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Fig. 2.1 A line in the spectrum
is associated with a transition
between two energy levels.

The picture that we use to understand most kinds of spectroscopy is that
molecules have a set of energy levels and that the lines we see in spectra
are due to transitions between these energy levels. Such a transition can be
caused by a photon of light whose frequency, ν, is related to the energy gap,
�E , between the two levels according to:

�E = hν

where h is a universal constant known as Planck’s constant. For the case
shown in Fig. 2.1, �E = E2 − E1.

In NMR spectroscopy we tend not to use this approach of thinking about
energy levels and the transitions between them. Rather, we use different rules
for working out the appearance of multiplets and so on. However, it is use-
ful, especially for understanding more complex experiments, to think about
how the familiar NMR spectra we see are related to energy levels. To start
with we will look at the energy levels of just one spin and them move on
quickly to look at two and three coupled spins. In such spin systems, as they
are known, we will see that in principle there are other transitions, called
multiple quantum transitions, which can take place. Such transitions are not
observed in simple NMR spectra, but we can detect them indirectly using two-
dimensional experiments; there are, as we shall see, important applications of
such multiple quantum transitions.

Finally, we will look at strongly coupled spectra. These are spectra in
which the simple rules used to construct multiplets no longer apply because
the shift differences between the spins have become small compared to the
couplings. The most familiar effect of strong coupling is the “roofing” or
“tilting” of multiplets. We will see how such spectra can be analysed in some
simple cases.

2.1 Frequency and energy: sorting out the units

NMR spectroscopists tend to use some rather unusual units, and so we need
to know about these and how to convert from one to another if we are not to
get into a muddle.

Chemical shifts

It is found to a very good approximation that the frequencies at which NMR
absorptions (lines) occur scale linearly with the magnetic field strength. So,
if the line from TMS comes out on one spectrometer at 400 MHz, doubling
the magnetic field will result in it coming out at 800 MHz. If we wanted
to quote the NMR frequency it would be inconvenient to have to specify the
exact magnetic field strength as well. In addition, the numbers we would have
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to quote would not be very memorable. For example, would you like to quote
the shift of the protons in benzene as 400.001234 MHz?

νTMSν
frequency

δTMS = 0δ

chemical shift

Fig. 2.2 An NMR spectrum can
be plotted as a function of
frequency, but it is more
convenient to use the chemical
shift scale in which frequencies
are expressed relative to that of
an agreed reference compound,
such as TMS in the case of
proton spectra.

We neatly side-step both of these problems by quoting the chemical shift
relative to an agreed reference compound. For example, in the case of proton
NMR the reference compound is TMS. If the frequency of the line we are
interested in is ν (in Hz) and the frequency of the line from TMS is νTMS

(also in Hz), the chemical shift of the line is computed as:

δ = ν − νTMS

νTMS
. (2.1)

As all the frequencies scale with the magnetic field, this ratio is independent
of the magnetic field strength. Typically, the chemical shift is rather small
so it is common to multiply the value for δ by 106 and then quote its value
in parts per million, or ppm. With this definition the chemical shift of the
reference compound is 0 ppm.

δppm = 106 × ν − νTMS

νTMS
. (2.2)

Sometimes we want to convert from shifts in ppm to frequencies. Suppose
that there are two peaks in the spectrum at shifts δ1 and δ2 in ppm. What is
the frequency separation between the two peaks? It is easy enough to work
out what it is in ppm, it is just (δ2 − δ2). Writing this difference out in terms
of the definition of chemical shift given in Eq. 2.2 we have:

(δ2 − δ1) = 106 × ν2 − νTMS

νTMS
− 106 × ν1 − νTMS

νTMS

= 106 × ν2 − ν1

νTMS
.

Multiplying both sides by νTMS now gives us what we want:

(ν2 − ν1) = 10−6 × νTMS × (δ2 − δ1).

It is often sufficiently accurate to replace νTMS with the spectrometer reference
frequency, about which we will explain later.

If we want to change the ppm scale of a spectrum into a frequency scale we
need to decide where zero is going to be. One choice for the zero frequency
point is the line from the reference compound. However, there are plenty of
other possibilities so it is as well to regard the zero point on the frequency
scale as arbitrary.

Angular frequency
Frequencies are most commonly quoted in Hz, which is the same as “per
second” or s−1. Think about a point on the edge of a disc which is rotating
about its centre. If the disc is moving at a constant speed, the point returns
to the same position at regular intervals each time it has competed 360◦ of
rotation. The time taken for the point to return to its original position is called
the period, τ .
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Fig. 2.3 A point at the edge of a
circle which is moving at a
constant speed returns to its
original position after a time
called the period. During each
period the point moves through
2π radians or 360◦.

The frequency, ν, is simply the inverse of the period:

ν = 1

τ
.

For example, if the period is 0.001 s, the frequency is 1/0.001 = 1000 Hz.
There is another way of expressing the frequency, which is in angular

units. Recall that 360◦ is 2π radians. So, if the point completes a rotation in
τ seconds, we can say that it has rotated though 2π radians in τ seconds. The
angular frequency, ω, is given by

ω = 2π

τ
.

