multiple alignment and the columns represent
the names of residues or vice versa (Fig. 6.1). The values in the table represent log odds
scores of the residues calculated from the multiple alignment.

To constructamatrix, raw frequencies of each residue at each column position from
a multiple alignment are first counted. The frequencies are normalized by dividing
positional frequencies of each residue by overall frequencies so that the scores are
length and composition independent. The values are converted to the probability
values by taking to the logarithm (normally to the base of 2). In this way, the matrix
values become log odds scores of residues occurring at each alignment position. In
this matrix, a positive score represents identical residue or similar residue match; a
negative score represents a nonconserved sequence match.

This constructed matrix can be considered a distilled representation for the entire
group of related sequences, providing a quantitative description of the degree of
sequence conservation at each position of a multiple alignment. The probabilistic
model can then be used like a single sequence for database searching and alignment
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Figure 6.1: Example of construction of a PSSM from a multiple alignment of nucleotide sequences.
The process involves counting raw frequencies of each nucleotide at each column position, normaliza-
tion of the frequencies by dividing positional frequencies of each nucleotide by overall frequencies and
converting the values to log odds scores.

or can be used to test how well a particular target sequence fits into the sequence
group.

Forexample, given the matrixshownin Figure 6.1, which is derived from a DNA mul-
tiple alignment, one can ask the question, how well does the new sequence AACTCG
fit into the matrix? To answer the question, the probability values of the sequence at
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Match AACTCG in the matrix

Find nucleotides
at respective pos.
of the matrix

Pos.| 1 | 2 3 4 | 5 6
a (o)(0) — [oar]| — |08
T [00]00]| — @ 0.0 | 00
¢ | — [043]| 15| — -0.43®
c |02] — @ -0.2@ —

Calculate the sum
of log odds scores

1.0+1.0+0.8+1.0+138+1.15=6.33

Figure 6.2: Example of calculation of how well a new sequence fits into the PSSM produced in Fig-
ure 6.1. The matching positions for the new sequence AACTCG are circled in the matrix.

respective positions of the matrix can be added up to produce the sum of the scores
(Fig.6.2).In this case, the total match score for the sequence is 6.33. Because the matrix
values have been taken to the logarithm to the base of 2, the score can be interpreted as
the probability of the sequence fitting the matrix as 2633, or 80 times more likely than
by random chance. Consequently, the new sequence can be confidently classified as
a member of the sequence family.

The probability values in a PSSM depend on the number of sequences used to
compile the matrix. Because the matrix is often constructed from the alignment of an
insufficient number of closely related sequences, to increase the predictive power of
the model, a weighting scheme similar to the one used in the Clustal algorithm (see
Chapter 5) is used that downweights overrepresented, closely related sequences and
upweights underrepresented and divergent ones, so that more divergent sequences
can be included. Application of such a weighting scheme makes the matrix less biased
and able to detect more distantly related sequences.

PROFILES

Actual multiple sequence alignments often contain gaps of varying lengths. When gap
penaltyinformationisincluded in the matrix construction, a profileis created. In other
words, a profile is a PSSM with penalty information regarding insertions and deletions
for a sequence family. However, in the literature, profile is often used interchangeably
with PSSM, even though the two terms in fact have subtle but significant differences.

Asinsequence alignment, gap penalty scores in a profile matrix are often arbitrarily
set. Thus, to achieve an optimal alignment between a query sequence and a profile, a
series of gap parameters have to be tested.
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Query sequence

l BLAST search

Sequence homologs

l Multiple alignment

ACDE..
1

. 2
Profile 3

l BLAST search

Additional homologs

Process

Incorporated in profile
iterated

ACDE..

1
New profile %

Figure 6.3: Schematic diagram of PSI-BLAST, an iterative process used to identify distant homologs.

PSI-BLAST

Profiles can be used in database searching to find remote sequence homologs. How-
ever, to manually construct a profile from a multiple alignment and calculate scores for
matching sequences from a large database is tedious and involves significant exper-
tise.Itis desirable to have a program to establish profiles and use them to search against
sequence databases in an automated way. Such a program is fortunately available as
PSI-BLAST, a variant of BLAST, provided by the National Center for Biotechnology
Information.

Position-specific iterated BLAST (PSI-BLAST) builds profiles and performs data-
base searches in an iterative fashion. It first uses a single query protein sequence to
perform a normal BLASTP search to generate initial similarity hits. The high-scoring
hits are used to build a multiple sequence alignment, from which a profile is created.
The profile is then used in the second round of searching to identify more members
of the same family that may match with the profile. When new sequence hits are
identified, they are combined with the previous multiple alignment to generate a new
profile, which is in turn used in subsequent cycles of database searching. The process
is repeated until no new sequence hits are found (Fig. 6.3).

The main feature of PSI-BLAST is that profiles are constructed automatically and
are fine-tuned in each successive cycle. The program also employs aweighting scheme
in the profile construction in each iteration to increase sensitivity. Another measure
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Figure 6.4: A simple representation of a Markov chain, which consists of a linear chain of events or
states (numbered) linked by transition probability values between events (states).

of PSI-BLAST to increase sensitivity is the use of pseudocounts (to be discussed next)
to provide extra weight to unobserved residues to make the profile more inclusive.

The optimization of profile parameters makes PSI-BLAST a very sensitive search
strategy to detect weak but biologically significant similarities between sequences.
It has been estimated that the profile-based approach is able to identify three times
more homologs than regular BLAST, which mainly fall within the range of less than
30% sequence identity.

However, the high sensitivity of PSI-BLAST is also its pitfall; it is associated with low
selectivity caused by the false-positives generated in the automated profile construc-
tion process. Ifunrelated sequences are erroneously included, profiles become biased.
This allows further errors to be incorporated in subsequent cycles. This problem is
known as profiledrift. A partial solution to this problemis tolet the user visually inspect
results in each iteration and reject certain sequences that are known to be unrelated
based on external knowledge. In addition, it is also prudent to conduct only a limited
number of cycles instead of reaching full convergence. Typically, three to five iterations
of PSI-BLAST are sufficient to find most distant homologs at the sequence level.

MARKOV MODEL AND HIDDEN MARKOV MODEL

Markov Model

A more efficient way of computing matching scores between a sequence and a
sequence profile is through the use of HMMs, which are statistical models originally
developed for use in speech recognition. This statistical tool was subsequently found
to be ideal for describing sequence alignments. To understand HMMs, it is important
to have some general knowledge of Markov models.

A Markov model, also known as Markov chain, describes a sequence of events
that occur one after another in a chain. Each event determines the probability of the
next event (Fig. 6.4). A Markov chain can be considered as a process that moves in
one direction from one state to the next with a certain probability, which is known as
transition probability. A good example of a Markov model is the signal change of traffic
lightsin which the state of the current signal depends on the state of the previous signal
(e.g., green light switches on after red light, which switches on after yellow light).

Biological sequences written as strings of letters can be described by Markov chains
as well; each letter representing a state is linked together with transitional probability
values. The description of biological sequences using Markov chains allows the cal-
culation of probability values for a given residue according to the unique distribution
frequencies of nucleotides or amino acids.
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There are several different types of Markov models used to describe datasets of
different complexities. In each type of Markov model, different mathematical solu-
tions are derived. A zero-order Markov model describes the probability of the cur-
rent state independent of the previous state. This is typical for a random sequence,
in which every residue occurs with an equal frequency. A first-order Markov model
describes the probability of the current state being determined by the previous state.
This corresponds to the unique frequencies of two linked residues (dimer) occur-
ring simultaneously. Similarly, a second-order Markov model describes the situation
in which the probability of the current state is determined by the previous two states.
This corresponds to the unique trimer frequencies (three linked residues occurring
simultaneously as in the case of a codon) in biological sequences. For example, in a
protein-coding sequence, the frequency of unique trimers should be different from
that in a noncoding or random sequence. This discrepancy can be described by the
second-order Markov model. In addition, even higher orders of Markov models are
available for biological sequence analysis (see Chapter 8).

Hidden Markov Model

In a Markov model, all states in a linear sequence are directly observable. In some sit-
uations, some nonobserved factors influence state transition calculations. To include
such factors in calculations requires the use of more sophisticated models: HMMs.
An HMM combines two or more Markov chains with only one chain consisting of
observed states and the other chains made up of unobserved (or “hidden”) states that
influence the outcome of the observed states (Fig. 6.5). For example, in a gapped align-
ment, gaps do not correspond to any residues and are considered as unobservable
states. However, gaps indirectly influence the transition probability of the observed
states.

In an HMM, as in a Markov chain, the probability going from one state to another
state is the transition probability. Each state may be composed of a number elements
or symbols. For nucleotide sequences, there are four possible symbols-A, T, G,and C-
in each state. For amino acid sequences, there twenty symbols. The probability value
associated with each symbol in each state is called emission probability. To calculate
the total probability of a particular path of the model, both transition and emission
probabilities linking all the “hidden” as well as observed states need to be taken into
account. Figure 6.6 provides a simple example of how to use two states of a partial
HMM to represent (or generate) a sequence.

To develop a functional HMM that can be used to best represent a sequence align-
ment, the statistical model has to be “trained,” which is a process to obtain the optimal
statistical parameters in the HMM. The training process involves calculation of the
frequencies of residues in each column in the multiple alignment built from a set of
related sequences. The frequency values are used to fill the emission and transition
probability values in the model. Similar to the construction of a PSSM, once an HMM
is established based on the training sequences, it can be used to determine how well
an unknown sequence matches the model.
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Figure 6.5: A simplified HMM involving two interconnected Markov chains with observed states and
common “begin” and “end” states. The observed states are colored in black and unobserved states
in grey. The transition probability values between observed states or between unobserved states are
labeled. The probability values between the observed and hidden states are unlabeled.

To use an HMM to describe gapped multiple sequence alignment, a character
in the alignment can be in one of three states, match (a mismatch can be quan-
titatively expressed as low probability of a match), insertion, and deletion. “Match”
states are observed states, whereas the insertions and deletions, designated as “insert”
and “delete” states, are “hidden” as far as transitions between match states are
concerned.

To represent the three states in an HMM, a special graphical representation has
been traditionally used. In this representation, transitions from state to state proceed
from left to right via various paths through the model representing all possible com-
binations of matches, mismatches, and gaps to generate an alignment. Each path is
associated with a unique probability value (Fig. 6.7).

The circles on top of the insert state indicate self-looping, which allows insertions
of any number of residues to fit into the model. In addition, there is a beginning state
and an end state. There are many possible combinations of states or paths to travel
through the model, from the beginning state to the end state. Each path generates a
unique sequence, which includes insertions or deletions, with a probability value. For
a given HMM, there may be only one optimal path that generates the most probable
sequence representing an optimal sequence family alignment.

emission transition
probability probability
A 0.80 » A 0.11
co.02| 040 Jco.08
G 0.10 G 0.32
T 0.08 T 0.49
STATE 1 STATE 2

Figure 6.6: Graphic illustration of a simplified partial HMM for DNA sequences with emission and
transition probability values. Both probability values are used to calculate the total probability of a
particular path of the model. For example, to generate the sequence AG, the model has to progress
from A from STATE 1 to G in STATE 2, the probability of this path is 0.80 x 0.40 x 0.32 = 0.102.
Obviously, there are 4 x 4 = 16 different sequences this simple model can generate. The one that has
the highest probability is AT.
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Figure 6.7: A typical architecture of a hidden Markov model representing a multiple sequence align-
ment. Squares indicate match states (M), diamonds insert states (l), and circles delete states (D). The
beginning and end of the match states are indicated by B and E, respectively. The states are connected
by arrowed lines with transition probability values.

Score Computation

To find an optimal path within an HMM that matches a query sequence with the high-
est probability, a matrix of probability values for every state at every residue position
needs to be constructed (Fig. 6.8). Several algorithms are available to determine the
most probable path for this matrix. One such algorithm is the Viterbi algorithm, which
works in a similar fashion as in dynamic programming for sequence alignment (see
Chapter 3). It constructs a matrix with the maximum emission probability values of
all the symbols in a state multiplied by the transition probability for that state. It then
uses a trace-back procedure going from the lower right corner to the upper left corner
to find the path with the highest values in the matrix. Another frequently used algo-
rithm is the forward algorithm, which constructs a matrix using the sum of multiple
emission states instead of the maximum, and calculates the most likely path from the
upper left corner of the matrix to the lower right corner. In other words, it proceeds in
an opposite direction to the Viterbi algorithm. In practice, both methods have equal
performance in finding an optimal alignment.

My | I;(Dy M| I,| D, [ M, | I;[D;|M

S (7. 23]0.00[0.00{0.00{0.000.00[0.00/0.00 0. 00/0. 00
S, |0.000.00 5'2"6'0'0.03 0.00{0.00{0.00[0.00[0.00
S

2/0.00/0.00{0.00]0.00]0.00 0.00"0.01 0.00(0.00

S, [0.00/0.00]0.00{0.00(0.00{0.00{0.000.00 0.0'0

Figure 6.8: Score matrix constructed from a simple HMM with the optimal score path chosen by the
Vertibi algorithm. M, I, and D represent match, insert, and delete states. State O (Sp) is the beginning
state; Sz is the end state. The probability value for each state (S) is the maximum emission probability of
each state multiplied by the transition probability to that state. The Viterbi algorithm works in a trace-
back procedure by traveling from the lower right corner to the upper left corner to find the highest
scored path.
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In HMM construction, as in profile construction, there is always an issue of limited
sampling size, which causes overrepresentation of observed characters while ignoring
the unobserved characters. This problem is known as overfitting. To make sure that the
HMM model generated from the training set is representative of not only the training
set sequences, but also of other members of the family not yet sampled, some level
of “smoothing” is needed, but not to the extent that it distorts the observed sequence
patterns in the training set. This smoothing method is called regularization.

One of the regularization methods involves adding an extra amino acid called
a pseudocount, which is an artificial value for an amino acid that is not observed
in the training set. When probabilities are computed, pseudocounts are treated
like real counts. The modified profile enhances the predictive power of the profile
and HMM.

To automate the process of regularization, various mathematical models have
been developed to simulate the amino acid distribution in a sequence alignment.
These preconstructed models aim to correct the observed amino acid distribution
derived from a limited sequence alignment. A well-known statistical model for this
purpose is the Dirichlet mixture, derived from prior distributions of amino acids
found in alarge number of conserved protein domains. This is essentially a weighting
scheme that gives pseudocounts to amino acids and makes the distribution more
reasonable.

Applications

An advantage of HMMSs over profiles is that the probability modeling in HMMs has
more predictive power. This is because an HMM is able to differentiate between inser-
tion and deletion states, whereas in profile calculation, a single gap penalty score that
is often subjectively determined represents either an insertion or deletion. Because
the handling of insertions and deletions is a major problem in recognizing highly
divergent sequences, HMMs are therefore more robust in describing subtle patterns
of a sequence family than standard profile analysis.

HMMs are very useful in many aspects of bioinformatics. Although an HMM has to
be trained based on multiple sequence alignment, once it is trained, it can in turn be
used for the construction of multiple alignment of related sequences. HMMs can be
used for database searching to detect distant sequence homologs. As to be discussed
in Chapter 7, HMMs are also used in protein family classification through motif and
patternidentification. Advanced gene and promoter prediction (see Chapters 8 and 9),
transmembrane protein prediction (see Chapter 14), aswell as protein fold recognition
(see Chapter 15), also employ HMMs.

HMMer (http://hmmer.wustl.edu/) is an HMM package for sequence analysis
available in the public domain. It is a suite of UNIX programs that work in con-
junction to perform an HMM analysis. It creates profile HMMs from a sequence
alignment using the subprogram hmmbuild. Another subprogram, hmmecalibrate,
calibrates search statistics for the newly generated HMMs by fitting the scores to
the Gumble extreme value distribution (see Chapter 3). The subprogram hmmemit
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generates probability distribution based on profile HMMs. The program hmmsearch
searches a sequence database for matching sequences with a profile HMM.

SUMMARY

PSSMs, profiles, and HMMs are statistical models that represent the consensus of
a sequence family. Because they allow partial matches, they are more sensitive in
detecting remote homologs than regular sequence alignment methods. A PSSM by
definition is a scoring table derived from ungapped multiple sequence alighment. A
profile is similar to PSSM, but also includes probability information for gaps derived
from gapped multiple alighment. An HMM is similar to profiles but differentiates
insertions from deletions in handling gaps.

The probability calculation in HMMs is more complex than in profiles. It involves
traveling through a special architecture of various observed and hidden states to
describe a gapped multiple sequence alignment. As a result of flexible handling of
gaps, HMM is more sensitive than profiles in detecting remote sequence homologs.
All three types of models require training because the statistical parameters have to be
determined according to alignment of sequence families. PSI-BLAST is an example of
the practical application of profiles in database searches to detect remote homologs
in a database. The automated nature of PSI-BLAST has stimulated a widespread use
of profile-based homolog detection.
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CHAPTER SEVEN

Protein Motif and Domain Prediction

An important aspect of biological sequence characterization is identification of
motifs and domains. It is an important way to characterize unknown protein func-
tions because a newly obtained protein sequence often lacks significant similar-
ity with database sequences of known functions over their entire length, which
makes functional assignment difficult. In this case, biologists can gain insight of
the protein function based on identification of short consensus sequences related
to known functions. These consensus sequence patterns are termed motifs and
domains.

A motifis a short conserved sequence pattern associated with distinct functions
of a protein or DNA. It is often associated with a distinct structural site perform-
ing a particular function. A typical motif, such as a Zn-finger motif, is ten to twenty
amino acids long. A domain is also a conserved sequence pattern, defined as an inde-
pendent functional and structural unit. Domains are normally longer than motifs. A
domain consists of more than 40 residues and up to 700 residues, with an average
length of 100 residues. A domain may or may not include motifs within its bound-
aries. Examples of domains include transmembrane domains and ligand-binding
domains.

Motifs and domains are evolutionarily more conserved than other regions of a pro-
tein and tend to evolve as units, which are gained, lost, or shuffled as one module. The
identification of motifs and domains in proteins is an important aspect of the clas-
sification of protein sequences and functional annotation. Because of evolutionary
divergence, functional relationships between proteins often cannot be distinguished
through simple BLAST or FASTA database searches. In addition, proteins or enzymes
often perform multiple functions that cannot be fully described using a single anno-
tation through sequence database searching. To resolve these issues, identification of
the motifs and domains becomes very useful.

Identification of motifs and domains heavily relies on multiple sequence align-
ment as well as profile and hidden Markov model (HMM) construction (see Chap-
ters 5 and 6). This chapter focuses on some fundamental issues relating to protein
motif and domain databases as well as classification of protein sequences using full
length sequences. In addition, computational tools for discovering subtle motifs from
divergent sequences are also introduced.
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IDENTIFICATION OF MOTIFS AND DOMAINS
IN MULTIPLE SEQUENCE ALIGNMENT

Motifs and domains are first constructed from multiple alignment of related sequ-
ences. Based on the multiple sequence alignment, commonly conserved regions can
be identified. The regions considered motifs and domains then serve as diagnos-
tic features for a protein family. The consensus sequence information of motifs and
domains can be stored in a database for later searches of the presence of similar
sequence patterns from unknown sequences. By scanning the presence of known
motifs or domains in a query sequence, associated functional features in a query
sequence can be revealed rapidly, which is often not possible by simply matching
full-length sequences in the primary databases.

There are generally two approaches to representing the consensus information
of motifs and domains. The first is to reduce the multiple sequence alignment from
which motifs or domains are derived to a consensus sequence pattern, known as a
regular expression. For example, the protein phosphorylation motif can be expressed
as [ST]-X-[RK]. The second approach is to use a statistical model such as a pro-
file or HMM to include probability information derived from the multiple sequence
alignment.

MOTIF AND DOMAIN DATABASES USING REGULAR EXPRESSIONS

A regular expression is a concise way of representing a sequence family by a string of
characters. When domains and motifs are written as regular expressions, the following
basic rules to describe a sequence pattern are used: When a position is restricted to a
single conserved amino acid residue, it is indicated as such using the standard, one-
letter code. When a position represents multiple alternative conserved residues, the
residues to be included are placed within brackets. If the position excludes certain
residues, residues to be excluded are placed in curly braces; nonspecific residues
present in a given position in the pattern are indicated by an X; if a sequence element
within the pattern is repetitive, the number of pattern repetitions is indicated within
parentheses; and each position is linked by a hyphen. For example, a motif written
as E-X(2)-[FHM]-X(4)-{P}-L can be interpreted as an E followed by two unspecific
residues which are followed by an E or H or M residue which is followed by another
four unspecific residues followed by a non-P residue and a final L.

There are two mechanisms of matching regular expressions with a query sequence.
One is exact matching and the other is fuzzy matching. In exact matching, there must
be a strict match of sequence patterns. Any variations in the query sequence from the
predefined patterns are not allowed. Searching a motif database using this approach
results in either a match or nonmatch. This way of searching has a good chance of
missing truly relevant motifs that have slight variations, thus generating false-negative
results. Another limitation with using exact matching is that, as new sequences of a
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motif are being accumulated, the rigid regular expression tends to become obsolete
if not updated regularly to reflect the changes.

Fuzzy matches, also called approximate matches, provide more permissive match-
ing by allowing more flexible matching of residues of similar biochemical properties.
For example, if an original alignment only contains phenylalanine at a particular posi-
tion, fuzzy matching allows other aromatic residues (including unobserved tyrosine
and tryptophan) in a sequence to match with the expression. This method is able to
include more variant forms of a motif with a conserved function. However, associated
with the more relaxed matching is the inevitable increase of the noise level and false
positives. This is especially the case for short motifs. This is partly because the rule of
matching is based on assumptions not actual observations.

Motif databases have commonly been used to classify proteins, provide functional
assignment, and identify structural and evolutionary relationships. Two databases
that mainly employ regular expressions for the purpose of searching sequence pat-
terns are described next.

PROSITE (www.expasy.ch/prosite/) is the first established sequence pattern data-
base and is still widely used. It primarily uses a single consensus pattern or “sequence
signature” to characterize a protein function and a sequence family. The consensus
sequence patterns are derived from conserved regions of protein sequence alignments
and are represented with regular expressions. The functional information of these
patterns is primarily based on published literature. To search the database with a
query sequence, PROSITE uses exact matches to the sequence patterns. In addition
to regular expressions, the database also constructs profiles to complement some of
the sequence patterns. The major pitfall with the PROSITE patterns is that some of the
sequence patterns are too short to be specific. The problem with these short sequence
patterns is that the resulting match is very likely to be a result of random events.
Another problem is that the database is relatively small and motif searches often yield
no results when there are in fact true motif matches present (false negatives). Overall,
PROSITE has a greater than 20% error rate. Thus, either a match or nonmatch in
PROSITE should be treated with caution.

Emotif (http://motif.stanford.edu/emotif/emotif-search.html) is a motif database
thatuses multiple sequence alignments from both the BLOCKS and PRINTS databases
with an alignment collection much larger than PROSITE. It identifies patterns by
allowing fuzzy matching of regular expressions. Therefore, it produces fewer false
negatives than PROSITE.

MOTIF AND DOMAIN DATABASES USING STATISTICAL MODELS

The major limitation of regular expressions is that this method does not take into
account sequence probability information about the multiple alighment from which
it is modeled. If a regular expression is derived from an incomplete sequence set, it
has less predictive power because many more sequences with the same type of motifs
are not represented.
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Unlike regular expressions, position-specific scoring matrices (PSSMs), profiles,
and HMMs (see Chapter 6) preserve the sequence information from a multiple
sequence alignment and express it with probabilistic models. In addition, these sta-
tistical models allow partial matches and compensate for unobserved sequence pat-
terns using pseudocounts. Thus, these statistical models have stronger predictive
power than the regular expression based approach, even when they are derived from
a limited set of sequences. Using such a powerful scoring system can enhance the
sensitivity of motif discovery and detect more divergent but truly related sequences.

The following programs mainly use the profile/HMM method extensively for
sequence pattern construction.

PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/) is a protein fingerprint
database containing ungapped, manually curated alignments corresponding to the
most conserved regions among related sequences. This program breaks down a motif
into even smaller nonoverlapping units called fingerprints, which are represented by
unweighted PSSMs. To define a motif, at least a majority of fingerprints are required
to match with a query sequence. A query that has simultaneous high-scoring matches
to a majority of fingerprints belonging to a motif is a good indication of containing
the functional motif. The drawbacks of PRINTS are 1) the difficulty to recognize short
motifs when theyreach the size of single fingerprints and 2) arelatively small database,
which restricts detection of many motifs.

BLOCKS (http://blocks.therc.org/blocks) is a database that uses multiple align-
ments derived from the most conserved, ungapped regions of homologous protein
sequences. The alignments are automatically generated using the same data sets used
for deriving the BLOSUM matrices (see Chapter 3). The derived ungapped alignments
are called blocks. The blocks, which are usually longer than motifs, are subsequently
converted to PSSMs. A weighting scheme and pseudocounts are subsequently applied
to the PSSMs to account for underrepresented and unobserved residues in align-
ments. Because blocks often encompass motifs, the functional annotation of blocks
is thus consistent with that for the motifs. A query sequence can be used to align with
precomputed profiles in the database to select the highest scored matches. Because
of the use of the weighting scheme, the signal-to-noise ratio is improved relative to
PRINTS.

ProDom (http://prodes.toulouse.inra.fr/prodom/2002.1/html/form.php) is a do-
main database generated from sequences in the SWISSPROT and TrEMBL databases
(see Chapter 2). The domains are built using recursive iterations of PSI-BLAST. The
automatically generated sequence pattern database is designed to be an exhaustive
collection of domains without their functions necessarily being known.

Pfam (http://pfam.wustl.edu/hmmsearch.shtml) is a database with protein
domain alignments derived from sequences in SWISSPROT and TrEMBL. Each motif
or domain is represented by an HMM profile generated from the seed alignment of
a number of conserved homologous proteins. Since the probability scoring mecha-
nism is more complex in HMM than in a profile-based approach (see Chapter 6), the
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use of HMM yields further increases in sensitivity of the database matches. The Pfam
database is composed of two parts, Pfam-A and Pfam-B. Pfam-A involves manual
alignments and Pfam-B, automatic alignment in a way similar to ProDom. The func-
tional annotation of motifs in Pfam-A is often related to that in PROSITE. Pfam-B only
contains sequence families not covered in Pfam-A. Because of the automatic nature,
Pfam-B has a much larger coverage but is also more error prone because some HMMs
are generated from unrelated sequences.

SMART (Simple Modular Architecture Research Tool; http://smart.embl-heidel
berg.de/) contains HMM profiles constructed from manually refined protein domain
alignments. Alignments in the database are built based on tertiary structures when-
ever available or based on PSI-BLAST profiles. Alignments are further checked and
refined by human annotators before HMM profile construction. Protein functions are
also manually curated. Thus, the database may be of better quality than Pfam with
more extensive functional annotations. Compared to Pfam, the SMART database con-
tains an independent collection of HMMs, with emphasis on signaling, extracellular,
and chromatin-associated motifs and domains. Sequence searching in this database
produces a graphical output of domains with well-annotated information with respect
to cellular localization, functional sites, superfamily, and tertiary structure.

InterPro (www.ebi.ac.uk/interpro/) is an integrated pattern database designed to
unify multiple databases for protein domains and functional sites. The database inte-
grates information from PROSITE, Pfam, PRINTS, ProDom, and SMART databases.
The sequence patterns from the five databases are further processed. Only overlapping
motifs and domains in a protein sequence derived by all five databases are included.
The InterPro entries use a combination of regular expressions, fingerprints, profiles,
and HMMs in pattern matching. However, an InterPro search does not obviate the
need to search other databases because of its unique criteria of motif inclusion and
thus may have lower sensitivity than exhaustive searches in individual databases. A
popular feature of this database is a graphical output that summarizes motif matches
and has links to more detailed information.

Reverse PSI-BLAST (RPS-BLAST; www.ncbi.nlm.nih.gov/BLAST/) is a web-based
server that uses a query sequence to search against a pre-computed profile database
generated by PSI-BLAST. This is opposite of PSI-BLAST that builds profiles from
matched database sequences, hence a “reverse” process. It performs only one itera-
tion of regular BLAST searching against a database of PSI-BLAST profiles to find the
high-scoring gapped matches.

CDART (Conserved Domain Architecture; www.ncbi.nlm.nih.gov/BLAST/) is a do-
main search program that combines the results from RPS-BLAST, SMART, and Pfam.
The resulting domain architecture of a query sequence can be graphically presented
alongwith related sequences. The program isnow an integral part of the regular BLAST
search function. As with InterPro, CDART is not a substitute for individual database
searches because it often misses certain features that can be found in SMART and
Pfam.
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Caveats

Because of underlying differences in database construction and patten matching
methods, each pattern database has its strengths and weaknesses. The coverage of
these databases overlaps only to a certain extent. If a particular motif search returns
nothing from a particular database search, it does not mean that the sequence con-
tains no patterns. It may be a result of the limited coverage of a particular database
or an error in the database. Also keep in mind that there are many misannotated
sequences in databases, which hinder the detection of true motifs. Alternatively, the
nonmatch may be a result of insensitive sequence matching methods. Therefore, it
is advisable to use a combination of multiple databases in motif searching to get the
greatest coverage and consensus functional information. In cases of inconsistency of
results when using several different databases, a majority rule can be a good way to
discriminate between the matches.

PROTEIN FAMILY DATABASES

The databases mentioned classify proteins based on the presence of motifs and
domains. Another way of classifying proteins is based on near full-length sequence
comparison. The latter classification scheme requires clustering of proteins based
on overall sequence similarities. The clustering criteria include statistical scores in
sequence alignments or orthologous relationships. Protein family databases derived
from this approach do not depend on the presence of particular sequence sig-
natures and thus can be more comprehensive. However, the disadvantage is that
there are more ambiguity and artifacts in protein classification. Two examples of
protein family databases based on clustering and phylogenetic classification are
presented.

COG (Cluster of Orthologous Groups; www.ncbi.nlm.nih.gov/COG/) is a protein
family database based on phylogenetic classification. It is constructed by comparing
protein sequences encoded in forty-three completely sequenced genomes, which are
mainly from prokaryotes, representing thirty major phylogenetic lineages. Through
all-against-all sequence comparisons among the genomes, orthologous proteins
shared by three or more lineages are identified and clustered together as orthologous
groups. Each group should have at least one representative from Archea, Bacteria,
and Eukarya. Orthologs are included in a cluster as long as they satisfy the criterion
of being the mutual best hits in BLAST searches among the genomes.

Because orthologous proteins shared by three or more lineages are considered to
have descended through a vertical evolutionary scenario, if the function of one of
the members is known, functionality of other members can be assigned. Similarly,
a query sequence can be assigned function if it has significant similarity matches
with any member of the cluster. Currently, there are 4,873 clusters in the COG
databases derived from unicellular organisms. The interface for sequence search-
ing in the COG database is the COGnitor program, which is based on gapped
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BLAST. An eukaryotic version of the program is now available, known as KOG
(www.ncbi.nlm.nih.gov/COG/new/kognitor.html).

ProtoNet (www.protonet.cs.huji.ac.il/) is a database of clusters of homologous pro-
teins similar to COG. Orthologous protein sequences in the SWISSPROT database
are clustered based on pairwise sequence comparisons between all possible protein
pairs using BLAST. Protein relatedness is defined by the E-values from the BLAST
alignments. This produces different levels of protein similarity, yielding a hierarchical
organization of protein groups. The most closely related sequences are grouped into
the lowest level clusters. More distant protein groups are merged into higher levels
of clusters. The outcome of this cluster merging is a tree-like structure of functional
categories. A query protein sequence can be submitted to the server for cluster iden-
tification and functional annotation. The database further provides gene ontology
information (see Chapter 16) for protein cluster at each level as well as keywords from
InterPro domains for functional prediction.

MOTIF DISCOVERY IN UNALIGNED SEQUENCES

For a set of closely related sequences, commonly shared motifs can be discovered
by using the multiple sequence alignment-based methods. Often, however, distantly
related sequences that share common motifs cannot be readily aligned. For exam-
ple, the sequences for the helix-turn-helix motif in transcription factors can be sub-
tly different enough that traditional multiple sequence alignment approaches fail to
generate a satisfactory answer. For detecting such subtle motifs, more sophisticated
algorithms such as expectation maximization (EM) and Gibbs sampling are used.

Expectation Maximization

The EM procedure can be used to find hidden motifs using a method that is some-
what different from profiles and PSSMs. The method works by first making a random
or guessed alignment of the sequences to generate a trial PSSM. The trial PSSM is
then used to compare with each sequence individually. The log odds scores of the
PSSM are modified in each iteration to maximize the alignment of the matrix to each
sequence. During the iterations, the sequence pattern for the conserved motifs is
gradually “recruited” to the PSSM (Fig. 7.1). The drawback of the EM method is that
the procedure stops prematurely if the scores reach convergence, a problem known
as a local optimum. In addition, the final result is sensitive to the initial alighment.

Gibbs Motif Sampling

Another way to find conserved patterns from unaligned sequences is to use the Gibbs
sampling method. Similar to the EM method, the Gibbs sampling algorithm makes an
initial guessed alignment of all but one sequence. A trial PSSM is built to represent the
alignment. The matrix is then aligned to the left-out sequence. The matrix scores are
subsequently adjusted to achieve the best alignment with the left-out sequence. This
process is repeated many times until there is no further improvement on the matrix
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Figure 7.1: Schematic diagram of the EM algorithm.

scores. The end result is that after a number of iterations, the most probable patterns
canbeincorporated into a final PSSM. This procedure is less susceptible to premature
termination due to the local optimum problem.

MEME (Multiple EM for motif elicitation, http://meme.sdsc.edu/meme/website/
meme-intro.html) is a web-based program that uses the EM algorithm to find motifs
either for DNA or protein sequences. It uses a modified EM algorithm to avoid the local
minimum problem. In constructing a probability matrix, it allows multiple starting
alignments and does not assume that there are motifs in every sequence. The com-
putation is a two-step procedure. In the first step, the user provides approximately 20
unaligned sequences. The program applies EM to generate a sequence motif, which is
an ungapped local sequence alignment. In the second step, segments from the query
sequences with the same length as the motif are reapplied with the EM procedure to
optimize the alignment between the subsequences and the motif. A segment with the
highest score from the second iteration is selected as the optimum motif.

Gibbs sampler (http://bayesweb.wadsworth.org/gibbs/gibbs.html) isa web-based
program that uses the Gibbs sampling approach to look for short, partially conserved
gap-free segments for either DNA or protein sequences. To ensure accuracy, more
than twenty sequences of the exact same length should be used.

SEQUENCE LOGOS

A multiple sequence alignment or a motif is often represented by a graphic represen-
tation called a logo. In alogo, each position consists of stacked letters representing the
residues appearing in a particular column of a multiple alignment (Fig. 7.2). The over-
all height of a logo position reflects how conserved the position is, and the height of
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Figure 7.2: Example of multiple alignment representation using a logo (produced using the WebLogo
program).

each letter in a position reflects the relative frequency of the residue in the alignment.
Conserved positions have fewer residues and bigger symbols, whereas less conserved
positions have a more heterogeneous mixture of smaller symbols stacked together. In
general, a sequence logo provides a clearer description of a consensus sequence.

WebLogo (http://weblogo.berkeley.edu/) is an interactive program for generating
sequence logos. A user needs to enter the sequence alignment in FASTA format to
allow the program to compute the logos. A graphic file is returned to the user as a
result.

SUMMARY

Sequence motifs and domains represent conserved, functionally important portions
of proteins. Identifying domains and motifs is a crucial step in protein functional
assignment. Domains correspond to contiguous regions in protein three-dimensional
structures and serve as units of evolution. Motifs are highly conserved segments
in multiple protein alignments that may be associated with particular biological
functions. Databases for motifs and domains can be constructed based on multiple
sequence alignment of related sequences. The derived motifs can be represented as
regular expressions or profiles or HMMs. The mechanism of matching regular expres-
sions with query sequences can be either exact matches or fuzzy matches. There
are many databases constructed based on profiles or HMMs. Examples include Pfam,
ProDom, and SMART. However, differences between databases render different sensi-
tivities in detecting sequence motifs from unknown sequences. Thus, searching using
multiple database tools is recommended.

In addition to motifs and domains, proteins can be classified based on overall
sequence similarities. This type of classification makes use of either clustering or
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phylogenetic algorithms. Some examples are COG and ProtoNet. They are powerful
tools in functional annotation of new protein sequences. Subtle motifs from divergent
sequences can be discovered using the EM and Gibbs sampling approaches. Sequence
logos are an effective way to represent motifs.
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Gene and Promoter Prediction






CHAPTER EIGHT

Gene Prediction

With the rapid accumulation of genomic sequence information, there is a pressing
need to use computational approaches to accurately predict gene structure. Compu-
tational gene prediction is a prerequisite for detailed functional annotation of genes
and genomes. The process includes detection of the location of open reading frames
(ORFs) and delineation of the structures of introns as well as exons if the genes of
interest are of eukaryotic origin. The ultimate goal is to describe all the genes com-
putationally with near 100% accuracy. The ability to accurately predict genes can
significantly reduce the amount of experimental verification work required.

However, this may still be a distant goal, particularly for eukaryotes, because many
problemsin computational gene prediction are still largely unsolved. Gene prediction,
infact, represents one of the most difficult problems in the field of pattern recognition.
This is because coding regions normally do not have conserved motifs. Detecting
coding potential of a genomic region has to rely on subtle features associated with
genes that may be very difficult to detect.

Through decades of research and development, much progress has been made in
prediction of prokaryotic genes. A number of gene prediction algorithms for prokary-
otic genomes have been developed with varying degrees of success. Algorithms for
eukarytotic gene prediction, however, are still yet to reach satisfactory results. This
chapter describes a number of commonly used prediction algorithms, their theoret-
ical basis, and limitations. Because of the significant differences in gene structures
of prokaryotes and eukaryotes, gene prediction for each group of organisms is dis-
cussed separately. In addition, because of the predominance of protein coding genes
in a genome (as opposed to rRNA and tRNA genes), the discussion focuses on the
prediction of protein coding sequences.

CATEGORIES OF GENE PREDICTION PROGRAMS

The current gene prediction methods can be classified into two major categories, ab
initio-based and homology-based approaches. The ab initio-based approach predicts
genes based on the given sequence alone. It does so by relying on two major features
associated with genes. The first is the existence of gene signals, which include start and
stop codons, intron splice signals, transcription factor binding sites, ribosomal bind-
ing sites, and polyadenylation (poly-A) sites. In addition, the triplet codon structure
limits the coding frame length to multiples of three, which can be used as a condition
for gene prediction. The second feature used by ab initio algorithms is gene content,
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which is statistical description of coding regions. It has been observed that nucleotide
composition and statistical patterns of the coding regions tend to vary significantly
from those of the noncoding regions. The unique features can be detected by employ-
ing probabilistic models such as Markov models or hidden Markov models (HMMs;
see Chapter 6) to help distinguish coding from noncoding regions.

The homology-based method makes predictions based on significant matches of
the query sequence with sequences of known genes. For instance, if a translated DNA
sequence is found to be similar to a known protein or protein family from a database
search, this can be strong evidence that the region codes for a protein. Alternatively,
when possible exons of a genomic DNA region match a sequenced cDNA, this also
provides experimental evidence for the existence of a coding region.

Some algorithms make use of both gene-finding strategies. There are also a num-
ber of programs that actually combine prediction results from multiple individual
programs to derive a consensus prediction. This type of algorithms can therefore be
considered as consensus based.

GENE PREDICTION IN PROKARYOTES

Prokaryotes, which include bacteria and Archaea, have relatively small genomes with
sizes ranging from 0.5 to 10 Mbp (1 Mbp = 10° bp). The gene density in the genomes is
high, with more than 90% of a genome sequence containing coding sequence. There
are very few repetitive sequences. Each prokaryotic gene is composed of a single
contiguous stretch of ORF coding for a single protein or RNA with no interruptions
within a gene.

More detailed knowledge of the bacterial gene structure can be very useful in gene
prediction. In bacteria, the majority of genes have a start codon ATG (or AUG in mRNA;
because prediction is done at the DNA level, T is used in place of U), which codes for
methionine. Occasionally, GTG and TTG are used as alternative start codons, but
methionine is still the actual amino acid inserted at the first position. Because there
may be multiple ATG, GTG, or TGT codons in a frame, the presence of these codons at
thebeginning of the frame does not necessarily give a clear indication of the translation
initiation site. Instead, to help identify this initiation codon, other features associated
with translation are used. One such featureis the ribosomal bindingsite, also called the
Shine-Delgarno sequence, which is a stretch of purine-rich sequence complementary
to 16S rRNA in the ribosome (Fig. 8.1). It is located immediately downstream of the
transcription initiation site and slightly upstream of the translation start codon. In
many bacteria, it has a consensus motif of AGGAGGT. Identification of the ribosome
binding site can help locate the start codon.

At the end of the protein coding region is a stop codon that causes translation to
stop. There are three possible stop codons, identification of which is straightfor-
ward. Many prokaryotic genes are transcribed together as one operon. The end of the
operon is characterized by a transcription termination signal called p-independent
terminator. The terminator sequence has a distinct stem-loop secondary structure
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Figure 8.1: Structure of a typical prokaryotic gene structure. Abbreviation: RBS, ribosome binding site.

followed by a string of Ts. Identification of the terminator site, in conjunction with
promoter site identification (see Chapter 9), can sometimes help in gene prediction.

Conventional Determination of Open Reading Frames

Without the use of specialized programs, prokaryotic gene identification can rely
on manual determination of ORFs and major signals related to prokaryotic genes.
Prokaryotic DNA is first subject to conceptual translation in all six possible frames,
three frames forward and three frames reverse. Because a stop codon occurs in about
every twenty codons by chance in a noncoding region, a frame longer than thirty
codons without interruption by stop codons is suggestive of a gene coding region,
although the threshold for an ORF is normally set even higher at fifty or sixty codons.
The putative frame is further manually confirmed by the presence of other signals
such as a start codon and Shine-Delgarno sequence. Furthermore, the putative ORF
can be translated into a protein sequence, which is then used to search against a
protein database. Detection of homologs from this search is probably the strongest
indicator of a protein-coding frame.

In the early stages of development of gene prediction algorithms, genes were pre-
dicted by examining the nonrandomness of nucleotide distribution. One method is
based on the nucleotide composition of the third position of a codon. In a coding
sequence, it has been observed that this position has a preference to use G or C over
A or T. By plotting the GC composition at this position, regions with values signifi-
cantly above the random level can be identified, which are indicative of the presence
of ORFs (Fig. 8.2). In practice, because genes can be in any of the six frames, the
statistical patterns are computed for all possible frames. In addition to codon bias,
there is a similar method called TESTCODE (implemented in the commercial GCG
package) that exploits the fact that the third codon nucleotides in a coding region
tend to repeat themselves. By plotting the repeating patterns of the nucleotides at
this position, coding and noncoding regions can be differentiated (see Fig. 8.2). The
results of the two methods are often consistent. The two methods are often used in
conjunction to confirm the results of each other.

These statistical methods, which are based on empirical rules, examine the statis-
tics of a single nucleotide (either G or C). They identify only typical genes and tend
to miss atypical genes in which the rule of codon bias is not strictly followed. To
improve the prediction accuracies, the new generation of prediction algorithms use
more sophisticated statistical models.
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Figure 8.2: Coding frame detection of a bacterial gene using either the GC bias or the TESTCODE
method. Both result in similar identification of a reading frame (dashed arrows).

Gene Prediction Using Markov Models and Hidden Markov Models

Markovmodelsand HMMs can be very helpful in providing finer statistical description
ofagene (see Chapter 6). AMarkov model describes the probability of the distribution
of nucleotides in a DNA sequence, in which the conditional probability of a particular
sequence position depends on k previous positions. In this case, k is the order of a
Markov model. A zero-order Markov model assumes each base occurs independently
with a given probability. This is often the case for noncoding sequences. A first-order
Markov model assumes that the occurrence of a base depends on the base preceding
it. A second-order model looks at the preceding two bases to determine which base
follows, which is more characteristic of codons in a coding sequence.

The use of Markov models in gene finding exploits the fact that oligonucleotide
distributions in the coding regions are different from those for the noncoding regions.
These can be represented with various orders of Markov models. Since a fixed-order
Markov chain describes the probability of a particular nucleotide that depends on
previous k nucleotides, the longer the oligomer unit, the more nonrandomness can
be described for the coding region. Therefore, the higher the order of a Markov model,
the more accurately it can predict a gene.

Because a protein-encoding gene is composed of nucleotides in triplets as codons,
more effective Markov models are built in sets of three nucleotides, describing non-
random distributions of trimers or hexamers, and so on. The parameters of a Markov
model have to be trained using a set of sequences with known gene locations. Once the
parameters of the model are established, it can be used to compute the nonrandom
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Figure 8.3: A simplified second-order HMM for prokaryotic gene prediction that includes a statistical
model for start codons, stop codons, and the rest of the codons in a gene sequence represented by a
typical model and an atypical model.

distributions of trimers or hexamers in a new sequence to find regions that are com-
patible with the statistical profiles in the learning set.

Statistical analyses have shown that pairs of codons (or amino acids at the protein
level) tend to correlate. The frequency of six unique nucleotides appearing together in
acodingregionismuchhigherthan byrandom chance. Therefore, a fifth-order Markov
model, which calculates the probability of hexamer bases, can detect nucleotide cor-
relations found in coding regions more accurately and is in fact most often used.

A potential problem of using a fifth-order Markov chain is that if there are not
enough hexamers, which happens in short gene sequences, the method’s efficacy
may be limited. To cope with this limitation, a variable-length Markov model, called
an interpolated Markov model IMM), has been developed. The IMM method samples
the largest number of sequence patterns with k ranging from 1 to 8 (dimers to nine-
mers) and uses a weighting scheme, placing less weight on rare k-mers and more
weight on more frequent k-mers. The probability of the final model is the sum of
probabilities of all weighted k-mers. In other words, this method has more flexibility
in using Markov models depending on the amount of data available. Higher-order
models are used when there is a sufficient amount of data and lower-order models
are used when the amount of data is smaller.

It has been shown that the gene content and length distribution of prokaryotic
genes can be either typical or atypical. Typical genes are in the range of 100 to
500 amino acids with a nucleotide distribution typical of the organism. Atypical genes
are shorter or longer with different nucleotide statistics. These genes tend to escape
detection using the typical gene model. This means that, to make the algorithm capa-
ble of fully describing all genes in a genome, more than one Markov model is needed.
To combine different Markov models that represent typical and atypical nucleotide
distributions creates an HMM prediction algorithm. A simplified HMM for gene find-
ing is shown in Fig. 8.3.
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The following describes a number of HMM/IMM-based gene finding programs for
prokaryotic organisms.

GeneMark (http://opal.biology.gatech.edu/GeneMark/) is a suite of gene predic-
tion programs based on the fifth-order HMMs. The main program - GeneMark.hmm -
istrained on anumber of complete microbial genomes. If the sequence to be predicted
is from a nonlisted organism, the most closely related organism can be chosen as the
basis for computation. Another option for predicting genes from a new organism
is to use a self-trained program GeneMarkS as long as the user can provide at least
100 kbp of sequence on which to train the model. If the query sequence is shorter than
100 kbp, a GeneMark heuristic program can be used with some loss of accuracy. In
addition to predicting prokaryotic genes, GeneMark also has a variant for eukaryotic
gene prediction using HMM.

Glimmer (Gene Locator and Interpolated Markov Modeler, www.tigr.org/softlab/
glimmer/glimmer.html) is a UNIX program from TIGR that uses the IMM algorithm
to predict potential coding regions. The computation consists of two steps, namely
model building and gene prediction. The model building involves training by the
input sequence, which optimizes the parameters of the model. In an actual gene
prediction, the overlapping frames are “flagged” to alert the user for furtherinspection.
Glimmer also has a variant, GlimmerM, for eukaryotic gene prediction.

FGENESB (www.softberry.com/berry.phtml?topic=gfindb) is a web-based pro-
gram thatis also based on fifth-order HMMs for detecting coding regions. The program
is specifically trained for bacterial sequences. It uses the Vertibi algorithm (see Chap-
ter 6) to find an optimal match for the query sequence with the intrinsic model. A
linear discriminant analysis (LDA) is used to further distinguish coding signals from
noncoding signals.

These programs have been shown to be reasonably successful in finding genes in a
genome. The common problem is imprecise prediction of translation initiation sites
because of inefficient identification of ribosomal binding sites. This problem can be
remedied by identifying the ribosomal binding site associated with a start codon. A
number of algorithms have been developed solely for this purpose. RBSfinder is one
such algorithm.

RBSfinder (ftp:// ftp.tigr.org/pub/software/RBSfinder/) isa UNIX program that uses
the prediction output from Glimmer and searches for the Shine-Delgarno sequences
in the vicinity of predicted start sites. If a high-scoring site is found by the intrinsic
probabilistic model, a start codon is confirmed; otherwise the program moves to other
putative translation start sites and repeats the process.

Performance Evaluation

The accuracy of a prediction program can be evaluated using parameters such as sen-
sitivity and specificity. To describe the concept of sensitivity and specificity accurately,
four features are used: true positive (TP), which is a correctly predicted feature; false
positive (FP), which is an incorrectly predicted feature; false negative (FN), which is
a missed feature; and true negative (TN), which is the correctly predicted absence of
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Figure 8.4: Definition of four basic measures of gene prediction accuracy at the nucleotide level. Abbre-
viations: FN, false negative; TP, true positive; FP, false positive; TN, true negative.

a feature (Fig. 8.4). Using these four terms, sensitivity (Sn) and specificity (Sp) can be
described by the following formulas:

Sn = TP/(TP + EN) (Eq. 8.1)
Sp = TP/(TP + FP) (Eq. 8.2)

According to these formulas, sensitivity is the proportion of true signals predicted
among all possible true signals. It can be considered as the ability to include correct
predictions. In contrast, specificity is the proportion of true signals among all signals
that are predicted. It represents the ability to exclude incorrect predictions. A program
is considered accurate if both sensitivity and specificity are simultaneously high and
approach a value of 1. In a case in which sensitivity is high but specificity is low, the
program is said to have a tendency to overpredict. On the other hand, if the sensitivity
is low but specificity high, the program is too conservative and lacks predictive power.

Because neither sensitivity nor specificity alone can fully describe accuracy, it is
desirable to use a single value to summarize both of them. In the field of gene finding,
a single parameter known as the correlation coefficient (CC) is often used, which is

defined by the following formula:
TPeTN—-FPeFN
CC = (Eq. 8.3)
J(TP+FP)(TN+ FN)(FP + TN)

The value of the CC provides an overall measure of accuracy, which ranges from —1

to +1, with +1 meaning always correct prediction and —1 meaning always incorrect
prediction. Table 8.1 shows a performance analysis using the Glimmer program as an
example.

GENE PREDICTION IN EUKARYOTES

Eukaryotic nuclear genomes are much larger than prokaryotic ones, with sizes ranging
from 10 Mbp to 670 Gbp (1 Gbp = 10° bp). They tend to have a very low gene density.
In humans, for instance, only 3% of the genome codes for genes, with about 1 gene per
100 kbp on average. The space between genes is often very large and rich in repetitive
sequences and transposable elements.

Most importantly, eukaryotic genomes are characterized by a mosaic organization
in which a gene is split into pieces (called exons) by intervening noncoding sequences
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TABLE 8.1. Performance Analysis of the Glimmer Program for Gene Prediction
of Three Genomes

Species GC (%) FN FP Sensitivity ~ Specificity
Campylobacter jejuni 30.5 10 19 99.3 98.7
Haemophilus influenzae 38.2 3 54 99.8 96.1
Helicobacter pylori 38.9 6 39 99.5 97.2

Note: The data sets were from three bacterial genomes (Aggarwal and Ramaswamy, 2002).
Abbreviations: FN, false negative; FP, false positive.

(called introns) (Fig. 8.5). The nascent transcript from a eukaryotic gene is modi-
fied in three different ways before becoming a mature mRNA for protein translation.
The first is capping at the 5’ end of the transcript, which involves methylation at
the initial residue of the RNA. The second event is splicing, which is the process of
removing introns and joining exons. The molecular basis of splicing is still not com-
pletely understood. What is known currently is that the splicing process involves a
large RNA-protein complex called spliceosome. The reaction requires intermolecu-
lar interactions between a pair of nucleotides at each end of an intron and the RNA
component of the spliceosome. To make the matter even more complex, some eukary-
otic genes can have their transcripts spliced and joined in different ways to generate
more than one transcript per gene. This is the phenomenon of alternative splicing. As
to be discussed in more detail in Chapter 16, alternative splicing is a major mecha-
nism for generating functional diversity in eukaryotic cells. The third modification is
polyadenylation, which is the addition of a stretch of As (~250) at the 3’ end of the RNA.

Start Stop
codon codon
Transcri ptionCZE gu ag [ 2u Ly PSS agJ
start e S
e ——
Intron 1 M ntron 2 Intron 3 — Poly-A
Exon 1 Exon 2 Exon 3 Exon4 OV
signal
RNA splicing
Start Stop
codon codon
S"UTR ;——J 3"UTR
5 cap O——— :AA??;AAAA
Exon 1Exon2 Exon3 Exon4 tail

Mature RNA
Figure 8.5: Structure of a typical eukaryotic RNA as primary transcript from genomic DNA and as
mature RNA after posttranscriptional processing. Abbreviations: UTR, untranslated region; poly-A,
polyadenylation.
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This process is controlled by a poly-A signal, a conserved motif slightly downstream
of a coding region with a consensus CAATAAA(T/C).

The main issue in prediction of eukaryotic genes is the identification of exons,
introns, and splicing sites. From a computational point of view, it is a very complex
and challenging problem. Because of the presence of split gene structures, alternative
splicing, and very low gene densities, the difficulty of finding genes in such an envi-
ronment is likened to finding a needle in a haystack. The needle to be found actually
is broken into pieces and scattered in many different places. The job is to gather the
pieces in the haystack and reproduce the needle in the correct order.

The good news is that there are still some conserved sequence features in eukary-
otic genes that allow computational prediction. For example, the splice junctions of
introns and exons follow the GT-AG rule in which an intron at the 5’ splice junction
has a consensus motif of GTAAGT; and at the 3’ splice junction is a consensus motif of
(Py)12NCAG (see Fig. 8.5). Some statistical patterns useful for prokaryotic gene finding
can be applied to eukaryotic systems as well. For example, nucleotide compositions
and codon bias in coding regions of eukaryotes are different from those of the non-
coding regions. Hexamer frequencies in coding regions are also higher than in the
noncoding regions. Most vertebrate genes use ATG as the translation start codon and
have a uniquely conserved flanking sequence call a Kozak sequence (CCGCCATGQG).
In addition, most of these genes have a high density of CG dinucleotides near the
transcription start site. This region is referred to as a CpG island (p refers to the phos-
phodiester bond connecting the two nucleotides), which helps to identify the tran-
scription initiation site of a eukaryotic gene. The poly-A signal can also help locate
the final coding sequence.

Gene Prediction Programs

To date, numerous computer programs have been developed for identifying eukary-
otic genes. They fall into all three categories of algorithms: ab initio based, homology
based, and consensus based. Most of these programs are organism specific because
training data sets for obtaining statistical parameters have to be derived from indi-
vidual organisms. Some of the algorithms are able to predict the most probable exons
as well as suboptimal exons providing information for possible alternative spliced
transcription products.

Ab Initio-Based Programs

The goal of the ab initio gene prediction programs is to discriminate exons from non-
coding sequences and subsequently join the exons together in the correct order. The
main difficulty is correct identification of exons. To predict exons, the algorithms rely
on two features, gene signals and gene content. Signals include gene start and stop
sites and putative splice sites, recognizable consensus sequences such as poly-A sites.
Gene content refers to coding statistics, which includes nonrandom nucleotide distri-
bution, amino acid distribution, synonymous codon usage, and hexamer frequencies.
Among these features, the hexamer frequencies appear to be most discriminative for
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Figure 8.6: Architecture of a neural network for eukaryotic gene prediction.

coding potentials. To derive an assessment for this feature, HMMs can be used, which
require proper training. In addition to HMMs, neural network-based algorithms are
also common in the gene prediction field. This begs the question of what is a neural
network algorithm. A brief introduction is given next.

Prediction Using Neural Networks. A neural network (or artificial neural network) is a
statistical model with a special architecture for pattern recognition and classification.
It is composed of a network of mathematical variables that resemble the biological
nervous system, with variables or nodes connected by weighted functions that are
analogous to synapses (Fig. 8.6). Another aspect of the model that makes it look like
a biological neural network is its ability to “learn” and then make predictions after
being trained. The network is able to process information and modify parameters of
the weight functions between variables during the training stage. Once it is trained, it
is able to make automatic predictions about the unknown.

In gene prediction, a neural network is constructed with multiple layers; the input,
output, and hidden layers. The input is the gene sequence with intron and exon
signals. The output is the probability of an exon structure. Between input and out-
put, there may be one or several hidden layers where the machine learning takes
place. The machine learning process starts by feeding the model with a sequence
of known gene structure. The gene structure information is separated into several
classes of features such as hexamer frequencies, splice sites, and GC composition
during training. The weight functions in the hidden layers are adjusted during this
process to recognize the nucleotide patterns and their relationship with known struc-
tures. When the algorithm predicts an unknown sequence after training, it applies
the same rules learned in training to look for patterns associated with the gene
structures.

The frequently used ab initio programs make use of neural networks, HMMs, and
discriminant analysis, which are described next.

GRAIL (Gene Recognition and Assembly Internet Link; http://compbio.ornl.gov/
public/tools/) is a web-based program that is based on a neural network algorithm.
The program is trained on several statistical features such as splice junctions, start
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Figure 8.7: Comparison of two discriminant analysis, LDA and QDA. A coding features; ® noncoding
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and stop codons, poly-A sites, promoters, and CpG islands. The program scans the
query sequence with windows of variable lengths and scores for coding potentials
and finally produces an output that is the result of exon candidates. The program
is currently trained for human, mouse, Arabidopsis, Drosophila, and Escherichia coli
sequences.

Prediction Using Discriminant Analysis. Some gene prediction algorithms rely on
discriminant analysis, either LDA or quadratic discriminant analysis (QDA), to
improve accuracy. LDA works by plotting a two-dimensional graph of coding sig-
nals versus all potential 3’ splice site positions and drawing a diagonal line that best
separates coding signals from noncoding signals based on knowledge learned from
training data sets of known gene structures (Fig. 8.7). QDA draws a curved line based
on a quadratic function instead of drawing a straight line to separate coding and
noncoding features. This strategy is designed to be more flexible and provide a more
optimal separation between the data points.

FGENES (Find Genes; www.softberry.com/) is a web-based program that uses LDA
to determine whether a signal is an exon. In addition to FGENES, there are many
variants of the program. Some programs, such as FGENESH, make use of HMMs.
There are others, such as FGENESH_C, that are similarity based. Some programs,
such as FGENESH+, combine both ab initio and similarity-based approaches.

MZEF (Michael Zhang’s Exon Finder; http://argon.cshl.org/genefinder/) is a web-
based program that uses QDA for exon prediction. Despite the more complex math-
ematical functions, the expected increase in performance has not been obvious in
actual gene prediction.