The units of this frequency are “radians per second” or rad s−1. ν and ω are
related via

ν = ω

2π
or ω = 2πν.

We will find that angular frequencies are often the most natural units to use in
NMR calculations. Angular frequencies will be denoted by the symbols ω or
	 whereas frequencies in Hz will be denoted ν.

Energies
A photon of frequency ν has energy E given by

E = hν

where h is Planck’s constant. In SI units the frequency is in Hz and h is in
J s−1. If we want to express the frequency in angular units then the relation-
ship with the energy is

E = h
ω

2π

= h̄ω

where h̄ (pronounced “h bar” or “h cross”) is Planck’s constant divided by
2π .

The point to notice here is that frequency, in either Hz or rad s−1, is di-
rectly proportional to energy. So, there is really nothing wrong with quoting
energies in frequency units. All we have to remember is that there is a factor
of h or h̄ needed to convert to Joules if we need to. It turns out to be much
more convenient to work in frequency units throughout, and so this is what we
will do. So, do not be concerned to see an energy expressed in Hz or rad s−1.

2.2 Nuclear spin and spin states

NMR spectroscopy arises from the fact that nuclei have a property known as
spin; we will not concern ourselves with where this comes from, but just take
it as a fact. Quantum mechanics tells us that this nuclear spin is characterised
by a nuclear spin quantum number, I . For all the nuclei that we are going
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to be concerned with, I = 1
2 , although other values are possible. A spin-half

nucleus has an interaction with a magnetic field which gives rise to two energy
levels; these are characterised by another quantum number m which quantum
mechanics tells us is restricted to the values −I to I in integer steps. So, in
the case of a spin-half, there are only two values of m, − 1

2 and + 1
2 .Strictly, α is the low energy state

for nuclei with a positive
gyromagnetic ratio, more of
which below.

By tradition in NMR the energy level (or state, as it is sometimes called)
with m = 1

2 is denoted α and is sometimes described as “spin up”. The state
with m = − 1

2 is denoted β and is sometimes described as “spin down”. For
the nuclei we are interested in, the α state is the one with the lowest energy.

If we have two spins in our molecule, then each spin can be in the α or
β state, and so there are four possibilities: α1α2, α1β2,β1α2 and β1β2. These
four possibilities correspond to four energy levels. Note that we have added a
subscript 1 or 2 to differentiate the two nuclei, although often we will dispense
with these and simply take it that the first spin state is for spin 1 and the second
for spin 2. So αβ implies α1β2 etc.

We can continue the same process for three or more spins, and as each spin
is added the number of possible combinations increases. So, for example, for
three spins there are 8 combinations leading to 8 energy levels. It should be
noted here that there is only a one-to-one correspondence between these spin
state combinations and the energy levels in the case of weak coupling, which
we will assume from now on. Further details are to be found in section 2.6.

2.3 One spin

There are just two energy levels for a single spin, and these can be labelled
with either the m value of the labels α and β. From quantum mechanics we
can show that the energies of these two levels, Eα and Eβ , are:

Eα = + 1
2ν0,1 and Eβ = − 1

2ν0,1

where ν0,1 is the Larmor frequency of spin 1 (we will need the 1 later on, but
it is a bit superfluous here as we only have one spin). In fact it is easy to see
that the energies just depend on m:

Em = mν0,1.

You will note here that, as explained in section 2.1 we have written the
energies in frequency units. The Larmor frequency depends on a quantity
known as the gyromagnetic ratio, γ , the chemical shift δ, and the strength of
the applied magnetic field, B0:This negative Larmor frequency

for nuclei with a positive γ

sometimes seems a bit
unnatural and awkward, but to
be consistent we need to stick
with this convention. We will
see in a later chapter that all
this negative frequency really
means is that the spin
precesses in a particular sense.

ν0,1 = − 1

2π
γ1(1 + δ1)B0 (2.3)

where again we have used the subscript 1 to distinguish the of nucleus. The
magnetic field is normally given in units of Tesla (symbol T). The gyromag-
netic ratio is characteristic of a particular kind of nucleus, such as proton or
carbon-13; its units are normally rad s−1 T−1. In fact, γ can be positive or
negative; for the commonest nuclei (protons and carbon-13) it is positive. For
such nuclei we therefore see that the Larmor frequency is negative.
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To take a specific example, for protons γ = +2.67 × 108 rad s−1 T−1,
so in a magnetic field of 4.7 T the Larmor frequency of a spin with chemical
shift zero is

ν0 = − 1

2π
γ (1 + δ)B0

= − 1

2π
× 2.67 × 108 × 4.7 = −200 × 106 Hz.

In other words, the Larmor frequency is −200 MHz.
We can also calculate the Larmor frequency in angular units, ω0, in which

case the factor of 1/2π is not needed:

ω0 = −γ (1 + δ)B0

which gives a value of 1.255 × 109 rad s−1.

Spectrum
As you may know from other kinds of spectroscopy you have met, only certain
transitions are allowed i.e. only certain ones actually take place. There are
usually rules – called selection rules – about which transitions can take place;
these rules normally relate to the quantum numbers which are characteristic
of each state or energy level.

Eβ

Eα

ναβ = Eβ–Eα

m = +1/2

m = –1/2

ναβ = ν0,1

energy
levels

spectrum

Fig. 2.4 The transition between
the two energy levels of a
spin-half is allowed, and results
in a single line at the Larmor
frequency of the spin.

In the case of NMR, the selection rule refers to the quantum number m:
only transitions in which m changes by one (up or down) are allowed. This is
sometimes expressed as

�m = m(initial state) − m(final state)

= ±1.

Another way as saying this is that one spin can flip between “up” and “down”
or vice versa.

In the case of a single spin-half, the change in m between the two states is
(+ 1

2 − (− 1
2)) = 1 so the transition is allowed. We can now simply work out

the frequency of the allowed transition:

ναβ = Eβ − Eα

= − 1
2ν0,1 − (+ 1

2ν0,1)

= −ν0,1.

Note that we have taken the energy of the upper state minus that of the lower
state. In words, therefore, we see one transition at the minus the Larmor
frequency, −ν0,1.

You would be forgiven for thinking that this is all an enormous amount of
effort to come up with something very simple! However, the techniques and
ideas developed in this section will enable us to make faster progress with the
case of two and three coupled spins, which we consider next.

2.4 Two spins
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 ν0,2  ν0,1

frequency

J12 J12

Fig. 2.5 Schematic spectrum of
two coupled spins showing two
doublets with equal splittings.
As indicated by the dashed
lines, the separation of the
Larmor frequencies is much
larger than the coupling
between the spins.

We know that the spectrum of two coupled spins consists of two doublets,
each split by the same amount, one centred at the chemical shift of the first
spin and one at the shift of the second. The splitting of the doublets is the
scalar coupling, J12, quoted in Hz; the subscripts indicate which spins are
involved. We will write the shifts of the two spins as δ1 and δ2, and give the
corresponding Larmor frequencies, ν0,1 and ν0,2 as:

ν0,1 = − 1

2π
γ1(1 + δ1)B0

ν0,2 = − 1

2π
γ2(1 + δ2)B0.

If the two nuclei are of the same type, such a proton, then the two gyromag-
netic ratios are equal; such a two spin system would be described as homonu-
clear. The opposite case is where the two nuclei are of different types, such
as proton and carbon-13; such a spin system is described as heteronuclear.

Energy levels
As was already described in section 2.2, there are four possible combinations
of the spin states of two spins and these combinations correspond to four
energy levels. Their energies are given in the following table:

number spin states energy
1 αα + 1

2ν0,1 + 1
2ν0,2 + 1

4 J12

2 αβ + 1
2ν0,1 − 1

2ν0,2 − 1
4 J12

3 βα − 1
2ν0,1 + 1

2ν0,2 − 1
4 J12

4 ββ − 1
2ν0,1 − 1

2ν0,2 + 1
4 J12

The second column gives the spin states of spins 1 and 2, in that order. It is
easy to see that these energies have the general form:

Em1m2 = m1ν0,1 + m2ν0,2 + m1m2 J12

where m1 and m2 are the m values for spins 1 and 2, respectively.
For a homonuclear system ν0,1 ≈ ν0,2; also both Larmor frequencies are

much greater in magnitude than the coupling (the Larmor frequencies are of
the order of hundreds of MHz, while couplings are at most a few tens of Hz).
Therefore, under these circumstances, the energies of the αβ and βα states are
rather similar, but very different from the other two states. For a heteronuclear
system, in which the Larmor frequencies differ significantly, the four levels
are all at markedly different energies. These points are illustrated in Fig. 2.6.

Spectrum
The selection rule is the same as before, but this time it applies to the quantum
number M which is found by adding up the m values for each of the spins. In
this case:

M = m1 + m2.

The resulting M values for the four levels are:
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Fig. 2.6 Energy levels, drawn approximately to scale, for two spin systems. On the left is shown a
homonuclear system (two protons); on this scale the αβ and βα states have the same energy. On the
right is the case for a carbon-13 – proton pair. The Larmor frequency of proton is about four times that
of carbon-13, and this is clear reflected in the diagram. The αβ and βα states now have substantially
different energies.

number spin states M
1 αα 1
2 αβ 0
3 βα 0
4 ββ −1

The selection rule is that �M = ±1, i.e. the value of M can change up or
down by one unit. This means that the allowed transitions are between levels
1 & 2, 3 & 4, 1 & 3 and 2 & 4. The resulting frequencies are easily worked
out; for example, the 1–2 transition: Throughout we will use the

convention that when computing
the transition frequency we will
take the energy of the upper
state minus the energy of the
lower: �E = Eupper − Elower.

ν12 = E2 − E1

= + 1
2ν0,1 − 1

2ν0,2 − 1
4 J12 − ( 1

2ν0,1 + 1
2ν0,2 + 1

4 J12)

= −ν0,2 − 1
2 J12.