Prediction Using HMMs. GENSCAN (http://genes.mit.edu/ GENSCAN.html) is aweb-
based program that makes predictions based on fifth-order HMMs. It combines
hexamer frequencies with coding signals (initiation codons, TATA box, cap site, poly-
A, etc.) in prediction. Putative exons are assigned a probability score (P) of being a
true exon. Only predictions with P > 0.5 are deemed reliable. This program is trained
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for sequences from vertebrates, Arabidopsis, and maize. It has been used extensively
in annotating the human genome (see Chapter 17).

HMMgene (www.cbs.dtu.dk/services/HMMgene) is also an HMM-based web pro-
gram. The unique feature of the program is that it uses a criterion called the conditional
maximum likelihood to discriminate coding from noncoding features. If a sequence
already has a subregion identified as coding region, which may be based on similarity
with cDNAs or proteins in a database, these regions are locked as coding regions. An
HMM prediction is subsequently made with a bias toward the locked region and is
extended from the locked region to predict the rest of the gene coding regions and
even neighboring genes. The program is in a way a hybrid algorithm that uses both
ab initio-based and homology-based criteria.

Homology-Based Programs

Homology-based programs are based on the fact that exon structures and exon
sequences of related species are highly conserved. When potential coding frames in a
query sequence are translated and used to align with closest protein homologs found
in databases, near perfectly matched regions can be used to reveal the exon bound-
aries in the query. This approach assumes that the database sequences are correct.
It is a reasonable assumption in light of the fact that many homologous sequences
to be compared with are derived from cDNA or expressed sequence tags (ESTs) of
the same species. With the support of experimental evidence, this method becomes
rather efficient in finding genes in an unknown genomic DNA.

The drawback of this approach is its reliance on the presence of homologs in
databases. If the homologs are not available in the database, the method cannot
be used. Novel genes in a new species cannot be discovered without matches in the
database. A number of publicly available programs that use this approach are dis-
cussed next.

GenomeScan (http://genes.mit.edu/genomescan.html) is a web-based server that
combines GENSCAN prediction results with BLASTX similarity searches. The user
provides genomic DNA and protein sequences from related species. The genomic
DNA is translated in all six frames to cover all possible exons. The translated exons
are then used to compare with the user-supplied protein sequences. Translated
genomic regions having high similarity at the protein level receive higher scores.
The same sequence is also predicted with a GENSCAN algorithm, which gives exons
probability scores. Final exons are assigned based on combined score information
from both analyses.

EST2Genome (http://bioweb.pasteur.fr/seqanal/interfaces/est2genome.html) is a
web-based program purely based on the sequence alignment approach to define
intron—exon boundaries. The program compares an EST (or cDNA) sequence with a
genomic DNA sequence containing the corresponding gene. The alignment is done
using a dynamic programming-based algorithm. One advantage of the approach is
the ability to find very small exons and alternatively spliced exons that are very difficult
to predict by any ab initio—type algorithms. Another advantage is that there is no need
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for model training, which provides much more flexibility for gene prediction. The
limitation is that EST or cDNA sequences often contain errors or even introns if the
transcripts are not completely spliced before reverse transcription.

SGP-1 (Syntenic Gene Prediction; http://195.37.47.237/sgp-1/) isa similarity-based
web program that aligns two genomic DNA sequences from closely related organ-
isms. The program translates all potential exons in each sequence and does pair-
wise alignment for the translated protein sequences using a dynamic programming
approach. The near-perfect matches at the protein level define coding regions. Simi-
lar to EST2Genome, there is no training needed. The limitation is the need for two
homologous sequences having similar genes with similar exon structures; if this con-
dition is not met, a gene escapes detection from one sequence when there is no
counterpart in another sequence.

TwinScan (http://genes.cs.wustl.edu/) is also a similarity-based gene-finding
server. It is similar to GenomeScan in that it uses GenScan to predict all possible
exons from the genomic sequence. The putative exons are used for BLAST searching
to find closest homologs. The putative exons and homologs from BLAST searching are
aligned to identify the best match. Only the closest match from a genome database is
used as a template for refining the previous exon selection and exon boundaries.

Consensus-Based Programs

Because different prediction programs have different levels of sensitivity and speci-
ficity, it makes sense to combine results of multiple programs based on consensus.
This idea has prompted development of consensus-based algorithms. These pro-
grams work by retaining common predictions agreed by most programs and removing
inconsistent predictions. Such an integrated approach may improve the specificity by
correcting the false positives and the problem of overprediction. However, since this
procedure punishes novel predictions, it may lead to lowered sensitivity and missed
predictions. Two examples of consensus-based programs are given next.

GeneComber (www.bioinformatics.ubc.ca/genecomber/index.php) is a web
server that combines HMMgene and GenScan prediction results. The consistency
of both prediction methods is calculated. If the two predictions match, the exon score
is reinforced. If not, exons are proposed based on separate threshold scores.

DIGIT (http://digit.gsc.riken.go.jp/cgi-bin/index.cgi) is another consensus-based
web server. It uses prediction from three ab initio programs - FGENESH, GENSCAN,
and HMMgene. It first compiles all putative exons from the three gene-finders and
assigns ORFs with associated scores. It then searches a set of exons with the highest
additive score under the reading frame constraints. During this process, a Bayesian
procedure and HMMs are used to infer scores and search the optimal exon set which
gives the final designation of gene structure.

Performance Evaluation
Because of extra layers of complexity for eukaryotic gene prediction, the sensitivity
and specificity have to be defined on the levels of nucleotides, exons, and entire genes.
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TABLE 8.2. Accuracy Comparisons for a Number of Ab Initio Gene
Prediction Programs at Nucleotide and Exon Levels

Nucleotide level Exon level

Sn Sp CC Sn Sp (Sn+Sp)/2 ME WE

FGENES 0.86  0.88 083 067 067 0.67 0.12  0.09
GeneMark 0.87 089 083 0.3 0.54 0.54 0.13 0.11
Genie 0.91 090 088 0.71 0.70  0.71 0.19 0.11
GenScan 0.95 0.90 091 0.70 070 0.70 0.08  0.09
HMMgene 0.93 0.93 0.91 076 0.77 0.76 0.12  0.07
Morgan 075 074 074 046 041 0.43 0.20 0.28
MZEF 0.70  0.73 0.66 058 0.59 0.59 032 023

Note: The data sets used were single mammalian gene sequences (performed by Sanja
Rogic, from www.cs.ubc.ca/~rogic/evaluation/tablesgen.html.

Abbreviations: Sn, sensitivity; Sp, specificity; CC, correlation coefficient; ME, missed
exons; WE, wrongly predicted exons.

The sensitivity at the exon and gene level is the proportion of correctly predicted exons
or genes amongactual exons or genes. The specificity at the two levelsis the proportion
of correctly predicted exons or genes among all predictions made. For exons, instead
of using CC, an average of sensitivity and specificity at the exon level is used instead.
In addition, the proportion of missed exons and missed genes as well as wrongly
predicted exons and wrong genes, which have no overlaps with true exons or genes,
often have to be indicated.

By introducing these measures, the criteria for prediction accuracy evaluation
become more stringent (Table 8.2). For example, a correct exon requires all nucleotides
belonging to the exon to be predicted correctly. For a correctly predicted gene, all
nucleotides and all exons have to be predicted correctly. One single error at the
nucleotide level can negate the entire gene prediction. Consequently, the accuracy
values reported on the levels of exons and genes are much lower than those for
nucleotides.

When a new gene prediction program is published, the accuracy level is usually
reported. However, the reported performance should be treated with caution because
the accuracy is usually estimated based on particular datasets, which may have been
optimized for the program. The datasets used are also mainly composed of short
genomic sequences with simple gene structures. When the programs are used in
gene prediction for truly unknown eukaryotic genomic sequences, the accuracy can
become much lower. Because of the lack of unbiased and realistic datasets and objec-
tive comparison for eukaryotic gene prediction, it is difficult to know the true accuracy
of the current prediction tools.

At present, no single software program is able to produce consistent superior
results. Some programs may perform well on certain types of exons (e.g., internal
or single exons) but not others (e.g., initial and terminal exons). Some are sensitive to
the G-C content of the input sequences or to the lengths of introns and exons. Most
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programs make overpredictions when genes contain long introns. In sum, they all
suffer from the problem of generating a high number of false positives and false nega-
tives. This is especially true for ab initio-based algorithms. For complex genomes such
as the human genome, most popular programs can predict no more than 40% of the
genes exactly right. Drawing consensus from results by multiple prediction programs
may enhance performance to some extent.

SUMMARY

Computational prediction of genes is one of the most important steps of genome
sequence analysis. For prokaryotic genomes, which are characterized by high gene
density and noninterrupted genes, prediction of genes is easier than for eukaryotic
genomes. Current prokaryotic gene prediction algorithms, which are based on HMMs,
have achieved reasonably good accuracy. Many difficulties still persist for eukaryotic
gene prediction. The difficulty mainly results from the low gene density and split
gene structure of eukaryotic genomes. Current algorithms are either ab initio based,
homology based, or a combination of both. For ab initio-based eukaryotic gene pre-
diction, the HMM type of algorithm has overall better performance in differentiating
intron—-exon boundaries. The major limitation is the dependency on training of the
statistical models, which renders the method to be organism specific. The homology-
based algorithms in combination with HMMs may yield improved accuracy. The
method is limited by the availability of identifiable sequence homologs in databases.
The combined approach that integrates statistical and homology information may
generate further improved performance by detecting more genes and more exons
correctly. With rapid advances in computational techniques and understanding of the
splicing mechanism, it is hoped that reliable eukaryotic gene prediction can become
more feasible in the near future.
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CHAPTER NINE

Promoter and Regulatory Element Prediction

An issue related to gene prediction is promoter prediction. Promoters are DNA ele-
mentslocated in the vicinity of gene start sites (which should not be confused with the
translation start sites) and serve as binding sites for the gene transcription machinery,
consisting of RNA polymerases and transcription factors. Therefore, these DNA ele-
ments directly regulate gene expression. Promoters and regulatory elements are tradi-
tionally determined by experimental analysis. The process is extremely time consum-
ing and laborious. Computational prediction of promoters and regulatory elements
is especially promising because it has the potential to replace a great deal of extensive
experimental analysis.

However, computational identification of promoters and regulatory elements is
also a very difficult task, for several reasons. First, promoters and regulatory elements
are not clearly defined and are highly diverse. Each gene seems to have a unique com-
bination of sets of regulatory motifs that determine its unique temporal and spatial
expression. There is currently a lack of sufficient understanding of all the necessary
regulatory elements for transcription. Second, the promoters and regulatory elements
cannot be translated into protein sequences to increase the sensitivity for their detec-
tion. Third, promoter and regulatory sites to be predicted are normally short (six to
eight nucleotides) and can be found in essentially any sequence by random chance,
thus resulting in high rates of false positives associated with theoretical predictions.

Current solutions for providing preliminary identification of these elements are to
combine a multitude of features and use sophisticated algorithms that give either ab
initio-based predictions or predictions based on evolutionary information or experi-
mental data. These computational approaches are described in detail in this chapter
following a brief introduction to the structures of promoters and regulatory elements
in both prokaryotes and eukaryotes.

PROMOTER AND REGULATORY ELEMENTS IN PROKARYOTES

In bacteria, transcription is initiated by RNA polymerase, which is a multi-subunit
enzyme. The o subunit (e.g., 0 %) of the RNA polymerase is the protein that recognizes
specific sequences upstream of a gene and allows the rest of the enzyme complex
to bind. The upstream sequence where the o protein binds constitutes the promoter
sequence. This includes the sequence segments located 35 and 10 base pairs
(bp) upstream from the transcription start site. They are also referred to as the
—35 and —10 boxes. For the ¢7° subunit in Escherichia coli, for example, the —35 box
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Figure 9.1: Schematic representation of elements involved in bacterial transcription initiation. RNA
polymerase binds to the promoter region, which initiates transcription through interaction with tran-
scription factors binding at different sites. Abbreviations: TSS, transcription start site; ORF, reading
frame; pol, polymerase; TF, transcription factor (see color plate section).

has a consensus sequence of TTGACA. The -10 box has a consensus of TATAAT.
The promoter sequence may determine the expression of one gene or a number
of linked genes downstream. In the latter case, the linked genes form an operon,
which is controlled by the promoter.

In addition to the RNA polymerase, there are also a number of DNA-binding pro-
teins that facilitate the process of transcription. These proteins are called transcription
factors. They bind to specific DNA sequences to either enhance or inhibit the func-
tion of the RNA polymerase. The specific DNA sequences to which the transcription
factors bind are referred to as regulatory elements. The regulatory elements may bind
in the vicinity of the promoter or bind to a site several hundred bases away from the
promoter. The reason that the regulatory proteins binding at long distance can still
exert their effect is because of the flexible structure of DNA, which is able to bend and
and exert its effect by bringing the transcription factors in close contact with the RNA
polymerase complex (Fig. 9.1).

PROMOTER AND REGULATORY ELEMENTS IN EUKARYOTES

In eukaryotes, gene expression is also regulated by a protein complex formed between
transcription factors and RNA polymerase. However, eukaryotic transcription has an
added layer of complexity in that there are three different types of RNA polymerase
complexes, namely RNA polymerases I, II, and III. Each polymerase transcribes dif-
ferent sets of genes. RNA polymerases I and III are responsible for the transcription of
ribosomal RNAs and tRNAs, respectively. RNA polymerase Il is exclusively responsible
for transcribing protein-encoding genes (or synthesis of mRNAs).

Unlike in prokaryotes, where genes often form an operon with a shared promoter,
each eukaryotic gene has its own promoter. The eukaryotic transcription machinery
also requires many more transcription factors than its prokaryotic counterpart to help
initiate transcription. Furthermore, eukaryotic RNA polymerase II does not directly
bind to the promoter, but relies on a dozen or more transcription factors to recog-
nize and bind to the promoter in a specific order before its own binding around the
promoter.
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Figure 9.2: Schematic diagram of an eukaryotic promoter with transcription factors and RNA poly-
merase bound to the promoter. Abbreviations: Inr, initiator sequence; ORF, reading frame; pol, poly-
merase; TF, transcription factor (see color plate section).

The core of many eukaryotic promoters is a so-called TATA box, located 30 bps
upstream from the transcription start site, having a consensus motif TATA(A/T)A
(A/T) (Fig. 9.2.). However, not all eukaryotic promoters contain the TATA box. Many
genes such as housekeeping genes do not have the TATA box in their promoters.
Still, the TATA box is often used as an indicator of the presence of a promoter. In
addition, many genes have a unique initiator sequence (Inr), which is a pyrimidine-
rich sequence with a consensus (C/T)(C/T)CA(C/T)(C/T). This site coincides with the
transcription start site. Most of the transcription factor binding sites are located within
500 bp upstream of the transcription start site. Some regulatory sites can be found
tens of thousands base pairs away from the gene start site. Occasionally, regulatory
elements are located downstream instead of upstream of the transcription start site.
Often, a cluster of transcription factor binding sites spread within a wide range to
work synergistically to enhance transcription initiation.

PREDICTION ALGORITHMS

Current algorithms for predicting promoters and regulatory elements can be catego-
rized as either ab initio based, which make de novo predictions by scanning individ-
ual sequences; or similarity based, which make predictions based on alignment of
homologous sequences; or expression profile based using profiles constructed from
a number of coexpressed gene sequences from the same organism. The similarity
type of prediction is also called phylogenetic footprinting. As mentioned, because
RNA polymerase II transcribes the eukaryotic mRNA genes, most algorithms are thus
focused on prediction of the RNA polymerase II promoter and associated regulatory
elements. Each of the categories is discussed in detail next.

Ab Initio-Based Algorithms

This type of algorithm predicts prokaryotic and eukaryotic promoters and regulatory
elements based on characteristic sequences patterns for promoters and regulatory
elements. Some ab initio programs are signal based, relying on characteristic promoter
sequences such as the TATA box, whereas others rely on content information such as
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hexamer frequencies. The advantage of the ab initio method is that the sequence can
be applied as such without having to obtain experimental information. The limitation
is the need for training, which makes the prediction programs species specific. In
addition, this type of method has a difficulty in discovering new, unknown motifs.

The conventional approach to detecting a promoter or regulatory site is through
matching a consensus sequence pattern represented by regular expressions (see
Chapter 7) or matching a position-specific scoring matrix (PSSM; see Chapter 6)
constructed from well-characterized binding sites. In either case, the consensus
sequences or the matrices are relatively short, covering 6 to 10 bases. As described
in Chapter 7, to determine whether a query sequence matches a weight matrix, the
sequence is scanned through the matrix. Scores of matches and mismatches at all
matrix positions are summed up to give a log odds score, which is then evaluated for
statistical significance. This simple approach, however, often has difficulty differen-
tiating true promoters from random sequence matches and generates high rates of
false positives as a result.

To better discriminate true motifs from background noise, a new generation of
algorithms has been developed that take into account the higher order correlation of
multiple subtle features by using discriminant functions, neural networks, or hidden
Markovmodels (HMMs) thatare capable ofincorporating more neighboring sequence
information. To further improve the specificity of prediction, some algorithms selec-
tively exclude coding regions and focus on the upstream regions (0.5 to 2.0 kb) only,
which are most likely to contain promoters. In that sense, promoter prediction and
gene prediction are coupled.

Prediction for Prokaryotes

One of the unique aspects in prokaryotic promoter prediction is the determination
of operon structures, because genes within an operon share a common promoter
located upstream of the first gene of the operon. Thus, operon prediction is the key
in prokaryotic promoter prediction. Once an operon structure is known, only the first
gene is predicted for the presence of a promoter and regulatory elements, whereas
other genes in the operon do not possess such DNA elements.

There are a number of methods available for prokaryotic operon prediction. The
most accurate is a set of simple rules developed by Wang et al. (2004). This method
relies on two kinds of information: gene orientation and intergenic distances of a pair
of genes of interest and conserved linkage of the genes based on comparative genomic
analysis. More about gene linkage patterns across genomes is introduced in Chapters
16 and 18. A scoring scheme is developed to assign operons with different levels of
confidence (Fig. 9.3). This method is claimed to produce accurate identification of an
operon structure, which in turn facilitates the promoter prediction.

This newly developed scoring approach is, however, notyet available as a computer
program. The prediction can be done manually using the rules, however. The few
dedicated programs for prokaryotic promoter prediction do not apply the Wang et al.
rule for historical reasons. The most frequently used program is BPROM.
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Scoring criteria for operon prediction
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Figure 9.3: Prediction of operons in prokaryotes based on a scoring scheme developed by Wang et al.
(2004). This method states that, for two adjacent genes transcribed in the same orientation and without
a p-independent transcription termination signal in between, the score is assigned O if the intergenic dis-
tance is larger than 300 bp regardless of the gene linkage pattern or if the distance is larger than 100 bp
with the linkage not observed in other genomes. The score is assigned 1 if the intergenic distance is
larger than 60 bp with the linkage shared in less than five genomes. The score is assigned 2 if the
distance of the two genes is between 30 and 60 bp with the linkage shared in less than five genomes
or if the distance is between 50 and 300 bp with the linkage shared in between five to ten genomes.
The score is assigned 3 if the intergenic distance is less than 30 bp regardless of the conserved linkage
pattern or if the linkage is conserved in more than ten genomes regardless of the intergenic distance or
if the distance is less than 50 bp with the linkage shared in between five to ten genomes. A minimum
score of 2 is considered the threshold for assigning the two genes in one operon.

BPROM (www.softberry.com/berry.phtml?topic=bprom&group=programs &sub-
group=gfindb) is a web-based program for prediction of bacterial promoters. It uses
a linear discriminant function (see Chapter 8) combined with signal and content
information such as consensus promoter sequence and oligonucleotide composition
ofthe promoter sites. This program first predicts a given sequence for bacterial operon
structures by using an intergenic distance of 100 bp as basis for distinguishing genes
to bein an operon. This rule is more arbitrary than the Wang et al. rule, leading to high
rates of false positives. Once the operons are assigned, the program is able to predict
putative promoter sequences. Because most bacterial promoters are located within
200 bp of the protein coding region, the program is most effectively used when about

Threshold
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200 bp of upstream sequence of the first gene of an operon is supplied as input to
increase specificity.

FindTerm (http://sunl.softberry.com/berry.phtml?topic=findterm&group=pro
grams&subgroup=gfindb) is a program for searching bacterial p-independent
termination signals located at the end of operons. It is available from the same site
as FGENES and BPROM. The predictions are made based on matching of known
profiles of the termination signals combined with energy calculations for the derived
RNA secondary structures for the putative hairpin-loop structure (see Chapter 16).
The sequence region that scores best in features and energy terms is chosen as the
prediction. The information can sometimes be useful in defining an operon.

Prediction for Eukaryotes

The ab initio method for predicting eukaryotic promoters and regulatory elements
also relies on searching the input sequences for matching of consensus patterns
of known promoters and regulatory elements. The consensus patterns are derived
from experimentally determined DNA binding sites which are compiled into pro-
files and stored in a database for scanning an unknown sequence to find simi-
lar conserved patterns. However, this approach tends to generate very high rate
of false positives owing to nonspecific matches with the short sequence patterns.
Furthermore, because of the high variability of transcription factor binding sites,
the simple sequence matching often misses true promoter sites, creating false
negatives.

To increase the specificity of prediction, a unique feature of eukaryotic promoter
is employed, which is the presence of CpG islands. It is known that many vertebrate
genes are characterized by a high density of CG dinucleotides near the promoter
region overlapping the transcription start site (see Chapter 8). By identifying the CpG
islands, promoters can be traced on the immediate upstream region from the islands.
By combining CpGislands and other promoter signals, the accuracy of prediction can
be improved. Several programs have been developed based on the combined features
to predict the transcription start sites in particular.

As discussed, the eukaryotic transcription initiation requires cooperation of a large
number of transcription factors. Cooperativity means that the promoter regions tend
to contain a high density of protein-binding sites. Thus, finding a cluster of transcrip-
tion factor binding sites often enhances the probability of individual binding site
prediction.

Anumber of representatives of ab initio promoter prediction algorithms that incor-
porate the unique properties of eukaryotic promoters are introduced next.

CpGProD (http://pbil.univ-lyonl.fr/software/cpgprod.html) is a web-based pro-
gram that predicts promoters containing a high density of CpG islands in mam-
malian genomic sequences. It calculates moving averages of GC% and CpG ratios
(observed/expected) over a window of a certain size (usually 200 bp). When the val-
ues are above a certain threshold, the region is identified as a CpG island.
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Eponine (http://servlet.sanger.ac.uk:8080/eponine/) is a web-based program that
predicts transcription start sites based on a series of preconstructed PSSMs of several
regulatory sites, such as the TATA box, the CCAAT box, and CpG islands. The query
sequence from a mammalian source is scanned through the PSSMs. The sequence
stretches with high-score matchingto all the PSSMs, as well as matching of the spacing
between the elements, are declared transcription start sites. A Bayesian method is also
used in decision making.

Cluster-Buster (http://zlab.bu.edu/cluster-buster/cbust.html) is an HMM-based,
web-based program designed to find clusters of regulatory binding sites. It works by
detecting a region of high concentration of known transcription factor binding sites
and regulatory motifs. A query sequence is scanned with a window size of 1 kb for
putative regulatory motifs using motif HMMs. If multiple motifs are detected within a
window, a positive score is assigned to each motif found. The total score of the window
is the sum of each motif score subtracting a gap penalty, which is proportional to the
distances between motifs. If the score of a certain region is above a certain threshold,
it is predicted to contain a regulatory cluster.

FirstEF (First Exon Finder; http://rulai.cshl.org/tools/FirstEF/) is aweb-based pro-
gram that predicts promoters for human DNA. It integrates gene prediction with pro-
moter prediction. It uses quadratic discriminant functions (see Chapter 8) to calculate
the probabilities of the first exon of a gene and its boundary sites. A segment of DNA
(15 kb) upstream of the first exon is subsequently extracted for promoter prediction
on the basis of scores for CpG islands.

McPromoter (http://genes.mit.edu/McPromoter.html) is a web-based program
that uses a neural network to make promoter predictions. It has a unique promoter
model containing six scoring segments. The program scans a window of 300 bases for
the likelihoods of being in each of the coding, noncoding, and promoter regions. The
input for the neural network includes parameters for sequence physical properties,
such as DNA bendability, plus signals such as the TATA box, initiator box, and CpG
islands. The hidden layer combines all the features to derive an overall likelihood for
a site being a promoter. Another unique feature is that McPromoter does not require
that certain patterns must be present, but instead the combination of all features is
important. For instance, even if the TATA box score is very low, a promoter prediction
can still be made if the other features score highly. The program is currently trained
for Drosophila and human sequences.

TSSW (www.softberry.com/berry.phtml?topic=promoter) is a web program that
distinguishes promoter sequences from non-promoter sequences based on a combi-
nation of unique content information such as hexamer/trimer frequencies and sig-
nal information such the TATA box in the promoter region. The values are fed to a
linear discriminant function (see Chapter 8) to separate true motifs from background
noise.

CONPRO (http://stl.bioinformatics.med.umich.edu/conpro) is a web-based pro-
gram that uses a consensus method to identify promoter elements for human DNA.
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To use the program, a user supplies the transcript sequence of a gene (cDNA). The
program uses the information to search the human genome database for the position
of the gene. It then uses the GENSCAN program to predict 5 untranslated exons in the
upstream region. Once the 5'-most exon is located, a further upstream region (1.5 kb)
is used for promoter prediction, which relies on a combination of five promoter pre-
diction programs, TSSG, TSSW, NNPP, PROSCAN, and PromFD. For each program, the
highest score prediction is taken as the promoter in the region. If three predictions
fall within a 100-bp region, this is considered a consensus prediction. If no three-way
consensus is achieved, TSSG and PromFD predictions are taken. Because no cod-
ing sequence is used in prediction, specificity is improved relative to each individual
program.

Phylogenetic Footprinting-Based Method

It has been observed that promoter and regulatory elements from closely related
organisms such as human and mouse are highly conserved. The conservation is both
at the sequence level and at the level of organization of the elements. Therefore, it is
possible to obtain such promoter sequences for a particular gene through compar-
ative analysis. The identification of conserved noncoding DNA elements that serve
crucial functional roles is referred to as phylogenetic footprinting; the elements are
called phylogenetic footprints. This type of method can apply to both prokaryotic and
eukaryotic sequences.

The selection of organisms for comparison is an important consideration in this
type of analysis. If the pair of organisms selected are too closely related, such as
human and chimpanzee, the sequence difference between them may not be sufficient
to filter out functional elements. On the other hand, if the organisms’ evolutionary
distances are too long, such as between human and fish, long evolutionary divergence
may render promoter and other elements undetectable. One example of appropriate
selection of species is the use of human and mouse sequences, which often yields
informative results.

Another caveat of phylogenetic footprinting is to extract noncoding sequences
upstream of corresponding genes and focus the comparison to this region only, which
helps to prevent false positives. The predictive value of this method also depends on
the quality of the subsequent sequence alignments. The advanced alignment pro-
grams introduced in Chapter 5 can be used. Even more sophisticated expectation
maximization (EM) and Gibbs sampling algorithms can be used in detecting weakly
conserved motifs.

There are software programs specifically designed to take advantage of the pre-
sence of phylogenetic footprints to make comparisons among a number of related
species to identify putative transcription factor binding sites. The advantage in imple-
menting the algorithms is that no training of the probabilistic models is required;
hence, itismore broadlyapplicable. Thereis also a potential to discover newregulatory
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motifs shared among organisms. The obvious limitation is the constraint on the evo-
lutionary distances among the orthologous sequences.

ConSite (http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite) is a web server that
finds putative promoter elements by comparing two orthologous sequences. The
user provides two individual sequences which are aligned by ConSite using a global
alignment algorithm. Alternatively, the program accepts precomputed alignment.
Conserved regions are identified by calculating identity scores, which are then used
to compare against a motif database of regulatory sites (TRANSFAC). High-scoring
sequence segments upstream of genes are returned as putative regulatory elements.

rVISTA (http://rvista.dcode.org/) is a similar cross-species comparison tool for
promoter recognition. The program uses two orthologous sequences as input and first
identifies all putative regulatory motifs based on TRANSFAC matches. It then aligns
the two sequences using a local alignment strategy. The motifs that have the highest
percent identity in the pairwise comparison are presented graphically as regulatory
elements.

PromH(W) (www.softberry.com/berry.phtml?topic=promhw&group=programs
&subgroup=promoter) is a web-based program that predicts regulatory sites by pair-
wise sequence comparison. The user supplies two orthologous sequences, which are
aligned by the program to identify conserved regions. These regions are subsequently
predicted for RNA polymerase II promoter motifs in both sequences using the TSSW
program. Only the conserved regions having high scored promoter motifs are returned
as results.

Bayes aligner (www.bioinfo.rpi.edu/applications/bayesian/bayes/bayes_align12.
pl) is a web-based footprinting program. It aligns two sequences using a Bayesian
algorithm whichis a unique sequence alignment method. Instead of returning a single
best alignment, the method generates a distribution of a large number of alignments
using a full range of scoring matrices and gap penalties. Posterior probability values,
which are considered estimates of the true alignment, are calculated for each align-
ment. By studying the distribution, the alignment that has the highestlikelihood score,
which is in the extreme margin of the distribution, is chosen. Based on this unique
alignment searching algorithm, weakly conserved motifs can be identified with high
probability scores.

FootPrinter (http://abstract.cs.washington.edu/~blanchem/FootPrinterWeb/Foot
PrinterInput2.pl) isaweb-based program for phylogenetic footprinting using multiple
input sequences. The user also needs to provide a phylogenetic tree that defines the
evolutionary relationship of the input sequences. (One may obtain the tree informa-
tion from the “Tree of Life” web site [http://tolweb.org/tree/phylogeny.html], which
archives known phylogenetic trees using ribosomal RNAs as gene markers.) The
program performs multiple alignment of the input sequences to identify conserved
motifs. The motifs from organisms spanning over the widest evolutionary distances
are identified as promoter or regulatory motifs. In other words, it identifies unusually
well-conserved motifs across a set of orthologous sequences.
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Expression Profiling-Based Method

Recent advances in high throughput transcription profiling analysis, such as DNA
microarray analysis (see Chapter 18) have allowed simultaneous monitoring of ex-
pression of hundreds or thousands of genes. Genes with similar expression profiles
are considered coexpressed, which can be identified through a clustering approach
(see Chapter 18). The basis for coexpressionis thought to be due to common promoters
and regulatory elements. If this assumption is valid, the upstream sequences of the
coexpressed genes can be aligned together to reveal the common regulatory elements
recognizable by specific transcription factors.

This approach is essentially experimentally based and appears to be robust for
finding transcription factor binding sites. The problem is that the regulatory elements
of coexpressed genes are usually short and weak. Their patterns are difficult to dis-
cern using simple multiple sequence alignment approaches. Therefore, an advanced
alignment-independent profile construction method such as EM and Gibbs motif
sampling (see Chapter 7) is often used in finding the subtle sequence motifs. As a
reminder, EM is a motif extraction algorithm that finds motifs by repeatedly opti-
mizing a PSSM through comparison with single sequences. Gibbs sampling uses a
similar matrix optimization approach but samples motifs with a more flexible strat-
egy and may have a higher likelihood of finding the optimal pattern. Through matrix
optimization, subtly conserved motifs can be detected from the background noise.

One of the drawbacks of this approach is that determination of the set of coex-
pressed genes depends on the clustering approaches, which are known to be error
prone. That means that the quality of the input data may be questionable when func-
tionally unrelated genes are often clustered together. In addition, the assumption that
coexpressed genes have common regulatory elements is not always valid. Many coex-
pressed genes have been found to belong to parallel signaling pathways that are under
the control of distinct regulatory mechanisms. Therefore, caution should always be
exercised when using this method.

The followinglists a small selection of motif finders using the EM or Gibbs sampling
approach.

MEME (http://meme.sdsc.edu/meme/website/meme-intro.html) is the EM-
based program introduced in Chapter 7 for protein motif discovery but can also be
used in DNA motif finding. The use is similar to that for protein sequences.

AlignACE (http://atlas.med.harvard.edu/cgi-bin/alignace.pl) is a web-based pro-
gram using the Gibbs sampling algorithm to find common motifs. The program is
optimized for DNA sequence motif extraction. It automatically determines the opti-
mal number and lengths of motifs from the input sequences.

Melina (Motif Elucidator In Nucleotide sequence Assembly; http://melina.hgc.jp/)
is a web-based program that runs four individual motif-finding algorithms - MEME,
GIBBS sampling, CONSENSUS, and Coresearch — simultaneously. The user compares
the results to determine the consensus of motifs predicted by all four prediction
methods.
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INCLUSive (www.esat.kuleuven.ac.be/~dna/Biol/Software.html) is a suite of web-
based tools designed to streamline the process of microarray data collection and
sequence motif detection. The pipeline processes microarray data, automatically
clusters genes according expression patterns, retrieves upstream sequences of coreg-
ulated genes and detects motifs using a Gibbs sampling approach (Motif Sampler). To
further avoid the problem of getting stuck in a local optimum (see Chapter 7), each
sequence dataset is submitted to Motif Sampler ten times. The results may vary in
each run. The results from the ten runs are compiled to derive consensus motifs.

PhyloCon (Phylogenetic Consensus; http://ural.wustl.edu/~twang/PhyloCon/) is
a UNIX program that combines phylogenetic footprinting with gene expression profil-
ing analysis to identify regulatory motifs. This approach takes advantage of conserva-
tion among orthologous genes as well as conservation among coregulated genes. For
each individual gene in a set of coregulated genes, multiple sequence homologs are
aligned to derive profiles. Based on the gene expression data, profiles between coreg-
ulated genes are further compared to identify functionally conserved motifs among
evolutionary conserved motifs. In other words, regulatory motifs are defined from
both sets of analysis. This approach integrates the “single gene-multiple species” and
“single species—-multiple genes” methods and has been found to reduce false positives
compared to either phylogenetic footprinting or simple motif extraction approaches
alone.

SUMMARY

Identification of promoter and regulatory elements remains a great bioinformatic
challenge. The existing algorithms can be classified as ab initio based, phylogenetic
footprinting based, and expression profiling based. The true accuracy of the ab initio
programs is still difficult to assess because of the lack of common benchmarks. The
reported overall sensitivity and specificity levels are currently below 0.5 for most pro-
grams. For a prediction method to be acceptable, both accuracy indicators have to
be consistently above 0.9 to be reliable enough for routine prediction purposes. That
means that the algorithmic development in this field still has a long road ahead. To
achieve better results, combining multiple prediction programs seems to be helpful
in some circumstances. The comparative approach using phylogenetic footprinting
is able to take a completely different approach in identifying promoter elements. The
resulting prediction can be used to check against the ab initio prediction. Finally, the
experimental based approach using gene expression data offers another route to find-
ing regulatory motifs. Because the DNA motifs are often subtle, EM and Gibbs motif
sampling algorithms are necessary for this purpose. Alternatively, the EM and Gibbs
sampling programs can be used for phylogenetic footprinting if the input sequences
are from different organisms. In essence, all three approaches are interrelated. The
results from all three types of methods can be combined to further increase the relia-
bility of the predictions.
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SECTION FOUR

Molecular Phylogenetics






CHAPTER TEN

Phylogenetics Basics

Biological sequence analysis is founded on solid evolutionary principles (see
Chapter 2). Similarities and divergence among related biological sequences revealed
by sequence alignment often have to be rationalized and visualized in the context of
phylogenetic trees. Thus, molecular phylogeneticsis afundamental aspect of bioinfor-
matics. In this chapter, we focus on phylogenetic tree construction. Before discussing
themethods of phylogenetic tree construction, some fundamental concepts and back-
ground terminology used in molecular phylogenetics need to be described. This is
followed by discussion of the initial steps involved in phylogenetic tree construction.

MOLECULAR EVOLUTION AND MOLECULAR PHYLOGENETICS

To begin the phylogenetics discussion, we need to understand the basic question,
“What is evolution?” Evolution can be defined in various ways under different con-
texts. In the biological context, evolution can be defined as the development of a
biological form from other preexisting forms or its origin to the current existing form
through natural selections and modifications. The driving force behind evolution is
natural selection in which “unfit” forms are eliminated through changes of environ-
mental conditions or sexual selection so that only the fittest are selected. The under-
lying mechanism of evolution is genetic mutations that occur spontaneously. The
mutations on the genetic material provide the biological diversity within a popula-
tion; hence, the variability of individuals within the population to survive successfully
in a given environment. Genetic diversity thus provides the source of raw material for
the natural selection to act on.

Phylogenetics s the study of the evolutionary history ofliving organisms using tree-
like diagrams to represent pedigrees of these organisms. The tree branching patterns
representing the evolutionary divergence are referred to as phylogeny. Phylogenetics
can be studied in various ways. It is often studied using fossil records, which contain
morphological information about ancestors of current species and the timeline of
divergence. However, fossil records have many limitations; they may be available only
for certain species. Existing fossil data can be fragmentary and their collection is often
limited by abundance, habitat, geographic range, and other factors. The descriptions
of morphological traits are often ambiguous, which are due to multiple genetic factors.
Thus, using fossil records to determine phylogenetic relationships can often be biased.
For microorganisms, fossils are essentially nonexistent, which makes it impossible to
study phylogeny with this approach.
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Figure 10.1: A typical bifurcating phylogenetic tree
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Fortunately, molecular data that are in the form of DNA or protein sequences
can also provide very useful evolutionary perspectives of existing organisms because,
as organisms evolve, the genetic materials accumulate mutations over time causing
phenotypic changes. Because genes are the medium for recording the accumulated
mutations, they can serve as molecular fossils. Through comparative analysis of the
molecular fossils from a number of related organisms, the evolutionary history of the
genes and even the organisms can be revealed.

The advantage of using molecular data is obvious. Molecular data are more numer-
ous than fossil records and easier to obtain. There is no sampling bias involved, which
helps to mend the gaps in real fossil records. More clear-cut and robust phylogenetic
trees can be constructed with the molecular data. Therefore, they have become favorite
and sometimes the only information available for researchers to reconstruct evolu-
tionary history. The advent of the genomic era with tremendous amounts of molecular
sequence data has led to the rapid development of molecular phylogenetics.

The field of molecular phylogenetics can be defined as the study of evolution-
ary relationships of genes and other biological macromolecules by analyzing muta-
tions at various positions in their sequences and developing hypotheses about the
evolutionary relatedness of the biomolecules. Based on the sequence similarity
of the molecules, evolutionary relationships between the organisms can often be
inferred.

Major Assumptions

To use molecular data to reconstruct evolutionary history requires making a number
of reasonable assumptions. The first is that the molecular sequences used in phy-
logenetic construction are homologous, meaning that they share a common origin
and subsequently diverged through time. Phylogenetic divergence is assumed to be
bifurcating, meaning that a parent branch splits into two daughter branches at any
given point. Another assumption in phylogenetics is that each position in a sequence
evolved independently. The variability among sequences is sufficiently informative
for constructing unambiguous phylogenetic trees.

TERMINOLOGY

Before discussing methods for reconstruction of phylogenies, it is useful to define
some frequently used terminology that characterizes a phylogenetic tree. A typical
bifurcating phylogenetic tree is a graph shown in Figure 10.1. The lines in the tree are
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Figure 10.2: A phylogenetic tree showing an example of

bifurcation and multifurcation. Multifurcation is normally a p ™ polytomy
result of insufficient evidence to fully resolve the tree or a  gichotomy

result of an evolutionary process known as radiation.

called branches. At the tips of the branches are present-day species or sequences
known as faxa (the singular form is taxon) or operational taxonomic units. The
connecting point where two adjacent branches join is called a node, which repre-
sents an inferred ancestor of extant taxa. The bifurcating point at the very bottom of
the tree is the root node, which represents the common ancestor of all members of
the tree.

A group of taxa descended from a single common ancestor is defined as a clade
or monophyletic group. In a monophyletic group, two taxa share a unique common
ancestor not shared by any other taxa. They are also referred to as sister taxa to each
other (e.g., taxa B and C). The branch path depicting an ancestor-descendant rela-
tionship on a tree is called a lineage, which is often synonymous with a tree branch
leading to a defined monophyletic group. When a number of taxa share more than
one closest common ancestors, they do not fit the definition of a clade. In this case,
they are referred to as paraphyletic (e.g., taxa B, C, and D).

The branching pattern in a tree is called tree topology. When all branches bifurcate
on a phylogenetic tree, it is referred to as dichotomy. In this case, each ancestor divides
and gives rise to two descendants. Sometimes, a branch point on a phylogenetic
tree may have more than two descendents, resulting in a multifurcating node. The
phylogeny with multifurcating branches is called polytomy (Fig. 10.2). A polytomy
can be a result of either an ancestral taxon giving rise to more than two immediate
descendants simultaneously during evolution, a process known as radiation, or an
unresolved phylogeny in which the exact order of bifurcations cannot be determined
precisely.

A phylogenetic tree can be either rooted or unrooted (Fig. 10.3). An unrooted
phylogenetic tree does not assume knowledge of a common ancestor, but only posi-
tions the taxa to show their relative relationships. Because there is no indication of
which node represents an ancestor, there is no direction of an evolutionary path in an

C D
B
B D
root
Unrooted Rooted

Figure 10.3: An illustration of rooted versus unrooted trees. A phylogenetic tree without definition of
a root is unrooted (/eft). The tree with a root is rooted (right).
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unrooted tree. To define the direction of an evolution path, a tree must be rooted. In a
rooted tree, all the sequences under study have a common ancestor or root node from
which a unique evolutionary path leads to all other nodes. Obviously, a rooted tree is
more informative than an unrooted one. To convert an unrooted tree to a rooted tree,
one needs to first determine where the root is.

Strictly speaking, the root of the tree is not known; the common ancestor is already
extinct. In practice, however, it is often desirable to define the root of a tree. There are
two ways to define the root of a tree. One is to use an outgroup, which is a sequence
that is homologous to the sequences under consideration, but separated from those
sequences at an early evolutionary time. Outgroups are generally determined from
independent sources of information. For example, a bird sequence can be used as a
root for the phylogenetic analysis of mammals based on multiple lines of evidence
that indicate that birds branched off prior to all mammalian taxa in the ingroup.
Outgroups are required to be distinct from the ingroup sequences, but not too distant
from the ingroup. Using too divergent sequences as an outgroup can lead to errors in
tree construction. In the absence of a good outgroup, a tree can be rooted using the
midpoint rooting approach, in which the midpoint of the two most divergent groups
judged by overall branch lengths is assigned as the root. This type of rooting assumes
that divergence from root to tips for both branches is equal and follows the “molecular
clock” hypothesis.

Molecular clock is an assumption by which molecular sequences evolve at constant
rates so that the amount of accumulated mutations is proportional to evolutionary
time. Based on this hypothesis, branch lengths on a tree can be used to estimate
divergence time. This assumption of uniformity of evolutionary rates, however, rarely
holds true in reality.

GENE PHYLOGENY VERSUS SPECIES PHYLOGENY

One of the objectives of building phylogenetic trees based on molecular sequences
is to reconstruct the evolutionary history of the species involved. However, strictly
speaking, a gene phylogeny (phylogeny inferred from a gene or protein sequence)
only describes the evolution of that particular gene or encoded protein. This sequence
may evolve more or less rapidly than other genes in the genome or may have a differ-
ent evolutionary history from the rest of the genome owing to horizontal gene transfer
events (see Chapter 17). Thus, the evolution of a particular sequence does not nec-
essarily correlate with the evolutionary path of the species. The species evolution is
the combined result of evolution by multiple genes in a genome. In a species tree,
the branching point at an internal node represents the speciation event whereas, in a
gene tree, the internal node indicates a gene duplication event. The two events may
or may not coincide. Thus, to obtain a species phylogeny, phylogenetic trees from a
variety of gene families need to be constructed to give an overall assessment of the
species evolution.



FORMS OF TREE REPRESENTATION

Cladogram

A B C D E
C E

A\B<y

Phylogram

Figure 10.4: Phylogenetic trees drawn as cladograms (top) and phylograms (bottom). The branch
lengths are unscaled in the cladograms and scaled in the phylograms. The trees can be drawn as angled
form (left) or squared form (right).

FORMS OF TREE REPRESENTATION

The topology of branches in a tree defines the relationships between the taxa. The
trees can be drawn in different ways, such as a cladogram or a phylogram (Fig. 10.4).
In each of these tree representations, the branches of a tree can freely rotate without
changing the relationships among the taxa.

In a phylogram, the branch lengths represent the amount of evolutionary diver-
gence. Such trees are said to be scaled. The scaled trees have the advantage of show-
ingboth the evolutionary relationships and information about the relative divergence
time of the branches. In a cladogram, however, the external taxa line up neatly in arow
or column. Their branch lengths are not proportional to the number of evolutionary
changes and thus have no phylogenetic meaning. In such an unscaled tree, only the
topology of the tree matters, which shows the relative ordering of the taxa.

To provide information of tree topology to computer programs without having to
draw the tree itself, a special text format known as the Newick format is developed.
In this format, trees are represented by taxa included in nested parentheses. In this
linear representation, each internal node is represented by a pair of parentheses that
enclose all member of a monophyletic group separated by a comma. For a tree with
scaled branch lengths, the branch lengths in arbitrary units are placed immediately
after the name of the taxon separated by a colon. An example of using the Newick
format to describe tree topology is shown in Figure 10.5.

Sometimes a tree-building method may result in several equally optimal trees. A
consensus tree can be built by showing the commonly resolved bifurcating portions
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(((B,C),A),(D,E)) (((B:1,C:2),A:2),(D:1.2,E:2.5))

Newick format

Figure 10.5: Newick format of tree representation that employs a linear form of nested parentheses
within which taxa are separated by commas. If the tree is scaled, branch lengths are indicated immedi-
ately after the taxon name. The numbers are relative units that represent divergent times.

and collapsing the ones that disagree among the trees, which results in a polytomy.
Combining the nodes can be done either by strict consensus or by majority rule.
In a strict consensus tree, all conflicting nodes are collapsed into polytomies. In a
consensus tree based on a majority rule, among the conflicting nodes, those that
agree by more than 50% of the nodes are retained whereas the remaining nodes are
collapsed into multifurcation (Fig. 10.6).

WHY FINDING A TRUE TREE IS DIFFICULT

The main objective of molecular phylogenetics is to correctly reconstruct the evo-
lutionary history based on the observed sequence divergence between organisms.
That means finding a correct tree topology with correct branch lengths. However, the
search for a correct tree topology can sometimes be extremely difficult and compu-
tationally demanding. The reason is that the number of potential tree topologies can

C D E F A B C D E F A D C B E F
(&) (€)
T T~ —
A B C D E F

Conseusus tree

Figure 10.6: A consensus tree is derived from three individual inferred trees based on a majority rule.
Conflicting nodes are represented by a multifurcating node in the consensus tree.
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be enormously large even with a moderate number of taxa. The increase of possible
tree topologies follows an exponential function. The number of rooted trees (Ny) for
n taxa is determined by the following formula:

Ny = (2n—3)!/2" 2(n—2)! (Eq. 10.1)

Inthisformula, (2n —3)! isamathematical expression offactorial, which is the product
of positive integers from 1 to 2n — 3. For example, 5! =1 x 2 x 3 x 4 x 5=120.
For unrooted trees, the number of unrooted tree topologies (Ny) is:

Ny = (2n—5)!/2"3(n—3)! (Eq. 10.2)

An example of all possible rooted and unrooted tree topologies for three and four
taxais shownin Figure 10.7. For three taxa, there is only one possible unrooted tree but
three different rooted trees. For four taxa, one can construct three possible unrooted
trees and fifteen rooted ones. The number of possible topologies increases extremely
rapidly with the number of taxa. According to Equation 10.1 and Equation 10.2, for six
taxa, there are 105 unrooted trees and 945 rooted trees. If there are ten taxa, there can
be 2,027,025 unrooted trees and 34,459,425 rooted ones. The exponential relationship
between the number of tree topologies and the number of taxa is clearly represented
in Figure 10.8. There can be an explosive increase in the possible tree topologies as
the number of taxa increases. Therefore, it can be computationally very demanding
to find a true phylogenetic tree when the number of sequences is large. Because the
number of rooted topologies is much larger than that for unrooted ones, the search for
atrue phylogenetic tree can be simplified by calculating the unrooted trees first. Once
an optimal tree is found, rooting the tree can be performed by designating a number
of taxa in the data set as an outgroup based on external information to produce a
rooted tree.

PROCEDURE

Molecular phylogenetic tree construction can be divided into five steps: (1) choosing
molecular markers; (2) performing multiple sequence alignment; (3) choosingamodel
of evolution; (4) determining a tree building method; and (5) assessing tree reliability.
Each of first three steps is discussed herein; steps 4 and 5 are discussed in Chapter 11.

Choice of Molecular Markers

For constructing molecular phylogenetic trees, one can use either nucleotide or pro-
tein sequence data. The choice of molecular markers is an important matter because it
can make a major difference in obtaining a correct tree. The decision to use nucleotide
or protein sequences depends on the properties of the sequences and the purposes of
the study. For studying very closely related organisms, nucleotide sequences, which
evolve more rapidly than proteins, can be used. For example, for evolutionary analy-
sis of different individuals within a population, noncoding regions of mitochondrial
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Figure 10.7: All possible tree topologies for three and four taxa. For three taxa, there are one unrooted
and three rooted trees. For four taxa, there are three unrooted and fifteen rooted trees.
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Figure 10.8: Total number of rooted (o) and unrooted (®) tree topologies as a function of the number
of taxa. The values in the y-axis are plotted in the log scale.

DNA are often used. For studying the evolution of more widely divergent groups of
organisms, one may choose either slowly evolving nucleotide sequences, such as ribo-
somal RNA or protein sequences. If the phylogenetic relationships to be delineated
are at the deepest level, such as between bacteria and eukaryotes, using conserved
protein sequences makes more sense than using nucleotide sequences. The reason is
explained in more detail next.

In many cases, protein sequences are preferable to nucleotide sequences because
protein sequences are relatively more conserved as a result of the degeneracy of the
genetic code in which sixty-one codons encode for twenty amino acids, meaning
thereby a change in a codon may not result in a change in amino acid. Thus, protein
sequences can remain the same while the corresponding DNA sequences have more
room for variation, especially at the third codon position. The significant difference
in evolutionary rates among the three nucleotide positions also violates one of the
assumptions of tree-building. In contrast, the protein sequences do not suffer from
this problem, even for divergent sequences.

DNA sequences are sometimes more biased than protein sequences because of
preferential codon usage in different organisms. In this case, different codons for the
same amino acid are used at different frequencies, leading to sequence variations not
attributable to evolution. In addition, the genetic code of mitochondria varies from
the standard genetic code. Therefore, for comparison of mitochondria protein-coding
genes, it is necessary to translate the DNA sequences into protein sequences.
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Asmentioned in Chapter 4, protein sequences allow more sensitive alignment than
DNA sequences because the former has twenty characters versus four in the latter. It
has been shown that two randomly related DNA sequences can result in up to 50%
sequence identity when gaps are allowed compared to only 10% for protein sequences.
For moderately divergent sequences, it is almost impossible to use DNA sequences
to obtain correct alignment. In addition, to align protein-coding DNA sequences,
when gaps are introduced to maximize alignment scores, they almost always cause
frameshift errors, making the alignment biologically meaningless. Protein sequences
clearly have a higher signal-to-noise ratio when it comes to alignment and phyloge-
netic analysis. Thus, protein-based phylogeny in most cases may be more appropriate
than DNA-based phylogeny.

Despite the advantages of using protein sequences in phylogenetic inference, DNA
sequences can still be very informative in some cases, such as those for closely related
sequences. In this case, faster evolutionary rates at the DNA level become an advan-
tage. In addition, DNA sequences depict synonymous and nonsynonymous substi-
tutions, which can be useful for revealing evidence of positive or negative selection
events.

To understand positive or negative selection, it is necessary to make a distinc-
tion between synonymous substitutions and nonsynonymous substitutions. Syn-
onymous substitutions are nucleotide changes in the coding sequence that do not
result in amino acid sequence changes for the encoded protein. Nonsynonymous
substitutions are nucleotide changes that result in alterations in the amino acid
sequences.

Comparing the two types of substitution rates helps to understand an evolutionary
process of a sequence. For example, if the nonsynonymous substitution rate is found
to be significantly greater than the synonymous substitution rate, this means that
certain parts of the protein are undergoing active mutations that may contribute to
the evolution of new functions. This is described as positive selection or adaptive
evolution. On the other hand, if the synonymous substitution rate is greater than the
nonsynonymous substitution rate, this causes only neutral changes at the amino acid
level, suggesting that the protein sequence s critical enough that changes at the amino
acid sequence level are not tolerated. In this case, the sequence is said to be under
negative or purifying selection.

Alignment

The second step in phylogenetic analysis is to construct sequence alignment. This
is probably the most critical step in the procedure because it establishes positional
correspondence in evolution. Only the correct alignment produces correct phyloge-
netic inference because aligned positions are assumed to be genealogically related.
Incorrect alignment leads to systematic errors in the final tree or even a completely
wrong tree. For that reason, it is essential that the sequences are correctly aligned.
Multiple state-of-the-art alignment programs such as T-Coffee should be used. The
alignment results from multiple sources should be inspected and compared carefully
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to identify the most reasonable one. Automatic sequence alignments almost always
contain errors and should be further edited or refined if necessary.

Manual editing is often critical in ensuring alignment quality. However, there is no
firm rule on how to modify a sequence alignment. As a general guideline, a correct
alignment should ensure the matching of key cofactor residues and residues of similar
physicochemical properties. If secondary structure elements are known or can be
predicted (see Chapter 14), they can serve to guide the alignment. One of the few
alignment programs that incorporates protein secondary structure information is
Praline (see Chapter 5).

It is also often necessary to decide whether to use the full alignment or to extract
parts of it. Truly ambiguously aligned regions have to be removed from consideration
prior to phylogenetic analysis. Which part of the alignment to remove is often at the
discretion of the researcher. It is a rather subjective process. In extreme cases, some
researchers like to remove all insertions and deletions (indels) and only use positions
that are shared by all sequences in the dataset. The clear drawback of this practice is
that many phylogenetic signals are lost. In fact, gap regions often belong to signature
indels unique to identification of a subgroup of sequences and should to be retained
for treeing purposes.

In addition, there is an automatic approach in improving alignment quality. Rascal
and NorMD (see Chapter 5) can help to improve alignment by correcting alignment
errors and removing potentially unrelated or highly divergent sequences. Further-
more, the program Gblocks (http://woody.embl-heidelberg.de/phylo/) can help to
detect and eliminate the poorly aligned positions and divergent regions so to make
the alignment more suitable for phylogenetic analysis.

Multiple Substitutions

A simple measure of the divergence between two sequences is to count the number of
substitutions in an alignment. The proportion of substitutions defines the observed
distance between the two sequences. However, the observed number of substitutions
may not represent the true evolutionary events that actually occurred. When a muta-
tion is observed as A replaced by C, the nucleotide may have actually undergone a
number of intermediate steps to become C, such as A — T — G — C. Similarly, a back
mutation could have occurred when a mutated nucleotide reverted back to the origi-
nal nucleotide. This means that when the same nucleotide is observed, mutations like
G — C — G may have actually occurred. Moreover, an identical nucleotide observed
in the alignment could be due to parallel mutations when both sequences mutate into
T, for instance.

Such multiple substitutions and convergence at individual positions obscure the
estimation of the true evolutionary distances between sequences. This effect is known
as homoplasy, which, if not corrected, can lead to the generation of incorrect trees.
To correct homoplasy, statistical models are needed to infer the true evolutionary
distances between sequences.
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Choosing Substitution Models

The statistical models used to correct homoplasy are called substitution models or evo-
lutionary models. For constructing DNA phylogenies, there are anumber of nucleotide
substitution models available. These models differ in how multiple substitutions of
each nucleotide are treated. The caveat of using these models is that if there are
too many multiple substitutions at a particular position, which is often true for very
divergent sequences, the position may become saturated. This means that the evo-
lutionary divergence is beyond the ability of the statistical models to correct. In this
case, true evolutionary distances cannot be derived. Therefore, only reasonably sim-
ilar sequences are to be used in phylogenetic comparisons.

Jukes—Cantor Model
The simplest nucleotide substitution model is the Jukes—Cantor model, which
assumes that all nucleotides are substituted with equal probability. A formula for
deriving evolutionary distances that include hidden changes is introduced by using a
logarithmic function.

ds = —(3/4) In[1 — (4/3) pag] (Eq. 10.3)

where d 5p is the evolutionary distance between sequences A and B and p 5p is the
observed sequence distance measured by the proportion of substitutions over the
entire length of the alignment.

For example, if an alignment of sequences A and B is twenty nucleotides long and
six pairs are found to be different, the sequences differ by 30%, or have an observed
distance 0.3. To correct for multiple substitutions using the Jukes—Cantor model, the
corrected evolutionary distance based on Equation 10.3 is:

dag = —3/41n[1 — (4/3 x 0.3)] = 0.38

The Jukes—Cantor model can only handle reasonably closely related sequences.
According to Equation 10.3, the normalized distance increases as the actual observed
distance increases. For distantly related sequences, the correction can become too
large to be reliable. If two DNA sequences have 25% similarity, p ap is 0.75. This leads
the log value to be infinitely large.

Kimura Model

Another model to correct evolutionary distances is called the Kimura two-parameter
model. This is a more sophisticated model in which mutation rates for transitions
and transversion are assumed to be different, which is more realistic. According to
this model, transitions occur more frequently than transversions, which, therefore,
provides a more realistic estimate of evolutionary distances. The Kimura model uses
the following formula:

das = —(1/2) In(1 — 2ps — pw) — (1/4) In(1 — 2 py) (Eq. 10.4)
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Figure 10.9: The Jukes-Cantor and Kimura models for DNA substitutions. In the Jukes-Cantor model,
all nucleotides have equal substitution rates (a). In the Kimura model, there are unequal rates of tran-
sitions (a) and transversions (3). The probability values for identical matches are shaded because evo-
lutionary distances only count different residue positions.

where d s is the evolutionary distance between sequences A and B, p ¢; is the observed
frequency for transition, and p the frequency of transversion. Comparison of the
Jukes—Cantor model and the Kimura model is graphically illustrated in Figure 10.9.

An example of using the Kimura model can be illustrated by the comparison of
sequences A and B that differ by 30%. If 20% of changes are a result of transitions
and 10% of changes are a result of transversions, the evolutionary distance can be
calculated using Equation 10.4:

dp=-1/2In1-2x02-0.1)—1/4In(1 -2 x 0.1) =0.40

In addition to these models, there are more complex models, such as TN93, HKY,
and GTR, that take many more parameters into consideration. However, these more
complex models are normally not used in practice because the calculations are too
complicated and the variance levels resulting from the formula are too high.

For protein sequences, the evolutionary distances from an alignment can be cor-
rected using a PAM or JTT amino acid substitution matrix whose construction already
takes into account the multiple substitutions (see Chapter 3). Alternatively, protein
equivalents of Jukes-Cantor and Kimura models can be used to correct evolutionary
distances. For example, the Kimura model for correcting multiple substitutions in
protein distances is:

d=—In(l — p—0.2p? (Eq. 10.5)

whereas p is the observed pairwise distance between two sequences.