The complete set of transitions are:

transition spin states frequency
1 → 2 αα → αβ −ν0,2 − 1

2 J12

3 → 4 βα → ββ −ν0,2 + 1
2 J12

1 → 3 αα → βα −ν0,1 − 1
2 J12

2 → 4 αβ → ββ −ν0,1 + 1
2 J12

The energy levels and corresponding schematic spectrum are shown in
Fig. 2.7. There is a lot we can say about this spectrum. Firstly, each allowed
transition corresponds to one of the spins flipping from one spin state to the
other, while the spin state of the other spin remains fixed. For example, tran-
sition 1–2 involves a spin 2 going from α to β whilst spin 1 remains in the α

state. In this transition we say that spin 2 is active and spin 1 is passive. As
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Fig. 2.7 On the left, the energy levels of a two-spin system; the arrows show the allowed transitions:
solid lines for transitions in which spin 1 flips and dotted for those in which spin 2 flips. On the right, the
corresponding spectrum; it is assumed that the Larmor frequency of spin 2 is greater in magnitude than
that of spin 1 and that the coupling J12 is positive.

spin 2 flips in this transition, it is not surprising that the transition forms one
part of the doublet for spin 2.

Transition 3–4 is similar to 1–2 except that the passive spin (spin 1) is
in the β state; this transition forms the second line of the doublet for spin 2.
This discussion illustrates a very important point, which is that the lines of a
multiplet can be associated with different spin states of the coupled (passive)
spins. We will use this kind of interpretation very often, especially when
considering two-dimensional spectra.

The two transitions in which spin 1 flips are 1–3 and 2–4, and these are
associated with spin 2 being in the α and β spin states, respectively. Which
spin flips and the spins states of the passive spins are shown in Fig. 2.7.

What happens is the coupling is negative? If you work through the table
you will see that there are still four lines at the same frequencies as before. All
that changes is the labels of the lines. So, for example, transition 1–2 is now
the right line of the doublet, rather than the left line. From the point of view of
the spectrum, what swaps over is the spin state of the passive spin associated
with each line of the multiplet. The overall appearance of the spectrum is
therefore independent of the sign of the coupling constant.

Multiple quantum transitions
There are two more transitions in our two-spin system which are not allowed
by the usual selection rule. The first is between states 1 and 4 (αα → ββ) in
which both spins flip. The �M value is 2, so this is called a double-quantum
transition. Using the same terminology, all of the allowed transitions de-
scribed above, which have �M = 1, are single-quantum transitions. From the
table of energy levels it is easy to work out that its frequency is (−ν0,1 − ν0,2)

i.e. the sum of the Larmor frequencies. Note that the coupling has no effect
on the frequency of this line.

The second transition is between states 2 and 3 (αβ → βα); again, both
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spins flip. The �M value is 0, so this is called a zero-quantum transition,
and its frequency is (−ν0,1 + ν0,2) i.e. the difference of the Larmor frequen-
cies. As with the double-quantum transition, the coupling has no effect on the
frequency of this line.

αα

βα

ββ

αβ

1

2 3

4

14

23

Fig. 2.8 In a two-spin system
there is one double quantum
transition (1–4) and one
zero-quantum transition (2–3);
the frequency of neither of
these transitions are affected by
the size of the coupling between
the two spins.

In a two spin system the double- and zero-quantum spectra are not espe-
cially interesting, but we will see in a three-spin system that the situation is
rather different. We will also see later on that in two-dimensional spectra we
can exploit to our advantage the special properties of these multiple-quantum
spectra.

2.5 Three spins

If we have three spins, each of which is coupled to the other two, then the
spectrum consists of three doublets of doublets, one centred at the shift of
each of the three spins; the spin topology is shown in Fig. 2.9. The appearance
of these multiplets will depend on the relative sizes of the couplings. For
example, if J12 = J13 the doublet of doublets from spin 1 will collapse to a
1:2:1 triplet. On the other hand, if J12 = 0, only doublets will be seen for spin
1 and spin 2, but spin 3 will still show a doublet of doublets.

J13 J12

J23

1

23

 ν0,1

J13

J12
J13

Fig. 2.9 The topology – that is
the number of spins and the
couplings between them – for a
three-spin system in which each
spin is coupled to both of the
others. The resulting spectrum
consists of three doublets of
doublets, a typical example of
which is shown for spin 1 with
the assumption that J12 is
greater than J13.

Energy levels
Each of the three spins can be in the α or β spin state, so there are a total of
8 possible combinations corresponding to 8 energy levels. The energies are
given by:

Em1m2m3 = m1ν0,1 + m2ν0,2 + m3ν0,3 + m1m2 J12 + m1m3 J13 + m2m3 J23

where mi is the value of the quantum number m for the i th spin. The energies
and corresponding M values (= m1 + m2 + m3) are shown in the table:

number spin states M energy
1 ααα 3

2 + 1
2ν0,1 + 1

2ν0,2 + 1
2ν0,3 + 1

4 J12 + 1
4 J13 + 1

4 J23

2 αβα 1
2 + 1

2ν0,1 − 1
2ν0,2 + 1

2ν0,3 − 1
4 J12 + 1

4 J13 − 1
4 J23

3 βαα 1
2 − 1

2ν0,1 + 1
2ν0,2 + 1

2ν0,3 − 1
4 J12 − 1

4 J13 + 1
4 J23

4 ββα − 1
2 − 1

2ν0,1 − 1
2ν0,2 + 1

2ν0,3 + 1
4 J12 − 1

4 J13 − 1
4 J23

5 ααβ 1
2 + 1

2ν0,1 + 1
2ν0,2 − 1

2ν0,3 + 1
4 J12 − 1

4 J13 − 1
4 J23

6 αββ − 1
2 + 1

2ν0,1 − 1
2ν0,2 − 1

2ν0,3 − 1
4 J12 − 1

4 J13 + 1
4 J23

7 βαβ − 1
2 − 1

2ν0,1 + 1
2ν0,2 − 1

2ν0,3 − 1
4 J12 + 1

4 J13 − 1
4 J23

8 βββ − 3
2 − 1

2ν0,1 − 1
2ν0,2 − 1

2ν0,3 + 1
4 J12 + 1

4 J13 + 1
4 J23

We have grouped the energy levels into two groups of four; the first group
all have spin 3 in the α state and the second have spin 3 in the β state. The en-
ergy levels (for a homonuclear system) are shown schematically in Fig. 2.10.

Spectrum
The selection rule is as before, that is M can only change by 1. However, in
the case of more than two spins, there is the additional constraint that only
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Fig. 2.10 Energy levels for a homonuclear three-spin system. The levels can be grouped into two sets of
four: those with spin 3 in the α state (shown on the left with solid lines) and those with spin 3 in the β state,
shown on the right (dashed lines).

one spin can flip. Applying these rules we see that there are four allowed
transitions in which spin 1 slips: 1–3, 2–4, 5–7 and 6–8. The frequencies of
these lines can easily be worked out from the table of energy levels on page 2–
9. The results are shown in the table, along with the spin states of the passive
spins (2 and 3 in this case).

transition state of spin 2 state of spin 3 frequency
1–3 α α −ν0,1 − 1

2 J12 − 1
2 J13

2–4 β α −ν0,1 + 1
2 J12 − 1

2 J13

5–7 α β −ν0,1 − 1
2 J12 + 1

2 J13

6–8 β β −ν0,1 + 1
2 J12 + 1

2 J13

ααα

αβα

ββα

βαα

1

2 3

4

ααβ

αββ

βββ

βαβ
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8

 −ν0,1

J13

J12

J12

J13

9692 108104100

13 57 24 68

spin 2
spin 3

α
α

α β
β α β

β

Fig. 2.11 Energy levels for a three-spin system showing by the arrows the four allowed transitions which
result in the doublet of doublets at the shift of spin 1. The schematic multiplet is shown on the right, where
it has been assuming that ν0,1 = −100 Hz, J12 = 10 Hz and J13 = 2 Hz. The multiplet is labelled with the
spin states of the passive spins.

These four transitions form the four lines of the multiplet (a doublet of
doublets) at the shift of spin 1. The schematic spectrum is illustrated in
Fig. 2.11. As in the case of a two-spin system, we can label each line of the
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multiplet with the spin states of the passive spins – in the case of the multiplet
from spin 1, this means the spin states of spins 2 and 3. In the same way, we
can identify the four transitions which contribute to the multiplet from spin
2 (1–2, 3–4, 5–6 and 7–8) and the four which contribute to that from spin 3
(1–5, 3–7, 2–6 and 4–8).

Subspectra

ααα

αβα

ββα

βαα

1

2 3

4

ααβ

αββ

βββ

βαβ

5

6 7

8

 −ν0,1  −ν0,2

J13

J12

spin 3
in β state

spin 3
in α state

J12

J12 J12

J23

 −ν
0,1
β3  −ν

0,2
β3

 −ν
0,1
α3  −ν

0,2
α3

Fig. 2.12 Illustration of the division of the two multiplets from spins 1 and 2 into subspectra according to
the spin state of spin 3. The transitions associated with spin 3 in the α state (indicated by the full lines
on the energy level diagram) give rise to a pair of doublets, but with their centres shifted from the Larmor
frequencies by half the coupling to spin 3. The same is true of those transitions associated with spin 3
being in the β state (dashed lines), except that the shift is in the opposite direction.