Among-Site Variations

In all these calculations, different positions in a sequence are assumed to be evolving
at the same rate. However, this assumption may not hold up in reality. For example,
in DNA sequences, the rates of substitution differ for different codon positions. The
third codon mutates much faster than the other two. For protein sequences, some
amino acids change much more rarely than others owing to functional constraints.
This variation in evolutionary rates is the so-called among-site rate heterogeneity,
which can also cause artifacts in tree construction.
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Figure 10.10: Probability curves of ~ distribution. The mathematical function of the distribution is
f(x) + (x~' €7¥)/ T'(v). The curves assume different shapes depending on the ~-shape parameter (v).

It has been shown that there are always a proportion of positions in a sequence
dataset that have invariant rates and a proportion that have more variable rates.
The distribution of variant sites follows a y distribution pattern. The y distribution
is a general probability function that has distribution curves with variable shapes
depending on the values of the y shape parameter (Fig. 10.10). Therefore, to account
for site-dependent rate variation, a y correction factor can be used. For the Jukes—
Cantor model, the evolution distance can be adjusted with the following formula:

dag = (3/4)al(1 — 4/3pr) "/ — 1 (Eq. 10.6)

where « is the y correction factor. For the Kimura model, the evolutionary distance
with y correction factor becomes

d = (/2)[1 = 2ps — pu) ™V — (1/2)(1 = 2pe) " = 1/2] (Eq. 10.7)

Estimation of the value of the y correction factor («) is implemented in a number of
tree-building programs.

SUMMARY

Molecular phylogenetics is the study of evolutionary relationships among living
organisms using molecular data such as DNA and protein sequences. It operates
on the basis of a number of assumptions - e. g., an evolutionary tree is always binary
and all sequence positions evolve independently. The branches of a tree define its
topology. The number of possible tree topologies depends on the number of taxa
and increases extremely rapidly as the number taxa goes up. A tree based on gene
sequences does not always correlate with the evolution of the species. Caution is
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needed in extrapolation of phylogenetic results. A phylogenetic tree can be rooted or
unrooted. The best way to root a tree is to use an outgroup, the selection of which
relies on external knowledge. The first step in phylogenetic construction is to decide
whether to use DNA sequences or protein sequences, each having merits and limi-
tations. Protein sequences are preferable in most cases. However, for studying very
recent evolution, DNA is the marker of choice.

The second step is to perform multiple sequence alignment. Obtaining accurate
alignment is critical for phylogenetic tree construction. The unique aspect of multi-
ple alignment for phylogenetic analysis is that it often requires manual truncation of
ambiguously aligned regions. The next step is to select a proper substitution model
that provides estimates of the true evolutionary event by taking into account multiple
substitution events. Corrected evolutionary distances are used both in distance-based
and likelihood-based tree-building methods. The commonly used nucleotide substi-
tution models are the Jukes—Cantor and Kimura models. The commonly used amino
acid substitution models are the PAM and JTT models. Other adjustments to improve
the estimation of true evolutionary distances include the incorporation of rate het-
erogeneity among sites.
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CHAPTER ELEVEN

Phylogenetic Tree Construction Methods
and Programs

To continue discussion of molecular phylogenetics from Chapter 10, this chapter
introduces the theory behind various phylogenetic tree construction methods along
with the strategies used for executing the tree construction.

There are currently two main categories of tree-building methods, each having
advantages and limitations. The first category is based on discrete characters, which
are molecular sequences from individual taxa. The basic assumption is that charac-
ters at corresponding positions in a multiple sequence alignment are homologous
among the sequences involved. Therefore, the character states of the common ances-
tor can be traced from this dataset. Another assumption is that each character evolves
independently and is therefore treated as an individual evolutionary unit. The second
category of phylogenetic methods is based on distance, which is the amount of dissim-
ilarity between pairs of sequences, computed on the basis of sequence alignment. The
distance-based methods assume that all sequences involved are homologous and that
tree branches are additive, meaning that the distance between two taxa equals the sum
of all branch lengths connecting them. More details on procedures and assumptions
for each type of phylogenetic method are described.

DISTANCE-BASED METHODS

As mentioned in Chapter 10, true evolutionary distances between sequences can
be calculated from observed distances after correction using a variety of evolutionary
models. The computed evolutionary distances can be used to construct a matrix of dis-
tances between all individual pairs of taxa. Based on the pairwise distance scores in the
matrix, a phylogenetic tree can be constructed for all the taxa involved. The algorithms
for the distance-based tree-building method can be subdivided into either clustering
based or optimality based. The clustering-type algorithms compute a tree based on
a distance matrix starting from the most similar sequence pairs. These algorithms
include an unweighted pair group method using arithmetic average (UPGMA) and
neighbor joining. The optimality-based algorithms compare many alternative tree
topologies and select one that has the best fit between estimated distances in the tree
and the actual evolutionary distances. This category includes the Fitch-Margoliash
and minimum evolution algorithms.
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Clustering-Based Methods

Unweighted Pair Group Method Using Arithmetic Average

The simplest clustering method is UPGMA, which builds a tree by a sequential cluster-
ing method. Given a distance matrix, it starts by grouping two taxa with the smallest
pairwise distance in the distance matrix. A node is placed at the midpoint or half
distance between them. It then creates a reduced matrix by treating the new cluster
as a single taxon. The distances between this new composite taxon and all remaining
taxa are calculated to create a reduced matrix. The same grouping process is repeated
and another newly reduced matrix is created. The iteration continues until all taxa
are placed on the tree (see Box 11.1). The last taxon added is considered the outgroup
producing a rooted tree.

The basic assumption of the UPGMA method is that all taxa evolve at a constant
rate and that they are equally distant from the root, implying that a molecular clock
(see Chapter 10) is in effect. However, real data rarely meet this assumption. Thus,
UPGMA often produces erroneous tree topologies. However, owing to its fast speed
of calculation, it has found extensive usage in clustering analysis of DNA microarray
data (see Chapter 17).

Neighbor Joining

The UPGMA method uses unweighted distances and assumes that all taxa have con-
stant evolutionary rates. Since this molecular clock assumption is often not met in
biological sequences, to build a more accurate phylogenetic trees, the neighbor-
joining (NJ) method can be used, which is somewhat similar to UPGMA in that it
builds a tree by using stepwise reduced distance matrices. However, the NJ method
does not assume the taxa to be equidistant from the root. It corrects for unequal
evolutionary rates between sequences by using a conversion step. This conversion
requires the calculations of “r-values” and “transformed r-values” using the following
formula:

Ay = das — 1/2 x (ra + 13) (Eq. 11.1)

where d,; is the converted distance between A and B and dg is the actual evolutionary
distance between A and B. The value of ry (or ) is the sum of distances of A (or B)
to all other taxa. A generalized expression of the r-value is r; calculated based on the
following formula:

ri = Xdj (Eq. 11.2)

where i and j are two different taxa. The r-values are needed to create a modified
distance matrix. The transformed r-values (r /) are used to determine the distances of
an individual taxon to the nearest node.

ri=ri/n-2 (Eq. 11.3)
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Box 11.1 An Example of Phylogenetic Tree Construction Using the UPGMA Method

A B C
B | 040
C [035]045

D |0.60(0.70] 0.55

1. Using a distance matrix involving four taxa, A, B, C, and D, the
UPGMA method first joins two closest taxa together which are A and

C (0.35 in grey). Because all taxa are equidistant from the node, the
branch length for A to the node is AC/2 = 0.35/2 = 0.175.

0.175

C

0.175

2. Because A and C are joined into a cluster, they are treated as one
new composite taxon, which is used to create a reduced matrix. The dis-
tance of A-C cluster to every other taxa is one half of a taxon to A
and C, respectively. That means that the distance of B to A-C is (AB +
BC)/2; and that of D to A-C is (AD + CD)/2.

A-C B
B w = 0.425
D M =0.575] 0.70

2

3. In the newly reduced-distance matrix, the smallest distance is
between B and A-C (in grey), which allows the grouping of B and A-C

to create a three-taxon cluster. The branch length for the B is one half
of B to the A-C cluster.

0.175

0.175 C

B
0.425/2=0.212

4. When B and A-C are grouped and treated as a single taxon, this allows
the matrix to reduce further into only two taxa, D and B-A-C. The dis-
tance of D to the composite taxon is the average of D to every single
component which is (BD + AD + CD)/3.

B-A-C

D [0.7+0.6+0.55

3 =0.617
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5. D is the last branch to add to the tree, whose branch length is one
half of D to B-A-C.

0.175

0.175

0212 B

D
0.617/2 = 0.309

6. Because distance trees allow branches to be additive, the resulting
distances between taxa from the tree path can be used to create a
distance matrix. Obviously, the estimated distances do not match the
actual evolutionary distances shown, which illustrates the failure of
UPGMA to precisely reflect the experimental observation.

A B C
B | 042
C 1035042

D ]0.62]0.62] 0.62

where nis the total number of taxa. For example, assuming A and B form a node called
U, the distance A to U is determined by the following formula:

dyy = ldag + (r)y —15)1/2 (Eq. 11.4)

An example of this distance conversion and NJ tree building is shown in Box 11.2. The
tree construction process is somewhat opposite to that used UPGMA. Rather than
building trees from the closest pair of branches and progressing to the entire tree,
the NJ tree method begins with a completely unresolved star tree by joining all taxa
onto a single node and progressively decomposes the tree by selecting pairs of taxa
based on the above modified pairwise distances. This allows the taxa with the shortest
corrected distances to be joined first as a node. After the first node is constructed, the
newly created cluster reduces the matrix by one taxon and allows the next most closely
related taxon to be joined next to the first node. The cycle is repeated until all internal
nodes are resolved. This process is called star decomposition. Unlike UPGMA, NJ and
most other phylogenetic methods produce unrooted trees. The outgroup has to be
determined based on external knowledge (see Chapter 10).

Generalized Neighbor Joining

One of the disadvantages of the NJ method is that it generates only one tree and
does not test other possible tree topologies. This can be problematic because, in
many cases, in the initial step of NJ, there may be more than one equally close pair
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Box 11.2 Phylogenetic Tree Construction Using the Neighbor Joining Method

A B C
B | 040
C [035]045

D |0.60]0.70 | 0.55

1. The NJ method is similar to UPGMA, but uses an evolutionary rate cor-
rection step before tree building. Using the same distance matrix as in
the UPGMA tree building (see Box 11.1), the first step of the NJ method
is r-value and r’-value calculation. According to Eq. 11.1 and 11.2, r
and r’ for each taxon are calculated as follows:

rp = AB+AC+AD=0.4+0.35+0.6 =1.35

rh = ra/(4—2)
ry = BA+BC+BD
ry = ry/ (4—2)
r¢ = CA+CB+CD

1.35/2=0.675

0.4+0.45+0.7 =1.55

1.55/2=0.775

0.35+0.45+0.55 =1.35

r =rc/(4—2)=1.35/2=10.675
rp = DA+DB+DC=0.6+0.7+0.55 = 1.85
) =rp/(4—2)=1.85/2=0.925

2. Based on Eq. 11.4 and the above r-values, the corrected distances are
obtained as follows:

dip = dap —1/2% (rpt+rg) =0.4— (1.35+1.55)/2=—1.05
dic =dac—1/2% (rpt+rg) =0.35— (1.35+1.35)/2=—1
dip =dap—1/2% (rp+rp) =0.6 — (1.35+1.85)/2=—1
dpe = dpc — 1/2 % (rp+rcg) =0.45 — (1.55+1.35)/2=—1
dpp = dpp — 1/2 % (rg+rp) =0.7 — (1.55+1.85)/2 = —1
dfp = dep — 1/2 % (rg+rp) =0.55— (1.35+1.85)/2=—1.05

3. The rate-corrected distances allow the construction of a new distance

matrix.
A B C
B |-1.05
C -1 | -1
-1 | -1 |-1.05

4. Before tree construction, all possible nodes are collapsed into a
star tree. The pair of taxa with the shortest distances in the new
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matrix are separated from the star tree first, according to the cor-
rected distances. In this case, A and B as well as C and D are the
shortest (—1.05, in grey). Therefore, the first node to be built can be
either A-B or C-D. Choosing either pair first will give the same result.
Let’s choose A and B first and name the node U.

A B

A

?
—
?
C D

5. The branch lengths for A and B to the node U are calculated according
to Eq. 11.4.

day = [dap+ (rh —rp)]1/2=1[0.4+(0.675—0.775)]1/2=0.15

dgy = [dap+ (rp —rh)]1/2=1[0.4+(0.775—0.675)1/2=0.25
0.15
U
B
0.25

6. The new cluster allows the construction of a reduced matrix. This
starts with actual distances. Unlike in UPGMA, the distance from a taxon
to a node is the average of the original distances to each of the com-
ponents of the composite taxon, subtracted from the inferred branch
lengths.

dey = [(dac — dya) + (dgc —dys)1/2 = [(0.35—10.15)+(0.45—0.25)]/2=0.2

dpy = [(dap — dya) + (dpp —dyp)1/2 = [(0.6 —0.15)+ (0.7 —0.25)]1/2=0.45
U B

C 020

D ]045]0.55

7. Based on the reduced distance matrix, a new set of r- and r’-values
are calculated.

r¢ =CU+CD=10.2+0.55=0.75

rg=rc/(3—2) =0.75/1=0.75

rp = DU+CD=10.45+0.55=1

rg=rc/(3—2)=1/1=1

ry = CU+DU=0.2+0.45=0.65

rfy =ry/(3—2) =0.65/1=0.65
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Box 11.2 (continued)

8. The new r- and r’-values allow construction of the corrected distance

matrix.

dfy = dey — 1/2 % (rg+ry) =0.2 — (0.75+0.65)/2=—0.5

dfyy = dpy — 1/2 % (rp+ry) =0.45— (1+0.65)/2 =—0.375
dfy = dep — 1/2 % (rg+rp) =0.55— (0.75+1)/2 = —0.325
U B
C -0.5

D [-0.375]-0.325

9. In the corrected distance matrix, C to node U has the shortest dis-
tance (—0.5, in grey). This allows creation of the second node named V.
The branch length is calculated as in step 5.

dey = [deyt+ (rg—r()1/2=1[0.2+(0.75—10.65)]1/2=0.15

dyy = [dey+ (r—rg)]1/2=1[0.2+(0.65—10.75)]1/2=0.05
0.15
0.05 -
B
V1 025
C
0.15

10. Because D is the last branch to be decomposed from the star tree,
there is no need to convert to r and r’ because r’ is infinitely large
when n—2=0.Its branch length is calculated as one half of the sum of
D to node V and D to C, subtracted from respective branch lengths.

dp = [(dpy — dyy) + (dpc —dgy)1/2 =[(0.45—0.05)+(0.55—0.15)]1/2=0.4

0.15
0.05 U
B
V] o025
C
0.15

11. When the overall branch lengths are compiled into a distance matrix,
which is used to compare with the original distance matrix, it is clear
that the estimated distances completely match the actual evolutionary
distances, indicating that this treeing method is able to satisfy the
constraint of the experimental observation in this case.

U B

C -0.5

D [-0.375]-0.325
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of neighbors to join, leading to multiple trees. Ignoring these multiple options may
yield a suboptimal tree. To overcome the limitations, a generalized NJ method has
been developed, in which multiple NJ trees with different initial taxon groupings are
generated. A best tree is then selected from a pool of regular NJ trees that best fit
the actual evolutionary distances. This more extensive tree search means that this
approach has a better chance of finding the correct tree.

Optimality-Based Methods

The clustering-based methods produce a single tree as output. However, there is no
criterion in judging how this tree is compared to other alternative trees. In contrast,
optimality-based methods have a well-defined algorithm to compare all possible tree
topologies and select a tree that best fits the actual evolutionary distance matrix.
Based on the differences in optimality criteria, there are two types of algorithms,
Fitch-Margoliash and minimum evolution, that are described next. The exhaustive
search for an optimal tree necessitates a slow computation, which is a clear drawback
especially when the dataset is large.

Fitch-Margoliash

The Fitch-Margoliash (FM) method selects a best tree among all possible trees based
on minimal deviation between the distances calculated in the overall branches in the
tree and the distances in the original dataset. It starts by randomly clustering two taxa
in a node and creating three equations to describe the distances, and then solving
the three algebraic equations for unknown branch lengths. The clustering of the two
taxa helps to create a newly reduced matrix. This process is iterated until a tree is
completely resolved. The method searches for all tree topologies and selects the one
that has the lowest squared deviation of actual distances and calculated tree branch
lengths. The optimality criterion is expressed in the following formula:

T L p.)2
)3 (dyj — py)” (Eq. 11.5)

where E is the error of the estimated tree fitting the original data, T'is the number of
taxa, djj is the pairwise distance between ith and jth taxa in the original dataset, and
pij is the corresponding tree branch length.

Minimum Evolution

Minimum evolution (ME) constructs a tree with a similar procedure, but uses a dif-
ferent optimality criterion that finds a tree among all possible trees with a minimum
overall branch length. The optimality criterion relies on the formula:

S=13xb (Eq. 11.6)

where b; is the ith branch length. Searching for the minimum total branch length is
an indirect approach to achieving the best fit of the branch lengths with the original
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dataset. Analysis has shown that minimum evolution in fact slightly outperforms the
least square-based FM method.

Pros and Cons

Themost frequentlyused distance methods are clusteringbased. The major advantage
is that they are computationally fast and are therefore capable of handling datasets
thatare deemed tobetoolarge for any other phylogenetic method. The methods, how-
ever, are not guaranteed to find the best tree. Exhaustive tree-searching algorithms
such as FM and ME have better accuracies overall. However, they can be compu-
tationally prohibitive to use when the number of taxa is large (e.g., >12), because
the overall number of tree topologies becomes too large to handle. A compromise
between the two types of algorithm is a hybrid approach such as the generalized NJ,
with a performance similar to that of ME but computationally much faster.

The overall advantage of all distance-based methods is the ability to make use of
a large number of substitution models to correct distances. The drawback is that the
actual sequence information is lost when all the sequence variation is reduced to a
single value. Hence, ancestral sequences at internal nodes cannot be inferred.

CHARACTER-BASED METHODS

Character-based methods (also called discrete methods) are based directly on the
sequence characters rather than on pairwise distances. They count mutational events
accumulated on the sequences and may therefore avoid the loss of information
when characters are converted to distances. This preservation of character informa-
tion means that evolutionary dynamics of each character can be studied. Ancestral
sequences can also be inferred. The two most popular character-based approaches
are the maximum parsimony (MP) and maximum likelihood (ML) methods.

Maximum Parsimony

The parsimony method chooses a tree that has the fewest evolutionary changes or
shortest overall branch lengths. It is based on a principle related to a medieval phi-
losophy called Occam’s razor. The theory was formulated by William of Occam in
the thirteenth century and states that the simplest explanation is probably the cor-
rect one. This is because the simplest explanation requires the fewest assumptions
and the fewest leaps of logic. In dealing with problems that may have an infinite
number of possible solutions, choosing the simplest model may help to “shave off”
those variables that are not really necessary to explain the phenomenon. By doing
this, model development may become easier, and there may be less chance of intro-
ducing inconsistencies, ambiguities, and redundancies, hence, the name Occam’s
razor.

For phylogenetic analysis, parsimony seems a good assumption. By this principle,
a tree with the least number of substitutions is probably the best to explain the differ-
ences among the taxa under study. This view is justified by the fact that evolutionary
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sites

taxa 1 2 3 4 5 6 7 8

Figure 11.1: Example of identification of informative
sites that are used in parsimony analysis. Sites 2, 5, I A ATTHAGC T
and 8 (grey boxes) are informative sites. Other sites I G G T CGTA G
are noninformative sites, which are either constant III A AT G C GGCT
or having characters occurring only once. IV A G T AA G C A
\Y% A CTTICGTC G
VI A C AT G G C A

changes are relatively rare within a reasonably short time frame. This implies that a
tree with minimal changes s likely to be a good estimate of the true tree. By minimizing
the changes, the method minimizes the phylogenetic noise owing to homoplasy and
independent evolution. The MP approach is in principle similar to the ME approach
albeit the latter is distance based instead of character based.

How Does MP Tree Building Work?

Parsimony tree building works by searching for all possible tree topologies and recon-
structing ancestral sequences that require the minimum number of changes to evolve
to the current sequences. To save computing time, only a small number of sites that
have the richest phylogenetic information are used in tree determination. These sites
are the so-called informative sites, which are defined as sites that have atleast two dif-
ferent kinds of characters, each occurring at least twice (Fig. 11.1). Informative sites
are the ones that can often be explained by a unique tree topology. Other sites are
noninformative, which are constant sites or sites that have changes occurring only
once. Constant sites have the same state in all taxa and are obviously useless in evalu-
ating the various topologies. The sites that have changes occurring only once are not
very useful either for constructing parsimony trees because they can be explained by
multiple tree topologies. The noninformative sites are thus discarded in parsimony
tree construction.

Once the informative sites are identified and the noninformative sites discarded,
the minimum number of substitutions at each informative site is computed for a
given tree topology. The total number of changes at all informative sites are summed
up for each possible tree topology. The tree that has the smallest number of changes
is chosen as the best tree.

The key to counting a minimum number of substitutions for a particular site is to
determine the ancestral character states at internal nodes. Because these ancestral
character states are not known directly, multiple possible solutions may exist. In this
case, the parsimony principle applies to choose the character states that result in a
minimum number of substitutions. The inference of an ancestral sequence is made
by first going from the leaves to internal nodes and to the common root to deter-
mine all possible ancestral character states and then going back from the common
root to the leaves to assign ancestral sequences that require the minimum number of
substitutions. An example of predicting ancestral sequences at internal nodes is given
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Step 1 Step 2

GAT A T

minimum
number of
mutations

3

G T A T A T & T A T A TY

Figure 11.2: Using parsimony to infer ancestral characters at internal nodes involves a two-step pro-
cedure. The first step involves going from the leaves to the root and counting all possible ancestral
characters at the internal nodes. The second step goes from the root to the leaves and assigns ancestral
characters that involve minimum number of mutations. In this example, the total number of mutations
is three if T is at the root, whereas other possible character states increase that number.

in Figure 11.2. It needs to be emphasized that, in reality, the ancestral node sequence
cannot always be determined unambiguously. Sometimes, there may be more than
one character that gives a total minimum number for a given tree topology. It is also
possible that there may be two or more topologies that have the same minimum num-
ber of total substitutions. In that case, equally parsimonious trees are produced. A con-
sensus tree has to be built that represents all the parsimonious trees (see Chapter 10).

Weighted Parsimony

The parsimony method discussed is unweighted because it treats all mutations as
equivalent. This may be an oversimplification; mutations of some sites are known
to occur less frequently than others, for example, transversions versus transitions,
functionally important sites versus neutral sites. Therefore, a weighting scheme that
takes into account the different kinds of mutations helps to select tree topologies more
accurately. The MP method that incorporates a weighting scheme is called weighted
parsimony. In the example shown in Figure 11.3, different branch lengths are obtained
using weighted parsimony compared with using unweighted parsimony. In some
cases, the weighting scheme may result in different tree topologies.

Tree-Searching Methods

As mentioned, the parsimony method examines all possible tree topologies to find
the maximally parsimonious tree. This is an exhaustive search method. It starts by
building a three taxa unrooted tree, for which only one topology is available. The
choice of the first three taxa can be random. The next step is to add a fourth taxon
to the existing branches, producing three possible topologies. The remaining taxa
are progressively added to form all possible tree topologies (Fig. 11.4). Obviously, this
brute-force approach only works if there are relatively few sequences. The exponential
increase in possible tree topologies with the number of taxa means that this exhaustive



‘G Se pajydiom aJe SUOISIDASURI) pue | Se pajydiom aJe suoljisued 4ajiel ayl uj ‘Auowisied pajydiom pue pajydiomun jo uosiiedwo) ¢ || 24ndi4

© [xv oy @ © [ o] @
N 1 N 1
" B8] —— &3 I ’ [£58] —— [E08] I
suongnu Jo JaquinN \m 9 suoneINU Jo JA3quinN \ﬁ [4
© [ w M © [E=9 E M
) [22v] Gov]  (© &)  [299] Gov]  (©
€1 E i 1I F I I 1
suoneINUI Jo JaquinN \m ! S suoneINU Jo JaquInN \a ! 1
@ [509 E M @ [509 w M
t  [22Y] Bog] @ & [22Y] Bos] @
A & A k
’ [2ov] [229] I ' [20v] [e22] !
suone)NUI Jo JIqUINN x 9 / suone)NuI Jo JaquinN x ¢ /
(©  [vov] [vo8] (D (®©  [vov] [ve8] (D

Auowisred payySropm Auouwisred payySromun

153



‘pajendled aJe saidojodol aiqissod [je o syidus| youelq (2303 By YdIym uinp Jsuuew aAIssaidosd ue ur sawil e je pappe
uayl si uoxel auQ ‘A80j0dol auO Ylm exel 994yl YlIM SLIeIS 941 9yl "a4npadoid dIAl 9yl Ul UOIIdNIISUOD 9341 DAIISNRYXD JO DNRWLYDS 4| | 94nSi4

Y/

V4
X
K A,

\

q

QH HU
! | v

/

)~

>

~7

D
v
v

Y/

oumm Hm ou M_UHM_
o v o v
QU Mm QU ”m
o’ ta v o) a’ v
a

QU Hm

o v

\ f

154



CHARACTER-BASED METHODS

upper limit

A \ / c exceeded
/ N\

D @

upper limit
exceeded

o
/AN

Figure 11.5: Schematic illustration of the branch-and-bound algorithm. Tree building starts with a step-
wise addition of taxa of all possible topologies. Whenever the total branch length for a given topology
exceeds the upper bound, the tree search in that direction stops, thereby reducing the total computing
time.

method is computationally too demanding to use when the number of taxa is more
than ten. When this is the case, some simplified steps have to be introduced to reduce
the complexity of the search.

One such simplified method is called branch-and-bound, which uses a shortcut
to find an MP tree by establishing an upper limit (or upper bound) for the number of
allowed sequence variations. It starts by building a distance tree for all taxa involved
using either NJ or UPGMA and then computing the minimum number of substitutions
for this tree. The resulting number defines the upper bound to which any other trees
are compared. The rationale is that a maximally parsimonious tree must be equal to
or shorter than the distance-based tree.

The branch-and-bound method starts building trees in a similar way as in the
exhaustive method. The difference is that the previously established upper bound
limits the tree growth. Whenever the overall tree length at every single stage exceeds
the upper bound, the topology search toward a particular direction aborts (Fig. 11.5).

A>_<: _— D>_¥_<B T @
/
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By doing so, it dramatically reduces the number of trees considered hence the com-
puting time while at the same time guaranteeing to find the most parsimonious
tree.

When the number of taxa exceeds twenty, even the branch-and-bound method
becomes computationally unfeasible. A more heuristic search method must be used.
As areminder, a computer heuristic procedure is an approximation strategy to find an
empirical solution for a complicated problem (see Chapter 4). This strategy generates
quick answers, but not necessarily the best answer. In a heuristic tree search, only a
small subset of all possible trees is examined. This method starts by carrying out a
quick initial approximation, which is to build an NJ tree and subsequently modifying
it slightly into a different topology to see whether that leads to a shorter tree.

The modification includes cutting a branch or subtree and regrafting it to other
parts of the tree (Fig. 11.6). The total branch length for the new tree is recomputed.
If the tree is found to be shorter through rearrangement, it is used as a starting point
for another round of rearrangement. The iteration continues until no shorter trees
are found. This method is very fast, but does not guarantee to find the most parsimo-
nious tree. The commonly used branch-swapping algorithms are nearest neighbor
interchange, tree bisection and reconnection, and subtree pruning and regrafting.

The pitfall with branch swapping is that the tree rearrangement tends to focus
on a local area and stalls when a local branch length minimum is reached. To avoid
getting stuck in a local minimum, a “global search” option is implemented in certain
programs. This allows the removal of every possible subtree and its reattachment in
every possible way, to increase the chance of finding the most parsimonious tree.
This approach significantly increases the computing time and thus compromises the
trade-off between obtaining an optimal tree and obtaining a tree within a realistic
time.

Pros and Cons

The main advantage of MP is that it is intuitive — its assumptions are easily under-
stood. In addition, the character-based method is able to provide evolutionary infor-
mation about the sequence characters, such as information regarding homoplasy
and ancestral states. It tends to produce more accurate trees than the distance-based
methods when sequence divergence is low because this is the circumstance when the
parsimony assumption of rarity in evolutionary changes holds true. However, when
sequence divergence is high, or the amount of homoplasies is large, tree estimation by
MP can be less effective, because the original parsimony assumption no longer holds.
Estimation of branch lengths may also be erroneous because MP does not employ
substitution models to correct for multiple substitutions. This drawback can become
prominent when dealing with divergent sequences. In addition, MP only considers
informative sites, and ignores other sites. Consequently, certain phylogenetic signals
may be lost. MP is also slow compared to the distance methods, and more important,
is very sensitive to the “long-branch attraction” (LBA) artifacts.
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D
¢ G
Figure 11.6: Schematic representation of a typical A F
branch swapping process in which a branch is cut and E
moved to another part of the tree, generating a new B

topology.

e~}

Long-Branch Attraction

LBA is a particular problem associated with parsimony methods. It refers to a phylo-
genetic artifact in which rapidly evolving taxa with long branches are placed together
in a tree, regardless of their true positions in a tree (Fig. 11.7). This is partly due to
the assumption in parsimony that all lineages evolve at the same rate and that all
mutations (transitions versus transversions) contribute equally to branch lengths. It
may also be partly owing to multiple substitutions at individual sites and among-site
rate heterogeneity for which MP is not capable of correcting.
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long branch attraction
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True tree Inferred tree

Figure 11.7: The LBA artifact showing taxa A and D are artifactually clustered during phylogenetic
construction.

There are several possible solutions to the LBA artifact. For homoplasies that cause
LBA, distance and likelihood (discussed below) methods that employ substitution
models and rate heterogeneity models should be able to alleviate the problem. In
addition, weighted parsimony should be more advantageous than unweighted par-
simony in countering the transitional bias when transitions occur more often than
transversions. Increasing the taxon sampling size may also help because introduc-
tion of intermediate taxa breaks up the long branches. A dataset with concatenated
multiple genes also has less chance of LBA because the combined gene analysis may
dampen the effect of a single gene having a high rate of evolution.

Maximum Likelihood Method

Another character-based approach is ML, which uses probabilistic models to choose
a best tree that has the highest probability or likelihood of reproducing the observed
data. It finds a tree that most likely reflects the actual evolutionary process. ML is an
exhaustive method that searches every possible tree topology and considers every
position in an alignment, not just informative sites. By employing a particular substi-
tution model that has probability values of residue substitutions, ML calculates the
total likelihood of ancestral sequences evolving to internal nodes and eventually to
existing sequences. It sometimes also incorporates parameters that account for rate
variations across sites.

How Does the Maximum Likelihood Method Work?

ML works by calculating the probability of a given evolutionary path for a particu-
lar extant sequence. The probability values are determined by a substitution model
(either for nucleotides or amino acids). For example, for DNA sequences using the
Jukes—Cantor model, the probability (P) that a nucleotide remains the same after
time £ is:

P(t) =1/4+3/4e™ (Eq. 11.7)

where « is the nucleotide substitution rate in the Jukes—Cantor model, which is either
empirically assigned or estimated from the raw datasets. In Figure 11.8, the elapsed
time ¢ from X to A can be assigned as 1 and from Z to A as 2. For a nucleotide to
change into a different residue after time ¢, the probability value is determined by the
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Figure 11.8: Schematic representation of the ML approach to build phylogenetic trees for four taxa,
I, 11, 111, and IV. The ancestral character states at the internal nodes and root node are assigned X, Y,
and Z, respectively. The example only shows some of the topologies derived from one of the sites in
the original alignment. The method actually uses all the sites in probability calculation for all possible
trees with all combinations of possible ancestral sequences at internal nodes according to a predefined
substitution model.

following formula:
P() =1/4 —1/4e7"" (Eq. 11.8)

For other substitution models, the formulas are much more complex and are not
described here. For a particular site, the probability of a tree path is the product of the
probability from the root to all the tips, including every intermediate branches in the
tree topology. Because multiplication often results in very small values, it is compu-
tationally more convenient to express all probability values as natural log likelihood
(InL) values, which also converts multiplication into summation. Because ancestral
characters atinternal nodes are normally unknown, all possible scenarios of ancestral
states (X, Y, and Z in Fig. 11.8) have to be computed.

After logarithmic conversion, the likelihood score for the topology is the sum of
log likelihood of every single branch of the tree. After computing for all possible tree
paths with different combinations of ancestral sequences, the tree path having the
highest likelihood score is the final topology at the site. Because all characters are
assumed to have evolved independently, the log likelihood scores are calculated for
each site independently. The overall log likelihood score for a given tree path for the
entire sequence is the sum oflog likelihood of all individual sites. The same procedure
has to be repeated for all other possible tree topologies. The tree having the highest
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likelihood score among all others is chosen as the best tree, which is the ML tree. This
process is exhaustive in nature and therefore very time consuming.

Ly =Pr(Z—-X)«Pr(Z - Y) *x PrX — A) « PrX — C) * Pr(Y - T) * Pr(Y — G)
InLy =InPr(Z—X) +InPr(Z - Y) + InPrX — A) + InPr(X — C)
+InPrfY -T)+InPr(Y - G)

Pros and Cons

ML is based on well-founded statistics instead of a medieval philosophy. It is thus
considered mathematically more rigorous than MP. In fact, it is the most rigorous
among all approaches. ML uses the full sequence information, not just the informa-
tive sites and therefore may be more robust. ML employs substitution models and
is not sensitive to LBA. Some of these strengths, however, can also be the weakness
of ML depending on the context. For example, accuracy depends on the substitution
model used. Choosing an unrealistic substitution model may lead to an incorrect
tree. Because of the exhaustive nature of the ML method, when the number of taxa
increases to a modest size, it becomes impossible to use. To overcome the problem,
several heuristic or alternative approaches have been proposed. These alternative
methods include quartet puzzling, genetic algorithms (GAs), and Bayesian inference,
which are introduced in the following sections.

Quartet Puzzling

The most commonly used heuristic ML method is called quartet puzzling, which
uses a divide-and-conquer approach. In this approach, the total number of taxa are
divided into many subsets of four taxa known as quartets. An optimal ML tree is
constructed from each of these quartets. This is a relatively easy process as there are
only three possible unrooted topologies for a four-taxon tree. All the quartet trees are
subsequently combined into a larger tree involving all taxa (Fig. 11.9). This process
is like joining pieces in a jigsaw puzzle, hence the name. The problem in drawing a
consensus is that the branching patterns in quartets with shared taxa maynot agree. In
this case, a majority rule is used to determine the positions of branches to be inserted
to create the consensus tree.

The reason that quartet puzzling is computationally faster than exhaustive ML is
because there are fewer tree topologies to search. To take four-taxon subsets out of
n sequences, there are total C# combinations. Each subset has only three possible
trees, and so the total number of trees that need to be computed are 3 x C4. For
instance, for twenty taxa, there are 3 x C3, = 222ty = 14,535 tree topologies to
search, compared with 2 x 10% trees if using the exhaustive search strategy. Thus, the
method significantly reduces the computing time. The caveat of using the puzzling
approach is that it does not necessarily return a tree with ML, but instead produces a
consensus tree thatis supported by the results of most quartets. Although the heuristic
method is not as robust as regular ML, it has become a popular choice with many
researchers because of its computational feasibility with large datasets.
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Figure 11.9: Schematic illustration of quartet puzzling in deriving a consensus tree by combining mul-
tiple quartet trees.

NJML

NJML is a hybrid algorithm combining aspects of NJ and ML. It constructs an initial
tree using the NJ method with bootstrapping (which will be described). The branches
with low bootstrap support are collapsed to produce multifurcating branches. The
polytomy is resolved using the ML method. Although the performance of this method
is not yet as good as the complete ML method, it is at least ten times faster.

Genetic Algorithm

A recent addition to fast ML search methods is the GA, a computational optimization
strategy that uses biological terminology as a metaphor because the method involves
“crossing” mathematical routines to generate new “offspring” routines. The algo-
rithm works by selecting an optimal result through a mix-and-match process using a
number of existing random solutions. A “fitness” measure is used to monitor the opti-
mization process. By keeping record of the fitness scores, the process simulates the
natural selection and genetic crossing processes. For instance, a subroutine that has
the best score (best fit process) is selected in the first round and is used as a starting
point for the next round of the optimization cycle. Again using biological metaphors,
this is to generate more “offspring,” which are mathematical trials with modifications
from the previous ones. Different computational routines (or “chromosomes”) are
also allowed to combine (or “crossover”) to produce a new solution. The iteration
continues until an optimal solution is found.

When applying GA to phylogenetic inference, the method strongly resembles the
pruning and regrafting routines used in the branch-swapping process. In GA-based
tree searching, the fitness measure is the log likelihood scores. The tree search begins
with a population of random trees with an arbitrary branch lengths. The tree with
a highest log likelihood score is allowed to leave more “offspring” with “mutations”
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on the tree topology. The mutational process is essentially branch rearrangement.
Mutated new trees are scored. Those that are scored higher than the parent tree are
allowed to mutate more to produce even higher scored offspring, if possible. This
process is repeated until no higher scored trees can be found. The advantage of this
algorithm is its speed; a near optimal tree can often be obtained within a limited
number of iterations.

Bayesian Analysis

Another recent development of a speedy ML method is the use of the Bayesian anal-
ysis method. The essence of Bayesian analysis is to make inference on something
unobserved based on existing observations. It makes use of an important concept
of known as posterior probability, which is defined as the probability that is revised
from prior expectations, after learning something new about the data. In mathemat-
ical terms, Bayesian analysis is to calculate posterior probability of two joint events
by using the prior probability and conditional probability values using the following
simplified formula:

Prior probability « Conditional likelihood
Total probability

Posterior probability = (Eq. 11.9)

Without going into much mathematical detail, it is important to know that the
Bayesian method can be used to infer phylogenetic trees with maximum posterior
probability. In Bayesian tree selection, the prior probability is the probability for all
possible topologies before analysis. The probability for each of these topologies is
equal before tree building. The conditional probability is the substitution frequency
of characters observed from the sequence alignment. These two pieces of information
are used as a condition by the Bayesian algorithm to search for the most probable trees
that best satisfy the observations.

The tree search incorporates an iterative random sampling strategy based on the
Markov chain Monte Carlo (MCMC) procedure. MCMCis designed as a “hill-climbing”
procedure, seekinghigher and higherlikelihood scores while searching for tree topolo-
gies, although occasionally it goes downhill because of the random nature of the
search. Over time, high-scoring trees are sampled more often than low-scoring trees.
When MCMC reaches high scored regions, a set of near optimal trees are selected to
construct a consensus tree.

In the end, the Bayesian method can achieve the same or even better performance
than the complete ML method, but is much faster than regular ML and is able to
handle very large datasets. The reason that the Bayesian analysis may achieve better
performance than ML is that the ML method searches one single best tree, whereas the
Bayesian method searches a set of best trees. The advantage of the Bayesian method
can be explained by the matter of probability. Because the true tree is not known, an
optimal ML tree may have, say, 90% probability of representing the reality. However,
the Bayesian method produces hundreds or thousands of optimal or near-optimal
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trees with 88% to 90% probability to represent the reality. Thus, the latter approach
has a better chance overall to guess the true tree correctly.

PHYLOGENETIC TREE EVALUATION

After phylogenetic tree construction, the next step is to statistically evaluate the reli-
ability of the inferred phylogeny. There are two questions that need to be addressed.
One is how reliable the tree or a portion of the tree is; and the second is whether
this tree is significantly better than another tree. To answer the first question, we
need to use analytical resampling strategies such as bootstrapping and jackknifing,
which repeatedly resample data from the original dataset. For the second question,
conventional statistical tests are needed.

What Is Bootstrapping?

Bootstrapping is a statistical technique that tests the sampling errors of a phyloge-
netic tree. It does so by repeatedly sampling trees through slightly perturbed datasets.
By doing so, the robustness of the original tree can be assessed. The rationale for
bootstrapping is that a newly constructed tree is possibly biased owing to incor-
rect alignment or chance fluctuations of distance measurements. To determine the
robustness or reproducibility of the current tree, trees are repeatedly constructed with
slightly perturbed alignments that have some random fluctuations introduced. A truly
robust phylogenetic relationship should have enough characters to support the rela-
tionship even if the datasetis perturbed in such away. Otherwise, the noise introduced
in the resampling process is sufficient to generate different trees, indicating that the
original topology may be derived from weak phylogenetic signals. Thus, this type of
analysis gives an idea of the statistical confidence of the tree topology.

Parametric and Nonparametric Bootstrapping

Bootstrap resampling relies on perturbation of original sequence datasets. There are
two perturbation strategies. One way to produce perturbations is through random
replacement of sites. This is referred to as nonparametric bootstrapping. Alternatively,
new datasets can be generated based on a particular sequence distribution, which is
parametric bootstrapping. Both types of bootstrapping can be applied to the distance,
parsimony, and likelihood tree construction methods.

In nonparametric bootstrapping, a new multiple sequence alignment of the same
length is generated with random duplication of some of the sites (i.e., the columns
in an alignment) at the expense of some other sites. In other words, certain sites are
randomly replaced by other existing sites. Consequently, certain sites may appear
multiple times, and other sites may not appear at all in the new alignment (Fig. 11.10).
This process is repeated 100 to 1,000 times to create 100 to 1,000 new alignments that
are used to reconstruct phylogenetic trees using the same method as the originally
inferred tree. The new datasets with altered the nucleotide or amino acid composition
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Figure 11.10: Schematic representation of a bootstrap analysis showing the original alighment and
modified replicates in which certain sites are randomly replaced with other existing sites. The resulting
altered replicates are used to building trees for statistical analysis at each node.

and rate heterogeneity may result in certain parts of the tree having a different topo-
logy from the original inferred tree.

All the bootstrapped trees are summarized into a consensus tree based on a majo-
rity rule. The most supported branching patterns shown at each node are labeled with
bootstrap values, which are the percentage of appearance of a particular clade. Thus,
the bootstrap test provides a measure for evaluating the confidence levels of the tree
topology. Analysis has shown that a bootstrap value of 70% approximately corres-
ponds to 95% statistical confidence, although the issue is still a subject of debate.

Instead of randomly duplicating sites to generate new datasets, parametric boot-
strapping uses altered datasets with random sequences confined within a particular
sequence distribution according to a given substitution model. For instance, for a
nucleotide dataset, according to the Juke—Cantor model, all four nucleotides are iden-
tically distributed, whereas the Kimura model provides a different distribution (see
Fig. 10.8). The parametric bootstrapping method may help avoid the problem of cer-
tain sites being repeated too many times as in nonparametric bootstrapping resulting
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in skewed sequence distribution. If a correct nucleotide/amino acid distribution
model is used, parametric bootstrapping generates more reasonable replicates than
random replicates. Thus, this procedure is considered more robust than nonparamet-
ric bootstrapping.

Caveats

Strictly speaking, bootstrapping does not assess the accuracy of a tree, but only
indicates consistency and stability of individual clades of the tree. This means that,
because of systematic errors, wrong trees can still be obtained with high bootstrap
values. Therefore, bootstrap results should be interpreted with caution. Unusually
high GC content in the original dataset, unusually accelerated evolutionary rates and
unrealistic evolutionary models are the potential causes for generating biased trees,
as well as biased bootstrap estimates, which come after the tree generation.

In addition, from a statistical point of view, a large number of bootstrap resampling
steps are needed to achieve meaningful results. It is generally recommended that a
phylogenetic tree should be bootstrapped 500 to 1,000 times. However, this presents a
practical dilemma. In many instances, it may take hours or days to construct one ML
or MP tree. So the multiplication of computing time makes bootstrapping virtually
impossible to use with limited computing resources.

Jackknifing

In addition to bootstrapping, another often used resampling technique is jackknif-
ing. In jackknifing, one half of the sites in a dataset are randomly deleted, creating
datasets half as long as the original. Each new dataset is subjected to phylogenetic
tree construction using the same method as the original. The advantage of jackknifing
is that sites are not duplicated relative to the original dataset and that computing time
is much shortened because of shorter sequences. One criticism of this approach is
that the size of datasets has been changed into one half and that the datasets are no
longer considered replicates. Thus, the results may not be comparable with that from
bootstrapping.

Bayesian Simulation

In terms of statistical evaluation, the Bayesian method is probably the most efficient;
it does not require bootstrapping because the MCMC procedure itself involves thou-
sands or millions of steps of resampling. As a result of Bayesian tree construction,
posterior probabilities are assigned at each node of a best Bayesian tree as statistical
support. Because of fast computational speed of MCMC tree searching, the Bayesian
method offers a practical advantage over regular ML and makes the statistical eval-
uation of ML trees more feasible. Unlike bootstrap values, Bayesian probabilities are
normally higher because most trees are sampled near a small number of optimal trees.
Therefore, they have a different statistical meaning from bootstrap.
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t
Figure 11.11: A t-distribution curve showing highlighted areas with margins of statistical significance.

Kishino-Hasegawa Test

In phylogenetic analysis, it is also important to test whether two competing tree
topologies can be distinguished and whether one tree is significantly better than
the other. The task is different from bootstrapping in that it tests the statistical signifi-
cance of the entire phylogeny, notjust portions of it. For that purpose, several statistical
tests have been developed specifically for each of the three types of tree reconstruc-
tion methods, distance, parsimony, and likelihood. A test devised specifically for MP
trees is called the Kishino—Hasegawa (KH) test.

The KH test sets out to test the null hypothesis that the two competing tree topolo-
gies are not significantly different. A paired Student ¢-test is used to assess whether the
null hypothesis can be rejected at a statistically significant level. In this test, the dif-
ference of branch lengths at each informative site between the two trees is calculated.
The standard deviation of the difference values can then be calculated. This in turn
allows derivation of a ¢t-value (see Eq. 11.10), which is used for evaluation against the
t-distribution to see whether the value falls within the significant range (e.g., P < .05)
to warrant the rejection of the null hypothesis (Fig. 11.11).

_Da=Di
- Sp/yn

df=n-1 (Eq.11.11)

(Eq. 11.10)

where n is the number of informative sites, df is the degree of freedom, ¢ is the test
statistical value, D, is the average site-to-site difference between the two trees, Sp is
the standard deviation, and D is the total difference of branch lengths of the two trees.

Shimodaira-Hasegawa Test

A frequently used statistical test for ML trees is the Shimodaira-Hasegawa (SH) test
(likelihood ratio test). It tests the goodness of fit of two competing trees using the x?
test. For this test, log likelihood scores of two competing trees have to be obtained
first. The degree of freedom used for the analysis depends on the substitution model
used. It relies on the following test formula:

d=2(nLy —InLp) = 2In(La/Lp) (Eq. 11.12)
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where d is the log likelihood ratio score and Inl, and InLp are likelihood scores for
tree A and tree B, respectively. The statistical meaning of d can be obtained from
calculating the probability value from a x? table.

Once the logratio of the two scores is obtained, it is used to test against the y? distri-
bution. The resulting probability value (P-value) determines whether the difference
between the two trees is significant.

PHYLOGENETIC PROGRAMS

Phylogenetic tree reconstruction is not a trivial task. Although there are numerous
phylogenetic programs available, knowing the theoretical background, capabilities,
and limitations of each is very important. For a list of hundreds of phylogenetic soft-
ware programs, see Felsenstein’s collection at: http://evolution.genetics.washington.
edu/phylip/software.html. Most of these programs are freely available. Some are com-
prehensive packages; others are more specialized to perform asingle task. Mostrequire
special efforts to learn how to use them effectively. Because this book is not intended
as a computer manual, a brief introduction to several of the most commonly used
programs is provided.

PAUP* (Phylogenetic analysis using parsimony and other methods, by David
Swofford, http://paup.csit.fsu.edu/) is a commercial phylogenetic package. It is prob-
ably one of the most widely used phylogenetic programs available from Sinauer Pub-
lishers. It is a Macintosh program (UNIX version available in the GCG package) with a
very user-friendly graphical interface. PAUP was originally developed as a parsimony
program, but expanded to a comprehensive package that is capable of performing
distance, parsimony, and likelihood analyses. The distance options include NJ, ME,
FM, and UPGMA. For distance or ML analyses, PAUP has the option for detailed speci-
fications of substitution models, base frequencies, and among site rate heterogeneity
(y-shape parameters, proportion of invariant sites). PAUP is also able to perform
nonparametric bootstrapping, jackknifing, KH testing, and SH testing.

Phylip (Phylogenetic inference package; by Joe Felsenstein) is a free multiplatform
comprehensive package containing thirty-five subprograms for performing distance,
parsimony, and likelihood analysis, as well as bootstrapping for both nucleotide and
amino acid sequences. It is command-line based, but relatively easy to use for each
single program. The only problem is that to complete an analysis the user is required
to move between different subprograms while keeping modifying names of the inter-
mediate output files. The program package is downloadable from http://evolution.
genetics.washington.edu/phylip.html. An online version is also available at http://
bioweb.pasteur.fr/seqanal/phylogeny/phylip-uk.html. A more user-friendly online
version is WebPhylip available at http://sdmc.krdl.org.sg:8080/~Ixzhang/phylip/.

TREE-PUZZLE is a program performing quartet puzzling. The advantage is that
it allows various substitution models for likelihood score estimation and incorpo-
rates a discrete y model for rate heterogeneity among sites (see Chapter 10). Because
of the heuristic nature of the program, it allows ML analyses of large datasets. The
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resulting puzzle trees are automatically assigned puzzle support values to internal
branches. These values are percentages of consistent quartet trees and do not have
the same meaning as bootstrap values. TREE-PUZZLE version 5.0 is available for
Mac, UNIX, and Windows and can be downloaded from www.tree-puzzle.de/. There
isalsoanonline version of the program available at: http://bioweb.pasteur.fr/seqanal/
interfaces/Puzzle.html.

PHYML (http://atgc.lirmm.fr/phyml/) is a web-based phylogenetic program using
the GA. It first builds an NJ tree and uses it as a starting tree for subsequent itera-
tive refinement through subtree swapping. Branch lengths are simultaneously opti-
mized during this process. The tree searching stops when the total ML score no longer
increases. The main advantage of this program is the ability to build trees from very
large datasets with hundreds of taxa and to complete tree searching within a relatively
short time frame.

MrBayes is a Bayesian phylogenetic inference program. It randomly samples tree
topologies using the MCMC procedure and infers the posterior distribution of tree
topologies. It has a range of probabilistic models available to search for a set of
trees with the highest posterior probability. It is fast and capable of handling large
datasets. The program is available in multiplatform versions and can be downloaded
from http://morphbank.ebc.uu.se/mrbayes/. A web program that also employs
Bayesian inference for phylogenetic analysis is BAMBE (http://bioweb.pasteur.fr/
seqanal/interfaces/bambe.html).

SUMMARY

Molecular phylogeny is a fundamental tool for understanding sequence evolution and
relationships. The accuracy of the tree-building methods used for phylogenetic anal-
ysis depends on the assumption on which each the method is based. Understanding
these assumptions is the first step toward efficient use of these methods. The second
step is understanding how the methods actually work and what intrinsic limitations
these methods have. The third step is choosing suitable phylogenetic method(s) that
can give a reasonably correct picture of a phylogenetic tree.

The phylogenetic methods can be divided into distance-based and character-based
methods. The distance methods include UPGMA, NJ, Fitch-Margoliash, and min-
imum evolution. The first two are clustering based, and are fast but not accurate;
the latter two are optimality based and are accurate but not fast. Character-based
approaches include the MP and ML methods. The principle of parsimony is easy to
understand, buthasitsrootinamedieval philosophy. Itis slower compared to distance
methods. To speed up the computation, branch-and-bound and heuristics tree
searching strategies are used. The ML method is the slowest, but is based on a solid
statistical foundation. To overcome the bottleneck of computation in ML, faster algo-
rithms such as quartet puzzling, NJML, GA, and Bayesian analysis have been devel-
oped to make the method more feasible. To assess the reliability and robustness of
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every clade in a phylogenetic tree, bootstrapping and jackknifing are used. The KH
and SH tests distinguish the overall topology of two competing trees.

Itisimportant to realize that phylogenetic tree reconstruction is not a trivial matter,
but a complicated process that often requires careful thought. Accuracy, reliability,
and computational speed are all major factors for consideration when choosing a
particular phylogenetic method. It is also important to realize that none of the three
phylogenetic reconstruction methods are guaranteed to find the correct tree. All three
methods have the potential to produce erroneous trees. To minimize phylogenetic
errors, it is recommended that at least two methods be used for any phylogenetic
analysis to check the consistency of tree building results obtained. Because the the-
ories behind each of the three methods are fundamentally different, agreement in
conclusion by several of these methods provides a particularly strong support for a
correct phylogenetic tree. In addition, it is recommended that different rate substitu-
tion models, weighting schemes, and resampling strategies with or without exclusion
of specific taxa and/or sites be applied. The same analysis should be repeated on
multiple genes or proteins as well as the concatenated datasets. If more than one
fundamentally different methods provide the same prediction, the confidence in the
prediction is higher.
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CHAPTER TWELVE

Protein Structure Basics

Starting from this chapter and continuing through the next three chapters, we intro-
duce the basics of protein structural bioinformatics. Proteins perform most essential
biological and chemical functions in a cell. They play important roles in structural,
enzymatic, transport, and regulatory functions. The protein functions are strictly
determined by their structures. Therefore, protein structural bioinformatics is an
essential element of bioinformatics. This chapter covers some basics of protein struc-
tures and associated databases, preparing thereader for discussions of more advanced
topics of protein structural bioinformatics.

AMINO ACIDS

The building blocks of proteins are twenty naturally occurring amino acids, small
molecules that contain a free amino group (NH;) and a free carboxyl group (COOH).
Both of these groups are linked to a central carbon (C«), which is attached to a hydro-
gen and a side chain group (R) (Fig. 12.1). Amino acids differ only by the side chain R
group. The chemical reactivities of the R groups determine the specific properties of
the amino acids.

Amino acids can be grouped into several categories based on the chemical and
physical properties of the side chains, such as size and affinity for water. According to
these properties, the side chain groups can be divided into small, large, hydrophobic,
and hydrophilic categories. Within the hydrophobic set of amino acids, they can be
further divided into aliphatic and aromatic. Aliphatic side chains are linear hydro-
carbon chains and aromatic side chains are cyclic rings. Within the hydrophilic set,
amino acids can be subdivided into polar and charged. Charged amino acids can be
either positively charged (basic) or negatively charged (acidic). Each of the twenty
amino acids, their abbreviations, and main functional features once incorporated
into a protein are listed in Table 12.1.

Of particular interest within the twenty amino acids are glycine and proline.
Glycine, the smallest amino acid, has a hydrogen atom as the R group. It can there-
fore adopt more flexible conformations that are not possible for other amino acids.
Proline is on the other extreme of flexibility. Its side chain forms a bond with its
own backbone amino group, causing it to be cyclic. The cyclic conformation makes
it very rigid, unable to occupy many of the main chain conformations adopted by
other amino acids. In addition, certain amino acids are subject to modifications after
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TABLE 12.1. Twenty Standard Amino Acids Grouped by Their Common Side-Chain
Features

Three- and
Amino Acid One-Letter
Amino Acid Group Name Code Main Functional Features
Small and nonpolar Glycine Gly, G Nonreactive in chemical reactions;
Alanine Ala, A Pro and Gly disrupt regular
Proline Pro, P secondary structures
Small and polar Cysteine Cys, C Serving as posttranslational
Serine Ser, S modification sites and
Threonine Thr, T participating in active sites of
enzymes or binding metal
Large and polar Glutamine Gln, Q Participating in hydrogen bonding
Asparagine Asn, N or in enzyme active sites
Large and polar Arginine Arg, R Found in the surface of globular
(basic) Lysine Lys, K proteins providing salt bridges;
Histidine His, H His participates in enzyme
catalysis or metal binding
Large and polar Glutamate Glu, E Found in the surface of globular
(acidic) Aspartate Asp, D proteins providing salt bridges
Large and nonpolar  Isoleucine Ile, I Nonreactive in chemical reactions;
(aliphatic) Leucine Leu, L participating in hydrophobic
Methionine Met, M interactions
Valine Val, V
Large and nonpolar ~ Phenylalanine Phe, F Providing sites for aromatic
(aromatic) Tyrosine Tyr, Y packing interactions; Tyr and Trp
Tryptophan Trp, W are weakly polar and can serve as
sites for phosphorylation and
hydrogen bonding

Note: Each amino acid is listed with its full name, three- and one-letter abbreviations, and main
functional roles when serving as amino acid residues in a protein. Properties of some amino acid
groups overlap.

a protein is translated in a cell. This is called posttranslational modification, and is
discussed in more detail in Chapter 19.

PEPTIDE FORMATION

The peptide formation involes two amino acids covalently joined together between
the carboxyl group of one amino acid and the amino group of another (Fig. 12.2). This

H O carboxyl group

I |
HMN—Ca—C—OH
f
amino group R
™ side chain

Figure 12.1: General structure of an amino acid. The main chain atoms are highlighted. The R group
can be any of the twenty amino acid side chains.
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Figure 12.2: Condensation reaction between the carboxyl group of one amino acid and the amino group
of another. The hydroxyl group of the carboxyl group and a hydrogen of the amino group are lost to
give rise to a water molecule and a dipeptide.

reaction is a condensation reaction involving removal of elements of water from the
two molecules. The resulting product is called a dipeptide. The newly formed covalent
bond connecting the two amino acids is called a peptide bond. Once an amino acid is
incorporated into a peptide, it becomes an amino acid residue. Multiple amino acids
can be joined together to form a longer chain of amino acid polymer.

Alinear polymer of more than fifty amino acid residues is referred to as a polypep-
tide. A polypeptide, also called a protein, has a well-defined three-dimensional
arrangement. On the other hand, a polymer with fewer than fifty residues is usually
called a peptide without a well-defined three-dimensional structure. The residues in
a peptide or polypeptide are numbered beginning with the residue containing the
amino group, referred to as the N-terminus, and ending with the residue containing
the carboxyl group, known as the C-terminus (see Fig. 12.2). The actual sequence of
amino acid residues in a polypeptide determines its ultimate structure and function.

The atoms involved in forming the peptide bond are referred to as the backbone
atoms. They are the nitrogen of the amino group, the « carbon to which the side chain
is attached and carbon of the carbonyl group.

DIHEDRAL ANGLES

A peptide bond is actually a partial double bond owing to shared electrons between
O=C-N atoms. The rigid double bond structure forces atoms associated with the
peptide bond to lie in the same plane, called the peptide plane. Because of the planar
nature of the peptide bond and the size of the R groups, there are considerable restric-
tions on the rotational freedom by the two bonded pairs of atoms around the peptide
bond. The angle of rotation about the bond is referred to as the dihedral angle (also
called the tortional angle).

For a peptide unit, the atoms linked to the peptide bond can be moved to a certain
extent by the rotation of two bonds flanking the peptide bond. This is measured by
two dihedral angles (Fig. 12.3). One is the dihedral angle along the N-Co bond, which
is defined as phi (¢); and the other is the angle along the Coe—C bond, which is called
psi (). Various combinations of ¢ and ¢ angles allow the proteins to fold in many
different ways.