One was of thinking about the spectrum from the three-spin system is
to divide up the lines in the multiplets for spins 1 and 2 into two groups or
subspectra. The first group consists of the lines which have spin 3 in the α

state and the second group consists of the lines which have spin 3 in the α

state. This separation is illustrated in Fig. 2.12.
There are four lines which have spin-3 in the α state, and as can be seen

from the spectrum these form two doublets with a common separation of J12.
However, the two doublets are not centred at −ν0,1 and −ν0,2, but at (−ν0,1 −
1
2 J13) and (−ν0,2 − 1

2 J23). We can define an effective Larmor frequency for
spin 1 with spin 3 in the α spin state, ν

α3
0,1, as

ν
α3
0,1 = ν0,1 + 1

2 J13

and likewise for spin 2:
ν

α3
0,2 = ν0,2 + 1

2 J23.

The two doublets in the sub-spectrum corresponding to spin 3 being in the α

state are thus centred at −ν
α3
0,1 and −ν

α3
0,2. Similarly, we can define effective

Larmor frequencies for spin 3 being in the β state:

ν
β3
0,1 = ν0,1 − 1

2 J13 ν
β3
0,2 = ν0,2 − 1

2 J23.
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The two doublets in the β sub-spectrum are centred at −ν
β3
0,1 and −ν

β3
0,2.

We can think of the spectrum of spin 1 and 2 as being composed of two
subspectra, each from a two spin system but in which the Larmor frequencies
are effectively shifted one way of the other by half the coupling to the third
spin. This kind of approach is particularly useful when it comes to dealing
with strongly coupled spin systems, section 2.6

Note that the separation of the spectra according to the spin state of spin
3 is arbitrary. We could just as well separate the two multiplets from spins 1
and 3 according to the spin state of spin 2.

Multiple quantum transitions
There are six transitions in which M changes by 2. Their frequencies are
given in the table.

transition initial state final state frequency
1–4 ααα ββα −ν0,1 − ν0,2 − 1

2 J13 − 1
2 J23

5–8 ααβ βββ −ν0,1 − ν0,2 + 1
2 J13 + 1

2 J23

1–7 ααα βαβ −ν0,1 − ν0,3 − 1
2 J12 − 1

2 J23

2–8 αβα βββ −ν0,1 − ν0,3 + 1
2 J12 + 1

2 J23

1–6 ααα αββ −ν0,2 − ν0,3 − 1
2 J12 − 1

2 J13

3–8 βαα βββ −ν0,2 − ν0,3 + 1
2 J12 + 1

2 J13

These transitions come in three pairs. Transitions 1–4 and 5–8 are centred
at the sum of the Larmor frequencies of spins 1 and 2; this is not surprising as
we note that in these transitions it is the spin states of both spins 1 and 2 which
flip. The two transitions are separated by the sum of the couplings to spin 3
(J13 + J23), but they are unaffected by the coupling J12 which is between the
two spins which flip.

ααα

αβα

ββα

βαα

1

2 3

4

ααβ

αββ

βββ

βαβ

5

6 7

8

 −ν0,1 −ν0,2

J13 + J23

spin 3

5814

βα

frequency

Fig. 2.13 There are two double quantum transitions in which spins 1 and 2 both flip (1–4 and 5–8). The
two resulting lines form a doublet which is centred at the sum of the Larmor frequencies of spins 1 and
2 and which is split by the sum of the couplings to spin 3. As with the single-quantum spectra, we can
associate the two lines of the doublet with different spin states of the third spin. It has been assumed that
both couplings are positive.

We can describe these transitions as a kind of double quantum doublet.
Spins 1 and 2 are both active in these transitions, and spin 3 is passive. Just as
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we did before, we can associate one line with spin 3 being in the α state (1–4)
and one with it being in the β state (5–8). A schematic representation of the
spectrum is shown in Fig. 2.13.

There are also six zero-quantum transitions in which M does not change.
Like the double quantum transitions these group in three pairs, but this time
centred around the difference in the Larmor frequencies of two of the spins.
These zero-quantum doublets are split by the difference of the couplings to the
spin which does not flip in the transitions. There are thus many similarities
between the double- and zero-quantum spectra.

In a three spin system there is one triple-quantum transition, in which M
changes by 3, between levels 1 (ααα) and 8 (βββ). In this transition all of
the spins flip, and from the table of energies we can easily work out that its
frequency is −ν0,1 − ν0,2 − ν0,3, i.e. the sum of the Larmor frequencies.

We see that the single-quantum spectrum consists of three doublets of dou-
blets, the double-quantum spectrum of three doublets and the triple-quantum
spectrum of a single line. This illustrates the idea that as we move to higher
orders of multiple quantum, the corresponding spectra become simpler. This
feature has been used in the analysis of some complex spin systems.

Combination lines
There are three more transitions which we have not yet described. For these,
M changes by 1 but all three spins flip; they are called combination lines.
Such lines are not seen in normal spectra but, like multiple quantum transi-
tions, they can be detected indirectly using two-dimensional spectra. We will
also see in section 2.6 that these lines may be observable in strongly coupled
spectra. The table gives the frequencies of these three lines:

transition initial state final state frequency
2–7 αβα βαβ −ν0,1 + ν0,2 − ν0,3

3–6 βαα αββ +ν0,1 − ν0,2 − ν0,3

4–5 ββα ααβ +ν0,1 + ν0,2 − ν0,3

Notice that the frequencies of these lines are not affected by any of the
couplings.

2.6 Strong coupling
We need to be careful here as
Larmor frequencies, the
differences between Larmor
frequencies and the values of
couplings can be positive or
negative! In deciding whether or
not a spectrum will be strongly
coupled we need to compare
the magnitude of the difference
in the Larmor frequencies with
the magnitude of the coupling.