Ramachandran Plot

As mentioned, the rotation of ¢ and v is not completely free because of the planar
nature of the peptide bond and the steric hindrance from the side chain R group.
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Figure 12.3: Definition of dihedral angles of ¢ and ). Six atoms around a peptide bond forming two
peptide planes are colored in red. The ¢ angle is the rotation about the N-Ca bond, which is measured
by the angle between a virtual plane formed by the C-N-Ca and the virtual plane by N-Ca-C (C in
green). The ¢ angle is the rotation about the Ca-C bond, which is measured by the angle between a
virtual plane formed by the N-Ca-C (N in green) and the virtual plane by Ca—C-N (N in red) (see color
plate section).
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Consequently, there is only a limited range of peptide conformation. When ¢ and
angles of amino acids of a particular protein are plotted against each other, the result-
ing diagram is called a Ramachandran plot. This plot maps the entire conformational
space of a peptide and shows sterically allowed and disallowed regions (Fig. 12.4). It
can be very useful in evaluating the quality of protein models.

HIERARCHY

Protein structures can be organized into four levels of hierarchies with increasing
complexity. These levels are primary structure, secondary structure, tertiary structure,
and quaternary structure. A linear amino acid sequence of a protein is the primary
structure. This is the simplest level with amino acid residues linked together through

+180
f-strand
left handed
helix
(very rare)
Y 0
right handed disallowed
helix (common) region
-180
-180 0 +180

¢

Figure 12.4: A Ramachandran plot with allowed values of ¢ and ) in shaded areas. Regions favored
by a-helices and 3-strands (to be explained) are indicated.
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peptide bonds. The next level up is the secondary structure, defined as the local con-
formation of a peptide chain. The secondary structure is characterized by highly reg-
ular and repeated arrangement of amino acid residues stabilized by hydrogen bonds
between main chain atoms of the C=0 group and the NH group of different residues.
The level above the secondary structure is the tertiary structure, which is the three-
dimensional arrangement of various secondary structural elements and connecting
regions. The tertiary structure can be described as the complete three-dimensional
assembly of all amino acids of a single polypeptide chain. Beyond the tertiary struc-
ture is the quaternary structure, which refers to the association of several polypeptide
chains into a protein complex, which is maintained by noncovalent interactions. In
such a complex, individual polypeptide chains are called monomersor subunits. Inter-
mediate between secondary and tertiary structures, a level of supersecondary struc-
tureis often used, which is defined as two or three secondary structural elements form-
ingaunique functional domain, arecurring structural pattern conserved in evolution.

Stabilizing Forces

Protein structures from secondary to quaternary are maintained by noncovalent
forces. These include electrostatic interactions, van der Waals forces, and hydrogen
bonding. Electrostatic interactions are a significant stabilizing force in a protein struc-
ture. They occur when excess negative charges in one region are neutralized by positive
charges in another region. The result is the formation of salt bridges between oppo-
sitely charged residues. The electrostatic interactions can function within a relatively
long range (15 A).

Hydrogen bonds are a particular type of electrostatic interactions similar to dipole—
dipole interactions involving hydrogen from one residue and oxygen from another.
Hydrogen bonds can occur between main chain atoms as well as side chain atoms.
Hydrogen from the hydrogen bond donor group such as the N-H group is slightly
positively charged, whereas oxygen from the hydrogen bond acceptor group such as
the C=0 group is slightly negatively charged. When they come within a close distance
(<3 A), a partial bond is formed between them, resulting in a hydrogen bond. Hydro-
gen bonding patterns are a dominant factor in determining different types of protein
secondary structures.

Van der Waals forces also contribute to the overall protein stability. These forces
are instantaneous interactions between atoms when they become transient dipoles.
A transient dipole can induce another transient dipole nearby. The dipoles of the two
atoms can be reversed a moment later. The oscillating dipoles result in an attractive
force. The van der Waals interactions are weaker than electrostatic and hydrogen
bonds and thus only have a secondary effect on the protein structure.

In addition to these common stabilizing forces, disulfide bridges, which are cova-
lent bonds between the sulfur atoms of the cysteine residue, are also important in
maintaining some protein structures. For certain types of proteins that contain metal
ions as prosthetic groups, noncovalent interactions between amino acid residues and
the metal ions may play an important structural role.
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Figure 12.5: A ribbon diagram of an a-helix with main chain atoms (as grey balls) shown. Hydrogen
bonds between the carbonyl oxygen (red) and the amino hydrogen (green) of two residues are shown
in yellow dashed lines (see color plate section).

SECONDARY STRUCTURES

As mentioned, local structures of a protein with regular conformations are known
as secondary structures. They are stabilized by hydrogen bonds formed between
carbonyl oxygen and amino hydrogen of different amino acids. Chief elements of
secondary structures are «-helices and B-sheets.

o-Helices

An «-helix has a main chain backbone conformation that resembles a corkscrew.
Nearly all known «-helices are right handed, exhibiting a rightward spiral form. In
such a helix, there are 3.6 amino acids per helical turn. The structure is stabilized by
hydrogen bonds formed between the main chain atoms of residues i and i + 4. The
hydrogen bonds are nearly parallel with the helical axis (Fig. 12.5). The average ¢ and
¥ angles are 60° and 45°, respectively, and are distributed in a narrowly defined region
in the lower left region of a Ramachandran plot (see Fig. 12.4). Hydrophobic residues
of the helix tend to face inside and hydrophilic residues of the helix face outside. Thus,
every third residue along the helix tends to be a hydrophobic residue. Ala, GIn, Leu,
and Met are commonly found in an «-helix, but not Pro, Gly, and Tyr. These rules are
useful in guiding the prediction of protein secondary structures.
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Figure 12.6: Side view of a parallel 3-sheet. Hydrogen bonds between the carbonyl oxygen (red) and
the amino hydrogen (green) of adjacent 3-strands are shown in yellow dashed lines. R groups are
shown as big balls in cyan and are positioned alternately on opposite sides of 3-strands (see color plate
section).

B3-Sheets

A B-sheet is a fully extended configuration built up from several spatially adjacent
regions of a polypeptide chain. Each region involved in forming the g-sheet is a
B-strand. The g-strand conformation is pleated with main chain backbone zigzagging
and side chains positioned alternately on opposite sides of the sheet. 5-Strands are sta-
bilized by hydrogen bonds between residues of adjacent strands (Fig. 12.6). 8-strands
near the surface of the protein tend to show an alternating pattern of hydrophobic
and hydrophilic regions, whereas strands buried at the core of a protein are nearly all
hydrophobic.

The B-strands can run in the same direction to form a parallel sheet or can
run every other chain in reverse orientation to form an antiparallel sheet, or a
mixture of both. The hydrogen bonding patterns are different in each configura-
tions. The ¢ and ¢ angles are also widely distributed in the upper left region in
a Ramachandran plot (see Fig. 12.4). Because of the long-range nature of residues
involved in this type of conformation, it is more difficult to predict g-sheets than «-
helices.

Coils and Loops

There are also local structures that do not belong to regular secondary structures
(x-helices and gB-strands). The irregular structures are coils or loops. The loops are
often characterized by sharp turns or hairpin-like structures. If the connecting regions
are completely irregular, they belong to random coils. Residues in the loop or coil
regions tend to be charged and polar and located on the surface of the protein struc-
ture. They are often the evolutionarily variable regions where mutations, deletions,
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Figure 12.7: An a-helical coiled coil found in tropomyosin showing two helices wound around to form
a helical bundle.

and insertions frequently occur. They can be functionally significant because these
locations are often the active sites of proteins.

Coiled Coils

Coiled coils are a special type of supersecondary structure characterized by a bun-
dle of two or more «-helices wrapping around each other (Fig. 12.7). The helices
forming coiled coils have a unique pattern of hydrophobicity, which repeats every
seven residues (five hydrophobic and two hydrophilic). More details on coiled coils
and their structure prediction are discussed in Chapter 14.

TERTIARY STRUCTURES

The overall packing and arrangement of secondary structures form the tertiary struc-
ture of a protein. The tertiary structure can come in various forms but is generally clas-
sified as either globular or membrane proteins. The former exists in solvents through
hydrophilic interactions with solvent molecules; the latter exists in membrane lipids
and is stabilized through hydrophobic interactions with the lipid molecules.

Globular Proteins

Globular proteins are usually soluble and surrounded by water molecules. They tend
to have an overall compact structure of spherical shape with polar or hydrophilic
residues on the surface and hydrophobic residues in the core. Such an arrangement
is energetically favorable because it minimizes contacts with water by hydropho-
bic residues in the core and maximizes interactions with water by surface polar and
charged residues. Common examples of globular proteins are enzymes, myoglobins,
cytokines, and protein hormones.

Integral Membrane Proteins

Membrane proteins exist in lipid bilayers of cell membranes. Because they are sur-
rounded by lipids, the exterior of the proteins spanning the membrane must be
very hydrophobic to be stable. Most typical transmembrane segments are «-helices.
Occasionally, for some bacterial periplasmic membrane proteins, they are composed
of B-strands. The loops connecting these segments sometimes lie in the aqueous
phase, in which they can be entirely hydrophilic. Sometimes, they lie in the interface
between the lipid and aqueous phases and are amphipathic in nature (containing
polar residues facing the aqueous side and hydrophobic residues towards the lipid
side). The amphipathic residues can also form helices which have a periodicity of



DETERMINATION OF PROTEIN THREE-DIMENSIONAL STRUCTURE

three or four residues. Common examples of membrane proteins are rhodopsins,
cytochrome c oxidase, and ion channel proteins.

DETERMINATION OF PROTEIN THREE-DIMENSIONAL STRUCTURE

Protein three-dimensional structures are obtained using two popular experimen-
tal techniques, x-ray crystallography and nuclear magnetic resonance (NMR) spec-
troscopy. The experimental procedures and relative merits of each method are
discussed next.

X-ray Crystallography

In x-ray protein crystallography, proteins need to be grown into large crystals in which
their positions are fixed in a repeated, ordered fashion. The protein crystals are then
illuminated with anintense x-raybeam. The x-rays are deflected by the electron clouds
surrounding the atoms in the crystal producing a regular pattern of diffraction. The
diffraction pattern is composed of thousands of tiny spots recorded on a x-ray film.
The diffraction pattern can be converted into an electron density map using a math-
ematical procedure known as Fourier transform. To interpret a three-dimensional
structure from two-dimensional electron density maps requires solving the phases
in the diffraction data. The phases refer to the relative timing of different diffraction
waves hitting the detector. Knowing the phases can help to determine the relative
positions of atoms in a crystal.

Phase solving can be carried out by two methods, molecular replacement, and mul-
tiple isomorphous replacement. Molecular replacement uses a homologous protein
structure as template to derive an initial estimate of the phases. Multiple isomorphous
replacement derives phases by comparing electron intensity changes in protein crys-
tals containing heavy metal atoms and the ones without heavy metal atoms. The heavy
atoms diffract x-rays with unusual intensities, which can serve as a marker for relative
positions of atoms.

Once the phases are available, protein structures can be solved by modeling with
amino acid residues that best fit the electron density map. The quality of the final
model is measured by an R factor, which indicates how well the model reproduces the
experimental electron intensity data. The R factor is expressed as a percentage of dif-
ference between theoretically reproduced diffraction data and experimentally deter-
mined diffraction data. R values can range from 0.0, which is complete agreement, to
0.59, which is complete disagreement. A major limitation of x-ray crystallography is
whether suitable crystals of proteins of interest can be obtained.

Nuclear Magnetic Resonance Spectroscopy

NMR spectroscopy detects spinning patterns of atomic nuclei in a magnetic field.
Protein samples are labeled with radioisotopes such as '3C and '°N. A radiofrequency
radiation is used to induce transitions between nuclear spin states in a magnetic field.
Interactions between spinning isotope pairs produce radio signal peaks that correlate
with the distances between them. By interpreting the signals observed using NMR,
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proximity between atoms can be determined. Knowledge of distances between all
labeled atoms in a protein allows a protein model to be built that satisfies all the
constraints. NMR determines protein structures in solution, which has the advantage
of not requiring the crystallization process. However, the proteins in solution are
mobile and vibrating, reflecting the dynamic behavior of proteins. For that reason,
usually a number of slightly different models (twenty to forty) have to be constructed
that satisfy all the NMR distance measurements. The NMR technique obviates the
need of growing protein crystals and can solve structures relatively more quickly than
x-ray crystallography. The major problem associated with using NMR is the current
limit of protein size (<200 residues) that can be determined. Another problem is the
requirement of heavy instrumentation.

PROTEIN STRUCTURE DATABASE

Once the structure of a particular protein is solved, a table of (x, y, z) coordinates
representing the spatial position of each atom of the structure is created. The coor-
dinate information is required to be deposited in the Protein Data Bank (PDB,
www.rcsb.org/pdb/) as a condition of publication of a journal paper. PDB is a world-
wide central repository of structural information of biological macromolecules and
is currently managed by the Research Collaboratory for Structural Bioinformatics
(RCSB). In addition, the PDB website provides a number of services for structure sub-
mission and data searching and retrieval. Through its web interface, called Structure
Explorer, a user is able to read the summary information of a protein structure, view
and download structure coordinate files, search for structure neighbors of a particular
protein or access related research papers through links to the NCBI PubMed database.

There are currently more than 30,000 entries in the database with the number
increasingata dramatic rate in recent years owing to large-scale structural proteomics
projects being carried out. Most of the database entries are structures of proteins. How-
ever, a small portion of the database is composed of nucleic acids, carbohydrates, and
theoretical models. Most protein structures are determined by x-ray crystallography
and a smaller number by NMR.

Although the total number of entries in PDB is large, most of the protein structures
are redundant, namely, they are structures of the same protein determined under
different conditions, at different resolutions, or associated with different ligands or
with single residue mutations. Sometimes, structures from very closely related pro-
teins are determined and deposited in PDB. A small number of well-studied proteins
such as hemoglobins and myoglobins have hundreds of entries. Excluding the redun-
dant entries, there are approximately 3,000 unique protein structures represented in
the database. Among the unique protein structures, there are only a limited number
of protein folds available (800) compared to ~1,000,000 unique protein sequences
already known, suggesting that the protein structures are much more conserved. A
protein fold is a particular topological arrangement of helices, strands, and loops.
Protein classification by folds is discussed in Chapter 13.
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HEADER LYASE (CARBON-CARBON) 03-JUL-95 1DNP
TITLE STRUCTURE OF DEOXYRIBODIPYRIMIDINE PHOTOLYASE
structure  _| ... ...
annotation SOURCE 2 ORGANISM_ SCIENTIFIC: ESCHERICHIA COLI
KEYWDS DNA REPAIR, ELECTRON TRANSFER, EXCITATION ENERGY TRANSFER,
KEYWDS 2 LYASE, CARBON-CARBON
ATOM 21 ND1 HIS A 3 55.365 27.866 62.971 1.00 11.07 N
ATOM 22 CD2 HIS A 3 57.200 28.354 61.894 1.00 13.12 C
ATOM 23 CEl HIS A 3 56.124 26.783 62.981 1.00 13.03 C
ATOM 24 NE2 HIS A 3 57.243 27.052 62.334 1.00 8.19 N
ATOM 25 N LEU A 4 55.580 32.694 59.656 1.00 12.61 N
ATOM 26 CA LEU A 4 54.799 33.803 59.113 1.00 11.56 C
. . ATOM 27 C LEU A 4 53.552 33.269 58.374 1.00 7.76 C
amino acid —| Aoy 28 0 LEUA 4 53.650 32.363 57.532 1.00 6.99 0
field ATOM 29 CB LEU A 4 55.656 34.683 58.174 1.00 9.03 c
ATOM 30 CG LEU A 4 54.946 35.887 57.518 1.00 2.00 C
ATOM 31 CD1 LEU A 4 54.623 36.920 58.550 1.00 6.21 C
HETATM 7641 AN7 FAD B 472 27.855 78.556 29.073 1.00 4.55 N
mﬁador | HETATM 7642 AC5 FAD B 472 28.524 78.026 27.955 1.00 2.00 C
filed HETATM 7643 AC6 FAD B 472 29.848 77.609 27.724 1.00 3.40 c
HETATM 7644 AN6 FAD B 472 30.787 77.757 28.664 1.00 6.22 N
/ / \ — ~— — | \ |
atom residue residue X, Y, z coordinates occupancy temperature atom
number name number factor type
atom polypeptide
name chain identifier

Figure 12.8: A partial PDB file of DNA photolyase (boxed) showing the header section and the coordi-
nate section. The coordinate section is dissected based on individual fields.

PDB Format

A deposited set of protein coordinates becomes an entry in PDB. Each entry is given
a unique code, PDBid, consisting of four characters of either letters A to Z or digits 0
to 9 such as 1LYZ and 4RCR. One can search a structure in PDB using the four-letter
code or keywords related to its annotation. The identified structure can be viewed
directly online or downloaded to a local computer for analysis. The PDB website pro-
vides options for retrieval, analysis, and direct viewing of macromolecular structures.
The viewing can be still images or manipulable images through interactive viewing
tools (see Chapter 13). It also provides links to protein structural classification results
available in databases such as SCOP and CATH (see Chapter 13).

The data format in PDB was created in the early 1970s and has a rigid structure
of 80 characters per line, including spaces. This format was initially designed to be
compatible with FORTRAN programs. It consists of an explanatory header section
followed by an atomic coordinate section (Fig. 12.8).

The header section provides an overview of the protein and the quality of the struc-
ture. It contains information about the name of the molecule, source organism, bibli-
ographic reference, methods of structure determination, resolution, crystallographic
parameters, protein sequence, cofactors, and description of structure types and loca-
tions and sometimes secondary structure information. In the structure coordinates
section, there are a specified number of columns with predetermined contents. The
ATOM part refers to protein atom information whereas the HETATM (for heteroatom
group) part refers to atoms of cofactor or substrate molecules. Approximately ten
columns of text and numbers are designated. They include information for the atom
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number, atom name, residue name, polypeptide chain identifier, residue number, x,
¥, and z Cartesian coordinates, temperature factor, and occupancy factor. The last
two parameters, occupancy and temperature factors, relate to disorders of atomic
positions in crystals.

The PDB format has been in existence for more than three decades. It is fairly easy
toread and simple to use. However, the format is not designed for computer extraction
of information from the records. Certain restrictions in the format have significantly
complicated its current use. For instance, in the PDB format, only Cartesian coordi-
nates of atoms are given without bonding information. Information such as disulfide
bonds has to be interpreted by viewing programs, some of which may fail to do so. In
addition, the field width for atom number is limited to five characters, meaning that
the maximum number of atoms per model is 99,999. The field width for polypeptide
chains is only one character in width, meaning that no more than 26 chains can be
used in a multisubunit protein model. This has made many large protein complexes
such as ribosomes unable to be represented by a single PDB file. They have to be
divided into multiple PDB files.

mmCIF and MMDB Formats

Significant limitations of the PDB format have allowed the development of new for-
mats to handle increasingly complicated structure data. The most popular new for-
mats include the macromolecular crystallographic information file (mmCIF) and the
molecular modeling database (MMDB) file. Both formats are highly parsable by com-
puter software, meaning that information in each field of a record can be retrieved
separately. These new formats facilitate the retrieval and organization of information
from database structures.

The mmCIF format is similar to the format for a relational database (see Chapter 2)
in which a set of tables are used to organize database records. Each table or field of
information is explicitly assigned by a tag and linked to other fields through a special
syntax. An example of an mmCIF containing multiple fields is given below. As shown
in Figure 12.9, a single line of description in the header section of PDB is divided
into many lines or fields with each field having explicit assignment of item names
and item values. Each field starts with an underscore character followed by category
name and keyword description separated by a period. The annotation in Figure 12.9
shows that the data items belong to the category of “struct” or “database.” Following
a keyword tag, a short text string enclosed by quotation marks is used to assign values
for the keyword. Using multiple fields with tags for the same information has the
advantage of providing an explicit reference to each item in a data file and ensures a
one-to-one relationship between item names and item values. By presenting the data
item by item, the format provides much more flexibility for information storage and
retrieval.

Another new format is the MMDB format developed by the NCBI to parse and
sort pieces of information in PDB. The objective is to allow the information to be
more easily integrated with GenBank and Medline through Entrez (see Chapter 2).



SUMMARY

PDB HEADER PLANT SEED PROTEIN 11-OCT-91 1CBN

mmCIF  struct.entry id '1CBN'
_struct.title 'PLANT SEED PROTEIN'
_struct_keywords.entry id '1CBN'
_struct_ keywords.text 'plant seed protein'
_database 2.database id 'PDB'
_database_2.database_code '1CBN'
_database PDB_rev.rev_num 1
_database PDB_rev.date original '1991-10-11'

Figure 12.9: A comparison of PDB and mmCIF formats in two different boxes. To show the same header
information in PDB, multiple fields are required in mmCIF to establish explicit relationships of item name
and item values. The advantage of such format is easy parsing by computer software.

An MMDB file is written in the ASN.1 format (see Chapter 2), which has information
in a record structured as a nested hierarchy. This allows faster retrieval than mmCIF
and PDB. Furthermore, the MMDB format includes bond connectivity information
for each molecule, called a “chemical graph,” which is recorded in the ASN.1 file. The
inclusion of the connectivity data allows easier drawing of structures.

SUMMARY

Proteins are considered workhorses in a cell and carry out most cellular functions.
Knowledge of protein structure is essential to understand the behavior and functions
of specific proteins. Proteins are polypeptides formed by joining amino acids together
via peptide bonds. The folding of a polypeptide can be described by rotational angles
around the main chain bonds such as ¢ and ¢ angles. The degree of rotation depends
on the preferred protein conformation. Allowable ¢ and ¢ angles in a protein can
be specified in a Ramachandran plot. There are four levels of protein structures, pri-
mary, secondary, tertiary, and quaternary. The primary structure is the sequence of
amino acid residues. The secondary structure is the repeated main chain confor-
mation, which includes «-helices and g-sheets. The tertiary structure is the overall
three-dimensional conformation of a polypeptide chain. The quaternary structure is
the complex arrangement of multiple polypeptide chains. Protein structures are sta-
bilized by electrostatic interactions, hydrogen bonds, and van der Waals interactions.
Proteins can be classified as being soluble globular proteins or integral membrane
proteins, whose structures vary tremendously. Protein structures can be determined
by x-ray crystallography and NMR spectroscopy. Both methods have advantages and
disadvantages, but are clearly complementary. The solved structures are deposited in
PDB, which uses a PDB format to describe structural details. However, the original
PDB format has limited capacity and is difficult to be parsed by computer software.
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To overcome the limitations, new formats such as mmCIF and MMDB have been
developed.
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CHAPTER THIRTEEN

Protein Structure Visualization, Comparison,
and Classification

Once a protein structure has been solved, the structure has to be presented in a three-
dimensional view on the basis of the solved Cartesian coordinates. Before computer
visualization software was developed, molecular structures were represented by phys-
icalmodels of metal wires, rods, and spheres. With the development of computer hard-
ware and software technology, sophisticated computer graphics programs have been
developed for visualizing and manipulating complicated three-dimensional struc-
tures. The computer graphics help to analyze and compare protein structures to gain
insight to functions of the proteins.

PROTEIN STRUCTURAL VISUALIZATION

The main feature of computer visualization programs is interactivity, which allows
users to visually manipulate the structural images through a graphical user interface.
At the touch of a mouse button, a user can move, rotate, and zoom an atomic model
on a computer screen in real time, or examine any portion of the structure in great
detail, as well as draw it in various forms in different colors. Further manipulations can
include changing the conformation of a structure by protein modeling or matching a
ligand to an enzyme active site through docking exercises.

Because a Protein Data Bank (PDB) data file for a protein structure contains only
X, ¥, and z coordinates of atoms (see Chapter 12), the most basic requirement for
a visualization program is to build connectivity between atoms to make a view of
a molecule. The visualization program should also be able to produce molecular
structures in different styles, which include wire frames, balls and sticks, space-filling
spheres, and ribbons (Fig. 13.1).

A wire-frame diagram is a line drawing representing bonds between atoms. The
wire frame is the simplest form of model representation and is useful for localizing
positions of specific residues in a protein structure, or for displaying a skeletal form
of a structure when Co atoms of each residue are connected. Balls and sticks are solid
spheres and rods, representing atoms and bonds, respectively. These diagrams can
also be used to represent the backbone of a structure. In a space-filling representation
(or Corey, Pauling, and Koltan [CPK]), each atom is described usinglarge solid spheres
with radii corresponding to the van der Waals radii of the atoms. Ribbon diagrams
use cylinders or spiral ribbons to represent «-helices and broad, flat arrows to rep-
resent B-strands. This type of representation is very attractive in that it allows easy
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A

Figure 13.1: Examples of molecular structure visualization forms. (A) Wireframes. (B) Balls and sticks.
(C) Space-filling spheres. (D) Ribbons (see color plate section).

identification of secondary structure elements and gives a clear view of the overall
topology of the structure. The resulting images are also visually appealing.

Different representation styles can be used in combination to highlight a certain
feature of a structure while deemphasizing the structures surrounding it. For exam-
ple, a cofactor of an enzyme can be shown as space-filling spheres while the rest
of the protein structure is shown as wire frames or ribbons. Some widely used and
freely available software programs for molecular graphics are introduced next with
examples of rendering provided in Figure 13.2.

RasMol (http://rutgers.rcsb.org/pdb/help-graphics.html#rasmol_download) is a
command-line-based viewing program that calculates connectivity of a coordinate
file and displays wireframe, cylinder, stick bonds, «-carbon trace, space-filling (CPK)
spheres, and ribbons. It reads both PDB and mmCIF formats and can display a
whole molecule or specific parts of it. It is available in multiple platforms: UNIX,
Windows, and Mac. RasTop (www.geneinfinity.org/rastop/) isa new version of RasMol
for Windows with a more enhanced user interface.
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Figure 13.2: Examples of molecular graphic generated by (A) Rasmol, (B) Molscript, (C) Ribbons, and
(D) Grasp (see color plate section).

Swiss-PDBViewer (www.expasy.ch/spdbv/) is a structure viewer for multiple plat-
forms. It is essentially a Swiss-Army knife for structure visualization and modeling
because it incorporates so many functions in a small shareware program. It is capa-
ble of structure visualization, analysis, and homology modeling. It allows display of
multiple structures at the same time in different styles, by charge distribution, or by
surface accessibility. It can measure distances, angles, and even mutate residues. In
addition, it can calculate molecular surface, electrostatic potential, Ramachandran
plot, and so on. The homology modeling part includes energy minimization and loop
modeling.

Molscript (www.avatar.se/molscript/) is a UNIX program capable of generating
wire-frame, space-filling, or ball-and-stick styles. In particular, secondary struc-
ture elements can be drawn with solid spirals and arrows representing «-helices
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and B-strands, respectively. Visually appealing images can be generated that are of
publication quality. The drawback is that the program is command-line-based and
not very user friendly. A modified UNIX program called Bobscript (www.strubi.ox.
ac.uk/bobscript/) is available with enhanced features.

Ribbons (http://sgce.cbse.uab.edu/ribbons/) another UNIX program similar to
Molscript, generates ribbon diagrams depicting protein secondary structures. Aesthe-
tically appealing images can be produced that are of publication quality. However, the
program, which is also command-line-based, is extremely difficult to use.

Grasp (http://trantor.bioc.columbia.edu/grasp/) is a UNIX program that gener-
ates solid molecular surface images and uses a gradated coloring scheme to display
electrostatic charges on the surface.

There are also a number of web-based visualization tools that use Java applets.
These programs tend to have limited molecular display features and low-quality
images. However, the advantage is that the user does not have to download, compile,
and install the programs locally, but simply view the structures on a web browser
using any kind of computer operating system. In fact, the PDB also attempts to
simplify the database structure display for end users. It has incorporated a num-
ber of light-weight Java-based structure viewers in the PDB web site (see Chap-
ter 12).

WebMol (www.cmpharm.ucsf.edu/cgi-bin/webmol.pl) is a web-based program
built based on amodified RasMol code and thus shares many similarities with RasMol.
It runs directly on a browser of any type as an applet and is able to display simple line
drawing models of protein structures. It also has a feature of interactively displaying
Ramachandran plots for structure model evaluation.

Chime (www.mdlchime.com/chime/) is a plug-in forweb browsers; itisnotastand-
alone program and has to be invoked in a web browser. The program is also derived
from RasMol and allows interactive display of graphics of protein structures inside a
web browser.

Cn3D (www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) is a helper applica-
tion for web browsers to display structures in the MMDB format from the NCBI'’s
structural database. It can be used on- or offline as a stand-alone program. It is able
to render three-dimensional molecular models and display secondary structure car-
toons. The drawback is that it does not recognize the PDB format.

PROTEIN STRUCTURE COMPARISON

With the visualization and computer graphics tools available, it becomes easy to
observe and compare protein structures. To compare protein structures is to ana-
lyze two or more protein structures for similarity. The comparative analysis often,
but not always, involves the direct alignment and superimposition of structures in
a three-dimensional space to reveal which part of structure is conserved and which
part is different at the three-dimensional level.
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This structure comparison is one of the fundamental techniques in protein struc-
ture analysis. The comparative approach is important in finding remote protein
homologs. Because protein structures have a much higher degree of conservation
than the sequences, proteins can share common structures even without sequence
similarity. Thus, structure comparison can often reveal distant evolutionary relation-
ships between proteins, which is not feasible using the sequence-based alignment
approach alone. In addition, protein structure comparison is a prerequisite for pro-
tein structural classification into different fold classes. It is also useful in evaluat-
ing protein prediction methods by comparing theoretically predicted structures with
experimentally determined ones.

One can always compare structures manually or by eye, which is often practiced.
However, the best approach is to use computer algorithms to automate the task and
thereby get more accurate results. Structure comparison algorithms all employ scor-
ing schemes to measure structural similarities and to maximize the structural sim-
ilarities measured using various criteria. The algorithmic approaches to comparing
protein geometric properties can be divided into three categories: the first superposes
protein structures by minimizing intermolecular distances; the second relies on mea-
suring intramolecular distances of a structure; and the third includes algorithms that
combine both intermolecular and intramolecular approaches.

Intermolecular Method

The intermolecular approach is normally applied to relatively similar structures.
To compare and superpose two protein structures, one of the structures has to
be moved with respect to the other in such a way that the two structures have a
maximum overlap in a three-dimensional space. This procedure starts with identi-
fying equivalent residues or atoms. After residue-residue correspondence is estab-
lished, one of the structures is moved laterally and vertically toward the other struc-
ture, a process known as translation, to allow the two structures to be in the same
location (or same coordinate frame). The structures are further rotated relative to
each other around the three-dimensional axes, during which process the distances
between equivalent positions are constantly measured (Fig. 13.3). The rotation con-
tinues until the shortest intermolecular distance is reached. At this point, an optimal
superimposition of the two structures is reached. After superimposition, equivalent
residue pairs can be identified, which helps to quantitate the fitting between the two
structures.

Animportant measurement of the structure fit during superposition is the distance
between equivalent positions on the protein structures. This requires using a least-
square-fitting function called root mean square deviation (RMSD), which is the square
root of the averaged sum of the squared differences of the atomic distances.

RMSD = (Eq. 13.1)
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A

Figure 13.3: Simplified representation showing steps involved in the structure superposition of two
protein molecules. (A) Two protein structures are positioned in different places in a three dimensional
space. Equivalent positions are identified using a sequence based alignment approach. (B) To superim-
pose the two structures, the first step is to move one structure (left) relative to the other (right) through
lateral and vertical movement, which is called translation. (C) The left structure is then rotated relative
to the reference structure until such a point that the relative distances between equivalent positions are
minimal.
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where D is the distance between coordinate data points and N is the total number of
corresponding residue pairs.

In practice, only the distances between Co carbons of corresponding residues are
measured. The goal of structural comparison is to achieve a minimum RMSD. How-
ever, the problem with RMSD is that it depends on the size of the proteins being com-
pared. For the same degree of sequence identity, large proteins tend to have higher
RMSD values than small proteins when an optimal alignment is reached. Recently, a
logarithmic factor has been proposed to correct this size-dependency problem. This
new measure is called RMSD; oy and is determined by the following formula:

RMSD
RMSDygp = — 22 Eq.13.2
0= 131 05mI(N) (Eq- 13.2)

where N is the total number of corresponding atoms.

Although this corrected RMSD is more reliable than the raw RMSD for structure
superposition, a low RMSD value by no means guarantees a correct alignment or
an alignment with biological meaning. Careful scrutiny of the automatic alignment
results is always recommended.

The most challenging part of using the intermolecular method is to identify equiv-
alent residues in the first place, which often resorts to sequence alignment meth-
ods. Obviously, this restricts the usefulness of structural comparison between distant
homologs.

Anumber of solutions have been proposed to compare more distantly related struc-
tures. One approach that has been proposed is to delete sequence variable regions
outside secondary structure elements to reduce the search time required to find an
optimum superposition. However, this method does not guarantee an optimal align-
ment. Another approach adopted by some researchers is to divide the proteins into
small fragments (e.g., every six to nine residues). Matching of similar regions at the
three-dimensional level is then done fragment by fragment. After finding the best fit-
ting fragments, a joint superposition for the entire structure is performed. The third
approach is termed iterative optimization, during which the two sequences are first
aligned using dynamic programming. Identified equivalent residues are used to guide
afirstround of superposition. After superposition, more residues are identified to be in
close proximity at the three-dimensional level and considered as equivalent residues.
Based on the newly identified equivalent residues, a new round of superposition is
generated to refine from the previous alignment. This procedure is repeated until the
RMSD values cannot be further improved.

Intramolecular Method

The intramolecular approach relies on structural internal statistics and therefore does
not depend on sequence similarity between the proteins to be compared. In addition,
this method does not generate a physical superposition of structures, but instead
provides a quantitative evaluation of the structural similarity between corresponding
residue pairs.
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The method works by generating a distance matrix between residues of the same
protein. In comparing two protein structures, the distance matrices from the two
structures are moved relative to each other to achieve maximum overlaps. By over-
laying two distance matrices, similar intramolecular distance patterns representing
similar structure folding regions can be identified. For the ease of comparison, each
matrix is decomposed into smaller submatrices consisting of hexapeptide fragments.
To maximize the similarity regions between two structures, a Monte Carlo procedure
is used. By reducing three-dimensional information into two-dimensional informa-
tion, this strategy identifies overall structural resemblances and common structure
cores.

Combined Method

A recent development in structure comparison involves combining both inter- and
intramolecular approaches. In the hybrid approach, corresponding residues can be
identified using the intramolecular method. Subsequent structure superposition can
be performed based on residue equivalent relationships. In addition to using RMSD
as a measure during alignment, additional structural properties such as secondary
structure types, torsion angles, accessibility, and local hydrogen bonding environment
can be used. Dynamic programming is often employed to maximize overlaps in both
inter- and intramolecular comparisons.

Multiple Structure Alignment

In addition to pairwise alignment, a number of algorithms can also perform mul-
tiple structure alignment. The alignment strategy is similar to the Clustal sequence
alignment using a progressive approach (see Chapter 5). That is, all structures are first
compared in a pairwise fashion. A distance matrix is developed based on structure
similarity scores such as RMSD. This allows construction of a phylogenetic tree, which
guides the subsequent clustering of the structures. The most similar two structures
are then realigned. The aligned structures create a median structure that allows other
structures to be progressively added for comparison based on the hierarchy described
in the guide tree. When all the structures in the set are added, this eventually creates a
multiple structure alignment. Several popular on-line structure comparison resources
are discussed next.

DALI (www2.ebi.ac.uk/dali/) is a structure comparison web server that uses the
intramolecular distance method. It works by maximizing the similarity of two distance
graphs. The matrices are based on distances between all C atoms for each individual
protein. Two distance matrices are overlaid and moved one relative to the other to
identify most similar regions. DALI uses a statistical significance value called a Z-score
to evaluate structural alignment. The Z-score is the number of standard deviations
from the average score derived from the database background distribution. The higher
the Z-score when comparing a pair of protein structures, the less likely the similarity



PROTEIN STRUCTURE CLASSIFICATION

observed is aresult of random chance. Empirically, a Z-score >4 indicates a significant
level of structure similarity. The web serveris at the same time a database that contains
Z-scores of all precomputed structure pairs of proteins in PDB. The user can upload a
structure to compare it with all known structures, or perform a pairwise comparison
of two uploaded structures.

CE (Combinatorial Extension; http://cl.sdsc.edu/ce.html) is a web-based program
that also uses the intramolecular distance approach. However, unlike DALI, a type of
heuristics is used. In this method, every eight residues are treated as a single residue.
The Ca distance matrices are constructed at the level of octameric “residues.” In
this way, the computational time required to search for the best alignment is con-
siderably reduced, at the expense of alignment accuracy. CE also uses a Z-score
as a measure of significance of an alignment. A Z-score >3.5 indicates a similar
fold.

VAST (Vector Alignment Search Tool; www.ncbi.nlm.nih.gov:80/Structure/VAST/
vast.shtml) is a web server that performs alignment using both the inter- and
intramolecular approaches. The superposition is based on information of direction-
ality of secondary structural elements (represented as vectors). Optimal alignment
between two structures is defined by the highest degree of vector matches.

SSAP (www.biochem.ucl.ac.uk/cgi-bin/cath/GetSsapRasmol.pl) is a web server
that uses an intramolecular distance-based method in which matrices are built based
on the CB distances of all residue pairs. When comparing two different matrices, a
dynamic programming approach is used to find the path of residue positions with
optimal scores. The dynamic programming is applied at two levels, one at a lower
level in which all residue pairs between the proteins are compared and another at an
upper level in which subsequently identified equivalent residue pairs are processed
to refine the matching positions. This process is known as double dynamic program-
ming. An SSAP score is reported for structural similarity. A score above 70 indicates a
good structural similarity.

STAMP (www.compbio.dundee.ac.uk/Software/Stamp/stamp.html) isa UNIX pro-
gram that uses the intermolecular approach to generate protein structure alignment.
The main feature is the use of iterative alignment based on dynamic programming to
obtain the best superposition of two or more structures.

PROTEIN STRUCTURE CLASSIFICATION

One of the applications of protein structure comparison is structural classification.
The ability to compare protein structures allows classification of the structure data
and identification of relationships among structures. The reason to develop a pro-
tein structure classification system is to establish hierarchical relationships among
protein structures and to provide a comprehensive and evolutionary view of known
structures. Once a hierarchical classification system is established, a newly obtained
protein structure can find its place in a proper category. As a result, its functions
can be better understood based on association with other proteins. To date, several
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systems have been developed, the two most popular being Structural Classifica-
tion of Proteins (SCOP) and Class, Architecture, Topology and Homologous (CATH).
The following introduces the basic steps in establishing the systems to classify
proteins.

The first step in structure classification is to remove redundancy from databases.
As mentioned in Chapter 12, among the tens of thousands of entries in PDB, the
majority of the structures are redundant as they correspond to structures solved
at different resolutions, or associated with different ligands or with single-residue
mutations. The redundancy can be removed by selecting representatives through
a sequence alignment-based approach. The second step is to separate structurally
distinct domains within a structure. Because some proteins are composed of mul-
tiple domains, they must be subdivided before a sensible structural comparison
can be carried out. This domain identification and separation can be done either
manually or based on special algorithms for domain recognition. Once multidomain
proteins are split into separate domains, structure comparison can be conducted at
the domain level, either through manual inspection, or automated structural align-
ment, or a combination of both. The last step involves grouping proteins/domains
of similar structures and clustering them based on different levels of resemblance
in secondary structure composition and arrangement of the secondary structures in
space.

As mentioned, the two most popular classification schemes are SCOP and CATH,
both of which contain a number of hierarchical levels in their systems.

SCOP

SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) is a database for comparing and clas-
sifying protein structures. It is constructed almost entirely based on manual exam-
ination of protein structures. The proteins are grouped into hierarchies of classes,
folds, superfamilies, and families. In the latest SCOP release version (v1.65, released
December 2003), there are 7 classes, 800 folds, 1,294 superfamilies, and 2,327 families.

The SCOP families consist of proteins having high sequence identity (>30%).
Thus, the proteins within a family clearly share close evolutionary relationships and
normally have the same functionality. The protein structures at this level are also
extremely similar. Superfamilies consist of families with similar structures, but weak
sequence similarity. It is believed that members of the same superfamily share a com-
mon ancestral origin, although the relationships between families are considered
distant. Folds consist of superfamilies with a common core structure, which is deter-
mined manually. This level describes similar overall secondary structures with similar
orientation and connectivity between them. Members within the same fold do not
always have evolutionary relationships. Some of the shared core structure may be a
result of analogy. Classes consist of folds with similar core structures. This is at the
highest level of the hierarchy, which distinguishes groups of proteins by secondary
structure compositions such as all «, all 8, « and B, and so on. Some classes are cre-
ated based on general features such as membrane proteins, small proteins with few
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secondary structures and irregular proteins. Folds within the same class are essentially
randomly related in evolution.

CATH

CATH (www.biochem.ucl.ac.uk/bsm/cath_new/index.html) classifies proteins based
on the automatic structural alignment program SSAP as well as manual comparison.
Structural domain separation is carried out also as a combined effort of a human
expert and computer programs. Individual domain structures are classified at five
major levels: class, architecture, fold/topology, homologous superfamily, and homol-
ogous family. In the CATH release version 2.5.1 (January 2004), there are 4 classes,
37 architectures, 813 topologies, 1,467 homologous superfamilies, and 4,036 homol-
ogous families.

The definition for class in CATH is similar to thatin SCOP, and is based on secondary
structure content. Architecture is a unique level in CATH, intermediate between fold
and class. This level describes the overall packing and arrangement of secondary
structures independent of connectivity between the elements. The topology level is
equivalent to the fold level in SCOP, which describes overall orientation of secondary
structures and takes into account the sequence connectivity between the secondary
structure elements. The homologous superfamily and homologous family levels are
equivalent to the superfamily and family levels in SCOP with similar evolutionary
definitions, respectively.

Comparison of SCOP and CATH

SCOP is almost entirely based on manual comparison of structures by human experts
with no quantitative criteria to group proteins. It is argued that this approach offers
some flexibility in recognizing distant structural relatives, because human brains
may be more adept at recognizing slightly dissimilar structures that essentially have
the same architecture. However, this reliance on human expertise also renders the
method subjective. The exact boundaries between levels and groups are sometimes
arbitrary.

CATHisacombination of manual curation and automated procedure, which makes
the process less subjective. For example, in defining domains, CATH first relies on the
consensus of three different algorithms to recognize domains. When the computer
programs disagree, human intervention will take place. In addition, the extra Architec-
ture level in CATH makes the structure classification more continuous. The drawback
of the systems is that the fixed thresholds in structural comparison may make assign-
ment less accurate.

Due to the differences in classification criteria, one might expect that there would
be huge differences in classification results. In fact, the classification results from
both systems are quite similar. Exhaustive analysis has shown that the results from
the two systems converge at about 80% of the time. In other words, only about 20%
of the structure fold assignments are different. Figure 13.4 shows two examples of
agreement and disagreement based on classification by the two systems.
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FURTHER READING

SUMMARY

A clear and concise visual representation of protein structures is the first step towards
structural understanding. A number of visualization programs have been developed
for that purpose. They include stand-alone programs for sophisticated manipulation
of structures and light-weight web-based programs for simple structure viewing. Pro-
tein structure comparison allows recognition of distant evolutionary relationships
among proteins and is helpful for structure classification and evaluation of protein
structure prediction methods. The comparison algorithms fall into three categories:
the intermolecular method, which involves transformation of atomic coordinates of
structures to get optimal superimposition; the intramolecular method, which con-
structs an inter-residue distance matrix within a molecule and compares the matrix
against that from a second molecule; and the combined method that uses both
inter- and intramolecular approaches. Among all the structure comparison algo-
rithms developed so far, DALI is most widely used. Protein structure classification
is important for understanding protein structure, function and evolution. The most
widely used classification schemes are SCOP and CATH. The two systems largely
agree but differ somewhat. Each system has its own strengths and neither appears to
be superior. Itis thus advisable to compare the classification results from both systems
in order to put a structure in the correct context.

FURTHER READING

Bourne, P. E., and Shindyalov, I. N. 2003. “Structure comparison and alignment.” In Structural
Bioinformatics, edited by P. E. Bourne and H. Weissig, 321-37. Hoboken, NJ: Wiley-Liss.

Carugo, O., and Pongor, S. 2002. Recent progress in protein 3D structure comparison. Curr.
Protein Pept. Sci. 3:441-9.

Hadley, C., and Jones, D. T. 1999. A systematic comparison of protein structure classifications:
SCOP, CATH, and FSSP. Structure 7:1099-112.

Jawad, Z., and Paoli, M. 2002. Novel sequences propel familiar folds. Structure 10:447-54.

Kinch, L. N., and Grishin, N. V. 2002. Evolution of protein structures and functions. Curr. Opin.
Struct. Biol. 12:400-8.

Koehl, P. 2001. Protein structure similarities. Curr. Opin. Struct. Biol. 11:348-53.

Orengo, C. A., Pearl, E M. G., and Thornton, J. M. 2003. “The CATH domain structure database.”
In Structural Bioinformatics, edited by P. E. Bourne and H. Weissig, 249-71. Hoboken, NJ:
Wiley-Liss.

Ouzounis, C. A., Coulson, R. M., Enright, A.J., Kunin, V., and Pereira-Leal, J. B. 2003. Classifica-
tion schemes for protein structure and function. Nat. Rev. Genet. 4:508-19.

Reddy, B. J. 2003. “Protein structure evolution and the scop database.” In Structural Bioinfor-
matics, edited by P. E. Bourne and H. Weissig, 239-48. Hoboken, NJ: Wiley-Liss.

Russell, R. B. 2002. Classification of protein folds. Mol. Biotechnol. 20:17-28.

Tate, J. 2003. “Molecular visualization.” In Structural Bioinformatics, edited by P. E. Bourne and
H. Weissig, 135-58. Hoboken, NJ: Wiley-Liss.



200

CHAPTER FOURTEEN

Protein Secondary Structure Prediction

Protein secondary structures are stable local conformations of a polypeptide chain.
They are critically important in maintaining a protein three-dimensional structure.
The highly regular and repeated structural elements include «-helices and S-sheets.
Ithas been estimated that nearly 50% of residues of a protein fold into either «-helices
and B-strands. As a review, an «-helix is a spiral-like structure with 3.6 amino acid
residues per turn. The structure is stabilized by hydrogen bonds between residues i
and i+ 4. Prolines normally do not occur in the middle of helical segments, but can be
found at the end positions of «-helices (see Chapter 12). A -sheet consists of two or
more B-strands having an extended zigzag conformation. The structure is stabilized
by hydrogen bonding between residues of adjacent strands, which actually may be
long-range interactions at the primary structure level. 8-Strands at the protein surface
show an alternating pattern of hydrophobic and hydrophilic residues; buried strands
tend to contain mainly hydrophobic residues.

Protein secondary structure prediction refers to the prediction of the conforma-
tional state of each amino acid residue of a protein sequence as one of the three
possible states, namely, helices, strands, or coils, denoted as H, E, and C, respec-
tively. The prediction is based on the fact that secondary structures have a regular
arrangement of amino acids, stabilized by hydrogen bonding patterns. The structural
regularity serves the foundation for prediction algorithms.

Predicting protein secondary structures has a number of applications. It can be
useful for the classification of proteins and for the separation of protein domains and
functional motifs. Secondary structures are much more conserved than sequences
during evolution. As a result, correctly identifying secondary structure elements
(SSE) can help to guide sequence alignment or improve existing sequence align-
ment of distantly related sequences. In addition, secondary structure prediction
is an intermediate step in tertiary structure prediction as in threading analysis
(see Chapter 15).

Because of significant structural differences between globular proteins and trans-
membrane proteins, they necessitate very different approaches to predicting respec-
tive secondary structure elements. Prediction methods for each of two types of pro-
teins are discussed herein. In addition, prediction of supersecondary structures, such
as coiled coils, is also described.
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Protein secondary structure prediction with high accuracy is not a trivial ask. It
remained a very difficult problem for decades. This is because protein secondary
structure elements are context dependent. The formation of «-helices is determined
by short-range interactions, whereas the formation of -strands is strongly influenced
by long-range interactions. Prediction for long-range interactions is theoretically dif-
ficult. After more than three decades of effort, prediction accuracies have only been
improved from about 50% to about 75%.

The secondary structure prediction methods can be either ab initio based, which
make use of single sequence information only, or homology based, which make use
of multiple sequence alignment information. The ab initio methods, which belong
to early generation methods, predict secondary structures based on statistical cal-
culations of the residues of a single query sequence. The homology-based methods
do not rely on statistics of residues of a single sequence, but on common secondary
structural patterns conserved among multiple homologous sequences.

Ab Initio-Based Methods

This type of method predicts the secondary structure based on a single query
sequence. It measures the relative propensity of each amino acid belonging to a
certain secondary structure element. The propensity scores are derived from known
crystal structures. Examples of ab initio prediction are the Chou-Fasman and Garnier,
Osguthorpe, Robson (GOR) methods. The ab initio methods were developed in the
1970s when protein structural data were very limited. The statistics derived from the
limited data sets can therefore be rather inaccurate. However, the methods are sim-
ple enough that they are often used to illustrate the basics of secondary structure
prediction.

The Chou-Fasman algorithm (http://fasta.bioch.virginia.edu/fasta/chofas.htm)
determines the propensity or intrinsic tendency of each residue to be in the helix,
strand, and g-turn conformation using observed frequencies found in protein crys-
tal structures (conformational values for coils are not considered). For example, it is
known that alanine, glutamic acid, and methionine are commonly found in «-helices,
whereas glycine and proline are much less likely to be found in such structures.

The calculation of residue propensity scores is simple. Suppose there are n residues
in all known protein structures from which m residues are helical residues. The total
number of alanine residues is y of which x are in helices. The propensity for alanine
to be in helix is the ratio of the proportion of alanine in helices over the proportion of
alanine in overall residue population (using the formula [x/m]/[y/nl).If the propensity
for theresidue equals 1.0 for helices (P[a-helix]), it means that the residue has an equal
chance of being found in helices or elsewhere. If the propensity ratio is less than 1, it
indicates that the residue has less chance of being found in helices. If the propensity
is larger than 1, the residue is more favored by helices. Based on this concept, Chou
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TABLE 14.1. Relative Amino Acid Propensity Values for
Secondary Structure Elements Used in the Chou-Fasman

Method

Amino Acid (-Helix) P (B3-Strand) P (Turn)
Alanine 1.42 0.83 0.66
Arginine 0.98 0.93 0.95
Asparagine 0.67 0.89 1.56
Aspartic acid 1.01 0.54 1.46
Cysteine 0.70 1.19 1.19
Glutamic acid 1.51 0.37 0.74
Glutamine 1.11 1.11 0.98
Glycine 0.57 0.75 1.56
Histidine 1.00 0.87 0.95
Isoleucine 1.08 1.60 0.47
Leucine 1.21 1.30 0.59
Lysine 1.14 0.74 1.01
Methionine 1.45 1.05 0.60
Phenylalanine 1.13 1.38 0.60
Proline 0.57 0.55 1.52
Serine 0.77 0.75 1.43
Threonine 0.83 1.19 0.96
Tryptophan 0.83 1.19 0.96
Tyrosine 0.69 1.47 1.14
Valine 1.06 1.70 0.50

and Fasman developed a scoring table listing relative propensities of each amino acid
to be in an «-helix, a B-strand, or a 8-turn (Table 14.1).

Prediction with the Chou-Fasman method works by scanning through a sequence
with a certain window size to find regions with a stretch of contiguous residues each
having a favored SSE score to make a prediction. For a-helices, the window size is
six residues, if a region has four contiguous residues each having P(«-helix) > 1.0, it
is predicted as an «-helix. The helical region is extended in both directions until the
P(«-helix) score becomes smaller than 1.0. That defines the boundaries of the helix.
For g-strands, scanning is done with a window size of five residues to search for a
stretch of at least three favored g-strand residues. If both types of secondary structure
predictions overlap in a certain region, a prediction is made based on the following
criterion: if XP(¢) > XP(B), it is declared as an «-helix; otherwise, a -strand.

The GOR method (http://fasta.bioch.virginia.edu/fasta_-www/garnier.htm) is also
based on the “propensity” of each residue to be in one of the four conformational
states, helix (H), strand (E), turn (T), and coil (C). However, instead of using the propen-
sity value from a single residue to predict a conformational state, it takes short-range
interactions of neighboring residues into account. It examines a window of every sev-
enteen residues and sums up propensity scores for all residues for each of the four
statesresulting in four summed values. The highest scored state defines the conforma-
tional state for the center residue in the window (ninth position). The GOR method has
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been shown to be more accurate than Chou-Fasman because it takes the neighboring
effect of residues into consideration.

Both the Chou-Fasman and GOR methods, which are the first-generation methods
developed in the 1970s, suffer from the fact that the prediction rules are somewhat
arbitrary. They are based on single sequence statistics without clear relation to known
protein-folding theories. The predictions solely rely on local sequence information
and fail to takeinto accountlongrangeinteractions. A Chou-Fasman-based prediction
does not even consider the short-range environmental information. These reasons,
combined with unreliable statistics derived from a very small structural database,
limit the prediction accuracy of these methods to about 50%. This performance is
considered dismal; any random prediction can have a 40% accuracy given the fact
that, in globular proteins, the three-state distribution is 30% «-helix, 20% g-strands,
and 50% coil.

Newer algorithms have since been developed to overcome some of these short-
comings. The improvements include more refined residue statistics based on a
larger number of solved protein structures and the incorporation of more local
residue interactions. Examples of the improved algorithms are GOR II, GOR III,
GOR 1V, and SOPM. These tools can be found at http://npsa-pbil.ibcp.fr/cgi-bin/
npsa_automat.pl?page=/NPSA/npsa_server.html. These are the second-generation
prediction algorithms developed in the 1980s and early 1990s. They have improved
accuracy over the first generation by about 10%. Although it is already significantly
better than that by random prediction, the programs are still not reliable enough for
routine application. Prediction errors mainly occur through missed S-strands and
short-lengthed secondary structures for both helices and strands. Prediction of 8-
strands is still somewhat random. This may be attributed to the fact that long range
interactions are not sufficiently taken into consideration in these algorithms.

Homology-Based Methods

The third generation of algorithms were developed in the late 1990s by making use
of evolutionary information. This type of method combines the ab initio secondary
structure prediction of individual sequences and alignment information from mul-
tiple homologous sequences (>35% identity). The idea behind this approach is that
close proteinhomologs should adopt the same secondary and tertiary structure. When
each individual sequence is predicted for secondary structure using a method similar
to the GOR method, errors and variations may occur. However, evolutionary conser-
vation dictates that there should be no major variations for their secondary structure
elements. Therefore, by aligning multiple sequences, information of positional con-
servation is revealed. Because residues in the same aligned position are assumed
to have the same secondary structure, any inconsistencies or errors in prediction of
individual sequences can be corrected usinga majorityrule (Fig. 14.1). Thishomology-
based method has helped improve the prediction accuracy by another 10% over the
second-generation methods.
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Multiple
sequence
alignment
redict secondary structure
or each individual sequence
using the GOR method
HHHCHCCEEEECCHH
secondary structure ECCHHCEEEECCCEE
onto the alignment HHHHHCCCCEEECCH
HHHHCCCEEEECHHC
final prediction
HHHHHCCEEEECCHH

based on consensus

Figure 14.1: Schematic representation of secondary structure prediction using multiple sequence align-
ment information. Each individual sequence in the multiple alignment is subject to secondary structure
prediction using the GOR method. If variations in predictions occur, they can be corrected by deriving
a consensus of the secondary structure elements from the alignment.

Prediction with Neural Networks

The third-generation prediction algorithms also extensively apply sophisticated neu-
ral networks (see Chapter 8) to analyze substitution patterns in multiple sequence
alignments. As a review, a neural network is a machine learning process that requires
astructure of multiple layers of interconnected variables or nodes. In secondary struc-
ture prediction, the input is an amino acid sequence and the output is the probability
of a residue to adopt a particular structure. Between input and output are many
connected hidden layers where the machine learning takes place to adjust the math-
ematical weights of internal connections. The neural network has to be first trained
by sequences with known structures so it can recognize the amino acid patterns and
their relationships with known structures. During this process, the weight functions
in hidden layers are optimized so they can relate input to output correctly. When
the sufficiently trained network processes an unknown sequence, it applies the rules
learned in training to recognize particular structural patterns.
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When multiple sequence alignments and neural networks are combined, the result
is further improved accuracy. In this situation, a neural network is trained not by a
single sequence but by a sequence profile derived from the multiple sequence align-
ment. This combined approach has been shown to improve the accuracy to above
75%, which is a breakthrough in secondary structure prediction. The improvement
mainly comes from enhanced secondary structure signals through consensus draw-
ing. The following lists several frequently used third generation prediction algorithms
available as web servers.

PHD (Profile network from Heidelberg; http://dodo.bioc.columbia.edu/predict
protein/submit_def.html) is a web-based program that combines neural network with
multiple sequence alignment. It first performs a BLASTP of the query sequence against
a nonredundant protein sequence database to find a set of homologous sequences,
which are aligned with the MAXHOM program (a weighted dynamic programming
algorithm performing global alignment). The resulting alignment in the form of a
profile is fed into a neural network that contains three hidden layers. The first hidden
layer makes raw prediction based on the multiple sequence alignment by sliding a
window of thirteen positions. As in GOR, the prediction is made for the residue in the
center of the window. The second layer refines the raw prediction by sliding a win-
dow of seventeen positions, which takes into account more flanking positions. This
step makes adjustments and corrections of unfeasible predictions from the previous
step. The third hidden layer is called the jury network, and contains networks trained
in various ways. It makes final filtering by deleting extremely short helices (one or
two residues long) and converting them into coils (Fig. 14.2). After the correction, the
highest scored state defines the conformational state of the residue.

PSIPRED (http://bioinf.cs.ucl.ac.uk/psiform.html) is a web-based program that
predicts protein secondary structures using a combination of evolutionary infor-
mation and neural networks. The multiple sequence alignment is derived from a
PSI-BLAST database search. A profile is extracted from the multiple sequence align-
ment generated from three rounds of automated PSI-BLAST. The profile is then used
as input for a neural network prediction similar to that in PHD, but without the jury
layer. To achieve higher accuracy, a unique filtering algorithm is implemented to filter
out unrelated PSI-BLAST hits during profile construction.

SSpro (http://promoter.ics.uci.edu/BRNN-PRED/) is a web-based program that
combines PSI-BLAST profiles with an advanced neural network, known as bidirec-
tional recurrent neural networks (BRNNs). Traditional neural networks are unidirec-
tional, feed-forward systems with the information flowing in one direction from input
tooutput. BRNNs are unique in that the connections oflayers are designed to be able to
go backward. In this process, known as back propagation, the weights in hidden layers
are repeatedly refined. In predicting secondary structure elements, the network uses
the sequence profile as input and finds residue correlations by iteratively recycling
the network (recursive network). The averaged output from the iterations is given as a
final residue prediction. PROTER (http://distill.ucd.ie/porter/) is arecently developed
program that uses similar BRNNs and has been shown to slightly outperform SSPRO.
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Figure 14.2: Schematic representation of secondary structure prediction in the PHD algorithm using
neural networks. Multiple sequences derived from the BLAST search are used to compile a profile. The
resulting profile is fed into a neural network, which contains three layers — two network layers and
one jury layer. The first layer scans thirteen residues per window and makes a raw prediction, which is
refined by the second layer, which scans seventeen residues per window. The third layer makes further
adjustment to make a final prediction. Adjustment of prediction scores for one amino acid residue is
shown.

PROF (Protein forecasting; www.aber.ac.uk/~phiwww/prof/) is an algorithm that
combines PSI-BLAST profiles and a multistaged neural network, similar to that in
PHD. In addition, it uses a linear discriminant function to discriminate between the
three states.

HMMSTR (Hidden Markov model [HMM] for protein STRuctures; www.bioinfo.
rpi.edu/~bystrc/hmmstr/server.php) uses a branched and cyclic HMM to predict
secondary structures. It first breaks down the query sequence into many very short
segments (three to nine residues, called I-sites) and builds profiles based on a library
of known structure motifs. It then assembles these local motifs into a supersecondary
structure. It further uses an HMM with a unique topology linking many smaller HMMs
into a highly branched multicyclic form. This is intended to better capture the recur-
rent local features of secondary structure based on multiple sequence alignment.
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Prediction with Multiple Methods

Because no individual methods can always predict secondary structures correctly, it
is desirable to combine predictions from multiple programs with the hope of further
improving the accuracy. In fact, a number of web servers have been specifically dedi-
cated to making predictions by drawing consensus from results by multiple programs.
In many cases, the consensus-based prediction method has been shown to perform
slightly better than any single method.

Jpred (www.compbio.dundee.ac.uk/~www-jpred/) combines the analysis results
from six prediction algorithms, including PHD, PREDATOR, DSC, NNSSP, Jnet, and
ZPred. The query sequence is first used to search databases with PSI-BLAST for three
iterations. Redundant sequence hits are removed. The resulting sequence homologs
are used to build a multiple alignment from which a profile is extracted. The profile
information is submitted to the six prediction programs. If there is sufficient agree-
ment among the prediction programs, the majority of the prediction is taken as the
structure. Where there is no majority agreement in the prediction outputs, the PHD
prediction is taken.

PredictProtein (www.embl-heidelberg.de/predictprotein/predictprotein.html) is
another multiple prediction server that uses Jpred, PHD, PROE and PSIPRED, among
others. The difference is that the server does not run the individual programs but
sends the query to other servers which e-mail the results to the user separately. It does
not generate a consensus. It is up to the user to combine multiple prediction results
and derive a consensus.

Comparison of Prediction Accuracy

An important issue in protein secondary structure prediction is estimation of the
prediction accuracy. The most commonly used measure for cross-validation is known
as a Q3 score, based on the three-state classification, helix (H), strand (E), and coil
(C). The score is a percentage of residues of a protein that are correctly predicted.
It is normally derived from the average result obtained from the testing with many
proteins with known structures. For secondary structure prediction, there are well-
established benchmarks for such prediction evaluation. By using these benchmarks,
accuracies for several third-generation prediction algorithms have been compiled
(Table 14.2).

As shown in Table 14.2, some of these best prediction methods have reached an
accuracy level around 79% in the three-state prediction. Common errors include the
confusion of helices and strands, incorrect start and end positions of helices and
strands, and missed or wrongly assigned secondary structure elements. If a prediction
is consistently 79% accurate, that means on average 21% of the residues could be
predicted incorrectly.

Because different secondary structure prediction programs tend to give varied
results, to maximize the accuracy of prediction, it is recommended to use several most
robust prediction methods (such as Porter, PROE and SSPRO) and draw a consensus
based on the majority rule. The aforementioned metaservers provide a convenient
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TABLE 14.2. Comparison of Accuracy of Some of
the State-of-the-Art Secondary Structure
Prediction Tools

Methods Q3 (%)
Porter 79.0
SSPro2 78.0
PROF 77.0
PSIPRED 76.6
Pred2ary 75.9
Jpred2 75.2
PHDpsi 75.1
Predator 74.8
HMMSTR 74.3

Note: The Q3 score is the three-state prediction accuracy for
helix, strand, and coil.

way of achieving this goal. By using the combination approach, it is possible to reach
an 80% accuracy. An accuracy of 80% is an important landmark because it is equiv-
alent to some low-resolution experimental methods to determine protein secondary
structures, such as circular dichroism and Fourier transform-induced spectroscopy.

SECONDARY STRUCTURE PREDICTION
FOR TRANSMEMBRANE PROTEINS

Transmembrane proteins constitute up to 30% of all cellular proteins. They are respon-
sible for performing a wide variety of important functionsin a cell, such as signal trans-
duction, cross-membrane transport, and energy conversion. The membrane proteins
are also of tremendous biomedical importance, as they often serve as drug targets for
pharmaceutical development.

There are two types of integral membrane proteins: «-helical type and g-barrel
type. Most transmembrane proteins contain solely a-helices, which are found in the
cytoplasmic membrane. A few membrane proteins consist of -strands forming a g-
barrel topology, a cylindrical structure composed of antiparallel g-sheets. They are
normally found in the outer membrane of gram-negative bacteria.

The structures of this group of proteins, however, are notoriously difficult to resolve
either by x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy.
Consequently, for this group of proteins, prediction of the transmembrane secondary
structural elements and their organization is particularly important. Fortunately, the
prediction process is somewhat easier because of the hydrophobic environment of
the lipid bilayers, which restricts the transmembrane segments to be hydrophobic as
well. In principle, the secondary structure prediction programs developed for soluble
proteins can apply to membrane proteins as well. However, they normally do not work
well in reality because the extra hydrophobicity and length requirements distort the
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statistical propensity of the residues. Thus, dedicated algorithms have to be used for
transmembrane span predictions.

Prediction of Helical Membrane Proteins

For membrane proteins consisting of transmembrane «-helices, these transmem-
brane helices are predominantly hydrophobic with a specific distribution of positively
charged residues. The «-helices generally run perpendicular to the membrane plane
with an average length between seventeen and twenty-five residues. The hydropho-
bic helices are normally separated by hydrophilic loops with average lengths of fewer
than sixty residues. The residues bordering the transmembrane spans are more pos-
itively charged. Another feature indicative of the presence of transmembrane seg-
ments is that residues at the cytosolic side near the hydrophobic anchor are more
positively charged than those at the lumenal or periplasmic side. This is known as the
positive-inside rule (Fig. 14.3), which allows the prediction of the orientation of the
secondary structure elements. These rules form the basis for transmembrane predic-
tion algorithms.

A number of algorithms for identifying transmembrane helices have been devel-
oped. The early algorithms based their prediction on hydrophobicity scales. They
typically scan a window of seventeen to twenty-five residues and assign membrane
spans based on hydrophobicity scores. Some are also able to determine the orien-
tation of the membrane helices based on the positive-inside rule. However, pre-
dictions solely based on hydrophobicity profiles have high error rates. As with the
third-generation predictions for globular proteins, applying evolutionary informa-
tion with the help of neural networks or HMMs can improve the prediction accuracy
significantly.

As mentioned, predicting transmembrane helices is relatively easy. The accuracy of
some of the best predicting programs, such as TMHMM or HMMTOP, can exceed 70%.
However, the presence of hydrophobic signal peptides can significantly compromise
the prediction accuracy because the programs tend to confuse hydrophobic signal
peptides with membrane helices. To minimize errors, the presence of signal peptides
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can be detected using a number of specialized programs (see Chapter 18) and then
manually excluded.

TMHMM (www.cbs.dtu.dk/services/ TMHMMY/) is a web-based program based on
an HMM algorithm. It is trained to recognize transmembrane helical patterns based
on a training set of 160 well-characterized helical membrane proteins. When a query
sequence is scanned, the probability of having an «-helical domain is given. The ori-
entation of the «-helices is predicted based on the positive-inside rule. The prediction
output returns the number of transmembrane helices, the boundaries of the helices,
and a graphical representation of the helices. This program can also be used to simply
distinguish between globular proteins and membrane proteins.

Phobius (http://phobius.cgb.ki.se/index.html) is a web-based program designed
to overcome false positives caused by the presence of signal peptides. The program
incorporates distinct HMM models for signal peptides as well as transmembrane
helices. After distinguishing the putative signal peptides from the rest of the query
sequence, prediction is made on the remainder of the sequence. It has been shown
that the prediction accuracy can be significantly improved compared to TMHMM
(94% by Phobius compared to 70% by TMHMM). In addition to the normal prediction
mode, the user can also define certain sequence regions as signal peptides or other
nonmembrane sequences based on external knowledge. As a further step to improve
accuracy, the user can perform the “poly prediction” with the PolyPhobius module,
which searches the NCBI database for homologs of the query sequence. Prediction for
the multiple homologous sequences help to derive a consensus prediction. However,
this option is also more time consuming.

Prediction of 3-Barrel Membrane Proteins

For membrane proteins with g-strands only, the 8-strands forming the transmem-
brane segment are amphipathic in nature. They contain ten to twenty-two residues
with every second residue being hydrophobic and facing the lipid bilayers whereas the
other residues facing the pore of the g-barrel are more hydrophilic. Obviously, scan-
ning a sequence by hydrophobicity does not reveal transmembrane g-strands. These
programs for predicting transmembrane «-helices are not applicable for this unique
type of membrane proteins. To predict the g-barrel type of membrane proteins, a
small number of algorithms have been made available based on neural networks and
related techniques.

TBBpred (www.imtech.res.in/raghava/tbbpred/) is a web server for predicting
transmembrane S-barrel proteins. It uses a neural network approach to predict
transmembrane S-barrel regions. The network is trained with the known structural
information of a limited number of transmembrane g-barrel protein structures. The
algorithm contains a single hidden layer with five nodes and a single output node.
In addition to neural networks, the server can also predict using a support vector
machine (SVM) approach, another type of statistical learning process. Similar to
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Figure 14.4: Cross-section view of a coiled coil structure. A coiled coil protein consisting of two interact-
ing helical strands is viewed from top. The bars represent covalent bonds between amino acid residues.
There is no covalent bond between residue a and g. The bar connecting the two actually means to
connect the first residue of the next heptad. The coiled coil has a repeated seven residue motif in the
form of a-b-c-d-e-f-g. The first and fourth positions (a and d) are hydrophobic, whose interactions with
corresponding residues in another helix stabilize the structure. The positions b, ¢, e, f, g are hydrophilic
and are exposed on the surface of the protein.

neural networks, in SVM the data are fed into kernels (similar to nodes), which are
separated into different classes by a “hyperplane” (an abstract linear or nonlinear
separator) according to a particular mathematical function. It has the advantage over
neural networks in that it is faster to train and more resistant to noise. For more
detailed information of SVM, see Chapter 19.

COILED COIL PREDICTION

Coiled coils are superhelical structures involving two to more interacting «-helices
from the same or different proteins. The individual «-helices twist and wind around
each other to form a coiled bundle structure. The coiled coil conformation is impor-
tant in facilitating inter- or intraprotein interactions. Proteins possessing these struc-
tural domains are often involved in transcription regulation or in the maintenance of
cytoskeletal integrity.

Coiled coils have an integral repeat of seven residues (heptads) which assume a
side-chain packing geometry at facing residues (see Chapter 12). For every seven
residues, the first and fourth are hydrophobic, facing the helical interface; the others
are hydrophilic and exposed to the solvent (Fig. 14.4). The sequence periodicity forms
the basis for designing algorithms to predict this important structural domain. As a
result of the regular structural features, if the location of coiled coils can be predicted
precisely, the three-dimensional structure for the coiled coil region can sometimes be
built. The following lists several widely used programs for the specialized prediction.

Coils (www.ch.embnet.org/software/COILS_form.html) is a web-based program
that detects coiled coil regions in proteins. It scans a window of fourteen, twenty-
one, or twenty-eight residues and compares the sequence to a probability matrix
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compiled from known parallel two-stranded coiled coils. By comparing the similarity
scores, the program calculates the probability of the sequence to adopt a coiled coil
conformation. The program is accurate for solvent-exposed, left-handed coiled coils,
but less sensitive for other types of coiled coil structures, such as buried or right-
handed coiled coils.

Multicoil (http://jura.wi.mit.edu/cgi-bin/multicoil/multicoil.pl) is a web-based
program for predicting coiled coils. The scoring matrix is constructed based on a
database of known two-stranded and three-stranded coiled coils. The program is
more conservative than Coils. It has been recently used in several genome-wide
studies to screen for protein—protein interactions mediated by coiled coil domains.

Leucine zipper domains are a special type of coiled coils found in transcription reg-
ulatory proteins. They contain two antiparallel «-helices held together by hydrophobic
interactions of leucine residues. The heptad repeat pattern is L-X(6)-L-X(6)-L-X(6)-L.
This repeat pattern alone can sometimes allow the domain detection, albeit with high
rates of false positives. The reason for the high false-positive rates is that the condition
of the sequence region being a coiled coil conformation is not satisfied. To address
this problem, algorithms have been developed that take into account both leucine
repeats and coiled coil conformation to give accurate prediction.

271P (http://2zip.molgen.mpg.de/) is a web-based server that predicts leucine zip-
pers. It combines searching of the characteristic leucine repeats with coiled coil pre-
diction using an algorithm similar to Coils to yield accurate results.

SUMMARY

Protein secondary structure prediction has a long history and is defined by three
generations of development. The first generation algorithms were ab initio based,
examining residue propensities that fall in the three states: helices, strands, and coils.
The propensities were derived from a very small structural database. The growing
structural database and use of residue local environment information allowed the
development of the second-generation algorithms. A major breakthrough came from
the third-generation algorithms that make use of multiple sequence alignment infor-
mation, which implicitly takes the long-range intraprotein interactions into consid-
eration. In combination with neural networks and other sophisticated algorithms,
prediction efficiency has been improved significantly. To achieve high accuracy in pre-
diction, combining results from several top-performing third-generation algorithms
is recommended. Predicting secondary structures for membrane proteins is more
common than for globular proteins as crystal or NMR structures are extremely diffi-
cult to obtain for the former. The prediction of transmembrane segments (mainly
a-helices) involves the use of hydrophobicity, neural networks, and evolutionary
information. Coiled coils are a distinct type of supersecondary structure with reg-
ular periodicity of hydrophobic residues that can be predicted using specialized
algorithms.
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CHAPTER FIFTEEN

Protein Tertiary Structure Prediction

One of the most important scientific achievements of the twentieth century was the
discovery of the DNA double helical structure by Watson and Crick in 1953. Strictly
speaking, the work was the result of a three-dimensional modeling conducted partly
based on data obtained from x-ray diffraction of DNA and partly based on chemical
bonding information established in stereochemistry. It was clear at the time that
the x-ray data obtained by their colleague Rosalind Franklin were not sufficient to
resolve the DNA structure. Watson and Crick conducted one of the first-known ab
initio modeling of a biological macromolecule, which has subsequently been proven
to be essentially correct. Their work provided great insight into the mechanism of
geneticinheritance and paved the wayforarevolutionin modern biology. The example
demonstrates that structural prediction is a powerful tool to understand the functions
of biological macromolecules at the atomic level.

We now know that the DNA structure, a double helix, is rather invariable regardless
of sequence variations. Although there is little need today to determine or model
DNA structures of varying sequences, there is still a real need to model protein
structures individually. This is because protein structures vary depending on the
sequences. Another reason is the much slower rate of structure determination by
x-ray crystallography or NMR spectroscopy compared to gene sequence generation
from genomic studies. Consequently, the gap between protein sequence information
and protein structural information is increasing rapidly. Protein structure prediction
aims to reduce this sequence-structure gap.

In contrast to sequencing techniques, experimental methods to determine protein
structures are time consuming and limited in their approach. Currently, it takes 1 to
3 years to solve a protein structure. Certain proteins, especially membrane proteins,
are extremely difficult to solve by x-ray or NMR techniques. There are many important
proteins for which the sequence information is available, but their three-dimensional
structures remain unknown. The full understanding of the biological roles of these
proteins requires knowledge of their structures. Hence, the lack of such information
hinders many aspects of the analysis, ranging from protein function and ligand bind-
ing to mechanisms of enzyme catalysis. Therefore, it is often necessary to obtain
approximate protein structures through computer modeling.

Having a computer-generated three-dimensional model of a protein of interest
has many ramifications, assuming it is reasonably correct. It may be of use for the
rational design of biochemical experiments, such as site-directed mutagenesis, pro-
tein stability, or functional analysis. In addition to serving as a theoretical guide to
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design experiments for protein characterization, the model can help to rationalize
the experimental results obtained with the protein of interest. In short, the modeling
study helps to advance our understanding of protein functions.

METHODS

There are three computational approaches to protein three-dimensional structural
modeling and prediction. They are homology modeling, threading, and ab initio pre-
diction. The first two are knowledge-based methods; they predict protein structures
based on knowledge of existing protein structural information in databases. Homol-
ogy modeling builds an atomic model based on an experimentally determined struc-
ture that is closely related at the sequence level. Threading identifies proteins that
are structurally similar, with or without detectable sequence similarities. The ab ini-
tio approach is simulation based and predicts structures based on physicochemical
principles governing protein folding without the use of structural templates.

HOMOLOGY MODELING

As the name suggests, homology modeling predicts protein structures based on
sequence homology with known structures. It is also known as comparative mod-
eling. The principle behind it is that if two proteins share a high enough sequence
similarity, they are likely to have very similar three-dimensional structures. If one of
the protein sequences has a known structure, then the structure can be copied to the
unknown protein with a high degree of confidence. Homology modeling produces an
all-atom model based on alignment with template proteins.

The overall homology modeling procedure consists of six steps. The first step is
template selection, which involves identification of homologous sequences in the
protein structure database to be used as templates for modeling. The second step is
alignment of the target and template sequences. The third step is to build a frame-
work structure for the target protein consisting of main chain atoms. The fourth step
of model building includes the addition and optimization of side chain atoms and
loops. The fifth step is to refine and optimize the entire model according to energy
criteria. The final step involves evaluating of the overall quality of the model obtained
(Fig. 15.1). If necessary, alignment and model building are repeated until a satisfactory
result is obtained.

Template Selection

The first step in protein structural modeling is to select appropriate structural tem-
plates. This forms the foundation for rest of the modeling process. The template
selection involves searching the Protein Data Bank (PDB) for homologous proteins
with determined structures. The search can be performed using a heuristic pairwise
alignment search program such as BLAST or FASTA. However, the use of dynamic
programming based search programs such as SSEARCH or ScanPS (see Chapter 4)
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Figure 15.1: Flowchart showing steps involved in homology modeling.

can result in more sensitive search results. The relatively small size of the structural
database means that the search time using the exhaustive method is still within rea-
sonable limits, while giving a more sensitive result to ensure the best possible simi-
larity hits.

As a rule of thumb, a database protein should have at least 30% sequence identity
with the query sequence to be selected as template. Occasionally, a 20% identity level
can be used as threshold as long as the identity of the sequence pair falls within
the “safe zone” (see Chapter 3). Often, multiple database structures with significant
similarity can be found as a result of the search. In that case, it is recommended
that the structure(s) with the highest percentage identity, highest resolution, and the
mostappropriate cofactors is selected as a template. On the other hand, there maybea
situation in which no highly similar sequences can be found in the structure database.
In that instance, template selection can become difficult. Either a more sensitive
profile-based PSI-BLAST method or a fold recognition method such threading can be
used to identify distant homologs. Most likely, in such a scenario, onlylocal similarities
can be identified with distant homologs. Modeling can therefore only be done with
the aligned domains of the target protein.

Sequence Alighment

Once the structure with the highest sequence similarity is identified as a template, the
full-length sequences of the template and target proteins need to be realigned using
refined alignment algorithms to obtain optimal alignment. This realignment is the
most critical step in homology modeling, which directly affects the quality of the final
model. This is because incorrect alignment at this stage leads to incorrect designation
of homologous residues and therefore to incorrect structural models. Errors made in
the alignment step cannot be corrected in the following modeling steps. Therefore,
the best possible multiple alignment algorithms, such as Praline and T-Coffee (see
Chapter 5), should be used for this purpose. Even alignment using the best alignment
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program may not be error free and should be visually inspected to ensure that con-
served keyresidues are correctly aligned. If necessary, manual refinement of the align-
ment should be carried out to improve alignment quality.

Backbone Model Building

Once optimal alignment is achieved, residues in the aligned regions of the target
protein can assume a similar structure as the template proteins, meaning that the
coordinates of the corresponding residues of the template proteins can be simply
copied onto the target protein. If the two aligned residues are identical, coordinates of
the side chain atoms are copied along with the main chain atoms. If the two residues
differ, only the backbone atoms can be copied. The side chain atoms are rebuilt in a
subsequent procedure.

In backbone modeling, it is simplest to use only one template structure. As men-
tioned, the structure with the best quality and highest resolution is normally chosen
if multiple options are available. This structure tends to carry the fewest errors. Occa-
sionally, multiple template structures are available for modeling. In this situation,
the template structures have to be optimally aligned and superimposed before being
used as templates in model building. One can either choose to use average coordinate
values of the templates or the best parts from each of the templates to model.

Loop Modeling

In the sequence alignment for modeling, there are often regions caused by insertions
and deletions producing gaps in sequence alignment. The gaps cannot be directly
modeled, creating “holes” in the model. Closing the gaps requires loop modeling,
which is a very difficult problem in homology modeling and is also a major source of
error. Loop modeling can be considered a mini—-protein modeling problem by itself.
Unfortunately, there are no mature methods available that can model loops reliably.
Currently, there are two main techniques used to approach the problem: the database
searching method and the ab initio method.

The database method involves finding “spare parts” from known protein structures
in a database that fit onto the two stem regions of the target protein. The stems are
defined as the main chain atoms that precede and follow the loop to be modeled. The
procedure begins by measuring the orientation and distance of the anchor regions
in the stems and searching PDB for segments of the same length that also match
the above endpoint conformation. Usually, many different alternative segments that
fit the endpoints of the stems are available. The best loop can be selected based on
sequence similarity as well as minimal steric clashes with the neighboring parts of
the structure. The conformation of the best matching fragments is then copied onto
the anchoring points of the stems (Fig. 15.2). The ab initio method generates many
random loops and searches for the one that does not clash with nearby side chains
and also has reasonably low energy and ¢ and ¢ angles in the allowable regions in the
Ramachandran plot.
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loop

— endpoint Figure 15.2: Schematic of loop modeling by fitting a loop struc-
ture onto the endpoints of existing stem structures represented
stem by cylinders.

If the loops are relatively short (three to five residues), reasonably correct models
can be built using either of the two methods. If the loops are longer, it is very difficult
to achieve areliable model. The following are specialized programs forloop modeling.

FREAD (www-cryst.bioc.cam.ac.uk/cgi-bin/coda/fread.cgi) is a web server that
models loops using the database approach.

PETRA (www-cryst.bioc.cam.ac.uk/cgi-bin/coda/pet.cgi) is a web server that uses
the ab initio method to model loops.

CODA (www-cryst.bioc.cam.ac.uk/~charlotte/Coda/search_coda.html) is a web
server that uses a consensus method based on the prediction results from FREAD and
PETRA. For loops of three to eight residues, it uses consensus conformation of both
methods and for nine to thirty residues, it uses FREAD prediction only.

Side Chain Refinement

Once main chain atoms are built, the positions of side chains that are not modeled
must be determined. Modeling side chain geometry is very important in evaluat-
ing protein-ligand interactions at active sites and protein—protein interactions at the
contact interface.

A side chain can be built by searching every possible conformation at every tor-
sion angle of the side chain to select the one that has the lowest interaction energy
with neighboring atoms. However, this approach is computationally prohibitive in
most cases. In fact, most current side chain prediction programs use the concept of
rotamers, which are favored side chain torsion angles extracted from known protein
crystal structures. A collection of preferred side chain conformations is a rotamer
library in which the rotamers are ranked by their frequency of occurrence. Having
a rotamer library reduces the computational time significantly because only a small
number of favored torsion angles are examined. In prediction of side chain confor-
mation, only the possible rotamers with the lowest interaction energy with nearby
atoms are selected.

In many cases, even applying the rotamer library for every residue can be com-
putationally too expensive. To reduce search time further, backbone conformation
can be taken into account. It has been observed that there is a correlation of back-
bone conformations with certain rotamers. By using such correlations, many possible
rotamers can be eliminated and the speed of conformational search can be much
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improved. After adding the most frequently occurring rotamers, the conformations
have to be further optimized to minimize steric overlaps with the rest of the model
structure.

Most modeling packages incorporate the side chain refinement function. A
specialized side chain modeling program that has reasonably good performance is
SCWRL (sidechain placement with a rotamer library; www.fccc.edu/research/labs/
dunbrack/scwrl/), a UNIX program that works by placing side chains on a back-
bone template according to preferences in the backbone-dependent rotamer library.
Itremoves rotamers that have steric clashes with main chain atoms. The final, selected
set of rotamers has minimal clashes with main chain atoms and other side chains.

Model Refinement Using Energy Function

In these loop modeling and side chain modeling steps, potential energy calculations
are applied to improve the model. However, this does not guarantee that the entire raw
homology model is free of structural irregularities such as unfavorable bond angles,
bond lengths, or close atomic contacts. These kinds of structural irregularities can be
corrected by applying the energy minimization procedure on the entire model, which
moves the atoms in such a way that the overall conformation has the lowest energy
potential. The goal of energy minimization is to relieve steric collisions and strains
without significantly altering the overall structure.

However, energy minimization has to be used with caution because excessive
energy minimization often moves residues away from their correct positions. There-
fore, only limited energy minimization is recommended (a few hundred iterations)
to remove major errors, such as short bond distances and close atomic clashes. Key
conserved residues and those involved in cofactor binding have to be restrained if
necessary during the process.

Another often used structure refinement procedure is molecular dynamic simula-
tion. This practice is derived from the concern that energy minimization only moves
atoms toward alocal minimum without searching for all possible conformations, often
resulting in a suboptimal structure. To search for a global minimum requires moving
atoms uphill as well as downhill in a rough energy landscape. This requires thermo-
dynamic calculations of the atoms. In this process, a protein molecule is “heated” or
“cooled” to simulate the uphill and downhill molecular motions. Thus, it helps over-
come energy hurdles that are inaccessible to energy minimization. It is hoped that
this simulation follows the protein folding process and has a better chance at finding
the true structure. A more realistic simulation can include water molecules surround-
ing the structure. This makes the process an even more computationally expensive
procedure than energy minimization, however. Furthermore, it shares a similar weak-
ness of energy minimization: a molecular structure can be “loosened up” such that
it becomes less realistic. Much caution is therefore needed in using these molecular
dynamic tools.

GROMOS (www.igc.ethz.ch/gromos/) is a UNIX program for molecular dynamic
simulation. It is capable of performing energy minimization and thermodynamic
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simulation of proteins, nucleic acids, and other biological macromolecules. The sim-
ulation can be done in vacuum or in solvents. A lightweight version of GROMOS has
been incorporated in SwissPDB Viewer.

Model Evaluation

The final homology model has to be evaluated to make sure that the structural features
of the model are consistent with the physicochemical rules. This involves checking
anomalies in ¢—y angles, bond lengths, close contacts, and so on. Another way of
checking the quality of a protein model is to implicitly take these stereochemical
properties into account. This is a method that detects errors by compiling statistical
profiles of spatial features and interaction energy from experimentally determined
structures. By comparing the statistical parameters with the constructed model, the
method reveals which regions of a sequence appear to be folded normally and which
regions do not. If structural irregularities are found, the region is considered to have
errors and has to be further refined.

Procheck (www.biochem.ucl.ac.uk/~roman/procheck/procheck.html) is a UNIX
program that is able to check general physicochemical parameters such as ¢—y
angles, chirality, bond lengths, bond angles, and so on. The parameters of the model
are used to compare with those compiled from well-defined, high-resolution struc-
tures. If the program detects unusual features, it highlights the regions that should be
checked or refined further.

WHAT IF (www.cmbi.kun.nl:1100/WIWWW1I/) is a comprehensive protein analysis
server that validates a protein model for chemical correctness. It has many functions,
including checking of planarity, collisions with symmetry axes (close contacts), proline
puckering, anomalous bond angles, and bond lengths. It also allows the generation
of Ramachandran plots as an assessment of the quality of the model.

ANOLEA (Atomic Non-Local Environment Assessment; http://protein.bio.puc.cl/
cardex/servers/anolea/index.html) is a web server that uses the statistical evaluation
approach. It performs energy calculations for atomic interactions in a protein chain
and compares these interaction energy values with those compiled from a database
of protein x-ray structures. If the energy terms of certain regions deviate significantly
from those of the standard crystal structures, it defines them as unfavorable regions.
An example of the output from the verification of a homology model is shown in
Figure 15.3A. The threshold for unfavorable residues is normally set at 5.0. Residues
with scores above 5.0 are considered regions with errors.

Verify3D (www.doe-mbi.ucla.edu/Services/Verify_3D/) is another server using the
statistical approach. It uses a precomputed database containing eighteen environ-
mental profiles based on secondary structures and solvent exposure, compiled from
high-resolution protein structures. To assess the quality of a protein model, the sec-
ondary structure and solvent exposure propensity of each residue are calculated. If the
parameters of a residue fall within one of the profiles, it receives a high score, other-
wise a low score. The result is a two-dimensional graph illustrating the folding quality
of each residue of the protein structure. A verification output of the above homology
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model is shown in Figure 15.3B. The threshold value is normally set at zero. Residues
with scores below zero are considered to have an unfavorable environment.

The assessment results can be different using different verification programs. As
shownin Figure 15.2, ANOLEA appears to beless stringent than Verify3D. Although the
full-length protein chain of this model is declared favorable by ANOLEA, residues in
the C-terminus of the protein are considered to be of low quality by Verify3D. Because
no single method is clearly superior to any other, a good strategy is to use multiple
verification methods and identify the consensus between them. It is also important
to keep in mind that the evaluation tests performed by these programs only check
the stereochemical correctness, regardless of the accuracy of the model, which may
or may not have any biological meaning.

Comprehensive Modeling Programs

A number of comprehensive modeling programs are able to perform the complete
procedure of homology modeling in an automated fashion. The automation requires
assembling a pipeline that includes target selection, alignment, model generation,
and model evaluation. Some freely available protein modeling programs and servers
are listed.

Modeller (http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_mod.html) is a web server
for homology modeling. The user provides a predetermined sequence alignment of
a template(s) and a target to allow the program to calculate a model containing all
of the heavy atoms (nonhydrogen atoms). The program models the backbone using
a homology-derived restraint method, which relies on multiple sequence alignment
between target and template proteins to distinguish highly conserved residues from
less conserved ones. Conserved residues are given high restraints in copying from
the template structures. Less conserved residues, including loop residues, are given
less or no restraints, so that their conformations can be built in a more or less ab
initio fashion. The entire model is optimized by energy minimization and molecular
dynamics procedures.

Swiss-Model (www.expasy.ch/swissmod/SWISS-MODEL.html) is an automated
modeling server that allows a user to submit a sequence and to get back a structure
automatically. The server constructs a model by automatic alignment (First Approach
mode) or manual alignment (Optimize mode). In the First Approach mode, the user
provides sequence input for modeling. The server performs alignment of the query
with sequences in PDB using BLAST. After selection of suitable templates, araw model
is built. Refinement of the structure is done using GROMOS. Alternatively, the user can
specify or upload structures as templates. The final model is sent to the user by e-mail.
In the Optimize mode, the user constructs a sequence alignment in SwissPdbViewer
and submits it to the server for model construction.

3D-JIGSAW (www.bmm.icnet.uk/servers/3djigsaw/) is a modeling server that
works in either the automatic mode or the interactive mode. Its loop modeling relies
on the database method. The interactive mode allows the user to edit alignments
and select templates, loops, and side chains during modeling, whereas the automatic
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mode allows no human intervention and models a submitted protein sequence if it
has an identity >40% with known protein structures.

Homology Model Databases

The availability of automated modeling algorithms has allowed several research
groups to use the fully automated procedure to carry out large-scale modeling
projects. Protein models for entire sequence databases or entire translated genomes
have been generated. Databases for modeled protein structures that include nearly
one third of all known proteins have been established. They provide some useful infor-
mation forunderstanding evolution of protein structures. Thelarge databases can also
aid in target selection for drug development. However, it has also been shown that
the automated procedure is unable to model moderately distant protein homologs.
Automated modeling tends to be less accurate than modeling that requires human
intervention because of inappropriate template selection, suboptimal alignment, and
difficulties in modeling loops and side chains.

ModBase (http://alto.compbio.ucsf.edu/modbase-cgi/index.cgi) is a database of
protein models generated by the Modeller program. For most sequences that have
been modeled, only partial sequences or domains that share strong similarities with
templates are actually modeled.

3Dcrunch (www.expasy.ch/swissmod/SWISS-MODEL.html) is another database
archiving results of large-scale homology modeling projects. Models of partial
sequences from the Swiss-Prot database are derived using the Swiss-Model program.

THREADING AND FOLD RECOGNITION

As discussed in Chapters 12 and 13, there are only small number of protein folds
available (<1,000), compared to millions of protein sequences. This means that pro-
tein structures tend to be more conserved than protein sequences. Consequently,
many proteins can share a similar fold even in the absence of sequence similarities.
This allowed the development of computational methods to predict protein struc-
tures beyond sequence similarities. To determine whether a protein sequence adopts
a known three-dimensional structure fold relies on threading and fold recognition
methods.

By definition, threading or structural fold recognition predicts the structural fold of
an unknown protein sequence by fitting the sequence into a structural database and
selecting the best-fitting fold. The comparison emphasizes matching of secondary
structures, which are most evolutionarily conserved. Therefore, this approach can
identify structurally similar proteins even without detectable sequence similarity.

The algorithms can be classified into two categories, pairwise energy based and
profile based. The pairwise energy-based method was originally referred to as thread-
ing and the profile-based method was originally defined as fold recognition. How-
ever, the two terms are now often used interchangeably without distinction in the
literature.
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Figure 15.4: Outline of the threading method using the pairwise energy approach to predict protein
structural folds from sequence. By fitting a structural fold library and assessing the energy terms of the
resulting raw models, the best-fit structural fold can be selected.

Pairwise Energy Method

In the pairwise energy based method, a protein sequence is searched for in a structural
fold database to find the best matching structural fold using energy-based criteria.
The detailed procedure involves aligning the query sequence with each structural
fold in a fold library. The alignment is performed essentially at the sequence profile
level using dynamic programming or heuristic approaches. Local alignment is often
adjusted to get lower energy and thus better fitting. The adjustment can be achieved
using algorithms such as double-dynamic programming (see Chapter 14). The next
step is to build a crude model for the target sequence by replacing aligned residues in
the template structure with the corresponding residues in the query. The third step
is to calculate the energy terms of the raw model, which include pairwise residue
interaction energy, solvation energy, and hydrophobic energy. Finally, the models are
ranked based on the energy terms to find the lowest energy fold that corresponds to
the structurally most compatible fold (Fig. 15.4).

Profile Method

In the profile-based method, a profile is constructed for a group of related protein
structures. The structural profile is generated by superimposition of the structures to
expose corresponding residues. Statistical information from these aligned residues is
then used to construct a profile. The profile contains scores that describe the propen-
sity of each of the twenty amino acid residues to be at each profile position. The profile
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scores contain information for secondary structural types, the degree of solvent expo-
sure, polarity, and hydrophobicity of the amino acids. To predict the structural fold of
an unknown query sequence, the query sequence is first predicted for its secondary
structure, solvent accessibility, and polarity. The predicted information is then used
for comparison with propensity profiles of known structural folds to find the fold that
best represents the predicted profile.

Because threading and fold recognition detect structural homologs without com-
pletely relying on sequence similarities, they have been shown to be far more sensitive
than PSI-BLAST in finding distant evolutionary relationships. In many cases, they can
identify more than twice as many distant homologs than PSI-BLAST. However, this
high sensitivity can also be their weakness because high sensitivity is often associated
with low specificity. The predictions resulting from threading and fold recognition
often come with very high rates of false positives. Therefore, much caution is required
in accepting the prediction results.

Threading and fold recognition assess the compatibility of an amino acid sequence
with aknown structure in a fold library. If the protein fold to be predicted does not exist
in the fold library, the method will fail. Another disadvantage compared to homology
modeling lies in the fact that threading and fold recognition do not generate fully
refined atomic models for the query sequences. This is because accurate alignment
between distant homologs is difficult to achieve. Instead, threading and fold recog-
nition procedures only provide a rough approximation of the overall topology of the
native structure.

A number of threading and fold recognition programs are available using either or
both prediction strategies. At present, no single algorithm is always able to provide
reliable fold predictions. Some algorithms work well with some types of structures,
but fail with others. It is a good practice to compare results from multiple programs
for consistency and judge the correctness by using external knowledge.

3D-PSSM (www.bmm.icnet.uk/~3dpssm/) is a web-based program that employs
the structural profile method to identify protein folds. The profiles for each protein
superfamily are constructed by combining multiple smaller profiles. First, protein
structures in a superfamily based on the SCOP classification are superimposed and
are used to construct a structural profile by incorporating secondary structures and
solvent accessibility information for corresponding residues. In addition, each mem-
ber in a protein structural superfamily has its own sequence-based PSI-BLAST profile
computed. These sequence profiles are used in combination with the structure pro-
file to form a large superfamily profile in which each position contains both sequence
and structural information. For the query sequence, PSI-BLAST is performed to gen-
erate a sequence-based profile. PSI-PRED is used to predict its secondary struc-
ture. Both the sequence profile and predicted secondary structure are compared
with the precomputed protein superfamily profiles, using a dynamic programming
approach. The matching scores are calculated in terms of secondary structure, solva-
tion energy, and sequence profiles and ranked to find the highest scored structure fold
(Fig. 15.5).
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GenThreader (http://bioinf.cs.ucl.ac.uk/psipred/index.html) is a web-based pro-
gram that uses a hybrid of the profile and pairwise energy methods. The initial step
is similar to 3D-PSSM; the query protein sequence is subject to three rounds of
PSI-BLAST. The resulting multiple sequence hits are used to generate a profile. Its
secondary structure is predicted using PSIPRED. Both are used as input for threading
computation based on a pairwise energy potential method. The threading results are
evaluated using neural networks that combine energy potentials, sequence alignment
scores, and length information to create a single score representing the relationship
between the query and template proteins.

Fugue (www-cryst.bioc.cam.ac.uk/~fugue/prfsearch.html) is a profile-based fold
recognition server. It has precomputed structural profiles compiled from multiple
alignments of homologous structures, which take into account local structural envi-
ronment such as secondary structure, solvent accessibility, and hydrogen bonding
status. The query sequence (or a multiple sequence alignment if the user prefers) is
used to scan the database of structural profiles. The comparison between the query
and the structural profiles is done using global alignment or local alignment depend-
ing on sequence variability.

AB INITIO PROTEIN STRUCTURAL PREDICTION

Both homology and fold recognition approaches rely on the availability of template
structures in the database to achieve predictions. If no correct structures exist in the
database, the methods fail. However, proteins in nature fold on their own without
checking what the structures of their homologs are in databases. Obviously, there is
some information in the sequences that provides instruction for the proteins to “find”
their native structures. Early biophysical studies have shown that most proteins fold
spontaneously into a stable structure that has near minimum energy. This structural
state s called the native state. This folding process appears to be nonrandom; however,
its mechanism is poorly understood.

The limited knowledge of protein folding forms the basis of ab initio prediction.
As the name suggests, the ab initio prediction method attempts to produce all-atom
protein models based on sequence information alone without the aid of known pro-
tein structures. The perceived advantage of this method is that predictions are not
restricted by known folds and that novel protein folds can be identified. However,
because the physicochemical laws governing protein folding are not yet well under-
stood, the energy functions used in the ab initio prediction are at present rather inac-
curate. The folding problem remains one of the greatest challenges in bioinformatics
today.

Current ab initio algorithms are not yet able to accurately simulate the protein-
folding process. They work by using some type of heuristics. Because the native
state of a protein structure is near energy minimum, the prediction programs are
thus designed using the energy minimization principle. These algorithms search for
every possible conformation to find the one with the lowest global energy. However,
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searching for a fold with the absolute minimum energy may not be valid in reality. This
contributes to one of the fundamental flaws of this approach. In addition, searching
for all possible structural conformations is not yet computationally feasible. It has
been estimated that, by using one of the world’s fastest supercomputers (one trillion
operations per second), it takes 102 years to sample all possible conformations of
a 40-residue protein. Therefore, some type of heuristics must be used to reduce the
conformational space to be searched. Some recent ab initio methods combine frag-
ment search and threading to yield a model of an unknown protein. The following
web program is such an example using the hybrid approach.

Rosetta (www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php) is a web server that
predicts protein three-dimensional conformations using the ab initio method. This
in fact relies on a “mini-threading” method. The method first breaks down the query
sequence into many very short segments (three to nine residues) and predicts the
secondary structure of the small segments using a hidden Markov model-based pro-
gram, HMMSTR (see Chapter 14). The segments with assigned secondary structures
are subsequently assembled into a three-dimensional configuration. Through ran-
dom combinations of the fragments, a large number of models are built and their
overall energy potentials calculated. The conformation with the lowest global free
energy is chosen as the best model.

It needs to be emphasized that up to now, ab initio prediction algorithms are
far from mature. Their prediction accuracies are too low to be considered practi-
cally useful. Ab initio prediction of protein structures remains a fanciful goal for the
future. However, with the current pace of high-throughput structural determination
by the structural proteomics initiative, which aims to solve all protein folds within a
decade, the time may soon come when there is little need to use the ab initio mod-
eling approach because homology modeling and threading can provide much higher
quality predictions for all possible protein folds. Regardless of the progress made in
structural proteomics, exploration of protein structures using the ab initio prediction
approach may still yield insight into the protein-folding process.

CASP

Discussion of protein structural prediction would not be complete without men-
tioning CASP (Critical Assessment of Techniques for Protein Structure Prediction).
With so many protein structure prediction programs available, there is a need to
know the reliability of the prediction methods. For that purpose, a common bench-
mark is needed to measure the accuracies of the prediction methods. To avoid let-
ting programmers know the correct answer in the structure benchmarks in advance,
already published protein structures cannot be used for testing the efficacy of new
methodologies. Thus, a biannual international contest was initiated in 1994. It allows
developers to predict unknown protein structures through blind testing so that
the reliability of new prediction methods can be objectively evaluated. This is the
experiment of CASP.



SUMMARY

CASP contestants are given protein sequences whose structures have been solved
by x-ray crystallography and NMR, but not yet published. Each contestant predicts
the structures and submits the results to the CASP organizers before the structures are
made publicly available. The results of the predictions are compared with the newly
determined structures using structure alignment programs such as VAST, SARE and
DALL In this way, new prediction methodologies can be evaluated without the pos-
sibility of bias. The predictions can be made at various levels of detail (secondary
or tertiary structures) and in various categories (homology modeling, threading, ab
initio). This experiment has been shown to provide valuable insight into the per-
formance of prediction methods and has become the major driving force of devel-
opment for protein structure prediction methods. For more information, the reader
is recommended to visit the web site of the Protein Structure Prediction Center at
http://predictioncenter.lInl.gov/.

SUMMARY

Protein structural prediction offers a theoretical alternative to experimental deter-
mination of structures. It is an efficient way to obtain structural information when
experimental techniques are not successful. Computational prediction of protein
structures is divided into three categories: homology modeling, threading, and ab ini-
tio prediction. Homology modeling, which is the most accurate prediction approach,
derives models from close homologs. The process is simple in principle, but is more
complicated in practice. It involves an elaborate procedure of template selection,
sequence alignment correction, backbone generation, loop building, side chain mod-
eling, model refinement, and model evaluation. Among these steps, sequence align-
ment is the most important step and loop modeling is the most difficult and error-
prone step. Algorithms have been developed to automate the entire process and have
been applied to a large-scale modeling work. However, the automated process tends
to be less accurate than detailed manual modeling.

Another way to predict protein structures is through threading or fold recognition,
which searches for a best fitting structure in a structural fold library by matching
secondary structure and energy criteria. This approach is used when no suitable tem-
plate structures can be found for homology-based modeling. The caveat is that this
approach does not generate an actual model, but provide an essentially correct fold
for the query protein. In addition, the protein fold of interest often does not exist in
the fold library, in which case the method will fail.

The third prediction method —ab initio prediction—attempts to generate a structure
without relying on templates, but by using physical rules only. It may be used when
neither homology modeling nor threading can be applied. However, the ab initio
approach so far has very limited success in getting correct structures. An objective
evaluation platform, CASP for protein structure prediction methodologies has been
established to allow program developers to test the effectiveness of the algorithms.

229



230

PROTEIN TERTIARY STRUCTURE PREDICTION

FURTHER READING

Al-Lazikani, B., Jung, J., Xiang, Z., and Honig, B. 2001. Protein structure prediction. Curr. Opin.
Chem. Biol. 5:51-6.

Baker, D., and Sali, A. 2001. Protein structure prediction and structural genomics. Science.
294:93-6.

Bonneau, R., and Baker, D. 2001. Ab initio protein structure prediction: Progress and prospects.
Annu. Rev. Biophys. Biomol. Struct. 30:173-89.

Bourne, P E. 2003. “CSAP and CAFASP experiments and their findings.” In Structural Bioinfor-
matics, edited by P. E. Bourne and H. Weissig, 501-7. Hoboken, NJ: Wiley-Liss.

Chivian, D., Robertson, T., Bonneau, R., and Baker, D. 2003. “Ab initio methods.” In Structural
Bioinformatics, edited by P. E. Bourne and H. Weissig, 547-56. Hoboken, NJ: Wiley-Liss.

Edwards, Y. J., and Cottage, A. 2003. Bioinformatics methods to predict protein structure and
function. A practical approach. Mol Biotechnol. 23:139-66.

Fetrow, J. S., Giammona, A., Kolinski, A., and Skolnick, J. 2002. The protein folding problem: A
biophysical enigma. Curr. Pharm. Biotechnol. 3:329-47.

Forster, M. J. 2000. Molecular modelling in structural biology. Micron 33:365-84.

Ginalski, K., Grishin, N. V,, Godzik, A., and Rychlewski, L. 2005. Practical lessons from protein
structure prediction. Nucleic Acids Res. 33:1874-91.

Godzik, A. 2003. “Fold recognition methods.” In Structural Bioinformatics, edited by P. E.
Bourne and H. Weissig, 525-46. Hoboken, NJ: Wiley-Liss.

Hardin, C., Pogorelov, T. V,, and Luthey-Schulten, Z. 2002. Ab initio protein structure prediction.
Curr. Opin. Struct. Biol. 12:176-81.

Krieger, E., Nabuurs, S. B, and Vriend, G. 2003. “Homology modeling.” In Structural Bioinfor-
matics, edited by P. E. Bourne and H. Weissig, 509-23. Hoboken, NJ: Wiley-Liss.

Marti-Renom, M. A,, Stuart, A. C., Fiser, A., Sanchez, R., Melo, E, and Sali, A. 2000. Compara-
tive protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct.
29:291-325.

Xu, D., Xu, Y., and Uberbacher, E. C. 2000. Computational tools for protein modeling. Curr.
Protein Pept. Sci. 1:1-21.



CHAPTER SIXTEEN

RNA Structure Prediction

RNA is one of the three major types of biological macromolecules. Understanding
the structures of RNA provides insights into the functions of this class of molecules.
Detailed structural information about RNA has significant impact on understand-
ing the mechanisms of a vast array of cellular processes such as gene expres-
sion, viral infection, and immunity. RNA structures can be experimentally deter-
mined using x-ray crystallography or NMR techniques (see Chapter 10). However,
these approaches are extremely time consuming and expensive. As a result, com-
putational prediction has become an attractive alternative. This chapter presents
the basics of RNA structures and current algorithms for RNA structure prediction,
with an emphasis on secondary structure prediction.

INTRODUCTION

It is known that RNA is a carrier of genetic information and exists in three main forms.
They are messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).
Their main roles are as follows: mRNA is responsible for directing protein synthesis;
rRNA provides structural scaffolding within ribosomes; and tRNA serves as a carrier
of amino acids for polypeptide synthesis.

Recentadvances in biochemistry and molecular biology have allowed the discovery
of new functions of RNA molecules. For example, RNA has been shown to possess
catalytic activity and is important for RNA splicing, processing, and editing. A class of
small, noncoding RNA molecules, termed microRNA or miRNA, have recently been
identified to regulate gene expression through interaction with mRNA molecules.

Unlike DNA, which is mainly double stranded, RNA is single stranded, although an
RNA molecule can self-hybridize at certain regions to form partial double-stranded
structures. Generally, mRNA is more or less linear and nonstructured, whereas rRNA
and tRNA can only function by forming particular secondary and tertiary structures.
Therefore, knowledge of the structures of these molecules is particularly impor-
tant for understanding their functions. Difficulties in experimental determination
of RNA structures make theoretical prediction a very desirable approach. In fact,
computational-based analysis is a main tool in RNA-based drug design in pharma-
ceutical industry. In addition, knowledge of the secondary structures of rRNA is key
for RNA-based phylogenetic analysis.
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TYPES OF RNA STRUCTURES
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Figure 16.2: Schematic diagram of a hypothetical RNA molecular containing four basic types of RNA
loops: a hairpin loop, bulge loop, interior loop, and multibranch loop. Dashed lines indicate base pairings
in the helical regions of the molecule.

TYPES OF RNA STRUCTURES

RNA structures can be described at three levels as in proteins: primary, secondary;,
and tertiary. The primary structure is the linear sequence of RNA, consisting of four
bases, adenine (A), cytosine (C), guanine (G), and uracil (U). The secondary structure
refers to the planar representation that contains base-paired regions among single-
stranded regions. The base pairing is mainly composed of traditional Watson-Crick
base pairing, which is A-U and G-C. In addition to the canonical base pairing, there
often exists noncanonical base pairing such as G and U base paring. The G-U base
pair is less stable and normally occurs within a double-strand helix surrounded
by Watson-Crick base pairs. Finally, the tertiary structure is the three-dimensional
arrangement of bases of the RNA molecule. Examples of the three levels of RNA struc-
tural organization are illustrated in Figure 16.1.

Because the RNA tertiary structure is very difficult to predict, attention has been
mainly focused on secondary structure prediction. It is therefore important to learn
in more detail about RNA secondary structures. Based on the arrangement of helical
base pairing in secondary structures, four main subtypes of secondary structures can
be identified. They are hairpin loops, bulge loops, interior loops, and multibranch
loops (Fig. 16.2).

The hairpin loop refers to a structure with two ends of a single-stranded region
(loop) connecting a base-paired region (stem). The bulge loop refers to a single
stranded region connecting two adjacent base-paired segments so that it “bubbles”
out in the middle of a double helix on one side. The interior loop refers to two single-
stranded regions on opposite strands connecting two adjacent base-paired segments.
It can be said to “bubble” out on both sides in the middle of a double helical segment.
The multibranch loop, also called helical junctions, refers to a loop that brings three
or more base-paired segments in close vicinity forming a multifurcated structure.
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Figure 16.3: A hypothetical RNA structure containing a pseudoknot, kissing hairpin, and hairpin-bulge
contact.

In addition to the traditional secondary structural elements, base pairing between
loops of different secondary structural elements can result in a higher level of struc-
tures such as pseudoknots, kissing hairpins, and hairpin-bulge contact (Fig. 16.3). A
pseudoknot loop refers to base pairing formed between loop residues within a hair-
pin loop and residues outside the hairpin loop. A kissing hairpin refers to a hydro-
gen bonded interaction formed between loop residues of two hairpin structures. The
hairpin-bulge contact refers to interactions between loop residues of a hairpin loop
and a bulge loop. This type of interaction forms supersecondary structures, which are
relatively rare in real structures and thus are ignored by most conventional prediction
algorithms.

RNA SECONDARY STRUCTURE PREDICTION METHODS

At present, there are essentially two types of method of RNA structure prediction.
One is based on the calculation of the minimum free energy of the stable structure
derived from a single RNA sequence. This can be considered an ab initio approach. The
second is a comparative approach which infers structures based on an evolutionary
comparison of multiple related RNA sequences.

AB INITIO APPROACH

This approach makes structural predictions based on a single RNA sequence. The
rationale behind this method is that the structure of an RNA molecule is solely deter-
mined by its sequence. Thus, algorithms can be designed to search for a stable RNA
structure with the lowest free energy. Generally, when a base pairing is formed, the
energy of the molecule is lowered because of attractive interactions between the two
strands. Thus, to search for a most stable structure, ab initio programs are designed
to search for a structure with the maximum number of base pairs.

Free energy can be calculated based on parameters empirically derived for small
molecules. G-C base pairs are more stable than A-U base pairs, which are more stable
than G-U base pairs. It is also known that base-pair formation is not an independent
event. The energy necessary to form individual base pairs is influenced by adjacent
base pairs through helical stacking forces. This is known as cooperativity in helix
formation. If a base pair is next to other base pairs, the base pairs tend to stabilize
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each other through attractive stacking interactions between aromatic rings of the base
pairs. The attractive interactions lead to even lower energy. Parameters for calculating
the cooperativity of the base-pair formation have been determined and can be used
for structure prediction.

However, if the base pair is adjacent to loops or bulges, the neighboring loops
and bulges tend to destabilize the base-pair formation. This is because there is a
loss of entropy when the ends of the helical structure are constrained by unpaired
loop residues. The destabilizing force to a helical structure also depends on the
types of loops nearby. Parameters for calculating different destabilizing energies
have also been determined and can be used as penalties for secondary structure
calculations.

The scoring scheme based on the combined stabilizing and destabilizing inter-
actions forms the foundation of the ab initio RNA secondary structure prediction
method. This method works by first finding all possible base-pairing patterns from a
sequence and then calculating the total energy of a potential secondary structure by
taking into account all the adjacent stabilizing and destabilizing forces. If there are
multiple alternative secondary structures, the method finds the conformation with
the lowest energy, meaning that it is energetically most favorable.

Dot Matrices

In searching for the lowest energy form, all possible base-pair patterns have to be
examined. There are several methods for finding all the possible base-paired regions
froma given nucleic acid sequence. The dot matrix method and the dynamic program-
ming method introduced in Chapter 3 can be used in detecting self-complementary
regions of a sequence. A simple dot matrix can find all possible base-paring patterns of
an RNA sequence when one sequence is compared with itself (Fig. 16.4). In this case,
dots are placed in the matrix to represent matching complementary bases instead of
identical ones.

The diagonals perpendicular to the main diagonal represent regions that can self-
hybridize to form double-stranded structure with traditional A-U and G-C base pairs.
In reality, the pattern detection in a dot matrix is often obscured by high noise levels.
As discussed in Chapter 3, one way to reduce the noise in the matrix is to select
an appropriate window size of a minimum number of contiguous base matches.
Normally, only a window size of four consecutive base matches is used. If the dot plot
reveals more than one feasible structures, the lowest energy one is chosen.

Dynamic Programming

The use of a dot plot can be effective in finding a single secondary structure in a small
molecule (see Fig. 16.4). However, if a large molecule contains multiple secondary
structure segments, choosing a combination that is energetically most stable among
a large number of possibilities can be a daunting task. To overcome the problem,
a quantitative approach such as dynamic programming can be used to assemble a
final structure with optimal base-paired regions. In this approach, an RNA sequence
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Figure 16.4: Example of a dot plot used for RNA secondary structure prediction. In this plot, an RNA
sequence is compared with itself. Dots are placed for matching complementary bases when a window
size of four nucleotide match is used. A main diagonal, which is perpendicular to the short diagonals, is
placed for self-matching. Based on the dot plot, the predicted secondary structure for this sequence is
shown on the right.

is compared with itself. A scoring scheme is applied to fill the matrix with match
scores based on Watson-Crick base complementarity. Often, G-U base pairing and
energy terms of the base pairing are also incorporated into the scoring process. A path
with the maximal score within a scoring matrix after taking into account the entire
sequence information represents the most probable secondary structure form.

The dynamic programming method produces one structure with asingle bestscore.
However, this is potentially a drawback of this approach because in reality an RNA
may exist in multiple alternative forms with near minimum energy but not necessarily
the one with maximum base pairs.

Partition Function

The problem of dynamic programming to select one single structure can be comple-
mented by adding a probability distribution function, known as the partition function,
which calculates a mathematical distribution of probable base pairs in a thermody-
namic equilibrium. This function helps to select a number of suboptimal structures
within a certain energy range. The following lists two well-known programs using the
ab initio prediction method.

Mfold (www.bioinfo.rpi.edu/applications/mfold/) isaweb-based program for RNA
secondary structure prediction. It combines dynamic programming and thermody-
namic calculations foridentifying the most stable secondary structures with the lowest
energy. It also produces dot plots coupled with energy terms. This method is reliable
for short sequences, but becomes less accurate as the sequence length increases.

RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) is one of the web pro-
grams in the Vienna package. Unlike Mfold, which only examines the energy terms of
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Figure 16.5: Example of covariation of residues among three homologous RNA sequences to maintain
the stability of an existing secondary structure.

the optimal alignment in a dot plot, RNAfold extends the sequence alignment to the
vicinity of the optimal diagonals to calculate thermodynamic stability of alternative
structures. It further incorporates a partition function to select a number of statisti-
cally most probable structures. Based on both thermodynamic calculations and the
partition function, a number of alternative structures that may be suboptimal are
provided. The collection of the predicted structures may provide a better estimate
of plausible foldings of an RNA molecule than the predictions by Mfold. Because of
the much larger number of secondary structures to be computed, a more simplified
energy rule has to be used to increase computational speed. Thus, the prediction
results are not always guaranteed to be better than those predicted by Mfold.

COMPARATIVE APPROACH

The comparative approach uses multiple evolutionarily related RNA sequences to
infer a consensus structure. This approach is based on the assumption that RNA
sequences that deem to be homologous fold into the same secondary structure. By
comparing related RNA sequences, an evolutionarily conserved secondary structure
can be derived.

To distinguish the conserved secondary structure among multiple related RNA
sequences, a concept of “covariation” is used. It is known that RNA functional motifs
are structurally conserved. To maintain the secondary structures while the homol-
ogous sequences evolve, a mutation occurring in one position that is responsible
for base pairing should be compensated for by a mutation in the corresponding
base-pairing position so to maintain base pairing and the stability of the secondary
structure (Fig. 16.5). This is the concept of covariation. Any lack of covariation can
be deleterious to the RNA structure and functions. Based on this rule, algorithms
can be written to search for the covariation patterns after a set of homologous RNA
sequences are properly aligned. The detected correlated substitutions help to deter-
mine conserved base pairing in a secondary structure.

Another aspect of the comparative method is to select a common structure through
consensus drawing. Because predicting secondary structures for each individual
sequence may produce errors, by comparing all predicted structures of a group of
aligned RNA sequences and drawing a consensus, the commonly adopted structure
can be selected; many other possible structures can be eliminated in the process. The
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comparative-based algorithms can be further divided into two categories based on
the type of input data. One requires predefined alignment and the other does not.

Algorithms That Use Prealignment

This type of algorithm requires the user to provide a pairwise or multiple alignment as
input. The sequence alignment can be obtained using standard alignment programs
such as T-Coffee, PRRN, or Clustal (see Chapter 5). Based on the alignment input,
the prediction programs compute structurally consistent mutational patterns such
as covariation and derive a consensus structure common for all the sequences. In
practice, the consensus structure prediction is often combined with thermodynamic
calculations to improve accuracy.