So far all we have said about energy levels and spectra applies to what are
called weakly coupled spin systems. These are spin systems in which the
differences between the Larmor frequencies (in Hz) of the spins are much
greater in magnitude than the magnitude of the couplings between the spins.

Under these circumstances the rules from predicting spectra are very sim-
ple – they are the ones you are already familiar with which you use for con-
structing multiplets. In addition, in the weak coupling limit it is possible to
work out the energies of the levels present simply by making all possible com-
binations of spin states, just as we have done above. Finally, in this limit all
of the lines in a multiplet have the same intensity.
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If the separation of the Larmor frequencies is not sufficient to satisfy the
weak coupling criterion, the system is said to be strongly coupled. In this limit
none of the rules outlined in the previous paragraph apply. This makes pre-
dicting or analysing the spectra much more difficult than in the case of weak
coupling, and really the only practical approach is to use computer simulation.
However, it is useful to look at the spectrum from two strongly coupled spins
as the spectrum is simple enough to analyse by hand and will reveal most of
the of the crucial features of strong coupling.You will often find that people

talk of two spins being strongly
coupled when what they really
mean is the coupling between
the two spins is large. This is
sloppy usage; we will always
use the term strong coupling in
the sense described in this
section.

It is a relatively simple exercise in quantum mechanics to work out the
energy levels and hence frequencies and intensities of the lines from a strongly
coupled two-spin system1. These are given in the following table.

transition frequency intensity
1–2 1

2 D − 1
2� − 1

2 J12 (1 + sin 2θ)

3–4 1
2 D − 1

2� + 1
2 J12 (1 − sin 2θ)

1–3 − 1
2 D − 1

2� − 1
2 J12 (1 − sin 2θ)

2–4 − 1
2 D − 1

2� + 1
2 J12 (1 + sin 2θ)

In this table � is the sum of the Larmor frequencies:

� = ν0,1 + ν0,2

and D is the positive quantity defined as

D2 = (ν0,1 − ν0,2)
2 + J 2

12. (2.4)

The angle θ is called the strong coupling parameter and is defined via

sin 2θ = J12

D
.

The first thing to do is to verify that these formulae give us the expected
result when we impose the condition that the separation of the Larmor fre-
quencies is large compared to the coupling. In this limit it is clear that

D2 = (ν0,1 − ν0,2)
2 + J 2

12

≈ (ν0,1 − ν0,2)
2

and so D = (ν0,1 − ν0,2). Putting this value into the table above gives us
exactly the frequencies we had before on page 2–7.

When D is very much larger than J12 the fraction J12/D becomes small,
and so sin 2θ ≈ 0 (sin φ goes to zero as φ goes to zero). Under these cir-
cumstances all of the lines have unit intensity. So, the weak coupling limit is
regained.

Figure 2.14 shows a series of spectra computed using the above formulae
in which the Larmor frequency of spin 1 is held constant while the Larmor
frequency of spin 2 is progressively moved towards that of spin 1. This makes
the spectrum more and more strongly coupled. The spectrum at the bottom
is almost weakly coupled; the peaks are just about all the same intensity and
where we expect them to be.

1See, for example, Chapter 10 of NMR: The Toolkit, by P J Hore, J A Jones and S Wim-
peris (Oxford University Press, 2000)
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Fig. 2.14 A series of spectra of a two spin system in which the Larmor frequency of spin 1 is help constant
and that of spin 2 is moved in closer to spin 1. The spectra become more and more strongly coupled
showing a pronounced roof effect until in the limit that the two Larmor frequencies are equal only one line
is observed. Note that as the “outer” lines get weaker the “inner” lines get proportionately stronger. The
parameters used for these spectra were ν0,1 = −10 Hz and J12 = 5 Hz; the peak in the top most spectrum
has been truncated.

Fig. 2.15 The intensity
distributions in multiplets from
strongly-coupled spectra are
such that the multiplets “tilt”
towards one another; this is
called the “roof” effect.

However, as the Larmor frequencies of the two spins get closer and closer
together we notice two things: (1) the “outer” two lines get weaker and the
“inner” two lines get stronger; (2) the two lines which originally formed the
doublet are no longer symmetrically spaced about the Larmor frequency; in
fact the stronger of the two lines moves progressively closer to the Larmor
frequency. There is one more thing to notice which is not so clear from the
spectra but is clear if one looks at the frequencies in the table. This is that the
two lines that originally formed the spin 1 doublet are always separated by
J12; the same is true for the other doublet.

These spectra illustrate the so-called roof effect in which the intensities
of the lines in a strongly coupled multiplet tilt upwards towards the multiplet
from the coupled spin, making a kind of roof; Fig. 2.15 illustrates the idea.
The spectra in Fig 2.14 also illustrate the point that when the two Larmor
frequencies are identical there is only one line seen in the spectrum and this
is at this Larmor frequency. In this limit lines 1–2 and 2–4 both appear at the
Larmor frequency and with intensity 2; lines 1–3 and 3–4 appear elsewhere
but have intensity zero.