This type of program is relatively successful for reasonably conserved sequences.
The requirement for using this type of program is an appropriate set of homologous
sequences that have to be similar enough to allow accurate alignment, but diver-
gent enough to allow covariations to be detected. If this condition is not met, correct
structures cannot be inferred. The method also depends on the quality of the input
alignment. If there are errors in the alignment, covariation signals will not be detected.
The selection of one single consensus structure is also a drawback because alterna-
tive and evolutionarily unconserved structures are not predicted. The following is an
example of this type of program based on predefined aligned sequences.

RNAalifold (http://rna.tbi.univie.ac.at/cgi-bin/alifold.cgi) is a program in the
Vienna package. It uses a multiple sequence alignment as input to analyze covari-
ation patterns on the sequences. A scoring matrix is created that combines minimum
free energy and covariation information. Dynamic programming is used to select the
structure that has the minimum energy for the whole set of aligned RNA sequences.

Algorithms That Do Not Use Prealighment

This type of algorithm simultaneously aligns multiple input sequences and infers a
consensus structure. The alignment is produced using dynamic programming with
a scoring scheme that incorporates sequence similarity as well as energy terms.
Because the full dynamic programming for multiple alignment is computationally
too demanding, currently available programs limit the input to two sequences.

Foldalign (http://foldalign.kvl.dk/server/index.html) is a web-based program for
RNA alignment and structure prediction. The user provides a pair of unaligned
sequences. The program uses a combination of Clustal and dynamic programming
with a scoring scheme that includes covariation information to construct the align-
ment. A commonly conserved structure for both sequences is subsequently derived
based on the alignment. To reduce computational complexity, the program ignores
multibranch loops and is only suitable for handling short RNA sequences.

Dynalign (http://rna.urmc.rochester.edu/) is a UNIX program with a free source
code for downloading. The user again provides two input sequences. The program
calculates the possible secondary structures of each using a method similar to Mfold.



SUMMARY

By comparing multiple alternative structures from each sequence, a lowest energy
structure common to both sequences is selected that serves as the basis for sequence
alignment. The unique feature of this program is that it does not require sequence
similarity and therefore can handle very divergent sequences. However, because of
the computation complexity, the program only predicts small RNA sequences such as
tRNA with reasonable accuracy.

PERFORMANCE EVALUATION

Rigorously evaluating the performance of RNA prediction programs has traditionally
been hindered by the dearth of three-dimensional structural information for RNA.
The availability of recently solved crystal structures of the entire ribosome provides
a wealth of structural details relating to diverse types of RNA molecules. The high-
resolution structural information can then be used as a benchmark for evaluating
state-of-the-art RNA structure prediction programs in all categories.

If prediction accuracy can be represented using a single parameter such as the cor-
relation coefficient, which takes into account both sensitivity and selectivity informa-
tion (see Chapter 8), the ab initio-based programs score roughly 20% to 60% depend-
ing on the length of the sequences. Generally speaking, the programs perform better
for shorter RNA sequences than for longer ones. For small RNA sequences, such as
tRNA, some programs may be able to produce 70% accuracy. The major limitation for
performance gains of this category appears to be dependence on energy parameters
alone, which may not be sufficient to distinguish different structural possibilities of
the same molecule.

Based on recent benchmark comparisons, the comparative-type algorithms can
reach an accuracy range of 20% to 80%. The results depend on whether a pro-
gram is prealignment dependent or not. Most of the superior performance comes
from prealignment-dependent programs such as RNAalifold. The prealignment-
independent programs fare much worse for predicting long sequences. For small
RNA sequences such as tRNA, both subtypes can achieve very high accuracy (up to
100%). This illustrates that the comparative approach is consistently more accurate
than the ab initio one.

SUMMARY

Detailed understanding of RNA structures is important for understanding the func-
tional role of RNA in the cell. The demand for structural information about RNA has
motivated the development of a large number of prediction algorithms. Current RNA
structure prediction is predominantly focused on secondary structures owing to the
difficulty in predicting tertiary structures. The secondary structure prediction meth-
ods can be classified as either ab initio or comparative. The ab initio method is based
on energetic calculations from a single query sequence. However, the accuracy of
the ab initio method is limited. The comparative approach, which requires multiple
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sequences, is able to achieve better accuracy. However, the obvious drawback of the
consensus approach is the requirement for a unique set of homologous sequences.
Neither type of the prediction methods currently considers pseudoknots in the RNA
structure because of the much greater computational complexity involved. To fur-
ther increase prediction performance, the research and development should focus
on alleviating some of the current drawbacks.
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CHAPTER SEVENTEEN

Genome Mapping, Assembly, and Comparison

Genomics is the study of genomes. Genomic studies are characterized by simultane-
ous analysis of a large number of genes using automated data gathering tools. The
topics of genomics range from genome mapping, sequencing, and functional genomic
analysis to comparative genomic analysis. The advent of genomics and the ensuing
explosion of sequence information are the main driving force behind the rapid devel-
opment of bioinformatics today.

Genomic study can be tentatively divided into structural genomics and functional
genomics. Structural genomics refers to the initial phase of genome analysis, which
includes construction of genetic and physical maps of a genome, identification of
genes, annotation of gene features, and comparison of genome structures. This is the
major theme of discussion of this chapter. However, it should to be mentioned that
the term structural genomics has already been used by a structural biology group for
an initiative to determine three-dimensional structures of all proteins in a cell. Strictly
speaking, the initiative of structural determination of proteins falls within the realm
of structural proteomics and should not be confused as a subdiscipline of genomics.
The structure genomics discussed herein mainly deals with structures of genome
sequences. Functional genomics refers to the analysis of global gene expression and
gene functions in a genome, which is discussed in Chapter 18.

GENOME MAPPING

The first step to understanding a genome structure is through genome mapping,
which is a process of identifying relative locations of genes, mutations or traits on
a chromosome. A low-resolution approach to mapping genomes is to describe the
order and relative distances of genetic markers on a chromosome. Genetic markers are
identifiable portions of a chromosome whose inheritance patterns can be followed.
Formany eukaryotes, genetic markers represent morphologic phenotypes. In addition
to genetic linkage maps, there are also other types of genome maps such as physical
maps and cytologic maps, which describe genomes at different levels of resolution.
Their relations relative to the DNA sequence on a chromosome are illustrated in
Figure 17.1. More details of each type of genome maps are discussed next.

Genetic linkage maps, also called genetic maps, identify the relative positions of
genetic markers on a chromosome and are based on how frequent the markers are
inherited together. The rationale behind genetic mapping is that the closer the two
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Figure 17.1: Overview of various genome maps relative to the genomic DNA sequence. The maps
represent different levels of resolution to describe a genome using genetic markers. Cytologic maps are
obtained microscopically. Genetic maps (grey bar) are obtained through genetic crossing experiments in
which chromosome recombinations are analyzed. Physical maps are obtained from overlapping clones
identified by hybridizing the clone fragments (grey bars) with common probes (grey asterisks).

genetic markers are, the more likely it is that they are inherited together and are not
separated in a genetic crossing event. The distance between the two genetic markers
ismeasured in centiMorgans (cM), which is the frequency of recombination of genetic
markers. One centiMorgan is defined as one percentage of the total recombination
events when separation of the two genetic markers is observed in a genetic cross-
ing experiment. One centiMorgan is approximately 1 Mb in humans and 0.5 Mb in
Drosophila.

Physical maps are maps of locations of identifiable landmarks on a genomic DNA
regardless of inheritance patterns. The distance between genetic markers is measured
directly as kilobases (Kb) or megabases (Mb). Because the distance is expressed in
physical units, it is more accurate and reliable than centiMorgans used in genetic
maps. Physical maps are constructed by using a chromosome walking technique,
which uses a number of radiolabeled probes to hybridize to a library of DNA clone
fragments. By identifying overlapping clones probed by common probes, a relative
order of the cloned fragments can be established.

Cytologic maps refer to banding patterns seen on stained chromosomes, which
can be directly observed under a microscope. The observable light and dark bands
are the visually distinct markers on a chromosome. A genetic marker can be asso-
ciated with a specific chromosomal band or region. The banding patterns, how-
ever, are not always constant and are subject to change depending on the extent
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of chromosomal contraction. Thus, cytologic maps can be considered to be of very
low resolution and hence somewhat inaccurate physical maps. The distance between
two bands is expressed in relative units (Dustin units).

GENOME SEQUENCING

The highest resolution genome map is the genomic DNA sequence that can be con-
sidered as a type of physical map describing a genome at the single base-pair level.
DNA sequencing is now routinely carried out using the Sanger method. This involves
the use of DNA polymerases to synthesize DNA chains of varying lengths. The
DNA synthesis is stopped by adding dideoxynucleotides. The dideoxynucleotides are
labeled with fluorescent dyes, which terminate the DNA synthesis at positions con-
taining all four bases, resulting in nested fragments that vary in length by a single
base. When the labeled DNA is subjected to electrophoresis, the banding patterns in
the gel reveal the DNA sequence.

The fluorescent traces of the DNA sequences are read by a computer program that
assigns bases for each peak in a chromatogram. This process is called base calling.
Automated base calling may generate errors and human intervention is often required
to correct the sequence calls.

There are two major strategies for whole genome sequencing: the shotgun
approach and the hierarchical approach. The shotgun approach randomly sequences
clones from both ends of cloned DNA. This approach generates a large number of
sequenced DNA fragments. The number of random fragments has to be very large,
so large that the DNA fragments overlap sufficiently to cover the entire genome.
This approach does not require knowledge of physical mapping of the clone frag-
ments, but rather a robust computer assembly program to join the pieces of random
fragments into a single, whole-genome sequence. Generally, the genome has to be
redundantly sequenced in such a way that the overall length of the fragments covers
the entire genome multiple times. This is designed to minimize sequencing errors
and ensure correct assembly of a contiguous sequence. Overlapping sequences with
an overall length of six to ten times the genome size are normally obtained for this
purpose.

Despite the multiple coverage, sometimes certain genomic regions remain
unsequenced, mainly owing to cloning difficulties. In such cases, the remain-
der gap sequences can be obtained through extending sequences from regions of
known genomic sequences using a more traditional PCR technique, which requires
the use of custom primers and performs genome walking in a stepwise fash-
ion. This step of genome sequencing is also known as finishing, which is fol-
lowed by computational assembly of all the sequence data into a final complete
genome.

The hierarchical genome sequencing approach is similar to the shotgun approach,
but on a smaller scale. The chromosomes are initially mapped using the physical
mapping strategy. Longer fragments of genomic DNA (100 to 300 kB) are obtained
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and cloned into a high-capacity bacterial vector called bacterial artificial chromo-
some (BAC). Based on the results of physical mapping, the locations and orders of the
BAC clones on a chromosome can be determined. By successively sequencing adja-
cent BAC clone fragments, the entire genome can be covered. The complete sequence
of each individual BAC clone can be obtained using the shotgun approach. Overlap-
ping BAC clones are subsequently assembled into an entire genome sequence. Major
differences between the hierarchical and the full shotgun approaches are shown in
Figure 17.2.

During the era of human genome sequencing, there was a heated debate on the
merits of each of the two strategies. In fact, there are advantages and disadvantages
in either. The hierarchical approach is slower and more costly than the shotgun
approach because it involves an initial clone-based physical mapping step. However,
once the map is generated, assembly of the whole genome becomes relatively easy
and less error prone. In contrast, the whole genome shotgun approach can produce
a draft sequence very rapidly because it is based on the direct sequencing approach.
However, it is computationally very demanding to assemble the short random frag-
ments. Although the approach has been successfully employed in sequencing small
microbial genomes, for a complex eukaryotic genome that contains high levels of
repetitive sequences, such as the human genome, the full shotgun approach becomes
less accurate and tends to leave more “holes” in the final assembled sequence than
the hierarchical approach. Current genome sequencing of large organisms often uses
a combination of both approaches.

GENOME SEQUENCE ASSEMBLY

As described, initial DNA sequencing reactions generate short sequence reads from
DNA clones. The average length of the reads is about 500 bases. To assemble a whole
genome sequence, these short fragments are joined to form larger fragments after
removing overlaps. These longer, merged sequences are termed contigs, which are
usually 5,000 to 10,000 bases long. A number of overlapping contigs can be further
merged to form scaffolds (30,000-50,000 bases, also called supercontigs), which are
unidirectionally oriented along a physical map of a chromosome (Fig. 17.3). Overlap-
ping scaffolds are then connected to create the final highest resolution map of the
genome.

Correct identification of overlaps and assembly of the sequence reads into contigs
are like joining jigsaw puzzles, which can be very computationally intensive when
dealing with data at the whole-genome level. The major challenges in genome assem-
bly are sequence errors, contamination by bacterial vectors, and repetitive sequence
regions. Sequence errors can often be corrected by drawing a consensus from an align-
ment of multiple overlapped sequences. Bacterial vector sequences can be removed
using filtering programs prior to assembly. To overcome the problem of sequence
repeats, programs such as RepeatMasker (see Chapter 4) can be used to detect and
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Raw sequence reads
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Figure 17.3: Schematic diagram showing three different levels of sequence assembly. Contigs are
formed by combining raw sequence reads of various orientations after removing overlaps. Scaffolds
are assembled from contigs and oriented unidirectionally on a chromosome. Because sequence frag-
ments generated can be in either of the DNA strands, arrows are used to represent directionality of the
sequences written in 5" — 3’ orientation.

mask repeats. Additional constraints on the sequence reads can be applied to avoid
misasembly caused by repeat sequences.

A commonly used constraint to avoid errors caused by sequence repeats is the so-
called forward-reverse constraint. When a sequence is generated from both ends of a
single clone, the distance between the two opposing fragments of a clone is fixed to
a certain range, meaning that they are always separated by a distance defined by a
clone length (normally 1,000 to 9,000 bases). When the constraint is applied, even
when one of the fragments has a perfect match with a repetitive element outside the
range, it is not able to be moved to that location to cause missassembly. An example
of assembly with or without applying the forward-reverse constraints is shown in
Figure 17.4.

Correct assembly > repeat €

with forward- -€— -

reverse constraint — e —
forward : fixed dist.  reverse

Mis-assembly » repeat -
without forward- - €
reverse constraint
forward - :
reverse

Figure 17.4: Example of sequence assembly with or without applying forward-reverse constraint, which
fixes the sequence distance from both ends of a subclone. Without the restraint, the red fragment is
misassembled due to matches of repetitive element in the middle of a fragment (see color plate section).



GENOME SEQUENCE ASSEMBLY

Base Calling and Assembly Programs

The first step toward genome assembly is to derive base calls and assign associated
quality scores. The next step is to assemble the sequence reads into contiguous
sequences. This step includes identifying overlaps between sequence fragments,
assigning the order of the fragments and deriving a consensus of an overall sequence.
Assembling all shotgun fragments into a full genome is a computationally very chal-
lenging step. There are a variety of programs available for processing the raw sequence
data. The following is a selection of base calling and assembly programs commonly
used in genome sequencing projects.

Phred (www.phrap.org/) is a UNIX program for base calling. It uses a Fourier anal-
ysis to resolve fluorescence traces and predict actual peak locations of bases. It also
gives a probability score for each base call that may be attributable to error. The com-
monly accepted score threshold is twenty, which corresponds to a 1% chance of error.
The higher the score, the better the quality of the sequence reads. If the score value
falls below the threshold, human intervention is required.

Phrap (www.phrap.org/) is a UNIX program for sequence assembly. It takes Phred
base-call files with quality scores as input and aligns individual fragments in a
pairwise fashion using the Smith-Waterman algorithm. The base quality informa-
tion is taken into account during the pairwise alignment. After all the pairwise
sequence similarity is identified, the program performs assembly by progressively
merging sequence pairs with decreasing similarity scores while removing over-
lapped regions. Consensus contigs are derived after joining all possible overlapped
reads.

VecScreen (www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) is a web-based
program that helps detect contaminating bacterial vector sequences. It scans an input
nucleotide sequence and compares it with a database of known vector sequences by
using the BLAST program.

TIGR Assembler (www.tigr.org/) is a UNIX program from TIGR for assembly of
large shotgun sequence fragments. It treats the sequence input as clean reads without
consideration of the sequence quality. A main feature of the program is the appli-
cation of the forward-reverse constraints to avoid misassembly caused by sequence
repeats. The sequence alignment in the assembly stage is performed using the Smith-
Waterman algorithm.

ARACHNE (www-genome.wi.mit.edu/wga/) is a free UNIX program for the assem-
bly of whole-genome shotgun reads. Its unique features include using a heuristic
approach similar to FASTA to align overlapping fragments, evaluating alignments
using statistical scores, correcting sequencing errors based on multiple sequence
alignment, and using forward-reverse constraints. It accepts base calls with asso-
ciated quality scores assigned by Phred as input and produces scaffolds or a fully
assembled genome.

EULER (http://nbcr.sdsc.edu/euler/) is an assembly algorithm that uses a Eulerian
Superpath approach, which is a polynomial algorithm for solving puzzles such as the
famous “traveling salesman problem”: finding the shortest path of visiting a given
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number of cities exactly once and returning to the starting point. In this approach,
a sequence fragment is broken down to tuples of twenty nucleotides. The tuples
are distributed in a diagram with numerous nodes that are all interconnected. The
tuples are converted to binary vectors in the nodes. By using a Viterbi algorithm (see
Chapter 6), the shortest path among the vectors can be found, which is the best way to
connect the tuples into a full sequence. Because this approach does not directly rely
on detecting overlaps, it may be advantageous in assembling sequences with repeat
motifs.

GENOME ANNOTATION

Before the assembled sequence is deposited into a database, it has to be analyzed
for useful biological features. The genome annotation process provides comments
for the features. This involves two steps: gene prediction and functional assignment.
Some examples of finished gene annotations in GenBank have been described in the
Biological Database section (see Chapter 2). The following example illustrates the
overall process employed in annotating the human genome.

As a real-world example, gene annotation of the human genome employs a com-
bination of theoretical prediction and experimental verification. Gene structures are
first predicted by ab initio exon prediction programs such as GenScan or FgenesH
(see Chapter 8). The predictions are verified by BLAST searches against a sequence
database. The predicted genes are further compared with experimentally determined
cDNA and EST sequences using the pairwise alignment programs such as GeneWise,
Spidey, SIM4, and EST2Genome. All predictions are manually checked by human
curators. Once open reading frames are determined, functional assignment of the
encoded proteins is carried out by homology searching using BLAST searches against
a protein database. Further functional descriptions are added by searching protein
motif and domain databases such as Pfam and InterPro (see Chapter 7) as well as by
relying on published literature.

Gene Ontology

Aproblem arises when using existingliterature because the description of a gene func-
tion uses natural language, which is often ambiguous and imprecise. Researchers
working on different organisms tend to apply different terms to the same type of
genes or proteins. Alternatively, the same terminology used in different organisms
may actually refer to different genes or proteins. Therefore, there is a need to stan-
dardize protein functional descriptions. This demand has spurred the development
of the gene ontology (GO) project, which uses a limited vocabulary to describe
molecular functions, biological processes, and cellular components. The controlled
vocabulary is organized such that a protein function is linked to the cellular func-
tion through a hierarchy of descriptions with increasing specificity. The top of the
hierarchy provides an overall picture of the functional class, whereas the lower level



GENOME ANNOTATION
CYTOCHROME C OXIDASE

Biological Process |Ce|lular Component| | Molecular Function |

I physiological processl intracellular catalytic activity

cytoplasm | oxidoreductase activity |
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| mitochondrial membrane | oxidoreductase activity, acting on heme
group of donors
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Figure 17.5: Example of GO annotation for cytochrome c oxidase. The functional and structural terms
are arranged in three categories with a number of hierarchies indicating the levels of conceptual asso-
ciations of protein functions.

in the hierarchy specifies more precisely the functional role. This way, protein func-
tionality can be defined in a standardized and unambiguous way.

A GO description of a protein provides three sets of information: biological pro-
cess, cellular component, and molecular function, each of which uses a unique set
of nonoverlapping vocabularies. The standardization of the names, activities, and
associated pathways provides consistency in describing overall protein functions and
facilitates grouping of proteins of related functions. A database searching using GO for
aparticular protein can easily bring up other proteins of related functions in much the
same way as using a thesaurus. Using GO, a genome annotator can assign functional
properties of a gene product at different hierarchical levels, depending on how much
is known about the gene product.

At present, the GO databases have been developed for a number of model organ-
isms by aninternational consortium, in which each gene is associated with a hierarchy
of GO terms. These have greatly facilitated genome annotation efforts. A good intro-
duction of gene ontology can be found at www.geneontology.org. An example of GO
annotation for cytochrome c oxidase is shown in Figure 17.5.

Automated Genome Annotation

With the genome sequence data being generated at an exponential rate, there is a
need to develop fast and automated methods to annotate the genomic sequences.
The automated approach relies on homology detection, which is essentially heuristic
sequence similarity searching. If a newly sequenced gene or its gene product has
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significant matches with a database sequence beyond a certain threshold, a transfer
of functional assignment is taking place. In addition to sequence matching at the full
length, detection of conserved motifs often offers additional functional clues.

Because using a single database searching method is often incomplete and error
prone, automated methods have to mimic the manual process, which takes into
consideration multiple lines of evidence in assigning a gene function, to minimize
errors. The following algorithm is an example that goes a step beyond examining
sequence similarity and provides functional annotations based on multiple protein
characteristics.

GeneQuiz (http://jura.ebi.ac.uk:8765/ext-genequiz/) is a web server for protein
sequence annotation. The program compares a query sequence against databases
using BLAST and FASTA to identify homologs with high similarities. In addition, it
performs domain analysis using the PROSITE and Blocks databases (see Chapter 7) as
well as analysis of secondary structures and supersecondary structures that includes
prediction of coiled coils and transmembrane helices. Multiple search and analysis
results are compiled to produce a summary of protein function with an assigned
confidence level (clear, tentative, marginal, and negligible).

Annotation of Hypothetical Proteins

Although a large number of genes and proteins can be assigned functions by the
sequence similarity based approach, about 40% of the genes from newly sequenced
genomes have no known functions and can only be annotated as genes encoding
“hypothetical proteins.” Experimental discovery of the functions of these genes and
proteins is often time consuming and difficult because of lack of hypotheses to design
experiments. In this situation, more advanced tools can be used for functional pre-
dictions by searching for remote homologs.

One way to obtain functional hints of genes encoding hypothetical proteins is by
searching for remote homologs in databases. Detecting remote homologs typically
involves combined searches of protein motifs and domains and prediction for sec-
ondary and tertiary structures. Conserved functional sites can be identified by profile
and hidden Markov model-based motif and domain search tools such as SMART and
InterPro (see Chapter 7). The prediction can also be performed using structure-based
approaches such as threading and fold recognition (see Chapter 15). If the distant
homologs detected using the structural approach are linked with well-defined func-
tions, a broad functional class of the query protein if not the precise function of the
protein can be inferred. In addition, prediction results for subcellular localization,
protein—protein interactions can provide further functional hints (see Chapter 19).

These suggestions do not guarantee to provide correct annotations for the “hypo-
thetical proteins,” but they may provide critical hypotheses of the protein function
that can be tested in the laboratory. The remote homology detection helps to shed
light on the possible functions of the proteins that previously have no functional
information at all. Thus, the bioinformatic analysis can spur an important advance
in knowledge in many cases. Some hypothetical proteins, because of their novel
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Figure 17.6: Gene numbers estimated from several sequenced eukaryotic genomes. (Data from Inte-
grated Genomics Online Database http://ergo.integratedgenomics.com/GOLD/.)

structural folds, still cannot be predicted even with the advanced bioinformatics
approaches and remain challenges for both experimental and computational work.

How Many Genes in a Genome?

One of the main tasks of genome annotation is to try to give a precise account of
the total number of genes in a genome. This may be more feasible for prokaryotes as
their gene structures are relatively simple. However, the number of genes in eukaryotic
genomes, in particular the human genome, has been a subject of debate. This is mainly
because of the complex structures of these genomes, which obscure gene prediction.
Before the human genome sequencing was completed, the estimated gene numbers
ranged from 20,000 to 120,000. Since the completion of the sequencing of the human
genome, with the use of more sophisticated gene finding programs, the total number
of human genes now dropped to close to 25,000 to 30,000. Although no exact number
is agreed upon by all researchers, it is now widely believed that the total number of
human genes will be no more than 30,000. This compares to estimates of 50,000 in
rice, 30,000 in mouse, 26,000 in Arabidopsis, 18,400 in C. elegans, and 6,200 in yeast
(Fig. 17.6).

The discovery of the low gene count in humans may be ego defeating to some as
they realize that humans are only five times more complex than baker’s yeast and
apparently equally as complex as the mouse. What is worse, the food in their rice
bowls has twice as many genes. The finding seriously challenges the view that humans
are a superior species on Earth. As in many discoveries in scientific history, such
as Darwin’s evolutionary theory suggesting that humans arose from a “subhuman”
ancestor, recent genomic discoveries have moved humans further away from this
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exalted status. However, before we are overwhelmed by the humble realization, we
should also realize that the complexity of an organism simply cannot be represented
by gene numbers. As will soon become clear, gene expression and regulation, protein
expression, modification, and interactions all contribute to the overall complexity of
an organism.

Genome Economy

One level of genetic complexity is manifested at the protein expression level in which
there are often more expressed proteins than genes available to code for them. For
example, in humans, there are more than 100,000 proteins expressed based on EST
analysis (see Chapter 18) compared to no more than 30,000 genes. If the “one gene,
one protein” paradigm holds true, how could this discrepancy exist? Where does the
extra coding power come from?

The answer lies in “genome economy,” a phenomenon of synthesizing more pro-
teins from fewer genes. This is a major strategy that eukaryotic organisms use to
achieve a myriad of phenotypic diversities. There are many underlying genetic mech-
anisms to help account for genome economy. A major mechanism responsible for the
protein diversity is alternative splicing, which refers to the splicing event that joins
different exons from a single gene to form different transcripts. A related mechanism,
known as exon shuffling, which joins exons from different genes to generate more tran-
scripts, is also common in eukaryotes. It is known that, in humans, about two thirds
of the genes exhibit alternative splicing and exon shuffling during expression, gener-
ating 90% of the total proteins. In Drosophila, the DSCAM gene contains 115 exons
that can be alternatively spliced to produce 38,000 different proteins. This remarkable
ability to generate protein diversity and new functions highlights the true complexity
of a genome. It also illustrates the evolutionary significance of introns in eukaryotic
genes, which serve as spacers that make the molecular recombination possible.

There are more surprising mechanisms responsible for genome economy. For
example, trans-splicing can occur between RNAs produced from both DNA strands.
In the Drosophila mdg4 mutant, RNA transcribed from four exons in the sense strand
and two exons in the antisense strand are joined to form a single mRNA. With dif-
ferent exon combinations, four different proteins can be produced. In some circum-
stances, one mRNA transcript can lead to the translation of more than one protein.
For example, human dentin phosphoprotein and dentin sialoprotein are proteins
involved in tooth formation. An mRNA transcript that includes coding regions from
both proteins is translated into a precursor protein that is cleaved to produce two dif-
ferent mature proteins. Another situation, called “gene within gene,” can be found in
a gene for human prostate-specific antigen (PSA). In addition to regular PSA, humans
can produce a similar protein, called PSA-LM, that functions antagonistically to PSA
and is important for prostate cancer diagnosis. PSA-LM turns out to be encoded by
the fourth intron of the PSA gene.

These are just a few known mechanisms of condensing the coding potential of
genomic DNA to achieve increased protein diversity. From a bioinformatics point of
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view, this makes gene prediction based on computational approaches all the more
complicated. It also highlights one of the challenges that faces software program
developers today. A number of databases have recently been established to archive
alternatively spliced forms of eukaryotic genes. The following is one such example for
human genes.

ProSplicer (http://prosplicer.mbc.nctu.edu.tw/) isaweb-based database of human
alternative spliced transcripts. The spliced variants are identified by aligning each
known human protein, mRNA, and EST sequence against the genomic sequence
using the SIM4 and TBLASTN program. The three sets of alignment are compiled
to derive alternative splice forms. The database organizes data by tissue types and
can be searched using keywords.

COMPARATIVE GENOMICS

Comparison of whole genomes from different organisms is comparative genomics,
which includes comparison of gene number, gene location, and gene content from
these genomes. The comparison helps to reveal the extent of conservation among
genomes, which will provide insights into the mechanism of genome evolution and
gene transfer among genomes. It helps to understand the pattern of acquisition of
foreign genes through lateral gene transfer. It also helps to reveal the core set of genes
common among different genomes, which should correspond to the genes that are
crucial for survival. This knowledge can be potentially useful in future metabolic
pathway engineering.

As alluded to previously, the main themes of comparative genomics include whole
genome alignment, comparing gene order between genomes, constructing minimal
genomes, and lateral gene transfer among genomes, each of which is discussed in
more detail.

Whole Genome Alignment

With an ever-increasing number of genome sequences available, it becomes impera-
tive to understand sequence conservation between genomes, which often helps to
reveal the presence of conserved functional elements. This can be accomplished
through direct genome comparison or genome alignment. The alignment at the
genome level is fundamentally no different from the basic sequence alignment
described in Chapters 3, 4, and 5. However, alignment of extremely large sequences
presents new complexities owing to the sheer size of the sequences. Regular alignment
programs tend to be error prone and inefficient when dealing with long stretches of
DNA containing hundreds or thousands of genes. Another challenge of genome align-
ment is effective visualization of alignment results. Because it is obviously difficult to
sift through and make sense of the extremely large alignments, a graphical representa-
tion is a must for interpretation of the result. Therefore, specific alignment algorithms
are needed to deal with the unique challenges of whole genome alignment. A number
of alignment programs for “super-long” DNA sequences are described next.
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MUMmer (Maximal Unique Match, www.tigr.org/tigr-scripts/CMR2/webmum/
mumplot) is a free UNIX program from TIGR for alignment of two entire genome
sequences and comparison of the locations of orthologs. The program is essentially a
modified BLAST, which, in the seeding step (see Chapter 4), finds the longest approx-
imate matches that include mismatches instead of finding exact k-mer matches as
in regular BLAST. The result of the alignment of whole genomes is shown as a dot
plot with lines of connected dots to indicate collinearity of genes. It is optimized for
pairwise comparison of closely related microbial genomes.

BLASTZ (http://bio.cse.psu.edu/) is a UNIX program modified from BLAST to do
pairwise alignment of very large genomic DNA sequences. The modified BLAST pro-
gram first masks repetitive sequences and searches for closely matched “words,”
which are defined as twelveidentical matches within a stretch of nineteen nucleotides.
The words serve as seeds for extension of alignment in both directions until the scores
drop below a certain threshold. Nearby aligned regions are joined by using a weighted
scheme that employs a unique gap penalty scheme that tolerates minor variations
such as transitions in the seeding step of the alignment construction to increase its
sensitivity.

LAGAN (Limited Area Global Alignment of Nucleotides; http://lagan.stanford.
edu/) is a web-based program designed for pairwise alignment of large genomes. It
first finds anchors between two genomic sequences using an algorithm that identifies
short, exactly matching words. Regions that have high density of words are selected as
anchors. The alignments around the anchors are built using the Needleman-Wunsch
global alignment algorithm. Nearby aligned regions are further connected using the
same algorithm. The unique feature of this program is thatitis able to take into account
degeneracy of the genetic codes and is therefore able to handle more distantly related
genomes. Multi-LAGAN, an extension of LAGAN, available from the same website,
performs multiple alignment of genomes using a progressive approach similar to that
used in Clustal (see Chapter 5).

PipMaker (http://bio.cse.psu.edu/cgi-bin/pipmaker?basic) is a web server using
the BLASTZ heuristic method to find similar regions in two DNA sequences. It pro-
duces a textual output of the alignment result and also a graphical output that presents
the alignment as a percent identity plot as well as a dot plot. For comparing multiple
genomes, MultiPipMaker is available from the same site.

MAVID (http://baboon.math.berkeley.edu/mavid/) is a web-based program for
aligning multiple large DNA sequences. MAVID is based on a progressive alignment
algorithm similar to Clustal. It produces an NJ tree as a guide tree. The sequences are
aligned recursively using a heuristic pairwise alignment program called AVID. AVID
works by first selecting anchors using the Smith-Waterman algorithm and then build-
ing alignments for the sequences between nearby anchors. Connected alignments are
treated as new anchors for building longer alignments. The process is repeated itera-
tively until the entire sequence pair including weakly conserved regions are aligned.

GenomeVista (http://pipeline.lbl.gov/cgi-bin/ GenomeVista) is a database search-
ing program that searches against the human, mouse, rat, or Drosophila genomes
using a large piece of DNA as query. It uses a program called BLAT to find anchors and
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extends the alignment from the anchors using AVID. (BLAT is a fast local alignment
algorithm that aligns short sequences of forty bases with more than 95% similarity.)
It produces a graphical output that shows the sequence percent identity.

Finding a Minimal Genome

One of the goals of genome comparison is to understand what constitutes a minimal
genome, which is a minimal set of genes required for maintaining a free-living cellular
organism. Finding minimal genomes helps provide an understanding of genes con-
stituting key metabolic pathways, which are critical for a cell’s survival. This analysis
involves identification of orthologous genes shared between a number of divergent
genomes.

Coregenes (http://pasteur.atcc.org:8050/CoreGenes1.0//) isaweb-based program
that determines a core set of genes based on comparison of four small genomes. The
user supplies NCBI accession numbers for the genomes of interest. The program
performs an iterative BLAST comparison to find orthologous genes by using one
genome as a reference and another as a query. This pairwise comparison is performed
for all four genomes. As aresult, the common genes are compiled as a core set of genes
from the genomes.

Lateral Gene Transfer

Lateral gene transfer (or horizontal gene transfer) is defined as the exchange of genetic
materials between species in a way that is incongruent with commonly accepted ver-
tical evolutionary pathway. Lateral gene transfer mainly occurs among prokaryotic
organisms when foreign genes are acquired through mechanisms such as transfor-
mation (direct uptake of foreign DNA from environment), conjugation (gene uptake
through mating behavior), and transduction (gene uptake mediated by infecting
viruses). The transmission of genes between organisms can occur relatively recently
or as a more ancient event.

If lateral transfer events occurred relatively recently, one would expect to discover
traces of the transfer by detecting regions of genomic sequence with unusual prop-
erties compared to surrounding regions. The unusual characteristics to be examined
include nucleotide composition, codon usage, and amino acid composition. This
can be considered a “within-genome” approach. Another way to discern lateral gene
transfer is through phylogenetic analysis (see Chapters 10 and 11), referred to as an
“among-genome” approach, which can be used to discover both recent and ancient
lateral gene transfer events. Abnormal groupings in phylogenetic trees are often inter-
preted as the possibility of lateral gene transfer events. Because phylogenetic analyses
havebeen described in detail in previous chapters, the following introduces basic tools
foridentifying genomicregionsthatmaybearesultoflateral gene transfer events using
the within-genome approach.

Within-Genome Approach
This approach is to identify regions within a genome with unusual compositions.
Single or oligonucleotide statistics, such as G-C composition, codon bias, and
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Rhodobacter capsulatus
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Figure 17.7: Schematic diagram showing a conserved linkage pattern of photosynthesis genes among
four divergent photosynthetic bacterial groups. The synteny reveals potential physical interactions of
encoded proteins, some of which have been experimentally verified. All the genes shown (bch) are
involved in the pathway of bacteriochlorophyll biosynthesis. Intergenic regions of unspecified lengths
are indicated by forward slashes (/). (Source: from Xiong et al., 2000; reproduced with permission from
Science).

oligonucleotide frequencies are used. Unusual nucleotide statistics in certain genomic
regions versus the rest of the genome may help to identify “foreign” genes in a genome.
A commonly used parameter is GC skew ((G — C)/(G + C)), which is compositional
bias for G in a DNA sequence and is a commonly used indicator for newly acquired
genetic elements.

ACT (Artemis Comparison Tool; www.sanger.ac.uk/Software/ACT) is a pairwise
genomic DNA sequence comparison program (written in Java and run on UNIX,
Macintosh, and Windows) for detecting gene insertions and deletions among related
genomes. The pairwise sequence alignment is conducted using BLAST. The display
feature includes showing collinear as well as noncollinear (rearrangement) regions
between two genomes. It also calculates GC biases to indicate nucleotide patterns.
However, it is up to the genome annotators to determine whether the observations
constitute evidence for lateral gene transfer, as this requires combining evidence from
multiple approaches.

Swaap (http://www.bacteriamuseum.org/ SWAAP/SwaapPage.htm) is a Windows
program that is able to distinguish coding versus noncoding regions and measure GC
skews, oligonucleotide frequencies in a genomic sequence.

Gene Order Comparison

Another aspect of comparative genomics is the comparison of gene order. When
the order of a number of linked genes is conserved between genomes, it is called
synteny. Generally speaking, gene order is much less conserved compared with
gene sequences. Gene order conservation is in fact rarely observed among diver-
gent species. Therefore, comparison of syntenic relationships is normally carried out
between relatively close lineages. However, if syntenic relationships for certain genes
areindeed observed among divergent prokaryotes, they often provide important clues
to functional relationships of the genes of interest. For example, genes involved in the
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same metabolic pathway tend to be clustered among phylogenetically diverse organ-
isms. The preservation of the gene order is a result of the selective pressure to allow the
genes to be coregulated and function as an operon. Furthermore, the synteny of genes
from divergent groups often associates with physical interactions of the encoded gene
products. The use of conserved gene neighbors as predictors of protein interactions
is discussed in Chapter 18. An example of synteny of bacterial photosynthesis genes
coupled with protein interactions is illustrated in Figure 17.7.

GeneOrder (http://pumpkins.ib3.gmu.edu:8080/geneorder/) is a web-based pro-
gram that allows direct comparison of a pair of genomic sequences of less than 2 Mb.
It displays a dot plot with diagonal lines denoting collinearity of genes and lines off
the diagonal indicating inversions or rearrangements in the genomes.

SUMMARY

Genome mapping using relative positions of genetic markers without knowledge
of sequence data is a low-resolution approach to describing genome structures. A
genome can be described at the highest resolution by a complete genome sequence.
Whole-genome sequencing can be carried out using full shotgun or hierarchical
approaches. The former requires more extensive computational power in the assem-
bly step, and the latter is inefficient because of the physical mapping process required.
Among the genome sequence assembly programs, ARACHNE and EULER are the best
performers. Genome annotation includes gene finding and assignment of function to
these genes. Functional assignment depends on homology searching and literature
information. GO projects aim to facilitate automated annotation by standardizing
the descriptions used for gene functions. The exact number of genes in the human
genome is unknown, but is likely to be in the same range as most other eukaryotes.
The gene number, however, does not dictate complexities of a genome. One example
is exhibited in protein expression in which a larger number of proteins are produced
than genes available to code for them. Thisis the so-called genome economy. The main
mechanisms responsible for genome economy are alternative splicing and exon shuf-
fling. Genomes can be compared on the basis of their gene content and gene order.
Many specialized genome comparison programs for cross-genome alignment have
been developed. Among them, BLASTZ and LAGAN may be the best in terms of speed
and accuracy. Gene order comparison across genomes often helps to discover poten-
tial operons and assign putative functions. Conserved gene order among prokaryotes
is often indicative of protein physical interactions.
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CHAPTER EIGHTEEN

Functional Genomics

The field of genomics encompasses two main areas, structural genomics and func-
tional genomics (see Chapter 17). The former mainly deals with genome structures
with a focus on the study of genome mapping and assembly as well as genome anno-
tation and comparison; the latter is largely experiment based with a focus on gene
functions at the whole genome level using high throughput approaches. The emphasis
here is on “high throughput,” which is simultaneous analysis of all genes in a genome.
This feature is in fact what separates genomics from traditional molecular biology,
which studies only one gene at a time.

The high throughput analysis of all expressed genes is also termed transcriptome
analysis, which is the expression analysis of the full set of RNA molecules produced
by a cell under a given set of conditions. In practice, messenger RNA (mRNA) is the
only RNA species being studied. Transcriptome analysis facilitates our understand-
ing of how sets of genes work together to form metabolic, regulatory, and signaling
pathways within the cell. It reveals patterns of coexpressed and coregulated genes
and allows determination of the functions of genes that were previously uncharac-
terized. In short, functional genomics provides insight into the biological functions
of the whole genome through automated high throughput expression analysis. This
chapter mainly discusses the bioinformatics aspect of the transcriptome analysis that
can be conducted using either sequence- or microarray-based approaches.

SEQUENCE-BASED APPROACHES

Expressed Sequence Tags

One of the high throughput approaches to genome-wide profiling of gene expression
issequencing expressed sequence tags (ESTs). ESTs are short sequences obtained from
cDNA clones and serve as short identifiers of full-length genes. ESTs are typically in
the range of 200 to 400 nucleotides in length obtained from either the 5 end or 3’ end
of cDNA inserts. Libraries of cDNA clones are prepared through reverse transcription
of isolated mRNA populations by using oligo(dT) primers that hybridize with the
poly(A) tail of mRNAs and ligation of the cDNAs to cloning vectors. To generate EST
data, clones in the cDNA library are randomly selected for sequencing from either
end of the inserts.

The EST data are able to provide a rough estimate of genes that are actively
expressed in a genome under a particular physiological condition. This is because
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the frequencies for particular ESTs reflect the abundance of the corresponding mRNA
in a cell, which corresponds to the levels of gene expression at that condition. Another
potential benefit of EST sampling is that, by randomly sequencing cDNA clones, it is
possible to discover new genes.

However, there are also many drawbacks of using ESTs for expression profile anal-
ysis. EST sequences are often of low quality because they are automatically generated
without verification and thus contain high error rates. Many bases are ambiguously
determined, represented by N’s. Common errors also include frameshift errors and
artifactual stop codons, resulting in failures of translating the sequences. In addition,
there is often contamination by vector sequence, introns (from unspliced RNAs), ribo-
somal RNA (rRNA), mitochondrial RNA, among others. ESTs represent only partial
sequences of genes. Gene sequences at the 3’ end tend to be more heavily repre-
sented than those at the 5’ end because reverse transcription is primed with oligo(dT)
primers. Unfortunately, the sequences from the 3’ end are also most error prone
because of the low base-call quality at the start of sequence reads. Another prob-
lem of ESTs is the presence of chimeric clones owing to cloning artifacts in library
construction, in which more than one transcript is ligated in a clone resulting in
the 5’ end of a sequence representing one gene and the 3’ end another gene. It has
been estimated that up to 11% of cDNA clones may be chimeric. Another fundamen-
tal problem with EST profiling is that it predominantly represents highly expressed,
abundant transcripts. Weakly expressed genes are hardly found in a EST sequencing
survey.

Despite these limitations, EST technology is still widely used. This is because EST
libraries can be easily generated from various cell lines, tissues, organs, and at vari-
ous developmental stages. ESTs can also facilitate the unique identification of a gene
from a cDNA library; a short tag can lead to a cDNA clone. Although individual ESTs
are prone to error, an entire collection of ESTs contains valuable information. Often,
after consolidation of multiple EST sequences, a full-length cDNA can be derived.
By searching a nonredundant EST collection, one can identify potential genes of
interest.

The rapid accumulation of EST sequences has prompted the establishment of
public and private databases to archive the data. For example, GenBank has a special
EST database, dbEST (www.ncbi.nlm.nih.gov/dbEST/) that contains EST collections
for a large number of organisms (>250). The database is regularly updated to reflect
the progress of various EST sequencing projects. Each newly submitted EST sequence
is subject to a database search. If a strong similarity to a known gene is found, it is
annotated accordingly.

EST Index Construction

One of the goals of the EST databases is to organize and consolidate the largely
redundant EST data to improve the quality of the sequence information so the
data can be used to extract full-length cDNAs. The process includes a preprocessing
step that removes vector contaminants and masks repeats. Vecscreen, introduced in
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Chapter 17, can be used to screen out bacterial vector sequences. This is followed
by a clustering step that associates EST sequences with unique genes. The next step
is to derive consensus sequences by fusing redundant, overlapping ESTs and to cor-
rect errors, especially frameshift errors. This step results in longer EST contigs. The
procedure is somewhat similar to the genome assembly of shotgun sequence reads
(see Chapter 17) . Finally, the coding regions are defined through the use of HMM-
based gene-finding algorithms (see Chapter 8). This helps to exclude the potential
intron and 3'-untranslated sequences. Once the coding sequence is identified, it can
be annotated by translating it into protein sequences for database similarity search-
ing. To go another step further, compiled ESTs can be used to align with the genomic
sequence if available to identify the genome locus of the expressed gene as well as
intron—exon boundaries of the gene. This is usually performed using the program
SIM4 (http://pbil.univ-lyon1.fr/sim4.php).

The clustering process that reduces the EST redundancy and produces a collection
of nonredundant and annotated EST sequences is known as gene index construction.
The following lists a couple of major databases that index EST sequences.

UniGene (www.ncbi.nlm.nih.gov/UniGene/) is an NCBI EST cluster database.
Each clusteris a set of overlapping EST sequences that are computationally processed
to represent a single expressed gene. The database is constructed based on com-
bined information from dbEST, GenBank mRNA database, and “electronically spliced”
genomic DNA. Only ESTs with 3’ poly-A ends are clustered to minimize the the prob-
lem of chimerism. The resulting 3" EST sequences provide more unique representa-
tion of the transcripts. The next step is to remove contaminant sequences that include
bacterial vectors and linker sequences. The cleaned ESTs are used to search against a
database of known unique genes (EGAD database) with the BLAST program. The com-
piling step identifies sequence overlaps and derives sequence consensus using the
CAP3 program. During this step, errors in individual ESTs are corrected; the sequences
are then partitioned into clusters and assembled into contigs. The final result is
a set of nonredundant, gene-oriented clusters known as UniGene clusters. Each
UniGene cluster represents a unique gene and is further annotated for putative func-
tion and its gene locus information, as well as information related to the tissue type
where the gene has been expressed. The entire clustering procedure is outlined in
Figure 18.1.

TIGR Gene Indices (www.tigr.org/tdb/tgi.shtml) is an EST database that uses a
different clustering method from UniGene (Fig. 18.2). It compiles data from dbEST,
GenBank mRNA and genomic DNA data, and TIGR’s own sequence database.
Sequences are only clustered if they are more than 95% identical for over a forty-
nucleotide region in pairwise comparisons. BLAST and FASTA are used to identify
sequence overlaps. In the sequence assembly stage, both TIGR Assembler (see Chap-
ter 17) and CAP3 are used to construct contigs, producing a so-called tentative consen-
sus (TC). To prevent chimerism, transcripts are clustered only if they match fully with
known genes. Functional assignment is then given to the TC that relies most heav-
ily on BLAST searches against protein databases. The TIGR gene indices serve as an
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Figure 18.1: Outline of steps to process EST sequences for construction of the UniGene database.

alternative to the UniGene clusters with the resulting gene indices showing compiled
EST sequences, functional annotation, and database similarity search results.

SAGE

Serial analysis of gene expression (SAGE) is another high throughput, sequence-based
approach for global gene expression profile analysis. Unlike EST sampling, SAGE is
more quantitative in determining mRNA expression in a cell. In this method, short
fragments of DNA (usually 15 base pairs [bp]) are excised from cDNA sequences
and used as unique markers of the gene transcripts. The sequence fragments are
termed fags. They are subsequently concatenated (linked together), cloned, and
sequenced. The transcript analysis is carried out computationally in a serial man-
ner. Once gene tags are unambiguously identified, their frequency indicates the level
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Figure 18.2: Outline of construction for TIGR gene indices.
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of gene expression. This approach is much more efficient than the EST analysis in
that it uses a short nucleotide tag to define a gene transcript and allows sequencing
of multiple tags in a single clone. If an average clone has a size of 700 bp, it can con-
tain up to 50 sequence tags (15 bp each), which means that the SAGE method can
be at least fifty times more efficient than the brute force EST sequencing and count-
ing. Therefore, the SAGE analysis has a better chance of detecting weakly expressed
genes.

The detailed SAGE procedure (Fig. 18.3) involves the generation of short unique
sequence tags (15 bp in length) by cleaving cDNA with a restriction enzyme (e.g., Nla
I1I with a restriction site TCATG) that has a relatively high cutting frequency (Nla I11
cuts every 256 bp on average (4*)). The Nla I1I restriction digestion produces a 4-bp
overhang, which is complementary to that of a premade linker. The cleaved cDNA is
divided into two pools that are ligated to different linkers, which have complementary
4-bp overhangs. The unique linker contains a restriction site for a “reach and grab”
type of enzyme that cuts outside its recognition site by a specific number of base pairs
downstream. For example, BsmF I has a restriction site GGGAC(Ny,)* for the forward
strand and 1T(N4)GTCCC for the reverse strand. When the linker with Nla I1I sticky
ends is allowed to ligate with Nla IlI-treated cDNA, this creates the fusion product of
linker and cDNA. This is then subject to BsmF I digestion, which generates a digested
product with a staggered end. The product is “blunt ended” by T4 DNA polymerase,
which fills in the overhang to produce the 11-bp sequence downstream of the Nla III
site (labeled with Xs or ¥s in Fig. 18.3). This sample is then allowed to ligate to the
other pool of cDNA ligated to a different linker to produce a linked sequence “ditag.”
The linkers and the ditag are amplified using polymerase chain reaction (PCR) with
primers specific to each linker. The linker sequences are then removed using Nla I11.
The ditag with sticky ends is then allowed to be concatenated with more ditags to
form long serial molecules that can be cloned and sequenced. When a large number
of clones with linked tags are sequenced, the frequency of occurrence of each tag is
counted to obtain an accurate picture of gene expression patterns.

In a SAGE experiment, sequencing is the most costly and time-consuming step. It
is difficult to know how many tags need to be sequenced to get a good coverage of
the entire transcriptome. It is generally determined on a case-by-case basis. As a rule
of thumb, 10,000 clones representing approximately 500,000 tags from each sample
are sequenced. The scale and cost of the sequencing required for SAGE analysis are
prohibitive for most laboratories. Only large sequencing centers can afford to carry
out SAGE analysis routinely.

Another obvious drawback with this approach s the sensitivity to sequencing errors
owing to the small size of oligonucleotide tags for transcript representation. One or
two sequencing errors in the tag sequence can lead to ambiguous or erroneous tag
identification. Another fundamental problem with SAGE is that a correctly sequenced
SAGE tag sometimes may correspond to several genes or no gene at all. To improve
the sensitivity and specificity of SAGE detection, the lengths of the tags need to be
increased for the technique. The followinglist contains some comprehensive software
tools for SAGE analysis.
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SAGEmap (www.ncbi.nlm.nih.gov/SAGE/) is a SAGE database created by NCBI.
Given a cDNA sequence, one can search SAGE libraries for possible SAGE tags and
perform “virtual” Northern blots that indicate the relative abundance of a tag in a
SAGE library. Each outputis hyperlinked to a particular UniGene entry with sequence
annotation.

SAGExProfiler (www.ncbi.nlm.nih.gov/SAGE/sagexpsetup.cgi) isaweb-based pro-
gram that allows a “virtual subtraction” of an expression profile of one library (e.g.,
normal tissue) from another (e.g., diseased tissue). Comparison of the two libraries
can provide information about overexpressed or silenced genes in normal versus dis-
eased tissues.

SAGE Genie (http://cgap.nci.nih.gov/SAGE) is another NCBI web-based program
that allows matching of experimentally obtained SAGE tags to known genes. It pro-
vides an interface for visualizing human gene expression. It has a filtering function
that filters out linker sequences from experimentally obtained SAGE tags and allows
expression pattern comparison between normal and diseased human tissues. The
data output can be presented using subprograms such as the Anatomic Viewer, Digi-
tal Northern, and Digital Gene Expression Display.

MICROARRAY-BASED APPROACHES

The most commonly used global gene expression profiling method in current
genomics research is the DNA microarray-based approach. A microarray (or gene
chip) is a slide attached with a high-density array of immobilized DNA oligomers
(sometimes cDNAs) representing the entire genome of the species under study. Each
oligomer is spotted on the slide and serves as a probe for binding to a unique, com-
plementary cDNA. The entire cDNA population, labeled with fluorescent dyes or
radioisotopes, is allowed to hybridize with the oligo probes on the chip. The amount
of fluorescent or radiolabels at each spot position reflects the amount of correspond-
ing mRNA in the cell. Using this analysis, patterns of global gene expression in a cell
can be examined. Sets of genes involved in the same regulatory or metabolic pathways
can potentially be identified.

Atypical DNA microarray experiment involves amultistep procedure: fabrication of
microarrays by fixing properly designed oligonucleotides representing specific genes;
hybridization of cDNA populations onto the microarray; scanning hybridization sig-
nalsandimage analysis; transformation and normalization of data; and analyzing data
to identify differentially expressed genes as well as sets of genes that are coregulated
(Fig. 18.4).

Oligonucleotide Design

DNA microarrays are generated by fixing oligonucleotides onto a solid support such
as a glass slide using a robotic device. The oligonucleotide array slide represents
thousands of preselected genes from an organism. The length of oligonucleotides is
typically in the range of twenty-five to seventy bases long. The oligonucleotides are
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Figure 18.4: Schematic of a multistep procedure of a DNA microarray assay experiment and subse-
quent data analysis (see color plate section).

called probes that hybridize to labeled cDNA samples. Shorter oligo probes tend to
be more specific in hybridization because they are better at discriminating perfect
complementary sequences from sequences containing mismatches. However, longer
oligos can be more sensitive in binding cDNAs. Sometimes, multiple distinct oligonu-
cleotide probes hybridizing different regions of the same transcript can be used to
increase the signal-to-noise ratio. To design optimal oligonucleotide sequences for
microarrays, the following criteria are used.
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The probes should be specific enough to minimize cross-hybridization with non-
specific genes. This requires BLAST searches against genome databases to find
sequence regions with least sequence similarity with nontarget genes. The probes
should be sensitive and devoid of low-complexity regions (a string of identical
nucleotides; see Chapter 4). The filtering program RepeatMasker (see Chapter 4) is
oftenused in the BLAST search. The oligonucleotide sequences should not form stable
internal secondary structures, such as a hairpin structure, which could interfere with
the hybridization reaction. DNA/RNA folding programs such as Mfold can help to
detect secondary structures. The oligo design should be close to the 3’ end of the gene
because the cDNA collection is often biased to the 3’ end. In addition, for operational
convenience, all the probes should have an approximately equal melting temperature
(Tm) and a GC content of 45% to 65%. A number of programs have been developed
that use these rules in designing probe sequences for microarrays spotting.

OligoWiz (www.cbs.dtu.dk/services/OligoWiz/) is a Java program that runs locally
but allows the user to connect to the server to perform analysis via a graphic user inter-
face. It designs oligonucleotides by incorporating multiple criteria including homol-
ogy, T, low complexity, and relative position within a transcript.

OligoArray (http://berry.engin.umich.edu/oligoarray2/) is also a Java client-server
program that computes oligonucleotides for microarray construction. It uses the
normal criteria with an emphasis on gene specificity and secondary structure for
oligonucleotides. The secondary structures and related thermodynamic parameters
are calculated using Mfold.

Data Collection

The expression of genes is measured via the signals from cDNAs hybridizing with the
specific oligonucleotide probes on the microarray. The cDNAs are obtained by extract-
ing total RNA or mRNA from tissues or cells and incorporating fluorescent dyes in the
DNA strands during the cDNA biosynthesis. The most common type of microarray
protocol is the two-color microarray, which involves labeling one set of cDNA from
an experimental condition with one dye (Cy5, red fluorescence) and another set of
cDNA from a reference condition (the controls) with another dye (Cy3, green fluores-
cence). When the two differently labeled cDNA samples are mixed in equal quantity
and allowed to hybridize with the DNA probes on the chips, gene expression patterns
of both samples can be measured simultaneously.

The image of the hybridized array is captured using a laser scanner that scans
every spot on the microarray. Two wavelengths of the laser beam are used to excite
the red and green fluorescent dyes to produce red and green fluorescence, which is
detected using a photomultiplier tube. Thus, for each spot on the microarray, red
and green fluorescence signals are recorded. The two fluorescence images from the
scanner are then overlaid to create a composite image, which indicates the relative
expression levels of each gene. Thus, the measurement from the composite image
reflects the ratio of the two color intensities. If a gene is expressed at a higher level
in the experimental condition (red) than in the control (green), the spot displays
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a reddish color. If the gene is expressed at a lower level than the control, the spot
appears greenish. Unchanged gene expression, having equal amount of green and
red fluorescence, results in a yellow spot. The colored image is stored as a computer
file (in TIFF format) for further processing.

Image Processing

Image processing is to locate and quantitate hybridization spots and to separate true
hybridization signals from background noise. The background noise and artifacts pro-
duced in this step include nonspecific hybridization, unevenness of the slide surface,
and the presence of contaminants such as dust on the surface of the slide. In addi-
tion, there are also geometric variations of hybridization spots resulting in some spots
being of irregular shapes. Computer programs are used to correctly locate the bound-
aries of the spots and measure the intensities of the spot images after subtracting the
background pixels.

After subtracting the background noise, the array signals are converted into num-
bers and reported as ratios between Cy5 and Cy3 for each spot. This ratio represents
relative expression changes and reflects the fold change in mRNA quantity in experi-
mental versus control conditions. The data are often presented as false colors of dif-
ferent intensities of red and green colors depending on whether the ratios are above 1
or below 1, respectively. Where there is an equal quantity of experimental and control
mRNA (yellow in raw data), black is shown. The false color images are presented in
squares in a matrix of genes versus conditions so that differentially expressed genes
can be more easily analyzed (Box 18.1).

Manufacturers of microarray scanners normally provide software programs to
specifically perform microarray image analysis. There are, however, also a small num-
ber of free image-processing software programs available on the Internet.

ArrayDB (http://genome.nhgri.nih.gov/arraydb/) is a web interface program that
allows the user to upload data for graphical viewing. The user can present histograms,
select actual microarray slide images, and display detailed information of each spot
which is linked to functional annotation of the corresponding gene in the UniGene,
Entrez, dbEST, and KEGG databases. This can help to provide a synopsis of gene
function when interpreting the microarray data.

ScanAlyze (http://rana.lbl.gov/EisenSoftware.htm) is a Windows program for
microarray fluorescent image analysis. It features semiautomatic spot definition and
multichannel pixel and spot analyses.

TIGR Spotfinder (http://www.tigr.org/softlab/) is another Windows program for
microarray image processing using the TIFF image format. It uses an adaptive thresh-
old algorithm, which resolves the boundaries of spots according to their shapes. The
algorithm determines the intensity of irregular spots more accurately than most other
similar programs. It also interfaces with a gene expression database.

Data Transformation and Normalization

Following image processing, the digitized gene expression data need to be further
processed before differentially expressed genes can be identified. This processing is
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Box 18.1 Outline of the Procedure for Microarray Data Analysis
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The example involves the use of six hypothetic genes whose expression is measured
over a time course of 5 hours. The microarray raw data in the form of Cy5/Cy3 ratios
are converted to false colors image in red, green and black. The data matrix is sub-
jected to logarithmic transformation. The distances between genes are calculated
using Pearson correlation coefficients. After conversion to a positive distance
matrix, further classification analysis using the hierarchical clustering approach
produces a tree showing the relationships of coexpressed genes (see color plate

section).

referred to as data normalization and is designed to correct bias owing to variations
in microarray data collection rather than intrinsic biological differences.

When the raw fluorescence intensity Cy5 is plotted against Cy3, most of the data are
clustered near the bottom left of the plot, showing a non-normal distribution of the
raw data (Fig. 18.5A). This is thought to be a result of the imbalance of red and green
intensities during spot sampling, resulting in ineffective discrimination of differen-
tially expressed genes. One way to improve the data discrimination is to transform
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Figure 18.5: Scatter plot of gene expression analysis showing the process of data normalization. The
solid line indicates linear regression of the data points; dashed lines show the cutoff for a twofold change
in expression. (A) Plot of raw fluorescence signal intensities of Cy5 versus Cy3. (B) Plot of the same
data after log transformation to the base of 2. (C) Plot of mean log intensity versus log ratio of the two
fluorescence intensities, which shifts the data points to around the horizontal axis, making them easier
to visualize.

raw Cy5 and Cy3 values by taking the logarithm to the base of 2. The transformation
produces a more uniform distribution of data and has the advantage to display
upregulated and downregulated genes more symetrically. As shown in Figure 18.5B,
the databecome more evenly distributed within a certain range, and assume a normal
distribution pattern. By taking this transformation, the data for up-regulation and
down-regulation can be more comparable.

There are many ways to further normalize the data. One way is to plot the data
points horizontally. This requires plotting the log ratios (Cy5/Cy3) against the average
log intensities (Fig. 18.5C). In this representation, the data are roughly symmetrically
distributed about the horizontal axis. The differentially expressed genes can then be
more easily visualized. This form of representation is also called intensity-ratio plot.
In all these instances, linear regression is used.

Sometimes, the data do not conform to a linear relationship owing to systematic
sampling errors. In this case, a nonlinear regression may produce a better fitting and
help to eliminate the bias. The most frequently used regression type is known as
Lowess (locally weighted scatter plot smoother) regression. This method performs a
locally weighted linear fitting of the intensity-ratio data and calculates the differ-
ences between the curve-fitted values and experimental values. The algorithm fur-
ther “corrects” the experimental data points by depressing large difference values
more than small ones with respect to a reference. As a result, a new distribution of
intensity-ratio data that conforms a linear relationship can be produced. After nor-
malization of the data, the true outliers, which represent genes that are significantly
up-regulated or down-regulated, can be more easily identified. The following two
software programs that are freely available are specialized in image analysis and data
normalization.

Arrayplot (www.biologie.ens.fr/fr/genetiqu/puces/publications/arrayplot/index.
html) is a Windows program that allows visualization, filtering, and normalization
of raw microarray data. It has an interface to view significantly up-regulated or
down-regulated genes. It calculates normalization factors based on the overall median
signal intensity.
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SNOMAD (http://pevsnerlab.kennedykrieger.org/snomadinput.html) is a web
server for microarray data normalization. It provides scatter plots based on raw signal
intensities and performs log-transformation and linear regression as well as Lowess
regression analysis of the data.

Statistical Analysis to Identify Differentially Expressed Genes

To separate genes that are differentially expressed, many published studies use a nor-
malization cutoff of twofold as a criterion. However, this is an arbitrary cutoff value,
which could be considered to be either too high or too low depending on the data
variability. In addition, the inherent data variability is not taken into account. A data
point above or below the cutoff line could simply be there by chance or because of
error. The only way to ensure that a gene that appears to be differentially expressed
is truly differentially expressed is to perform multiple replicate experiments and to
perform statistical testing. The repeat experiments provide replicate data points that
offer information about the variability of the expression data at a particular condition.
The information on the distribution for the data points under particular conditions
can help answer the question whether a given fold difference is significant. The main
hindrance to obtaining multiple replicate datasets is often the cost: microarray exper-
iments are extremely expensive for regular research laboratories.

Ifreplicated datasets are available, rigorous statistical tests such as #-test and anal-
ysis of variance (ANOVA) can be performed to test the null hypothesis that a given
data point is not significantly different from the mean of the data distribution. For
such tests, it is common to use a P-value cutoff of .05, which means a confidence level
of 95% to distinguish the data groups. This level also corresponds to a gene expres-
sion level with two standard deviations from the mean of distribution. It is noticeable
that the number of standard deviations is only meaningful if the data are approx-
imately normally distributed, which makes the previous normalization step more
valuable.

MA-ANOVA (www.jax.org/staff/churchill/labsite/software/anova/) is a statistical
program for Windows and UNIX that uses ANOVA to analyze microarray data. It cal-
culates log ratios, displays ratio-intensity plots, and performs permutation tests and
bootstrapping of confidence values.

Cyber-T (http://visitor.ics.uci.edu/genex/cybert/) is a web server that performs
t-tests on observed changes of replicate gene expression measurements to identify
significantly differentially expressed genes. It also contains a computational method
for estimating false-positive and false-negative levels in experimental data based on
modeling of P-value distributions.

Microarray Data Classification

One of the key features of DNA microarray analysis is to study the expression of many
genes in parallel and identify groups of genes that exhibit similar expression patterns.
The similar expression patterns are often a result of the fact that the genes involved
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are in the same metabolic pathway and have similar functions. The genetic basis of
the coregulation could be the result of common promoters and regulatory regions.

To discover genes with similar gene expression patterns based on the microarray
datarequires partitioning the data into subsets according to similarity. To achieve this
goal, hybridization signals from microarray images are organized into matrices where
rows represent genes and columns represent experimental sampling conditions (such
as time points or drug concentrations). Each matrix value is the Cy5/Cy3 intensity ratio
representing the relative expression of a gene under a specific condition (see Box 18.1).
Various classification tools are subsequently used to classify the values in the matrices
for gene expression comparison.

Distance Measure

The first step towards gene classification is to define a measure of the distance or
dissimilarity between genes. This requires converting a gene expression matrix in
a distance matrix. The distance can be expressed as Euclidean distance or Pearson
correlation coefficient. Euclidean distance is the square root of the sum of squared
distances between expression data points. When comparing X gene expression with Y
gene expression at time point i (assuming there are n time points in total), the distance
score (d) can be calculated by the following formula:

(Eq. 18.1)

Euclidean distances are widely used but suffer from the problem that when variations
between genes are very small, the gene profiles can be very difficult to differentiate.

Alternatively, a Pearson correlation coefficient between two groups of data points
can be used. This measures the overall similarity between the trends or shapes of the
two sets of data. In this measure, a perfect positive correlation is +1 and a perfect
negative correlation is —1. The distance score (d ) between gene X and gene Y can be
calculated using the following formula:

I (=X (h-T
d_nz< sd; )( sd ) (Eq. 18.2)

i=1

where n is the total number of time points; X and y are average values for the X gene
and Y gene data, respectively; and sd are standard deviation values.

The choice of the distance measures can sometimes make a big difference in the
final result. Sometimes, a small change in expression data can cause a significant
change in an Euclidean distance matrix. Pearson correlation coefficients are more
robust than Euclidean distances in guarding against small variations and noise in
the experimental data. One notable feature of the Pearson correlation coefficients
is that, when the genes to be compared have exactly the same expression patterns,
their gene expression profiles have identical shapes. The correlation coefficient of the
gene profiles equals to +1, in which case, the relative distance between the genes
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is zero. When the concerned genes have absolute opposite expression patterns, the
correlation coefficient becomes —1. That means that, when one gene is up-regulated,
the other is down-regulated, and vice versa. In such case, the distance is converted to
+2 (the absolute value of |(—1) — 1]), the maximum distance value in the matrix (see
Box 18.1). The conversion to a positive distance value makes data classification more
convenient.

Supervised and Unsupervised Classification

Based on the computed distances between genes in an expression profile, genes with
similar expression patterns can be grouped. The classification analysis can be either
supervised or unsupervised. A supervised analysis refers to classification of data into
a set of predefined categories. For example, depending on the purpose of the exper-
iment, the data can be classified into predefined “diseased” or “normal” categories.
An unsupervised analysis does not assume predefined categories, but identifies data
categories according to actual similarity patterns. The unsupervised analysis is also
called clustering, which is to group patterns into clusters of genes with correlated
profiles.

For microarray data, clustering analysis identifies coexpressed and coregulated
genes. Genes within a category have more similarity in expression than genes from
different categories. When genes are coregulated, they normally reflect related func-
tionality. Through gene clustering, functions of previously uncharacterized genes may
be discovered. Clustering methods include hierarchical clustering and partitioning
clustering (e.g., k-means, self-organizing maps [SOMs]). The following discussion
focuses on several of the most frequently used clustering methods.

The clustering algorithms can be further divided into two types, agglomerative and
divisive (Fig. 18.6). An agglomerative method begins by clustering the two most similar
data points and repeats the process to successively merge groups of data according
to similarity until all groups of data are merged. This is also known as the bottom-up
approach. A divisive method works the other way around by lumping all data points
in a single cluster and successively dividing the data into smaller groups according
to dissimilarity until all the hierarchical levels are resolved. This is also called the
top-down approach.

Hierarchical Clustering. Ahierarchical clustering method isin principle similar to the
distance phylogenetic tree-building method (see Chapter 11). It produces a treelike
structure that represents a hierarchy or relative relatedness of data groups. In the tree
leaves, similar gene expression profiles are placed more closely together than dissim-
ilar gene expression profiles. The tree-branching pattern illustrates a higher degree of
relationship between related gene groups. When genes with similar expression pro-
files are grouped in such a way, functions for unknown genes can often be inferred.
Hierarchical clustering uses the agglomerative approach that works in much the
same way as the UPGMA method (see Chapter 11), in which the most similar data
pairs are joined first to form a cluster. The new cluster is treated as a single entity
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Figure 18.6: Schematic representation showing differences between agglomerative and divisive clus-
tering methods.

creating a reduced matrix. The reduced matrix allows the next closest data point to be
added to the previous cluster leading to the formation of a new cluster. By repeating
the process, a dendrogram showing the clustering pattern of all data points is built.

The hierarchical clustering algorithms can be further divided in three subtypes
known as single linkage, complete linkage, and average linkage. The single linkage
method chooses the minimum value of a pair of distances as the cluster distance.
The complete linkage method chooses the maximum value of a pair of distances, and
the average linkage method chooses the mean of the two distances, which is the same
as the UPGMA tree building approach. The UPGMA-based method is considered to
be the most robust in discriminating expression clusters. It is important to point out
that although a tree structure is produced as the final result, the resulting tree has no
evolutionary meaning, but merely represents groupings of similarity patterns in gene
expression.

In a tree produced by hierarchical clustering, the user has the flexibility to define a
threshold for determining the boundaries of data clusters. The flexibility, however,
sometimes can be a disadvantage in that it lacks objective criteria to distinguish
clusters. Another potential drawback is that the hierarchical relationships of gene
expression represented by the tree may not in fact exist. Some of the drawbacks can
be alleviated by using alternative clustering approaches such as the k-means or self-
organizing maps.

k-Means Clustering. In contrast to hierarchical clustering algorithms, k-means clus-
tering does not produce a dendrogram, but instead classifies data through a single
step partition. Thus, it is a divisive approach. In this method, data are partitioned into
k-clusters, which are prespecified at the outset. The value of k is normally randomly
set but can be adjusted if results are found to be unsatisfactory. In the first step, data
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Figure 18.7: Example of k-means clustering using four partitions. Closeness of data points is indicated
by resemblance of colors (see color plate section).

points are randomly assigned to each cluster. The average of the data in a group
(centroid value) is calculated. The distance of each data point to the centroid is also
calculated. The second step is to have all the data points randomly reassigned among
the k-clusters. The centroid of each cluster and distances of data points to the cen-
troid are recomputed. Then each data point is reassigned to a different cluster. If a
data point is found to be closer to the centroid of a particular cluster than to any other
cluster, that data point is retained in the partition. Otherwise, it is subject to reassign-
ment in the next iteration. This process is repeated many times, until the distances
between the data points and the new centroids no longer decrease. At this point, a
final clustering pattern is reached (Fig. 18.7).

As described, the number of k-clusters is specified by the user at the outset, which is
either chosen randomly or determined using external information. The cluster num-
ber can be adjustable, increased or decreased to get finer or coarser data distinctions.
The k-means method may not be as accurate as hierarchical clustering because it has
an inherent problem of being sensitive to the selection of the initial arbitrary number
of clusters. Depending on the initial position of centroids, this may lead to a different
partitioning solution each time when k-means is run for the same datasets. With-
out searching all possible initial partitions, a suboptimal solution may be reached.
However, computationally speaking, it is faster than hierarchical clustering and is still
widely used.

Self-Organizing Maps. Clustering by SOMs is in principle similar to the k-means
method. This pattern recognition algorithm employs neural networks. It starts by
defining a number of nodes. The data points are initially assigned to the nodes at
random. The distance between the input data points and the centroids are calculated.
The data points are successively adjusted among the nodes, and their distances to the
centroids are recalculated. After many iterations, a stabilized clustering pattern are
reached with the minimum distances of the data points to the centroids.

The differences between SOM and k-means are that, in SOM, the nodes are not
treated as isolated entities, but as connected to other nodes. The calculation of the

Reassign data points, until distances
of points to centroids are stable.
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centroid values in SOM takes into account not only information from within each
cluster, but also information from adjacent clusters. This allows the analysis to be
better at handling noisy data. Another difference is that, in SOM, some nodes are
allowed to contain no data at all. Thus, at the completion of the clustering, the final
number of clusters may be smaller than the initial nodes. This feature renders SOM
less subjective than k-means. However, this type of algorithm is also much slower than
the k-means method.

Clustering Programs. Cluster (http://rana.lbl.gov/EisenSoftware.htm) is a Windows
program capable of hierarchical clustering, SOM, and k-means clustering. Outputs
from hierarchical clustering are visualized with the Treeview program.

EPCLUST (www.ebi.ac.uk/EP/EPCLIST) is aweb-based server that allows data to be
uploaded and clustered with hierarchical clustering or k-means methods. In addition,
the user can perform data selection, normalization, and database similarity searches
with this program.

TIGR TM4 (www.tigr.org/tm4) is a suite of multiplatform programs for analyzing
microarray data. This comprehensive package includes four interlinked programs,
TIGR spot finder (for image analysis), MIDAS (for data normalization), MeV (for clus-
tering analysis and visualization), and MADAM (for data management). The package
provides different data normalization schemes and clustering options.

SOTA (Self-Organizing Tree Algorithm; www.almabioinfo.com/sota/) is a web
server that uses a hybrid approach of SOM and hierarchical clustering. It builds a
tree based on the divisive approach starting from the root node containing all data
patterns. Instead of using the distance-based criteria to resolve a tree, the algorithm
using the neural network based SOM algorithm to separate clusters of genes at each
node. The homogeneity of gene clusters at each node is analyzed using SOM. The tree
building stops at any point if desired homogeneity level is reached.

COMPARISON OF SAGE AND DNA MICROARRAYS

SAGE and DNA microarrays are both high throughput techniques that determine
global mRNA expression levels. A number of comparative studies have indicated
that the gene expression measurements from these methods are largely consistent
with each other. However, the two techniques have important differences. First, SAGE
does not require prior knowledge of the transcript sequence, whereas DNA micro-
array experiments can only detect the genes spotted on the microarray. Because SAGE
is able to measure all the mRNA expressed in a sample, it has the potential to allow
discovery of new, yet unknown gene transcripts. Second, SAGE measures “absolute”
mRNA expression levels without arbitrary reference standards, whereas DNA microar-
rays indicate the relative expression levels. Therefore, SAGE expression data are more
comparable across experimental conditions and platforms. This makes public SAGE
databases more informative by allowing comparison of data from reference conditions
with various experimental treatments. Third, the PCR amplification step involved in
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the SAGE procedure means that it requires only a minute quantity of sample mRNA.
This compares favorably to the requirement for a much larger quantity of mRNA
for microarray experiments, which may be impossible to obtain under certain cir-
cumstances. Fourth, collecting a SAGE library is very labor intensive and expensive
compared with carrying out a DNA microarray experiment, however. Therefore, SAGE
is not suitable for rapid screening of cells whereas the microarray analysis is. Fifth,
Gene identification from SAGE data is also more cumbersome because the mRNA
tags have to be extracted, compiled, and identified computationally, whereas in DNA
microarrays, the identities of the probes are already known. In SAGE, comparison of
gene expression profiles to discover differentially expressed genes and coexpressed
genes is performed manually, whereas for microarrays, there are a large number of
software algorithms to automate the process.

SUMMARY

Transcriptome analysis using ESTs, SAGE, and DNA microarrays forms the core of
functional genomics and is key to understanding the interactions of genes and their
regulation at the whole-genome level. EST sampling, although widely used, has a
number of drawbacks in terms of error rates, efficiency, and cost. The high through-
put SAGE and DNA microarray approaches provide a more quantitative measure
of global gene expression. SAGE measures the “absolute” mRNA expression levels,
whereas microarrays indicate relative mRNA expression levels. DNA microarrays cur-
rently enjoy greater popularity because of the relative ease of experimentation. Itis also
amore suitable method to probe differential gene expression between different tissue
and cell samples. This requires comparing gene profiles using statistical approaches.
Another goal of microarray analysis is to identify coordinated gene expression pat-
terns, which requires clustering analysis of microarray data.

The most popular microarray data clustering techniques include hierarchical clus-
tering, SOM, and k-means. The hierarchical approach is very similar to the phylo-
genetic distance tree building method. SOM and k-means normally do not generate
a treelike structure as a result of clustering. Once coregulated genes are identified,
upstream sequences belonging to a cluster can be retrieved and analyzed for com-
mon regulatory sequences.

In conclusion, among the three techniques for studying global gene expression, the
most popular one is DNA microarrays, which has the capability to provide information
that is not possible with traditional techniques. However, one should also be aware of
its limitations. This technique is a multistep procedure in which errors and biases can
beintroduced in each step (scanning, image processing, normalization, and choice of
classification method). Thus, it is a rather crude assay and may contain considerable
levels of false positives and false negatives. The results from microarray analysis only
provide hypotheses for gene functions based on classification of expression data.
To verify the hypotheses, one has to rely on traditional biochemical and molecular
biological approaches. The fundamental limitation of this method lies in the use of
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transcription as the sole indicator of gene expression, which may or may not correlate
with expression at the protein level. The expression of proteins is what dictates the
phenotypes. The last limitation is addressed in Chapter 19.
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CHAPTER NINETEEN

Proteomics

Proteome refers to the entire set of expressed proteins in a cell. In other words, it is the
full complement of translated product of a genome. Proteomics is simply the study
of the proteome. More specifically, it involves simultaneous analyses of all trans-
lated proteins in a cell. It encompasses a range of activities including large-scale
identification and quantification of proteins and determination of their localization,
modifications, interactions, and functions. This chapter covers the major topics in
proteomics such as analysis of protein expression, posttranslational modifications,
protein sorting, and protein—protein interaction with an emphasis on bioinformatics
applications.

Compared to transcriptional profilingin functional genomics, proteomics has clear
advantagesin elucidating gene functions. It provides a more direct approach to under-
standing cellular functions because most of the gene functions are realized by proteins.
Transcriptome analysis alone does not provide clear answers to cellular functions
because there is generally not a one-to-one correlation between messenger RNAs
(mRNAs) and proteins in the cells. In addition, a gene in an eukaryotic genome may
produce more varied translational products owing to alternative splicing, RNA edit-
ing, and so on. This means that multiple and distinct proteins may be produced from
one single gene. Further complexities of protein functions can be found in posttrans-
lational modifications, protein targeting, and protein—protein interactions. Therefore,
the noncorrelation of mRNA with proteins means that studying protein expression
can provide more insight on understanding of gene functions.

TECHNOLOGY OF PROTEIN EXPRESSION ANALYSIS

Characterization of protein expression at the whole proteome level involves quanti-
tative measurement of proteins in a cell at a particular metabolic state. Unlike in DNA
microarray analysis, in which the identities of the probes are known beforehand, the
identities of the expressed proteins in a proteome have to determined by perform-
ing protein separation, identification, quantification, and identification procedures.
The classic protein separation methods involve two-dimensional gel electrophoresis
followed by gel image analysis. Further characterization involves determination of
amino acid composition, peptide mass fingerprints, and sequences using mass spec-
trometry (MS). Finally, database searching is needed for protein identification. The
outline of the procedure is shown in Figure 19.1.
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TECHNOLOGY OF PROTEIN EXPRESSION ANALYSIS

2D-Page

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is a high-resolution
technique that separates proteins by charge and mass. The gel is run in one direction
in a pH gradient under a nondenaturing condition to separate proteins by isoelectric
points (pI) and then in an orthogonal dimension under a denaturing condition to sep-
arate proteins by molecular weights (MW). This is followed by staining, usually silver
staining, which is very sensitive, to reveal the position of all proteins. The result is a
two-dimensional gel map; each spot on the map corresponds to a single protein being
expressed. The stained gel can be further scanned and digitized for image analysis.

However, not all proteins can be separated by this method or stained properly. One
of the challenges of this technique is the separation of membrane proteins, which
are largely hydrophobic and not readily solublized. They tend to aggregate in the
aqueous medium of a two-dimensional gel. To overcome this problem, membrane
proteins can be fractionated using specialized protocols and then electrophoresed
using optimized buffers containing zwitterionic detergents. Subfractionation can be
carried out to separate nuclear, cytosol, cytoskeletal, and other subcellular fractions
to boost the concentrations of rare proteins and to reveal subcellular localizations of
the proteins.

Gel image analysis is the next step that helps to reveal differential global protein
expression patterns. This analysis includes spot determination, quantitation, and nor-
malization. Image analysis software is used to measure the center, edges, and densities
of the spots. Comparing two-dimensional gel images from various experiments can
sometimes pose a challenge because the gels, unlike DNA microarrays, may shrink or
warp. This requires the software programs to be able to stretch or maneuver one of
the gels relative to the other to find a common geometry. When the reference spots are
aligned properly, the rest of the spots can be subsequently compared automatically.
There are a number of web-based tools available for this type of image analysis.

Melanie (http://us.expasy.org/melanie/) is a commercially available comprehen-
sive software package for Windows. It carries out background subtraction, spot detec-
tion, quantitation, annotation, image manipulation and merging, and linking to
2D-PAGE databases as well as image comparison through statistical tests.

CAROL (http://gelmatching.inf.fu-berlin.de/Carol.html) is a free Java program for
two-dimensional gel matching, which takes into account geometrical distortions of
gel spots.

Comp2Dgel (www2.imtech.res.in/raghava/comp2dgel/) is aweb server that allows
the user to compare two-dimensional gel images with a two-dimensional gel database
orwith other gels that the user inputs. A percentage deviation of the images is obtained
through superimposition of the images.

SWISS-2DPAGE (www.expasy.ch/) is a database of two-dimensional gel maps of
cells of many organisms at metabolic resting conditions (control conditions), which
can be used for comparison with experimental or diseased conditions. It can be
searched by a spot identifier or keyword.
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Mass Spectrometry Protein Identification

Once the proteins are separated on a two-dimensional gel, they can be further identi-
fied and characterized using MS. In this procedure, the proteins from a two-
dimensional gel system are first digested in situ with a protease (e.g., trypsin). Protein
spots of interest are excised from the two-dimensional gel. The proteolysis generates a
unique pattern of peptide fragments of various MWs, which is termed a peptide finger-
print. The fragments can be analyzed with MS, a high-resolution technique for deter-
mining molecular masses. Currently, electrospray ionization MS and matrix-assisted
laser desorption ionization (MALDI) MS are commonly used. These two approaches
only differ in the ionization procedure used. In MALDI-MS, for example, the peptides
are charged with positive ions and forced through an analyzing tube with a magnetic
field. Peptides are analyzed in the gas phase. Because smaller peptides are deflected
more than larger ones in a magnetic field, the peptide fragments can be separated
according to molecular mass and charges. A detector generates a spectrum that dis-
plays ion intensity as a function of the mass-to-charge ratio.

As a step toward further identification, the peptides can be sequenced with suc-
cessive phases of fragmentation and mass analysis. This is the technique of tandem
mass spectrometry (MS/MS), in which a peptide has to pass through two analyzers for
sequence determination. In the first analyzer, the peptide is fragmented by physical
means generating fragments with nested sizes differing by only one amino acid. The
molecular masses of these fragments are more precisely determined in the second
analyzer yielding the sequence of the fragment.

Protein Identification through Database Searching

MS characterization of proteins is highly dependent on bioinformatic analysis. Once
the peptide mass fingerprints or peptide sequences are determined, bioinformatics
programs can be used to search for the identity of a protein in a database of the-
oretically digested proteins. The purpose of the database search is to find exact or
nearly exact matches. However, in reality, protease digestion is rarely perfect, often
generating partially digested products as a result of missed cuts at expected cutting
sites. Peptides resulting from MALDI-MS are also charged, which increases their mass
slightly. Toincrease the discriminatory ability of the database search, the search engine
must allow some leeway in matching molecular masses of peptides in the cases of
missed cuts and charge modifications. The user is required to provide as much infor-
mation as possible as input. For example, molecular masses of peptide fingerprints,
peptide sequence, MW, and pl of the intact protein, even the species names are impor-
tant in obtaining unique identification of a particular protein. A basic requirement for
peptide identification through database matching is the availability of all the protein
sequences from an organism. Thus, this method only works well with model organ-
isms that have completely sequenced and well-annotated genomes, but has much
limitation to be applied in nonmodel organisms.



TECHNOLOGY OF PROTEIN EXPRESSION ANALYSIS

ExPASY (www.expasy.ch/tools/) is a comprehensive proteomics web server with
a suite of programs for searching peptide information from the SWISS-PROT and
TrEMBL databases. There are twelve database search tools in this server dedicated
to protein identification based on MS data. For example, the AACompldent program
identifies proteins based on pI, MW, and amino acid composition and compares
these values with theoretical compositions of all proteins in SWISS-PROT/TrEMBL.
The number of candidate proteins can be further narrowed down by using species
names and keywords. The Tagldent program can narrow down the candidate list by
peptide sequences because of the high specificity of short sequence matches. The
Peptldent program incorporates mass fingerprinting information with information
such as pI, MW, and species name. Candidate proteins are ranked by the number of
matching peptides. The CombSearch tool takes advantage of the strength of multiple
parameters by using combined composition, sequence tags, and peptide fingerprint-
ing information to perform combined searches against the databases.

ProFound (http://prowl.rockefeller.edu/profound_bin/WebProFound.exe) is a
web server with a set of interconnected programs. It searches a protein sequence
database using MS fingerprinting information. A Bayesian algorithm ranks the
database matches according to the probability of database sequences producing the
peptide mass fingerprints.

Mascot (www.matrixscience.com/search_form_select.html) is another web server
that identifies proteins based on peptide mass fingerprints, sequence entries, or raw
MS/MS data from one or more peptides.

Differential In-Gel Electrophoresis

Differences in protein expression patterns can be detected in a similar way as in
fluorescent-labeled DNA microarrays, using a technique called differential in-gel
electrophoresis (DIGE) (Fig. 19.2). Proteins from experimental and control samples
are labeled with differently colored fluorescent dyes. They are mixed together before
electrophoresis on a two-dimensional gel. Differentially expressed proteins in both
conditions can be coseparated and visualized in the same gel. Compared to regular
2D-PAGE, the process reduces the noise and improves the reproducibility and sensi-
tivity of detection. In principle, it resembles the two-color DNA microarray analysis.
The drawbacks of this approach are that different proteins take up fluorescent tags to
different extents and that some proteins labeled with the fluorophores may become
less soluble and precipitate before electrophoresis.

Protein Microarrays

Protein microarray chips are conceptually similar to DNA microarray chips (see chap-
ter 17) and can be built to contain high-density grids with immobilized proteins for
high throughput analysis. The chips contain entire immobilized proteome. However,
they are not meant to be used to bind and quantitate complementary molecules
as in DNA microarrays. Instead, they are used for studying protein function by
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Figure 19.2: Schematic diagram showing protein differential detection using DIGE. Protein sample 1
(representing the experimental condition) is labeled with a red fluorescent dye (Cy5). Protein sample 2
(representing the control condition) is labeled with a green fluorescent dye (Cy3). The two samples are
mixed together before running on a two-dimensional gel to obtain a total protein differential display
map (see color plate section).

providingasolid support for assaying enzyme activity, or protein—protein interactions,
protein—-DNA/RNA interactions or protein-ligand interactions in an all-against-all
format.

To make protein chips truly analogous to DNA chips, the solid support has to
contain specific proteins or ligands that capture protein molecules by complemen-
tarity. A classical approach to this problem is to perform an immunoassay by using
a spectrum of antibodies against the whole proteome. The antibodies can be fixed
on a solid support for assaying thousands of proteins simultaneously. However, a
major drawback of this approach is that natural antibodies are easily denatured
and have a high tendency to cross-react with nonspecific antigens. In addition,
producing antibodies for every single protein from an organism is prohibitively
expensive.

To overcome this hurdle, a new technique is being developed that uses “protein
scaffolds” to capture target molecules. The scaffolds are similar to antibodies but
smaller, more stable and more specific in their binding of target proteins. They can
be made in a cell-free system and attached with two fluorescence tags. This tech-
nique uses the principle of fluorescence resonance energy transfer, which is an exci-
tation energy transfer between two fluorescent dye molecules whose excitation and
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absorption spectra overlap. The efficiency of the energy transfer depends on the dis-
tance of the two dyes. If one portion of the tagged protein is involved in binding to
a target protein, the protein conformational changes cause the two fluorescent tags
to move apart, disrupting the excitation energy transfer between the dyes such that it
can be monitored on fluorescence spectra.

A technology called Protein-Print is in early development, which is essentially a
molecular imprinting method. Chemical monomers are used to coat target proteins,
which are then allow to polymerize. When polymerization is complete and the target
molecules removed, a mould is formed that resembles the shape of the target protein.
The moulds can then be used to capture like molecules with high specificity.

These are some of the promising technologies currently under development. Their
high throughputnature means that they may eventually succeed the two-dimensional
gel-based method. When the proteome chips become available, data analysis for
identifying coregulated proteins should be relatively easy because it will be similar to
that used for DNA microarrays. Similar image analysis and clustering algorithms can
be applied to identify coregulated proteins.

POSTTRANSLATIONAL MODIFICATIONS

Another important aspect of the proteome analysis concerns posttranslational mod-
ifications. To assume biological activity, many nascent polypeptides have to be cova-
lently modified before or after the folding process. This is especially true in eukary-
otic cells where most modifications take place in the endoplasmic reticulum and
the Golgi apparatus. The modifications include proteolytic cleavage; formation of
disulfide bonds; addition of phosphoryl, methyl, acetyl, or other groups onto certain
amino acid residues; or attachment of oligosaccharides or prosthetic groups to create
mature proteins. Posttranslational modifications have a great impact on protein func-
tion by altering the size, hydrophobicity and overall conformation of the proteins. The
modifications can directly influence protein—protein interactions and distribution of
proteins to different subcellular locations.

It is therefore important to use bioinformatics tools to predict sites for posttransla-
tional modifications based on specific protein sequences. However, prediction of such
modifications can often be difficult because the short lengths of the sequence motifs
associated with certain modifications. This often leads to many false-positive identifi-
cations. One such example is the known consensus motif for protein phosphorylation,
[ST]-x-[RK]. Such a short motif can be found multiple times in almost every protein
sequence. Most of the predictions based on this sequence motif alone are likely to be
wrong, producing very high rates of false-positives. Similar situations can be found in
other predicted modification sites. One of the reasons for the false predictions is that
neighboring environment of the modification sites is not considered.

To minimize false-positive results, a statistical learning process called support
vector machine (SVM) can be used to increase the specificity of prediction. This is
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a data classification method similar to the linear or quadratic discriminant analysis
(see Chapter 8). In this method, the data are projected in a three-dimensional space
or even a multidimensional space. A hyperplane — alinear or nonlinear mathematical
function - is used to best separate true signals from noise. The algorithm has more
environmental variables included that may be required for the enzyme modification.
After training the algorithm with sufficient structural features, it is able to correctly
recognize many posttranslational modification patterns.

AutoMotif (http://automotif.bioinfo.pl/) is a web server predicting protein
sequence motifs using the SVM approach. In this process, the query sequence is chop-
ped up into a number of overlapping fragments, which are fed into different kernels
(similar to nodes). A hyperplane, which has been trained to recognize known pro-
tein sequence motifs, separates the kernels into different classes. Each separation is
compared with known motif classes, most of which are related to posttranslational
modification. The best match with a known class defines the functional motif.

Prediction of Disulfide Bridges

A disulfide bridge is a unique type of posttranslational modification in which cova-
lent bonds are formed between cysteine residues. Disulfide bonds are important for
maintaining the stability of certain types of proteins.

The disulfide prediction is the prediction of paring potential or bonding states of
cysteines in a protein. Accurate prediction of disulfide bonds may also help to predict
the three-dimensional structure of the protein of interest. This problem can be tack-
led by using either profiles constructed from multiple sequence alignment or residue
contact potentials calculated based on the local sequence environment. Advanced
neural networks or SVM or hidden Markov model (HMM) algorithms are often used
to discern long-distance pairwise interactions among cysteine residues. The fol-
lowing program is one of the publicly available programs specialized in disulfide
prediction.

Cysteine (http://cassandra.dsi.unifi.it/cysteines/) is a web server that predicts the
disulfide bonding states of cysteine residues in a protein sequence by building profiles
based on multiple sequence alignment information. A recursive neural network (see
Chapter 14) ranks the candidate residues for disulfide formation.

Identification of Posttranslational Modifications in Proteomic Analysis

Posttranslational modifications can be experimentally identified based on MS fin-
gerprinting data. Certain peptide identification tools are able to search for known
posttranslational modification sites in a sequence and incorporate extra mass based
on the type of modifications during database fragment matching. There are two sub-
programs in the ExPASY proteomics server and an independent RESID database that
are related to predicting posttranslational modifications.

ExPASY (www.expasy.ch/tools) contains a number of programs to determine post-
translational modifications based on MS molecular mass data. FindMod is a sub-
program that uses experimentally determined peptide fingerprint information to
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compare the masses of the peptide fragments with those of theoretical peptides. If a
differenceisfound, it predicts a particular type of modification based on a set of prede-
fined rules. It can predict twenty-eight types of modifications, including methylation,
phosphorylation, lipidation, and sulfation. GlyMod is a subprogram that specializes in
glycosylation determination based on the difference in mass between experimentally
determined peptides and theoretical ones.

RESID (http://pir.georgetown.edu/pirwww/search/textresid.html) is an indepen-
dent posttranslational modification database listing 283 types of known modifica-
tions. It can search by text or MWs.

PROTEIN SORTING

Subcellular localization is an integral part of protein functionality. Many proteins
exhibit functions only after being transported to certain compartments of the cell.
The study of the mechanism of protein trafficking and subcellular localization is the
field of protein sorting (also known as protein targeting), which has become one of the
central themesin modern cell biology. Identifying protein subcellularlocalizationis an
important aspect of functional annotation, because knowing the cellular localization
of a protein often helps to narrow down its putative functions.

For many eukaryotic proteins, newly synthesized protein precursors have to be
transported to specific membrane-bound compartments and be proteolytically pro-
cessed to become functional. These compartments include chloroplasts, mitochon-
dria, the nucleus, and peroxisomes. To carry out protein translocation, unique peptide
signals have to be present in the nascent proteins, which function as “zip codes” that
direct the proteins to each of these compartments. Once the proteins are translocated
within the organelles, protease cleavage takes place to remove the signal sequences
and generate mature proteins (another example of posttranslational modification).
Even in prokaryotes, proteins can be targeted to the inner or outer membranes, the
periplasmic space between these membranes, or the extracellular space. The sorting
of these proteins is similar to that in eukaryotes and relies on the presence of signal
peptides.

The signal sequences have a weak consensus but contain some specific features.
They all have a hydrophobic core region preceded by one or more positively charged
residues. However, the length and sequence of the signal sequences vary tremen-
dously. Peptides targeting mitochondria, for example, are located in the N-terminal
region. The sequences are typically twenty to eighty residues long, rich in positively
charged residues such as arginines as well as hydroxyl residues such as serines and
threonines, but devoid of negatively charged residues, and have the tendency to form
amphiphilic e-helices. These targeting sequences are cleaved once the precursor pro-
teins are inside the mitochondria. Chloroplast localization signals (also called transit
peptides) are also located in the N-terminus and are about 25 to 100 residues in length,
containing very few negatively charged residues but many hydroxylated residues such
as serine. An interesting feature of the proteins targeted for the chloroplasts is that the
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transit signals are bipartite. That is, they consist of two adjacent signal peptides, one
for targeting the proteins to the stroma portion of the chloroplast before being cleaved
and the other for targeting the remaining portion of the proteins to the thylakoids.
Localization signals targeting to the nucleus are variable in length (seven to forty-one
residues) and are found in the internal region of the proteins. They typically consist of
one or two stretches of basic residues with a consensus motif K(K/R)X(K/R). Nuclear
signal sequences are not cleaved after protein transport.

Considerable variations in length and sequence make accurate prediction of signal
peptides using computational approaches difficult. Nonetheless, various computa-
tional methods have been developed to predict the subcellular localization signals. In
general, they fall within three categories. Some algorithms are signal based, depending
on the knowledge of charge, hydrophobicity, or consensus motifs. Some are content
based, depending on the sequence statistics such as amino acid composition. The
third group of algorithm combines the virtue of both signals and content and appears
to be more successful in prediction. Neural network- and HMM-based algorithms are
examples of the combined approach. Here are some of the most frequently used pro-
grams for the prediction of subcellular localization and protein sorting signals with
reasonable accuracy (65% to 70%).

SignalP (www.cbs.dtu.dk/services/SignalP-2.0/#submission) is a web-based pro-
gram that predicts subcellular localization signals by using both neural networks and
HMMs. The neural network algorithm combines two different scores, one forrecogniz-
ing signal peptides and the other for protease cleavage sites. The HMM-based analysis
discriminates between signal peptides and the N-terminal transmembrane anchor
segments required for insertion of the protein into the membrane. The program is
trained by three different training sets, namely, eukaryotes, Gram-negative bacteria
and Gram-positive bacteria. This distinction is necessary because there are signifi-
cant differences in the characteristics of the signal peptides from these organisms.
Therefore, appropriate datasets need to be selected before analyzing the sequence.
The program predicts both the signal peptides and the protease cleavage sites of the
query sequence.

TargetP (www.cbs.dtu.dk/services/TargetP/) is a neural network-based program,
similar to SignalP. It predicts the subcellular locations of eukaryotic proteins based
on their N-terminal amino acid sequence only. It uses analysis output from SignalP
and feeds it into a decision neural network, which makes a final choice regarding the
target compartment.

PSORT (http://psort.nibb.ac.jp/) is a web server that uses a nearest neighbor
method to make predictions of subcellular localizations. It compares the query
sequence to a library of signal peptides for different cellular localizations. If the
majority of the closest signal peptide matches (nearest neighbors) are for a partic-
ular cellular location, the sequence is predicted as signal peptide for thatlocation. It is
functionally similar to TargetP, but may have lower sensitivity. An iPSORT is available
in the same website that predicts N-terminal sorting signals and is an equivalent to
SignalP.



PROTEIN-PROTEIN INTERACTIONS

PROTEIN-PROTEIN INTERACTIONS

In general, proteins have to interact with each other to carry out biochemical func-
tions. Thus, mapping out protein—protein interactions is another important aspect of
proteomics. Interprotein interactions include strong interactions that allow forma-
tion of stable complexes and weaker ones that exist transiently. Proteins involved in
forming complexes are generally more tightly coregulated in expression than those
involved in transient interactions. Protein—protein interaction analysis at the pro-
teome level helps reveal the function of previously uncharacterized proteins on the
basis of the “guilt by-association” rule.

Experimental Determination

Protein interactions are commonly detected by using the classic yeast two-hybrid
method that relies on the interaction of “bait” and “prey” proteins in molecular con-
structs in yeast. In this strategy, a two-domain transcriptional activator is employed
as a helper for determining protein—protein interactions. The two domains which
are a DNA-binding domain and a trans-activation domain normally interact to acti-
vate transcription. However, molecular constructs are made such that each of the
two domains is covalently attached to each of the two candidate proteins (bait and
prey). If the bait and prey proteins physically interact, they bring the DNA-binding and
trans-activation domains in such close proximity that they reconstitute the function
of the transcription activator, turning on the expression of a reporter gene as a result.
If the two candidate proteins do not interact, the reporter gene expression remains
switched off.

This technique is essentially alow throughput approach because each bait and prey
construct has to be prepared individually to map interactions between all proteins.
Nonetheless, it has been systematically applied to study interactions at the whole
proteome level. Protein—protein interaction networks of yeast and a small number of
other species have been subsequently determined using this method. A major flaw in
this method is that it is an indirect approach to probe protein—protein interaction and
has a tendency to generate false positives (spurious interactions) and false negatives
(undetected interactions). It has been estimated from proteome-wide characteriza-
tions that the rate of false positives can be as high as 50%. Another weakness is that
only pairwise interactions are measured, and therefore interactions that only take
place when multiple proteins come together are omitted.

There are many alternative approaches to determining protein—protein interac-
tions. One of them is to use a large-scale affinity purification technique that involves
attaching fusion tags to proteins and purifying the associated protein complexes
in an affinity chromatography column. The purified proteins are then analyzed by
gel electrophoresis followed by MS for identification of the interacting components.
The protein microarray systems mentioned above also provide a high throughput
alternative for studying protein—protein interactions. Although none of the methods
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Figure 19.3: Rosetta stone method for prediction of genes encoding interacting proteins based on
domain fusion patterns in different genomes. In genome A, two different domains exist in separate
open reading frames. In genome B, they are fused together in one protein-encoding frame. Conversely,
the two domains of the same protein encoded in genome B may become separate in genome A, but still
perform the same function through physical interactions.

are guaranteed to eliminate false positives and false negatives, combining multiple
approaches in theory compensates for the potential weaknesses of each technique
and minimizes the artifacts.

Prediction of Protein-Protein Interactions

Decades of research on protein biochemistry and molecular biology has accumulated
tremendous amount of data related to protein—protein interactions, which allow the
extraction of some general rules governing these interactions. These rules have facil-
itated the development of algorithms for automated prediction of protein—protein
interactions. The currently available tools are generally based on evolutionary stud-
ies of gene sequences, gene linkage patterns, and gene fusion patterns, which are
described in detail next.

Predicting Interactions Based on Domain Fusion

One of the prediction methods is based on gene fusion events. The rationale goes like
this: if A and B exist as interacting domains in a fusion protein in one proteome, the
gene encoding the protein is a fusion gene. Their homologous gene sequences A’ and
B’ existing separately in another genome most likely encode proteins interacting to
perform a common function. Conversely, ifancestral genes A and B encode interacting
proteins, they may have a tendency to be fused together in other genomes during
evolution to enhance their effectiveness. This method of predicting protein—protein
interactions is called the “Rosetta stone” method (Fig. 19.3) because a fused protein
often reveals relationships between its domain components.

The further justification behind this method is that when two domains are fused
in a single protein, they have to be in extremely close proximity to perform a common
function. When the two domains are located in two different proteins, to preserve
the same functionality, their close proximity and interaction have to be preserved
as well. Therefore, by studying gene/protein fusion events, protein—protein interac-
tions can be predicted. This prediction rule has been proven to be rather reliable and
since successfully applied to a large number of proteins from both prokaryote and
eukaryotes.
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Predicting Interactions Based on Gene Neighbors

Gene orders, generally speaking, are poorly conserved among divergent prokaryotic
genomes (see Chapter 16). However, if a certain gene linkage is found to be indeed
conserved across divergent genomes, it can be used as a strong indicator of formation
of an operon that encodes proteins that are functionally and even physically coupled.
This rule of predicting protein—protein interactions holds up for most prokaryotic
genomes. For eukaryotic genomes, gene order maybe aless potent predictor of protein
interactions than a tight coregulation for gene expression.

Predicting Interactions Based on Sequence Homology

If a pair of proteins from one proteome are known to interact, their conserved
homologs in another proteome are likely to have similar interactions. The homolo-
gous pairs are referred to as interologs. This method relies on the correct identification
of orthologs and the use of existing protein interaction databases. The method has
potential to model protein quaternary structure if one pair of proteins have known
structures.

InterPreTS (www.russell.embl-heidelberg.de/people/patrick/interprets/interprets.

html) is a web server that has a built-in database for interacting domains based
on known three-dimensional protein structures. Two protein sequences are used
as query to search against the database for homologs. The alignment of the query
sequences and database domains is carried out using HMMer (see Chapter 6). If
the alignment scores for both sequences are above the threshold and the contact
residues are found to be conserved, the two proteins are considered to be interacting
proteins.

IPPRED (http://cbi.labri.fr/outils/ippred/IS_part_simple.php) is a similar web-
based program that allows the user to submit multiple protein sequences. The
program searches homologous sequences using BLAST in a database of known inter-
acting protein pairs (BIND). If any two query sequences have strong enough simi-
larity with known interacting protein pairs, they are inferred as interacting partners.

Predicting Interactions Based on Phylogenetic Information

Proteininteractions can be predicted using phylogenetic profiles, which are defined as
patterns of gene pairs that are concurrently present or absent across genomes. In other
words, thismethod detects the copresence or co-absence of orthologs across anumber
of genomes. Genes having the same pattern of presence or absence across genomes
are predicted as encoding interacting proteins. The logic behind the cooccurrence
approach is that proteins normally operate as a complex. If one of the components of
the complex is lost, it results in the failure of the entire complex. Under the selective
pressure, the rest of the nonfunctional interacting partners in the complex are also
lost during evolution because they have become functionally unnecessary. The rule
based on concurrent gene loss or gene gain has proven to be less accurate than the
rules based on gene fusion and gene neighbors. An example of using the phylogenetic
profile method to predict interacting proteins is shown in Figure 19.4.
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Figure 19.4: Phylogenetic profile method for predicting interacting proteins based on copresence and
co-absence of the encoding genes across genomes. The presence is indicated by checks and absence
by dashed lines. The protein pairs encoded by genes one and three as well as genes two and four are
predicted as interacting partners.

A more quantitative phylogenetic method to predict protein interactions is the
“mirror tree” method, which examines the resemblance between phylogenetic trees
of two sequence families (Fig. 19.5). The rationale is that if two protein trees are nearly
identical in topology and are highly correlated in terms of evolutionary rate, they
are highly likely to interact with each other. This is because if mutations occur at
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Figure 19.5: Mirror tree method for prediction of interacting proteins based on strong statistical corre-
lation of evolutionary distance matrices used to build two phylogenetic trees for the two protein families
of interest. The two trees have a near identical topology resulting in a near mirror image. The distance
matrices used to construct the trees are compared using correlation analysis.
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the interaction surface for one of the proteins, corresponding mutations are likely
to occur in the interacting partner to sustain the interaction. As a result, the two
interacting proteins should have very similar phylogenetic trees reflecting very similar
evolutionary history. To analyze the extent of coevolution, correlation coefficients (r)
of evolutionary distance matrices for the two groups of protein homologs used in
constructing the trees are examined. It has been shown that if r > 0.8, there is a strong
indication for protein interactions.

Matrix (http://orion.icmb.utexas.edu/cgi-bin/matrix/matrix-index.pl) is a web
server that predicts interaction between two protein families. The server aligns two
individual protein data sets (assuming each representing a protein family) using
Clustal. It then derives distance matrices from the two alignment files and aligns
the matrices to discover similar portions that may indicate interacting partners from
the two protein families.

ADVICE (Automated Detection and Validation of Interaction based on the Co-
Evolutions, http://advice.i2r.a-star.edu.sg/) is a similar web server providing predic-
tion of interacting proteins using the mirror-tree approach. It performs automated
BLAST searches for a given protein sequence pair to derive two sets of homologous
sequences. The sequences are multiply aligned using CLUSTAL. A distance matrix for
each set of alignment is then derived. The Pearson’s correlation coefficient is subse-
quently calculated for detecting similarities between the two distance matrices. If the
coefficient r > 0.8, the two query sequences are predicted to be a interacting pair.

Predicting Interactions Using Hybrid Methods

It needs to be emphasized that each of these prediction methods is based on a partic-
ular hypothesis and may exhibit a certain degree of bias associated with the hypoth-
esis. Because it is difficult to evaluate the performance of each individual prediction
method, the user of these prediction algorithms is recommended to use a combined
approach that uses multiple methods to reduce bias and error rates and to yield a
higher level of confidence in the protein interaction prediction. The following inter-
net program is a good example of combining multiple lines of evidence in predicting
protein-protein interactions.

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, http://
www.bork.embl-heidelberg.de/STRING/) is a web server that predicts gene and pro-
tein functional associations based on combined evidence of gene linkage, gene
fusion and phylogenetic profiles. The current version also includes experimental co-
expression data as well as documented interactions resulted from literature mining.
Functional associations include both direct and indirect protein-protein interactions.
Indirect interactions can mean enzymes in the same pathway sharing a common sub-
strate or proteins regulating each other in the genetic pathway. The server contains
information for orthologous groups from 110 completely sequenced genomes. The
query sequence is first classified into an orthologous group based on the COG classi-
fication (see Chapter 7) and is then used to search the database for known conserved
linkage pattern, gene fusions, and phylogenetic profiles. The server uses a weighted

295



296

PROTEOMICS

scoring system that evaluates the significance of all three types of protein associations
among the genomes. To reduce false positives and increase reliability of the prediction,
the three types of genomic associations are checked against an internal reference set.
A single score of pairwise interactions is given as the final output which also contains
all three types of evidence plus a summary of combined protein interaction network
involving multiple partners. The server returns a list of predicted protein-protein
associations and a graphic representation of the association network.

SUMMARY

Protein expression analysis at the proteome level promises more accurate elucida-
tion of cellular functions. This is an advantage over genomic analysis, which does
not necessarily lead to prediction of protein functions. Traditional experimental
approaches to proteomics include large-scale protein identification using 2D-PAGE
and MS. The identification process requires the integration of bioinformatics tools
to search databases for matching peptides. Newer protein expression profiling tech-
niques include DIGE and protein microarrays. Protein functions can be modulated as
a result of posttranslational modifications. Sequence based prediction often results
in high rates of false-positives owing to limited understanding of the structural fea-
tures required for the modifications. A step toward minimizing the false-positive rates
in prediction is the use of SVM. Another area of proteomics is defining protein sub-
cellular localization signals. Several web tools such as TargetP, SignalP, and PSORT are
available to give reasonably successful prediction of signal peptides. Protein—protein
interactions are normally determined using yeast two-hybrid experiments or other
experimental methods. However, theoretical prediction of such interactions is pro-
viding a promising alternative. The current prediction methods are based on domain
fusion, gene linkage pattern, sequence homology, and phylogenetic information. The
ability to predict protein interactions is of tremendous value in genome annotation
and in understanding the function of genes and their encoded proteins. The compu-
tational approach helps to generate hypotheses to be tested by experiments.
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APPENDIX ONE

Practical Exercises

Note: all exercises were originally designed for use on a UNIX workstation. However,
with slight modifications, they can be used on any other operating systems with Internet
access.

EXERCISE 1. DATABASE SEARCHES

In this exercise, you will learn how to use several biological databases to retrieve
information according to certan criteria. After learning the basic search techniques,
you will be given a number of problems and asked to provide answers from the
databases.

1. Use a web browser to retrieve a protein sequence of lambda repressor
from SWISS-PROT (http://us.expasy.org/sprot/). Choose “Full text search in
Swiss-Prot and TrEMBL.” In the following page, Enter “lambda repressor”
(space is considered as logical operator AND) as keywords in the query
window. Select “Search in Swiss-Prot only.” Click on the “submit” button.
Note the search result contains hypertext links taking you to references that
are cited or to other related information. Spend a little time studying the
annotations.

2. In the same database, search more sequences for “human MAP kinase
inhibitor,” “human catalase,” “synechocystis cytochrome P450,” “coli DNA
polymerase,” “HIV CCR5 receptor,” and “Cholera dehydrogenase.” Record your
findings and study the annotations.

3. Go to the SRS server (http://srs6.ebi.ac.uk/) and find human genes that are
larger than 200 kilobase pairs and also have poly-A signals. Click on the “Library
Page” button. Select “EMBL” in the “Nucleotide sequence databases” section.
Choose the “Extended” query form on the left of the page. In the follow-
ing page, Select human (“hum”) at the “Division” section. Enter “200000” in
the “SeqLength >="field. Enter “polya_signal” in the “AllText” field. Press the
“Search” button. How many hits do you get?

4. Use your knowledge and creativity to do the following SRS exercises.

1) Find protein sequences from Rhizobium submitted by Ausubel be-
tween 1991 and 2001 in the UniProt/Swiss-Prot database (hint: the date
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expression canbe 1-Jan-1991 and 31-Dec-2001). Study the annotations of the
sequences.

2) Find full-length protein sequences of mammalian tyrosine phosphatase
excluding partial or fragment sequences in the UniProt/SwissProt database
(hint: the taxonic group of mammals is mammalia). Once you get the query
result, do a Clustal multiple alignment on the first five sequences from the
search result.

Go to the web page of NCBI Entrez (http://www.ncbi.nlm.nih.gov/) and use the

advanced search options to find protein sequences for human kinase modified

or added in the last 30 days in GenBank. In the Entrez “Protein” database, enter

“human[ORGN] kinase”, and then select “last 30 days” in the “Modification

Date” field of the “Limits” section. Select “Only from” “GenBank” as database.

Finally, select “ Go.”

Using Entrez, search DNA sequences for mouse fas antigen with annotated

exons or introns. (Do not forget to deselect “Limits” from the above exercise.)

In Entrez, select the Nucleotide database. Type mouse[ORGN] AND fas AND

(exons OR introns). Click “Go.”

For the following exercises involving the NCBI databases, design search

strategies to find answers (you will need to decide which database to use

first).

1) Find gene sequences for formate dehydrogenase from Methanobac-
terium.

2) Find gene sequences for DNA binding proteins in Methanobacterium.

3) Find all human nucleotide sequences with D-loop annotations.

4) Find protein sequences of maltoporin in Gram-negative bacteria
(hint: use logic operator NOT. Gram-positive bacteria belong to
Firmicutes).

5) Find protein structures related to Rhizobium nodulation.

6) Find review papersrelated to protein electrostatic potentials by Honig pub-
lished since 1990.

7) Find the number of exons and introns in Arabidopsis phytochrome A (phyA)
gene (hint: use [GENE] to restrict search).

8) Find two upstream neighboring genes for the hypoxanthine phosphoribo-
syl transferase (HPRT) gene in the E. coli K12 genome.

9) Find neurologic symptoms for the human Lesch-Nyhan syndrome. What
is the chromosomallocation of the key gene linked to the disease? What are
its two upstream neighboring genes?

10) Find information on human gene therapy of atherosclerosis from NCBI

online books.

11) Find the number of papers that Dr. Palmer from Indiana University

has published on the subject of lateral gene transfer in the past ten
years.
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EXERCISE 2. DATABASE SIMILARITY SEARCHES AND PAIRWISE
SEQUENCE ALIGNMENT

Database Searching

In this exercise, youwilllearn about database sequence similarity search tools through
an example: flavocytochrome b2 (PDB code 1fcb). This enzyme has been shown to be
very similar to a phosphoribosylanthranilate isomerase (PDB code 1pii) by detailed
three-dimensional structural analysis (Tang et al. 2003. J. Mol. Biol. 334:1043-62). This
similarity may not be detectable by traditional similarity searches. Perform the follow-
ing exercise to test the capability of various sequence searching methods to see which
method has the highest sensitivity to detect the distant homologous relationship.

1. Obtain the yeast flavocytochrome b2 protein sequence from NCBI Entrez
(accession number NP_013658). This is done by choosing “FASTA” in the format
pull-down menu and clicking on the “Display” button. Copy the sequence into
clipboard.

2. Perform a protein BLAST search (select Protein-protein BLAST at
www.ncbi.nlm.nih.gov/blast/). Paste the sequence into the BLASTP query box.
Choose pdb as database (this will reduce the search time). Leave all other
settings as default. Click on the “BLAST!” button. To get the search result, click
on the “Format!” button in the following page. Summarize the number of hits,
highest and lowest bit scores in a table.

3. Change the E-value to 0.01 and change the word size from 3 to 2, and do the
search again. Do you see any difference in the number of hits? Can you find 1pii
in the search result?

4. Reset the E-value to 10. Change the substitution matrix from BLOSUMS62 to
BLOSUM45. Compare the search results again. Whatis your conclusion in terms
of selectivity and sensitivity of your searches? Record the number of hits, and
the highest and lowest scores in a table.

5. Reset the substitution matrix to BLOSUMSG62, run the same search with and
without the low-complexity filter on. Compare the results.

6. Run the same search using FASTA (www.ebi.ac.uk/fasta33/). Choose pdb as
database and leave other parameters as default. Compare the results with those
from BLAST.

7. Run an exhaustive search using ScanPS (www.ebi.ac.uk/scanps/) using the
default setting. This may take a few minutes. Compare results with BLAST and
FASTA. Can you find 1pii in the result page?

8. Go back to the NCBI BLAST homepage, run PSI-BLAST of the above protein
sequence by selecting the subprogram “PHI- and PSI-BLAST” (PHI-BLAST
is pattern matching). Paste the sequence in the query box and choose pdb
as database. Select “BLAST!” (for a regular query sequence, PSI-BLAST is
automatically invoked). Click on “Format!” in the next page. The results will be
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10.

11.

12.

13.

returned in a few minutes. Notice the symbols (New or green circle) in front of
each hit.

. By default, the hits with E-values below 0.005 should be selected for use in

multiple sequence alignment and profile building. Click on the “Run PSI-Blast
iteration 2” button. This refreshes the previous query page. Click the “Format!”
button to retrieve results.

In the results page, notice the new hits generated from the second iteration.
Perform another round of PSI-BLAST search. Record the number of hits and try
to find 1pii in the result page.

Finally, do the same search using a hidden Markov model based approach.
Access the HHPRED program (http://protevo.eb.tuebingen.mpg.de/toolkit/
index.php?view=hhpred) and paste the same query sequence in the query
window. Click the “Submit job” button.

The search may take a few minutes. When the results are returned, can you find
1pii in the search output?

Compare the final results with those from other methods. What is your conclu-
sion regarding the ability of different programs to find remote homologs?

Pairwise Sequence Alignment

1

. In the NCBI database, retrieve the protein sequences for mouse hypoxanthine

phosphoribosyl transferase (HPRT) and the same enzyme from E. coliin FASTA
format.

.Perform a dot matrix alignment for the two sequences using Dothelix

(www.genebee.msu.su/services/dhm/advanced.html). Paste both sequences
in the query window and click on the “Run Query” button. The results are
returned in the next page. Click on the diagonals on the graphic output to see
the actual alignment.

.Perform a local alignment of the two sequences using the dynamic

programming based LALIGN program (www.ch.embnet.org/software/
LALIGN_form.html). Make sure the two sequences are pasted separately in
two different windows. Save the results in a scratch file.

. Perform a global alignment using the same program by selecting the dial for

“global.” Save the results and compare with those from the local alignment.

. Change the default gap penalty from “—14/—4" to “—4/—1". Run the local align-

ment and compare with previous results.

. Doapairwisealignmentusing BLAST (in the BLAST homepage, select the bl2seq

program). Compare results with the previous methods.

.Do another alignment with an exhaustive alignment program SSEARCH

(http:/ /pir.georgetown.edu/pirwww/search/pairwise.html). Compare the
results.

.Run a PRSS test to check whether there is any statistically significant simi-

larity between the two sequences. Point your browser to the PRSS web page
(http:/ /fasta.bioch.virginia.edu/fasta/prss.htm). Paste the sequences in the
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FASTA format in the two different windows. Use 1,000 shuffles and leave every-
thingelse as default. Click on the “Compare Sequence” button. Study the output
and try to find the critical statistical parameters.

EXERCISE 3. MULTIPLE SEQUENCE ALIGNMENT
AND MOTIF DETECTION

Multiple Sequence Alignment

In this exercise you will learn to use several multiple alignment programs and compare
the robustness of each. The exercise is on the Rieske iron sulfur protein from a number
of species. The critical functional site of this protein is a iron-sulfur center with a
bound [2Fe-2S] cluster. The amino acid binding motifs are known to have consensi of
C-X-H-X-G-C and C-X-X-H. Evaluate the following alignment programs for the ability
to discover the conserved motifs as well as to correctly align the rest of the protein
sequences. The result you obtain may aid in the understanding of the origin and
evolution of the respiratory process.

1. Retrieve the following protein sequences in the FASTA format using NCBI
Entrez: P08067, P20788, AAD55565, P08980, P23136, AAC84018, AAF02198.

2. Save all the sequences in a single file using a text editor such as nedit.

3. First, use a progressive alignment program Clustal to align the sequences.
Submit the multisequence file to the ClustalW server (www.ch.embnet.org/
software/ClustalW.html) for alignment using the default settings. Save the result
in ClustalW format in a text file.

4. To evaluate quality of the alignment, visually inspect whether the key residues
that form the iron-sulfur centers are correctly aligned and whether short
gaps are scattered throughout the alignment. A more objective evaluation
is to use a scoring approach. Go to a web server for alignment quality eval-
uation  (http://igs-server.cnrs-mrs.fr/ Tcoffee/tcoffee_cgi/index.cgi?action=
Evaluate%20a%20Multiple%20Alignment::Regularstagel=1). Bookmark this
site for later visits. Paste the alignment in Clustal format in the query box. Click
on “Submit.”

5. To view the result in the next page, click on the “score_html” link. The overall
quality score is given in the top portion of the file. And the alignment quality is
indicated by a color scheme. Record the quality score.

6. Align the same sequences using a profile-based algorithm MultAlin (http://
prodes.toulouse.inra.fr/multalin/multalin.html) using the default parameters.
Click the button “Start MultAlin.” Save the results in the FASTA format first and
convert it to the Clustal format for quality comparison.

7. Select the hyperlink for “Results as a FASTA file.” Copy the alignment and open
the link for Readseq (http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi/). Paste
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10.

11.

12.

the FASTA alignment in the query box. Select the output sequence format as
Clustal. Click “Submit.”

. Copy and paste the Clustal alignment in the quality evaluation server and record

the score.

. Submit the same unaligned sequences to a semi-exhaustive alignment program

DCA (http://bibiserv.techfak.uni-bielefeld.de/dca/submission.html). Click on
the “Submission” link on the right (in the green area) and paste the sequences
in the query box. Select the output format as “FASTA.” Click “Submit.” Save the
results for format conversion using Readseq. Do quality evaluation as above.
Do alignment with the same unaligned sequences using an iterative tree-based
alignment program PRRN (http://prrn.ims.u-tokyo.ac.jp/). Select the output
format as “FASTA.” Select the “Copy and Paste” option and enter your e-mail
address before submitting the alignment. Compare the quality of the alignment
with other methods.

Finally, align the sequences using the T-Coffee server (www.ch.embnet.org/
software/TCoffee.html). Score of alignment is directly presented in the HTML
format. Record the score for comparison purposes.

Carefully compare the results from different methods. Can you identify the most
reasonable alignment? Which method appears to be the best?

Hidden Markov Model Construction and Searches

This exercise is about building a hidden Markov model (HMM) profile and using it to
search against a protein database.

1.
2.

Obtain the above sequence alignment from T-Coffee in the Clustal format.
Copy and paste the alignment file to the query box of the HMMbuild pro-
gram for building an HMM profile (http://npsa-pbil.ibcp.fr/cgi-bin/npsa-
automat.pl?page=/NPSA/npsa_hmmbuild.html). Click “Submit.”

.You may receive an error message “Your clustalw alignment doesn’t start

with the sentence : CLUSTAL W (...) multiple sequence alignment”. Replace
the header (beginning line) of the input file with “CLUSTAL W (...) multiple
sequence alignment”. Click “Submit.”

. When the HMM profile is constructed, click on the link “PROFILE” to examine

the result.

. Choose HMMSEARCH and UniProt-SwissProt database before clicking “Sub-

mit.” This process takes a few minutes. Once the search is complete, the data-
base hits that match with the HMM are returned along with multiple alignment
files of the database sequences.

. You have options to build a new HMM profile or to extract the full database

sequences. Click “HMMBUILD” at the bottom of the page. The HMM profile
building can be iterated as many times as desired similar to PSI-BLAST. For the
interest of time, we stop here.
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Protein Motif Searches

1. Align four sequences of different lengths in a file named “zffasta”
(downloadable from www.cambridge.org/us/catalogue/catalogue.asp?isbn=
0521600820) using T-Coffee and DIALIGN2 (http://bibiserv.techfak.uni-
bielefeld.de/dialign/submission.html).

2. Which of the programs is able to identify a zinc finger motif [C(X4)C(X12)
H(X3)H]?

3. Verify the result with the INTERPRO motif search server (www.ebi.ac.uk/
interpro/) by cutting and pasting each of the unaligned sequences, one at a
time, to the query box. Submit the query and inspect the search result.

4. Retrieve the protein sequence AAD42764 from Entrez. Do motif search of this
sequence using a number of search programs listed. Pay attention to statis-
tical scores such as E-values, if available, as well as the boundaries of the
domains/motifs.

a) BLOCKS Impala Searcher (http://blocks.thcrc.org/blocks/impala.html).

b) Reverse PSI-BLAST (http://blocks.thcrc.org/blocks-bin/rpsblast.html).

¢) ProDom (http://prodes.toulouse.inra.fr/prodom/current/html/form.php).

d) SMART (http://smart.embl-heidelberg.de/), select the “Normal” mode and
paste the sequence in the query window.

e) InterPro (www.ebi.ac.uk/interpro/), choose the link “Sequence Search” in
the left grey area. Paste the sequence in the following query page.

f) Scansite (http://scansite.mit.edu/), in the Motif Scan section, select “Scan
a Protein by Input Sequence.” Enter a name for the sequence and paste
the sequence in the query window. Click “Submit Request.” In the follow-
ing page with the graphic representation of the domains and motifs, click
“DOMAIN INFO” to get a more detailed description.

g) eMatrix (http://fold.stanford.edu/ematrix/ematrix-search.html).

h) Elm (http://elm.eu.org/). Use Homo sapiens as default organism.

Compile the results. What is your overall conclusion of the presence of domains and
motifs in this protein?

DNA Motif Searches

DNA motifs are normally very subtle and can only be detected using “alignment-
independent” methods such as expectation maximization (EM) and Gibbs motif sam-
pling approaches.

1. Use the DNA sequence file “sd.fasta” (downloadable from www.cambridge.
org/us/catalogue/catalogue.asp?isbn=0521600820) and generate alignment us-
ing the EM-based program Improbizer (www.cse.ucsc.edu/~kent/improbizer/
improbizer.html) with default parameters.

2. Do the same search using a Gibbs sampling-based algorithm AlignAce
(http://atlas.med.harvard.edu/cgi-bin/alignace.pl) using default parameters.
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Compare the results of best scored motifs from both methods. Are there
overlaps?

Copy and paste the first motif derived from AlignAce to nedit. Remove the illegal
characters (spaces and numbers).

Cut and paste the motif alignment into the WebLogo program (http://weblogo.
berkeley.edu/logo.cgi). Click the “Create logo” button.

Can you identify the bacterial Shine-Dalgarno sequence motif from the
sequences?

EXERCISE 4. PHYLOGENETIC ANALYSIS

In this exercise, you will reconstruct the phylogeny of HIV by building an unrooted
tree for the HIV/SIV gp120 proteins using the distance neighbor joining, maximum
parsimony, maximum likelihood, and Bayesian inference methods.

Constructing and Refining a Multiple Sequence Alignment

1.

Open the file “gpl20.fasta” (downloadable from www.cambridge.org/us/
catalogue/catalogue.asp?isbn=0521600820) using nedit.

. Go to the MultAlin alignment server (http://prodes.toulouse.inra.fr/multalin/

multalin.html). Copy and paste the sequences to the query box and submit the
sequences for alignment using the default parameters.

. Visually inspect the alignment result and pay attention to the matching of cys-

teine residues, which roughly indicate the correctness of the alignment.

. View the result in FASTA format by clicking the hyperlink “Results as a fasta

file.” Save the FASTA alignment in a new text file using nedit.

. Refine the alignment using the Rascal program that realigns certain portion

of the file. Open the Rascal web page (http://igbmc.u-strasbg.fr/PipeAlign/
Rascal/rascal.html) and upload the previous alignment file in FASTA
format.

. After a minute or so, the realignment is displayed in the next window. Examine

the new alignment. If you accept the refinement, save the alignment in FASTA
format.

. Next, use the Gblocks program to further eliminate poorly aligned posi-

tions and divergent regions to make the alignment more suitable for phylo-
genetic analysis. Go to the Gblocks web page (http://molevol.ibmb.csic.es/
Gblocks_server/index.html) and upload the above refined alignment into the
server.

. By default, the program should be set for protein sequences. Check the three

boxes that allow less stringent criteria for truncation. These three boxes are
“Allow smaller final blocks,” “Allow gap positions within the final blocks,” and
“Allow less strict flanking positions.”

. Click the “Get Blocks” button. After the program analyzes the alignment quality,

conserved regions are indicated with blue bars.
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10.

11.

If you accept the selection, click on the “Resulting alignment” hyperlink at the
bottom of the page to get selected sequence blocks in the FASTA format.
Copythe sequence alignment and change its format using the Readseq program
(http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi) by pasting the sequences to
the query box of the program. Select “Phylip|Phylip4” as output format. Click
submit. Save the final alignment in a scratch file.

Constructing a Distance-Based Phylogenetic Tree

1.
2.

11

12.

13.

Go to the WebPhylip web page (http://biocore.unl.edu/WEBPHYLIP/).
Select “Distance Computation” in the left window. In the subsequent window,
select “PAM Matrix” under “Protein Sequences.”

. Copy and paste the above Phylip alignment in the query box on the lower right

portion of the window. Leave everything else as default. Click the “Submit”
button.

. Once the distance matrix is computed, a split window on the upper right is

refreshed to give the distance matrix of the dataset.

. To construct a tree with the matrix, select “Run” the distance methods in the

lower left window.

.In the next window, select “Run” under “Neighbor-joining and UPGMA

methods.”

. This refreshes the lower right window. By default, the “Neighbor-joining tree”

is selected. Select “Yes” for the question “Use previous data set?” (highlighted
in red). Click the “Submit” button.

. Acrude diagram of the phylogenetic tree is displayed in the upper right window.
. Todraw a better tree, select the “Draw trees” option (in green) in the left window.
10.

In the next window, select “Run” under “Draw Cladograms and phenograms.”

. In the refreshed lower right window, make sure “Yes” is selected for the question

“Use tree file from last stage?” Click the “Submit” button.

A postscript file is returned. Save it to hard drive as “filename.ps.” Convert the
postscript file to the PDF format using the command “ps2pdf filename.ps”.
Open the PDF file using the xpdf filename.pdf command.

Using the same alignment file, do a phylogenetic tree using the Fitch-
Margoliash method and compare the final result with the neighbor-joining
tree.

Constructing a Maximum Parsimony Tree

1.

In the same WebPhylip web page, click “Back to menu.”

2. Select “Protein” in the “Run phylogeny methods for” section in the left window.
3.
4. In the refreshed window on the right, repaste the sequence alignment in the

” o«

Choose “Run” “Parsimony” in the next window.

query window and choose “Yes” for “Randomize input order of sequences?”

. Leave everything else unchanged and click the Submit button. This initiates the

calculation for parsimony tree construction, which will take a few minutes.

. Two equally most parsimonious trees are shown in the upper right window.
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9

11.

. Choose “Do consensus” on the left and “Run” “Consensus tree” in the next
window.
. In the refreshed lower right window, make sure “Yes” is selected for the question

“Use tree file from last stage?” Click the “Submit” button.

. Choose “Draw trees” and then “Run” for “Draw Cladogram” on the left.
10.

Make sure “Yes” for “Use tree file from last stage?” is selected and leave every-
thing else as default.
A postscript image is returned for viewing.

Constructing a Quartet Puzzling Tree

1.

w

Access the Puzzle program web page (http://bioweb.pasteur.fr/seqanal/
interfaces/Puzzle.html).

. Copy and paste (or upload) the gp120 Phylip alignment into the query window.
. Select “protein” for the sequence type.
. Scroll down the window to the Protein Options section. Select “ITT model” for

amino acid substitutions.

. Leave other parameters as default. Provide your e-mail address before submit-

ting the query.

. The URL for the results will be sent to you by e-mail (check your e-mail in about

10 or 20 minutes).

. Get your result by following the URL in e-mail. Select the “drawgram” option

and click “Run the selected program on results.tree” button.

. In the following Phylip page, choose “Phenogram” as “Tree Style” in the next

page, and click “Run drawgram.”

. The tree is returned in a postscript file. Open the image file by clicking on the

hyperlink plotfile.ps.

Constructing a Maximum Likelihood Tree Using Genetic Algorithm

1

. Go to the PHYML web page (http://atgc.lirmm.fr/phyml/).
2.

Select “File” next to the query window. Click “Browse” to select the sequence
alignment file for uploading.

. Select “Amino-Acids” for “Data Type.”
. Leave everything else as default and provide your name, country, and e-mail

address before submitting the query.

. The treeing result will be sent to you by e-mail (the process takes about 10 or

20 minutes).

.One of your e-mail attachment files should contain the final tree in

the Newick format which can be displayed using the Drawtree program
(www.phylodiversity.net/~rick/drawtree/).

. Copy and paste the Newick file to the query window. Leave everything else as

default. Click the “Draw Tree” button.

. The graphical tree is returned in the PDF format.
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Constructing a Phylogenetic Tree Using Bayesian Inference

1.

Access the BAMBE program (http://bioweb.pasteur.fr/seqanal/interfaces/
bambe.html).

Copy and paste (or upload) the gp120 alignment in Phylip format into the query
window. Leave all parameters as default (6,000 cycles with 1,000 cycles as burn-
in). Provide your e-mail address before submitting the query.

The URL of the result is returned via e-mail (in 10 or 20 minutes).

Verify that the likelihood value of the final tree has reached near convergence by
checking the end of the “results.par” file. (In this file, the first column represents
the number of cycles and second column the InL values of the intermediate
trees.)

If the log likelihood of the trees is indeed stabilized, go back to the previous
page and draw the final consensus tree by selecting the “drawgram” option and
clicking the “Run the selected program on results.tre” button.

In the following page, choose “Phenogram” as Tree Style in the next page, and
click “Run drawgram.”

The tree is returned in a postscript file. Open the image file by clicking on the
hyperlink plotfile.ps.

Compare the phylogenetic results from different methods and draw a con-
sensus of the results and consider the evolutionary implications. What is the
phylogenetic relationship of HIV-1, HIV-2, and SIV? What do the trees tell you
about the origin of HIV and how many events of cross-species transmissions?
(Note: SIVCZ is from chimpanzee and SIVM is from macaque/mangabeys.)

EXERCISE 5. PROTEIN STRUCTURE PREDICTION

Protein Secondary Structure Prediction

In this exercise, use several web programs to predict the secondary structure of a glob-
ular protein and a membrane protein, both of which have known crystal structures.
The predictions are used to compare with experimentally determined structures so
you can get an idea of the accuracy of the prediction programs.

1.

Retrieve the protein sequence YjeE (accession number ZP_00321401) in the
FASTA format from NCBI Entrez. Download the sequence into a text file.
Predict its secondary structure using the GOR method. Go to the web
page http://fasta.bioch.virginia.edu/fasta_www/garnier.htm and paste the
sequence into the query box. Click the “Predict” button.

Save the result in a text file.

The crystal structure of this protein has a PDB code 1htw (as a homotrimeric
complex). The secondary structure of each monomer can be retrieved at the
PDBsum database (www.ebi.ac.uk/thornton-srv/databases/pdbsum/).

Enter the PDB code 1htw in the query box. Click “Find.”
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6.

10.

11.

12.
13.

14.
15.

16.

17.

In the menu bar on the top right, select the “Protein” menu. This brings up the
protein secondary structure as well as the CATH classification information. If
the background of the secondary structure window is black, select and down-
load the PDF file format next to the window. Open it using the xpdf command.

. Compare the real secondary structure with the GOR prediction. What conclu-

sion can you draw from this?

. Now do another prediction using the neural-network-based Predator pro-

gram (http://bioweb.pasteur.fr/seqanal/interfaces/predator-simple.html). Enter
your e-mail address before submitting the query.

. The result is returned in the “predator.out” file. Compare the result with the

GOR prediction and the known secondary structure. What conclusion can you
draw from this?

Do the structure prediction again using the BRNN-based Porter program
(http://distill.ucd.ie/porter//).

Paste sequence in the query window and enter the e-mail address. Click the
“Predict” button.

The result is e-mailed to you in a few minutes.

Compare the result with the previous predictions and the known secondary
structure. What can you learn from this?

Retrieve the human aquaporin sequence (AAH22486) from NCBI.

Predict the transmembrane structure using the Phobius program (http://
phobius.cgb.ki.se/). Record the result.

The PDB code of this protein structure is 1h6i, which you can use to retrieve
the experimentally determined secondary structure from PDBsum.

Compare the prediction result with the known structure. Do the total number
of transmembrane helices and their boundaries match in all cases?

Protein Homology Modeling

In the following exercise, construct a homology model for a small protein from a
cyanobacterium, Anabaena variabilis. The protein, which is called HetY, may be
involved in nitrogen fixation but has no well-defined function. The objective of this
exercise is to help provide some functional clues of the protein. The protein model
is displayed and rendered using a shareware program Chimera (downloadable from

www.cgl.ucsf.edu/chimera/).

1.

2.

3.

Retrieve the protein sequence (ZP_00161818) in the FASTA format from NCBI
Entrez. Save the sequence in a text file.

To search for structure templates, do a BLASTP search (www.ncbi.nlm.
nih.gov/BLAST/) against the “pdb” database.

Examine the BLAST result. Select the top hit if the E-value of the alignment is
significant enough. This sequence should correspond to the structure 1htw and
can serve can as the structure template.
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4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Perform more refined alignment between HetY and the template. Click on the
hyperlink in the header of the template sequence to retrieve the full-length
sequence in the FASTA format. Save it in a text file.

. Align HetY and the template sequence (1htw) using T-Coffee (www.ch.embnet.

org/software/TCoffee.html).

. Convert the alignment into the FASTA format using Readseq (http://iubio.

bio.indiana.edu/cgi-bin/readseq.cgi/). Save it into a text file.

.Refine the alignment using the Rascal server (http://igbmc.u-strasbg.fr/

PipeAlign/Rascal/rascal.html) by uploading the FASTA alignment file.

. Download the refined alignment in the FASTA format.
. Perform comprehensive homology modeling using the GetAtoms server

(www.softberry.com/berry.phtml?topic=getatoms&group=programs&
subgroup=propt).

Paste the alignment in the query window. Select “FASTA” for format. Enter
“lhtw” for PDB identifier and “A” for chain identifier. Make sure the input order
is the target sequence before the template sequence.

Select “Add H-atoms at the end of optimization” and “Process loops and inser-
tions.” Click the “PROCESS” button.

The coordinates of the model are returned in the next page. Save the coordinate
file using the “Save As” option in File menu.

Open the coordinate file using nedit. Delete the dashes, trademark, and other
HTML-related characters at the end of the file.

The raw model can be refined by energy minimization. Upload the edited
coordinate file to the Hmod3DMM program (www.softberry.com/berry.
phtml?topic=molmech&group=programs&subgroup=propt). Press “START.”
A refined model is returned in a few minutes. Save the energy-minimized coor-
dinates to the hard drive.

Check the quality of final structure using Verify3D (http://nihserver.mbi.ucla.
edu/Verify_3D/). Upload the structure to the Verify3D server. Click “Send File.”
In the resulting quality plot, scores above 0 indicate favorable conformations.
Check to see whether if any residue scores are below 0. If the scores are signifi-
cantly below 0, reminimization of the model is required.

Assuming the modeled protein is final, the next step is to add cofactor to the
protein.

Assuming that the target protein has similar biochemical functions as the tem-
plate protein (ATPase), important ligands from the template file that can be
transferred to the target protein.

Download the template structure (1htw) from the PDB website (www.rcsb.
org/pdb/). Click the “Download/Display File” link in the menu on the left.
Download the noncompressed PDB file.

To extract the cofactor, open the IHTW.pdb with nedit. Go the HETATM sec-
tion near the bottom of the file. Find the coordinates for ADP 560. Copy the
coordinates (make sure you include all the atoms for this cofactor).
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22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

Open the HetY model using nedit and paste the HETATM coordinates imme-
diately after the ATOM section (near the end of the file). Delete the dashes,
trademark, and other HTML-related characters.

Before using Chimera to visualize the model, you need add an alias to your
.cshrc file. Open .cshrc with nedit and add a line at the end of the file: alias
chimera /chem/ chimera/chimera-1.2065/bin/chimera. Save the file and quit
nedit. In the UNIX window, type source .cshrc.

Invoke the Chimera program by typing chimera.

In the File menu, select “Open.” For File type, select “all (ask type).” Select your
model (e.g., hetY.pdb) to be opened.

The structure file is initially uncolored. Color the atoms by going to the menu
Actions — Color — by element.

The structure can be rotated using the left mouse button, moved using the
middle mouse button, and zoomed using right mouse button.

You can display a smooth solid surface showing electrostatic distribution as
well as bound cofactor ADP. Go to Actions — Surface — show.

To select the cofactor, go to Select — Chain — het. To color it, select
Actions — Color — cyan. To render it in spheres, select Actions — Atoms/
bonds — sphere.

To finalize selection, go to Select — Clear selection. Rotate the model around
to study the protein-ligand binding.

To reset the rendering, go to Actions — Surface — hide; Actions — Atoms/
bonds — wire.

Now draw the secondary structure of the model. Select Actions — Ribbon —
show; Actions — Ribbon — round. To color it, go to Tools — Graphics —
Color Secondary Structure. In the pop-up window, click OK for default
setting.

To hide the wire frames, select Actions — Atoms/bonds — hide.

To show the cofactor, Select — Chain — het. Then Actions — Atoms/bonds —
ball & stick.

The publication quality image can be saved for printing purposes. To make
it more printer-friendly, the background can be changed to white. Select
Actions — Color — background; Actions — Color — white.

To save the image, go to File — Save Image. In the pop-up window, click “Save
As.”

As the program is writing an image, the model may dance around on the
screen for a while. When it stabilizes, a new window pops up to prompt you
for filename and file type (default format is .png). Give it a name and click
“Save.”

Quit the Chimera program. To view the image in a UNIX window, type imgview
filename.png.

The image file can be e-mailed to yourself as attachment for printing on your
own printer.

When you are done, close all the programs and log out.
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EXERCISE 6. GENE AND PROMOTER PREDICTION
AND GENE ANNOTATION

Gene Prediction

In this exercise, you do gene predictions using a bacterial sequence from Heliobacil-
lus mobilis (Hm_dna.fasta) (downloadable from www.cambridge.org/us/catalogue/
catalogue.asp?isbn=0521600820). This provides the foundation for operon predic-
tions and promoter predictions. One way to verify the gene prediction result is to
check the presence of Shine-Dalgarno sequence in front of each gene which is a
purine-rich region with a consensus AGGAGG and is located within 20 bp upstream
of the start codon.

1. Point your browser to the GeneMark web page (frame-by-frame module)
(http://opal.biology.gatech.edu/GeneMark/fbf.cgi).

2. Uploadthe Hm_dna.fastasequence file and choose Bacillus subtilis as “Species”

(the closest organism).

Leave other options as default and start the GeneMark program.

Save the prediction result using nedit.

To confirm the prediction result, the sequence needs to have numbering.

Convert the original sequence file into a GenBank format using the ReadSeq

server (http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi). Save the results in a

new file.

7. Based on the prediction by GeneMark, find the gene start sites in the sequence
file. Can you find the Shine-Dalgarno sequence in each predicted frame?

8. Do another gene prediction using the Glimmer program (http://compbio.
ornl.gov/GP3/pro.html). Select “Glimmer Genes.” Use B. subtilis as the clos-
est organism. Upload the sequence file and perform the Glimmer search.

9. When the data processing is complete, click the “Get Summary” button. In the
following page, select Retrieve: — TextTable.

10. Compare the prediction result with that from GeneMark. Pay attention to the
boundaries of open reading frames. For varied gene predictions, verify the pres-

o oW

ence of Shine-Dalgarno sequence in each case. Have you noticed problems of
overpredictions or missed predictions with Glimmer? Can you explain why?

Operon Prediction

In this exercise, you predict operons of the above heliobacterial sequence using the
40-bp rule: if intergenic distance of a pair of unidirectionally transcribed genes is
smaller than 40 bp, the gene pair can be called an operon. This rule was used widely
before the development of the scoring method of Wang et al., which is a little too
complicated for this lab.

1. Using the gene prediction result from GeneMark, calculate the intergenic dis-
tance of each pair of genes.
2. How many operons can you derive based on the 40-bp rule?
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Promoter Prediction

In this exercise, perform ab initio promoter predictions based on the operon predic-
tion from the previous exercise. Algorithms for promoter prediction are often written
to predict the transcription start sites (TSS) instead. The —10 and —35 boxes can be
subsequently deduced from the upstream region of this site.

1. Using the operon prediction result that you believe is correct, copy ~150-bp
upstream sequence from the first operon start sites and save the sequence in a
new file.

2. Convert the sequence to the FASTA format, using the Readseq program.

3. Do a promoter prediction using BPROM (www.softberry.com/berry.phtml?
topic=bprom&group=programs&subgroup=gfindb). Paste the sequence in
the query window and press the PROCESS button. Record the result. (Note:
TSS predicted by this program is labeled as LDE)

4. Do another promoter prediction using the SAK program (http://
nostradamus.cs.rhul.ac.uk/%7Eleo/sak_demo/), which calculates the likeli-
hood scores of sites being the TSS.

5. Intheoutput page, find the position that has the highest likelihood score (listed
in the second column), which is the TSS prediction.

6. Compare the results from the two sets of predictions. Are they consistent?

Gene Annotation

A major issue in genomics is gene annotation. Although a large number of genes and
proteins can be assigned functions simply by sequence similarity, about 40% to 50% of
the genes from newly sequenced genomes have no known functions and can only be
annotated as encoding “hypothetical proteins.” In this exercise, you are given one of
such “difficult” protein sequences for functional annotation. This protein is YciE from
E. coli, which has been implicated in stress response. However, its actual biochemical
function has remained elusive. In this exercise, use advanced bioinformatics tools to
derive functional information of the protein sequence.

1. Retrieve the protein sequence of YciE from NCBI Entrez (www.ncbi.
nlm.nih.gov/Entrez/, accession P21363) in the FASTA format and study the
existing annotation in the GenBank file.

2. Do domain and motif searches of this sequence using RPS-BLAST
(http://blocks.therc.org/blocks/rpsblast.html), SMART (http://smart.embl-
heidelberg.de/) (Use the Normal mode. Check all four boxes below the query
box for Outlier homologs, PFAM domains, signal peptides, and internal repeats
before starting the search) and InterPro (www.ebi.ac.uk/interpro/). Compile
the results. What is the consensus domains and motifs in this protein?

3. Do afunctional prediction based on protein interactions by using the STRING
server (http://string.embl.de/). Paste your sequence into the query box and
click the “GO” button.
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10.

11.
12.

13.

14.

In the result page for predicted protein—protein interactions, check to see what
are the predicted interacting proteins. What is the evidence for the interaction
prediction?

Do a protein threading analysis using the HHPred server (http://protevo.eb.
tuebingen.mpg.de/toolkit/index.php?view=hhpred). This program searches
protein folds by combining HMMs and secondary structure prediction infor-
mation.

Paste the sequence in the query box and submit the job using all the default
settings. The query is processed. The result is returned in a minute.

Pick the top hit showing the most significant E-value and study the annotation
of the structure match and visually inspect the alignment result.

Get more detailed information about the best matching protein structure by
clicking the link with the PDB code. This brings up the PDB beta page with
detailed annotation information especially the bibliographic information of
the structure.

You can retrieve the original publication on the structure by selecting the
“PubMed” link. Read the “Introduction” section of this paper. Can you get any
functional description about the protein in that paper in relation to the stress
response?

In the PDB site, retrieve the sequence of this structure (only one subunit) by
selecting the menu “Summarize” — “Sequence Details.” In the next page, scroll
down the window to click the “Download” button for chain A in FASTA format.
Open the sequence in the FASTA format and save it to the hard disk.

Do a refined pairwise alignment of this sequence with YciE using the AliBee
server (www.genebee.msu.su/services/malign_reduced.html). What is the per-
cent identity for the best set of alignment?

Do a PRSS test on the two original sequences by copying and pasting the two
unaligned sequences in two individual query boxes of the PRSS server (http://
fasta.bioch.virginia.edu/fasta/prss.htm). Select 1,000 shuffles with “window”
setting. Are the two protein sequences significantly related? Can you designate
them as homologous sequences?

Compile the results from each of the predictions. What is your overall conclu-
sion of the function of this protein?
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Glossary

Ab initio prediction: computational prediction based on first principles or using the
most elementary information.

Accessionnumber: unique number given to an entry in a biological database, which
serves as a permanent identifier for the entry.

Agglomerative clustering: microarray data clustering method that begins by first
clustering the two most similar data points and subsequently repeating the process
to merge groups of data successively according to similarity until all groups of data
are merged. This is in principle similar to the UPGMA phylogenetic approach.

Alternative splicing: mRNA splicing event that joins different exons from a single
gene to form variable transcripts. This is one of the mechanisms of generating a large
diversity of gene products in eukaryotes.

Bayesian analysis: statistical method using the Bayes theorem to describe condi-
tional probabilities of an event. It makes inferences based on initial expectation and
existing observations. Mathematically, it calculates the posterior probability (revised
expectation) of two joint events (A and B) as the product of the prior probability of
A event given the condition B (initial expectation) and conditional probability of B
(observation) divided by the total probability of event A with and without the condi-
tion B. The method has wide applications in bioinformatics from sequence alignment
and phylogenetic tree construction to microarray data analysis.

Bioinformatics: discipline of storing and analyzing biological data using computa-
tional techniques. More specifically, it is the analysis of the sequence, structure, and
function of the biological macromolecules — DNA, RNA, and proteins — with the aid
of computational tools that include computer hardware, software, and the Internet.

Bit score: statistical indicator in database sequence similarity searches. It is a nor-
malized pairwise alignment score that is independent of database size. It is suitable
for comparing search results from different databases. The higher the bit score, the
better the match is.

BLAST (Basic Local Alignment Search Tool): commonly used sequence database
search program based on sequence similarity. It has many variants, such as BLASTN,
BLASTP and BLASTX, for dealing with different types of sequences. The major feature
of the algorithm is its search speed, because it is designed to rapidly detect a region
of local sequence similarity in a database sequence and use it as anchor to extend to
a fuller pairwise alignment.
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BLOSUM matrix: amino acid substitution matrix constructed from observed fre-
quencies of substitution in blocks of ungapped alignment of closely related protein
sequences. The numbering of the BLOSUM matrices corresponds to percent identity
of the protein sequences in the blocks.

Boolean expression: database retrieval method of expressing a query by connecting
query words using the logical operators AND, OR, and NOT between the words.

Bootstrap analysis: statistical method for assessing the consistency of phylogenetic
tree topologies based on the generation of a large number of replicates with slight
modifications in input data. The trees constructed from the datasets with random
modifications give a distribution of tree topologies that allow statistical assessment
of each individual clade on the trees.

CASP (Critical Assessment in Structure Prediction): biannual international contest
to assess protein structure prediction software programs using blind testing. This
experiment attempts to serve as a rigorous test bed by providing contestants with
newly solved but unpublished proteins structures to test the efficacy of new pre-
diction algorithms. By avoiding the use of known protein structures as benchmarks,
the contest is able to provide unbiased assessment of the performance of prediction
programs.

Chromosome walking: experimental technique that identifies overlapping geno-
mic DNA clones by labeling the ends of the clones with oligonucleotide probes.
Through a multistep process, it is able cover an entire chromosome.

Clade: group oftaxaonaphylogenetictreethataredescended from asingle common
ancestor. They are also referred to as being monophyletic.

COG (Cluster of Orthologous Groups): protein family database based on phyloge-
netic classification. It is constructed by comparing protein sequences encoded by
completely sequenced genomes and identifying orthologous proteins shared by three
or more genomes to be clustered together as orthologous groups.

Comparative genomics: subarea of genomics that focuses on comparison of whole
genomes from different organisms. It includes comparison of gene number, gene
location, and gene content from these genomes. The comparison provides insight
into the mechanism of genome evolution and gene transfer among genomes.

Contig: contiguous stretch of DNA sequence assembled from individual overlapp-
ing DNA segments.

Cytological maps: maps showing banding patterns on a stained chromosome and
observed under a microscope. The bands are often associated with the locations of
genetic markers. The distance between any two bands is expressed in relative units
(Dustin units).

Database: computerized archive used for storage and organization of data in such
a way that information can be retrieved easily via a variety of search criteria.
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Divisive clustering: microarray data clustering method that works by lumping all
data points in a single cluster and successively dividing the data into smaller groups
according to similarity until all the hierarchical levels are resolved. This is in principle
similar to the neighbor joining phylogenetic approach.

DNA microarray: technology for high throughput gene expression profiling.
Oligonucleotides representing every gene in a genome can be immobilized on tiny
spots on the surface of a glass chip, which can be used for hybridization with alabeled
cDNA population. By analyzing the hybridization result, levels of gene expression at
the whole genome level can be revealed.

Domain: evolutionarily conserved sequence region that corresponds to a struc-
turally independent three-dimensional unit associated with a particular functional
role. It is usually much larger than a motif.

Dot plot: visual technique to perform a pairwise sequence alignment by using a
two-dimensional matrix with each sequence on its dimensions and applying dots for
matching residues. A contiguous line of dots in a diagonal indicates a local alignment.

Dynamic programming: algorithm to find an optimal solution by decomposing a
problem into many smaller, sequentially dependent subproblems and solving them
individually while storing the intermediate solutions in a table so that the highest
scored solution can be chosen. To perform a pairwise sequence alignment, the method
builds a two-dimensional matrix with each sequence on its dimensions and applies a
scoring scheme to fill the matrix and finds the maximum scored region representing
the best alignment by backtracking through the matrix.

EM (expectation maximization): local multiple sequence alignment method for
identification of shared motifs among input sequences. The motifs are discovered
through random alignment of the sequences to produce a trial PSSM and succes-
sively refinement of the PSSM. A motif can be recruited after this process is repeated
many times until there is no further improvement on the matrix.

EST (expressed sequence tags): shortsequences obtained from cDNA clones serving
as short identifiers of full length genes. ESTs are typically in the range of 200 to 400
nucleotides in length and are generated using a high throughput approach. EST pro-
filing can be used as a snapshot of gene expression in a particular tissue at a particular
stage.

E-value (expectation value): statistical significance measure of database sequence
matches. It indicates the probability of a database match expected as a result of ran-
dom chance. The E-value depends on the database size. The lower the E-value, the
more significant the match is.

Exon shuffling: mRNA splicing event that joins exons from different genes to gen-
erate more transcripts. This is one of the mechanisms of generating a large diversity
of gene products in eukaryotes.
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FASTA: database sequence search program that performs the pairwise alignment by
employing a heuristic method. It works by rapidly scanning a sequence to identify
identical words of a certain size as the query sequence and subsequently searching
for regions that contain a high density of words with high scores. The high-scoring
regions are subsequently linked to form a longer gapped alignment, which is later
refined using dynamic programming.

False negative: true match that fails to be recognized by an algorithm.

False positive: false match that is incorrectly identified as a true match by an algo-
rithm.

Fingerprint: group of short, ungapped sequence segments associated with diagnos-
tic features of a protein family. A fingerprint is a smaller unit than a motif.

Flat file: database file format that is a long text file containing database entries sep-
arated by a delimiter, a special character such as a vertical bar (|). Each field within an
entry is separated by tabs.

Fold: three-dimensional topology of a protein structure described by the arrange-
ment and connection of secondary structure elements in three dimensional space.

Fold recognition: method of protein structure prediction for the most likely protein
structural fold based on structure profile similarity and sequence profile similarity.
The structure profiles incorporate information of secondary structures and solvation
energies. The term has been used interchangeably with threading.

Functional genomics: study of gene functions at the whole-genome level using high
throughput approaches. This studyis also termed transcriptome analysis, which refers
to the analysis of the full set of RNA molecules produced by a cell under a given
condition.

Gap penalty: part of a sequence alignment scoring system in which a penalizing
score is used for producing gaps in alignment to account for the relative rarity of
insertions and deletions in sequence evolution.

Gene annotation: process to identify gene locations in a newly sequenced genome
and to assign functions to identified genes and gene products.

Gene ontology: annotation system for gene products using a set of structured, con-
trolled vocabulary to indicate the biological process, molecular function, and cellular
localization of a particular gene product.

Geneticalgorithm: computational optimization strategy that performsiterative and
randomized selection to achieve an optimal solution. It uses biological terminology as
metaphor because it involves iterative “crossing,” which is a mix and match of math-
ematical routines to generate new “offspring” routines. The offsprings are allowed to
randomly “mutate.” A scoring system is applied to select an offspring among many
with a higher score (better “fitness”) than the “parents.” This offspring is allowed to
“propagate” further. The iterations continue until the “fittest” offspring or an optimal
solution is selected.
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Geneticmap: map ofrelative positions of genes in a genome, based on the frequency
ofrecombinations of genetic markers through genetic crossing. The distance between
two genetic markers is measured in relative units (Morgans).

Genome: complete DNA sequence of an organism thatincludes all the genetic infor-
mation.

Genomics: studyof genomes characterized by simultaneous analysis of all the genes
in a genome. The topics of genomics range from genome mapping, sequencing, and
functional genomic analysis to comparative genomic analysis.

Gibbs sampling: local multiple sequence alignment method for identification of
shared motifs among input sequences. PSSMs are constructed iteratively from
N-1 sequences and are refined with the left-out sequence. An optimal motif can
be recruited after this process is repeated many times until there is no further im-
provement on the matrix.

Global alignment: sequence alignment strategy that matches up two or more
sequences over their entire lengths. It is suitable for aligning sequences that are of
similar length and suspected to have full-length similarity. If used for more divergent
sequences, this strategy may miss local similar regions.

Heuristics: computational strategy to find a near-optimal solution by using rules of
thumb. Essentially, this strategy takes shortcuts by reducing the search space accord-
ing to certain criteria. The results are not guaranteed to be optimal, but this method
is often used to save computational time.

Hidden Markov model: statistical model composed of a number of interconnected
Markov chains with the capability to generate the probability value of an event by
taking into account the influence from hidden variables. Mathematically, it calculates
probability values of connected states among the Markov chains to find an optimal
path within the network of states. It requires training to obtain the probability val-
ues of state transitions. When using a hidden Markov model to represent a multiple
sequence alignment, a sequence can be generated through the model by incorporat-
ing probability values of match, insertion, and deletion states.

Hierarchical clustering: technique to classify genes from a gene expression profile.
The classification is based on a gene distance matrix and groups genes of similar
expression patterns to produce a dendrogram.

Hierarchical sequencing: sequencing approach that divides the genomic DNA into
large fragments, each of which is cloned into a bacterial artificial chromosome (BAC).
The relative order of the BAC clones are first mapped onto a chromosome. Each of
the overlapping BAC clones is subsequently sequenced using the shotgun approach
before they are assembled to form a contiguous genomic sequence.

Homologs: biological features that are similar owing to the fact that they are derived
from a common ancestry.

Homology: biological similarity that is attributed to a common evolutionary origin.
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Homology modeling: method for predicting the three-dimensional structure of a
protein based on homology by assigning the structure of an unknown protein using
an existing homologous protein structure as a template.

Homoplasy: observed sequence similarity that is a result of convergence or paral-
lel evolution, but not direct evolution. This effect, which includes multiple substi-
tutions at individual positions, often obscures the estimation of the true evolution-
ary distances between sequences and has to be corrected before phylogenetic tree
construction.

HSP (high scoring segment pair): intermediate gapless pairwise alignment in BLAST
database sequence alignment.

Identity: quantitative measure of the proportion of exact matches in a pairwise or
multiple sequence alignment.

Jackknife: tree evaluation method to assess the consistency of phylogenetic tree
topologies by constructing new trees using only half of the sites in an original dataset.
The method is similar to bootstrapping, but its advantages are that sites are not
duplicated relative to the original dataset and that computing time is much reduced
because of shorter sequences.

Jukes—Cantor model: substitution model for correcting multiple substitutions in
molecular sequences. For DNA sequences, the model assumes that all nucleotides
are substituted with an equal rate. It is also called the one-parameter model.

k-Means clustering: classification technique that identifies the association of genes
in an expression profile. The classification first assigns data points randomly among
a number of predefined clusters and then moves the data points among the clusters
while calculating the distances of the data points to the center of the cluster (centroid).
The process is iterated many times until a best fit of all data points within the clusters
is reached.

Kimura model: substitution model for correcting multiple substitutions in molec-
ular sequences. For DNA sequences, the model assumes that there are two different
substitution rates, one for transition and the other for transversion. It is also called
the two-parameter model.

Lateral gene transfer: process of gene acquisition through exchange between
speciesinaway thatisincongruent with the commonly accepted vertical evolutionary
scenario. It is also called horizontal gene transfer.

Linear discriminant analysis: statistical method that separates true signals from
background noise by projecting data points in a two-dimensional graph and drawing
a diagonal line that best separates signals from nonsignals based on the patterns
learned from training datasets.

Local alignment: pairwise sequence alignment strategy that emphasizes matching
the most similar segments between the two sequences. It can be used for aligning
sequences of significant divergence and unequal lengths.
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Log-oddsscore: score thatisderived from the logarithmic conversion of an observed
frequency value of an event divided by the frequency expected by random chance so
that the score represents the relative likelihood of the event. For example, a positive
log-odds score indicates an event happens more likely than by random chance.

Low-complexity region: sequence region that contains a high proportion of redun-
dantresidues resulting in a biased composition that significantly differs from the gen-
eral sequence composition. This region often leads to spurious matches in sequence
alignmentand hasto be masked before beingused in alignment or database searching.

Machine learning: computational approach to detect patterns by progressive opti-
mization of the internal parameters of an algorithm.

Markov process: linear chain of individual events linked together by probability
values so that the occurrence of one event (or state) depends on the occurrence of the
previous event(s) (or states). It can be applied to biological sequences in which each
character in a sequence can be considered a state in a Markov process.

Maximum likelihood: statistical method of choosing hypotheses based on the high-
est likelihood values. It is most useful in molecular phylogenetic tree construction.

Maximum parsimony: principle of choosing a solution with fewest explanations or
logic steps. In phylogenetic analysis, the maximum parsimony method infers a tree
with the fewest mutational steps.

Minimum evolution: phylogenetic tree construction method that chooses a tree
with minimum overall branch lengths. In principle, it is similar to maximum parsi-
mony, but differs in that the minimum evolution method is distance based, whereas
maximum parsimony is character based.

Molecular clock: assumption that molecular sequences evolve at a constant rate.
This implies that the evolutionary time of a lineage can be estimated from its branch
length in a phylogenetic tree.

Molecular phylogenetics: study of evolutionary processes and phylogenies using
DNA and protein sequence data.

Monophyletic: refers to taxa on a phylogenetic tree that are descended from a single
common ancestor.

Monte Carlo procedure: computer algorithm that produces random numbers based
on a particular statistical distribution.

Motif: short, conserved sequence associated with a distinct function.

Needleman-Wunsch algorithm: a global pairwise alignment algorithm that applies
dynamic programming in a sequence alignment.

Negative selection: evolutionary process that does not favor amino acid replace-
ment in a protein sequence. This happens when a protein function has been stab-
ilized. The implied function constraint deems mutations to be deleterious to the
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protein function. This can be detected when the synonymous substitution rate is
higher than the nonsynonymous substitution rate in a protein encoding region.

Neighbor joining: phylogenetic tree-building method that constructs a tree based
on phylogenetic distances between taxa. It first corrects unequal evolutionary rates
of raw distances and uses the corrected distances to build a matrix. Tree construction
begins from a completely unresolved tree and then decomposes the tree in a stepwise
fashion until all taxa are resolved.

Neuralnetwork: machine-learningalgorithm for patternrecognition.Itis composed
ofinput, hidden, and outputlayers. Units of information in each layer are called nodes.
The nodes of different layers are interconnected to form a network analogous to a
biological nervous system. Between the nodes are mathematical weight parameters
that can be trained with known patterns so they can be used for later predictions. After
training, the network is able to recognize correlation between an input and output.

Newick format: text representation of tree topology that uses a set of nested paren-
theses in which each internal node is represented by a pair of parentheses that enclose
allmembers of a monophyletic group separated by acomma. If a tree is scaled, branch
lengths are placed immediately after the name of the taxon separated by a colon.

Nonsynonymous substitutions: nucleotide changes in a protein coding region that
results in alterations in the encoded amino acid sequences.

Object-oriented database: database that stores data as units that combine data and
references to other records. The units are referred to as objects. Searching a such
database involves navigating through the objects via pointers and links. The database
structure is a more flexible than that of relational database but lacks the rigorous
mathematical foundation of the relational databases.

OMIM (Online Mendelian Inheritance in Man): database of human genetic disease,
containing textual descriptions of the disorders and information about the genes
associated with genetic disorders.

Orthologs: homologous sequences from different organisms or genomes derived
from speciation events rather than gene duplication events.

Outgroup: taxon or a group of taxa in a phylogenetic tree known to have diverged
earlier than the rest of the taxa in the tree and used to determine the position of the
root.

Overfitting: phenomenon by which a machine learning algorithm overrepresents
certain patterns while ignoring other possibilities. This phenomenon is a result of
insufficient amounts of data in training the algorithm.

PAM matrix: amino acid substitution matrix describing the probability of one amino
acid being substituted by another. It is constructed by first calculating the num-
ber of observed substitutions in a sequence dataset with 1% amino acid muta-
tions and subsequently extrapolating the number of substitutions to more divergent
sequence datasets through matrix duplication. The PAM unitis theoretically related to
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evolutionary time, with one PAM unit corresponding to 10 million years of evolution-
ary changes. Thus the higher the PAM numbering, the more divergent amino acid
sequences it reflects.

Paralogs: homologous sequences from the same organism or genome, which are
derived from gene duplication events rather than speciation events.

Phylogenetic footprinting: process of finding conserved DNA elements through
aligning DNA sequences from multiple related species. It is widely used for identi-
fying regulatory elements in a genome.

Phylogenetic profile: the pattern of coexistence or co-absence of gene pairs across
divergent genomes. The information is useful for making inference of functionally
linked genes or genes encoding interacting proteins.

Phylogeny: study of evolutionary relationships between organisms by using treelike
diagrams as representations.

Physical map: map of locations of gene markers constructed by using a chromo-
some walking technique. The distance between gene markers is measured directly as
kilobases (Kb).

Positive selection: evolutionary process that favors the replacement of amino acids
in a protein sequence. This happens when the protein is adapting to a new functional
role. The evidence for positive selection often comes from the observation that the
nonsynonymous substitution rate is higher than the synonymous substitution rate in
the DNA coding region.

Posterior probability: probability of an event estimated after taking into account a
new observation. It is used in Bayesian analysis.

Profile: scoring matrix that represents a multiple sequence alignment. It contains
probability or frequency values of residues for each aligned position in the alignment
including gaps. A weighting scheme is often applied to correct the probability for
unobserved and underobserved sequence characters. Profiles can be used to search
sequence databases to detect distant homologs. This term is often used interchange-
ably with position-specific scoring matrix (PSSM).

Progressive alignment: multiple sequence alignment strategy that uses a stepwise
approach to assemble an alignment. It first performs all possible pairwise alignments
using the dynamic programming approach and determines the relative distances
between each pair of sequences to construct a distance matrix, which is subsequently
used to build a guide tree. It then realigns the two most closely related sequences
using the dynamic programming approach. Other sequences are progressively added
to the alignment according to the degree of similarity suggested by the guide tree. The
process proceeds until all sequences are used in building a multiple alignment. The
Clustal program is a good example of applying this strategy.
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Protein family: group of homologous proteins with a common structure and func-
tion. A protein family is normally constructed from protein sequences with an overall
identity of at least 35%.

Proteome: complete set of proteins expressed in a cell.

Proteomics: study of a proteome, which involves simultaneous analyses of all trans-
lated proteins in the entire proteome. Its topics include large-scale identification and
quantification of expressed proteins and determination of their localization, modifi-
cations, interactions, and functions.

PSI-BLAST: unique version of the BLAST program that employs an iterative data-
base searching strategy to construct multiple sequence alignments and convert them
to profiles that are used to detect distant sequence homologs.

PSSM (position-specific scoring matrix): scoring table that lists the probability or
frequency values of residues derived from each position in an ungapped multiple
sequence alignment. A PSSM can be weighted or unweighted. In a weighted PSSM, a
weighting scheme is applied to correct the probability for unobserved and underob-
served sequence characters. This term is often used interchangeably with profile.

P-value: statistical measure representing the significance of an event based on a
chance distribution. It is calculated as the probability of an event supporting the null
hypothesis. The smaller the P-value, the more unlikely an event is due to random
chance (null hypothesis) and therefore the more statistically significant it is.

Quadratic discriminant analysis: statistical method that separates true signals from
background noise by projecting data points in a two dimensional graph and by draw-
ing a curved line that best separates signals from nonsignals based on knowledge
learned from a training dataset.

Quartet puzzling: phylogenetic tree construction method that relies on compiling
tree topologies of all possible groups of four taxa (quartets). Individual four-taxon
trees are normally derived using the exhaustive maximum likelihood method. A final
tree that includes all taxa is produced by deriving a consensus from all quartet trees.
The advantage of this method is computational speed.

Query: specific value used to retrieve a particular record from a database.

Ramachandran plot: two-dimensional scatter plot showing torsion angles of each
amino acid residue in a protein structure. The plot delineates preferred or allowed
regions of the angles as well as disallowed regions based on known protein structures.
This plot helps in the evaluation of the quality of a new protein model.

Relational database: database thatuses a set of separate tables to organize database
entries. Each table, also called relation, is made up of columns and rows. Columns
represent individual fields and rows represent records of data. One or more columns
in a table are indexed so they can be cross-referenced in other tables. To answer a
query to a relational database, the system selects linked data items from different
tables and combines the information into one report.
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RMSD (root mean square deviation): measure of similarity between protein struc-
tures. Itis the squareroot of the sum of the squared deviations of the spatial coordinates
of the corresponding atoms of two protein structures that have been superimposed.

Regular expression: representation format for a sequence motif, which includes
positional information for conserved and partly conserved residues.

Rotamer: preferred side chain torsion angles based on the knowledge of known
protein crystal structures.

Rotamer library: collection of preferred side chain conformations that contains
information about the frequency of certain conformations. Having a rotamer library
reduces the computational time in a side chain conformational search.

SAGE (serial analysis of gene expression): high throughput approach to measure
global gene expression patterns. It determines the quantities of transcripts by using
a large number of unique short cDNA sequence tags to represent each gene in a
genome. Compared to EST analysis, SAGE analysis has a better chance of detecting
weakly expressed genes.

Scaffold: continuous stretch of DNA sequence that results from merging overlap-
ping contigs during genome assembly. Scaffolds are unidirectionally oriented along
a physical map of a chromosome.

Self-organizing map: classification technique that identifies the association of
genes in an expression profile. The classification is based on a neural network-like
algorithm that first projects data points in a two dimensional space and subsequently
carries out iterative matching of data points with a predefined number of nodes, dur-
ing which the distances of the data points to the center of the cluster (centroid) are
calculated. The data points stay in a particular node if the distances are small enough.
The iteration continues until all data points find a best fit within the nodes.

Sensitivity: measure of ability of a classification algorithm to distinguish true posi-
tives from all possible true features. It is quantified as the ratio of true positives to the
sum of true positives plus false negatives.

Sequencelogo: graphical representation of a multiple sequence alignment that dis-
plays a consensus sequence with frequency information. It contains stacked letters
representing the occurrence of the residues in a particular column of a multiple align-
ment. The overall height of a logo position reflects how conserved the position is; the
height of each letter in a position reflects the relative frequency of the residue in the
alignment.

Shotgun sequencing: genome sequencing approach that breaks down genomic
DNA into small clones and sequences them in a random fashion. The genome
sequence is subsequently assembled by joining the random fragments after iden-
tifying overlaps.

Shuffle test: statistical test for pairwise sequence alignment carried out by allow-
ing the order of characters in one of the two sequences to be randomly altered. The
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shuffled sequence is subsequently used to align with the reference sequence using
dynamic programming. A large number of such shuffled alignments serve to create
a background alignment score distribution which is used to assess the statistical sig-
nificance of the score of the original optimal pairwise alignment. A P-value is given to
indicate the probability that the original alignment is a result of random chance.

Similarity: quantitative measure of the proportion of identical matches and con-
served substitutions in a pairwise or multiple alignment.

Site: column of residues in a multiple sequence alignment.

Smith-Waterman algorithm: local pairwise alignment algorithm that applies
dynamic programming in alignment.

Specificity: measure of ability of a classification algorithm to distinguish true pos-
itives from all predicted features. It is quantified as the ratio of true positives to the
sum of true positives plus false positives.

Substitution matrix: two-dimensional matrixwith score values describing the prob-
ability of one amino acid or nucleotide being replaced by another during sequence
evolution. Commonly used substitution matrices are BLOSSUM and PAM.

Supervised classification: dataanalysis method that classifies datainto a predefined
set of categories.

Support vector machine: data classification method that projects data in a three-
dimensional space. A “hyperplane” (a linear or nonlinear mathematical function) is
used to separate true signals from noise. The algorithm requires training to be able to
correctly recognize patterns of true features.

Synonymous substitutions: nucleotide changes in a protein coding sequence that
do not result in amino acid sequence changes for the encoded protein because of
redundancy in the genetic code.

Synteny: conserved gene order pattern across different genomes.

Systems biology: field of study that uses integrative approaches to model pathways
and networks at the cellular level.

Taxon: each species or sequence represented at the tip of each branch of a phyloge-
netic tree. It is also called an operational taxonomic unit (OTU).

Threading: method of predicting the most likely protein structural fold based on
secondary structure similarity with database structures and assessment of energies
of the potential fold. The term has been used interchangeably with fold recognition.

Transcriptome: complete set of mRNA molecules produced by a cell under a given
condition.

Transition: substitution of a purine by another purine or a pyrimidine by another
pyrimidine.
Transversion: substitution of a purine by a pyrimidine or a pyrimidine by a purine.

True negative: false match that is correctly ignored by an algorithm.
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True positive: true match that is correctly identified by an algorithm.

Unsupervised classification: dataanalysis method that does not assume predefined
categories, but identifies data categories according to actual similarity patterns. It is
also called clustering.

UPGMA (unweighted pair-group method with arithmetic means): phylogenetic
tree-building method that involves clustering taxa based on phylogenetic distances.
The method assumes the taxa to have equal distance from the root and starts tree
building by clustering the two most closely related taxa. This produces a reduced
matrix, which allows the next nearest taxa to be added. Other taxa are sequentially
added using the same principle.

Z-score: statistical measure of the distance of a value from the mean of a score
distribution, measured as the number of standard deviations.
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Figure 9.1. Schematic representation of elements involved in bacterial transcription initiation. RNA
polymerase binds to the promoter region, which initiates transcription through interaction with tran-
scription factors binding at different sites. Abbreviations: TSS, transcription start site; ORF, reading
frame; pol, polymerase; TF, transcription factor (see page 114).
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Figure 9.2. Schematic diagram of an eukaryotic promoter with transcription factors and RNA po-
lymerase bound to the promoter. Abbreviations: Inr, initiator sequence; ORF, reading frame; pol, po-
lymerase; TF, transcription factor (see page 115).
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Figure 12.3. Definition of dihedral angles of ¢ and . Six atoms around a peptide bond forming a
peptide plane are colored in red. The ¢ angle is the rotation about the N-Ca bond, which is measured
by the angle between a virtual plane formed by the C-N-Ca and the virtual plane by N-Ca-C (C in
green). The ) angle is the rotation about the Ca—C bond, which is measured by the angle between
a virtual plane formed by the N-Ca—C (N in green) and the virtual plane by Ca-C-N (N in red) (see
page 176).



Figure 12.5. A ribbon diagram of an a-helix with main chain atoms (as
gray balls) shown. Hydrogen bonds between the carbonyl oxygen (red)
and the amino hydrogen (green) of two residues are shown in yellow
dashed lines (see page 178).

Figure 12.6. Side view of a parallel 8-sheet. Hydrogen bonds between the carbonyl oxygen (red) and
the amino hydrogen (green) of adjacent 3-strands are shown in yellow dashed lines. R groups are shown
as big balls in cyan and are positioned alternately on opposite sides of 3-strands (see page 179).



Figure 13.1. Examples of molecular structure visualization forms. (A) Wireframes. (B) Balls and sticks.
(C) Space-filling spheres. (D) Ribbons (see page 188).



Figure 13.2. Examples of molecular graphic generated by (A) Rasmol, (B) Molscript, (C) Ribbons, and
(D) Grasp (see page 189).
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Figure 17.4. Example of sequence assembly with or without applying forward-reverse constraint, which
fixes the sequence distance from both ends of a subclone. Without the restraint, the red fragment is
misassembled due to matches of repetitive element in the middle of a fragment (see page 248).



Experimental cDNA Reference cDNA

labeled with Cy5 labeled with Cy3
RS, RS, RS RS RS, RS,
s, RS s, RS

Mix and hybridize
to microarray

[

Oligonucleotide

design Scan Cy5 Scan Cy3
and printing
rYoYe 000
00 @ Q00
Q00 000

Voverlay fluorescent
images

@00

Q00O

Q00O
Identify differentially Collect time
expressed genes course data

R

Clustering analysis l
Gene A
_| Gene C
Gene D
Gene B
E Gene F
Gene E

Figure 18.4. Schematic of a multistep procedure of a DNA microarray assay experiment and subse-
quent data analysis (see page 268).
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Figure 18.7. Example of k-means clustering using four partitions. Closeness of data points is indicated
by resemblance of colors (see page 277).
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Box 18.1. Outline of the Procedure for Microarray Data Ananlysis (see page 271).
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Figure 19.2. Schematic diagram showing protein differential detection using DIGE. Protein sample 1
(representing experimental condition) is labeled with a red fluorescent dye (Cy5). Protein sample 2
(representing control condition) is labeled with a green fluorescent dye (Cy3). The two samples are

mixed together before running on a two-dimensional gel to obtain a total protein differential display
map (see page 286).