The “take home message” is that from such strongly coupled spectra we
can easily measure the coupling, but the Larmor frequencies (the shifts) are
no longer mid-way between the two lines of the doublet. In fact it is easy
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enough to work out the Larmor frequencies using the following method; the
idea is illustrated in Fig. 2.16.

J12J12

D

1312 2434

D

Fig. 2.16 The quantities J12 and
D are readily measurable from
the spectrum of two strongly
coupled spins.

If we denote the frequency of transition 1–2 as ν12 and so on, it is clear
from the table that the frequency separation of the left-hand lines of the two
multiplets (3–4 and 2–4) is D

ν34 − ν24 = ( 1
2 D − 1

2� + 1
2 J12) − (− 1

2 D − 1
2� + 1

2 J12)

= D.

The separation of the other two lines is also D. Remember we can easily
measure J12 directly from the splitting, and so once we know D it is easy to
compute (ν0,1 − ν0,2) from its definition, Eqn. 2.4.

D2 = (ν0,1 − ν0,2)
2 + J 2

12

therefore (ν0,1 − ν0,2) =
√

D2 − J 2
12.

Now we notice from the table on 2–14 that the sum of the frequencies of
the two stronger lines (1–2 and 2–4) or the two weaker lines (3–4 and 2–4)
gives us −�:

ν12 + ν24 = ( 1
2 D − 1

2� − 1
2 J12) + (− 1

2 D − 1
2� + 1

2 J12)

= −�.

Now we have a values for � = (ν0,1 + ν0,2) and a value for (ν0,1 − ν0,2) we
can find ν0,1 and ν0,2 separately:

ν0,1 = 1
2(� + (ν0,1 − ν0,2)) ν0,2 = 1

2(� − (ν0,1 − ν0,2)).

In this way we can extract the Larmor frequencies of the two spins (the shifts)
and the coupling from the strongly coupled spectrum.

Notation for spin systems
There is a traditional notation for spin systems which it is sometimes useful to
use. Each spin is given a letter (rather than a number), with a different letter
for spins which have different Larmor frequencies (chemical shifts). If the
Larmor frequencies of two spins are widely separated they are given letters
which are widely separated in the alphabet. So, two weakly coupled spins are
usually denoted as A and X; whereas three weakly coupled spins would be
denoted AMX.

If spins are strongly coupled, then the convention is to used letters which
are close in the alphabet. So, a strongly coupled two-spin system would be de-
noted AB and a strongly coupled three-spin system ABC. The notation ABX
implies that two of the spins (A and B) are strongly coupled but the Larmor
frequency of the third spin is widely separated from that of A and B.

The ABX spin system
We noted in section 2.5 that we could think about the spectrum of three cou-
pled spins in terms of sub-spectra in which the Larmor frequencies were re-
placed by effective Larmor frequencies. This kind of approach is very useful
for understanding the AB part of the ABX spectrum.
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Fig. 2.17 AB parts of an ABX spectrum illustrating the decomposition into two sub-spectra with different
effective Larmor frequencies (indicated by the arrows). The parameters used in the simulation were
ν0,A = −20 Hz, ν0,B = −30 Hz, JAB = 5 Hz, JAX = 15 Hz and JBX = 3 Hz.

As spin X is weakly coupled to the others we can think of the AB part of
the spectrum as two superimposed AB sub-spectra; one is associated with the
X spin being in the α state and the other with the spin being in the β state. If
spins A and B have Larmor frequencies ν0,A and ν0,B , respectively, then one
sub-spectrum has effective Larmor frequencies ν0,A + 1

2 JAX and ν0,B + 1
2 JBX.

The other has effective Larmor frequencies ν0,A − 1
2 JAX and ν0,B − 1

2 JBX.
The separation between the two effective Larmor frequencies in the two

subspectra can easily be different, and so the degree of strong coupling (and
hence the intensity patterns) in the two subspectra will be different. All we
can measure is the complete spectrum (the sum of the two sub-spectra) but
once we know that it is in fact the sum of two AB-type spectra it is usually
possible to disentangle these two contributions. Once we have done this, the
two sub-spectra can be analysed in exactly the way described above for an
AB system. Figure 2.17 illustrates this decomposition.

The form of the X part of the ABX spectrum cannot be deduced from
this simple analysis. In general it contains 6 lines, rather than the four which
would be expected in the weak coupling limit. The two extra lines are combi-
nation lines which become observable when strong coupling is present.
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2.7 Exercises

E 2–1
In a proton spectrum the peak from TMS is found to be at 400.135705 MHz.
What is the shift, in ppm, of a peak which has a frequency of
400.136305 MHz? Recalculate the shift using the spectrometer frequency,
νspec quoted by the manufacturer as 400.13 MHz rather than νTMS in the de-
nominator of Eq. 2.2:

δppm = 106 × ν − νTMS

νspec
.

Does this make a significant difference to the value of the shift?

E 2–2
Two peaks in a proton spectrum are found at 1.54 and 5.34 ppm. The spec-
trometer frequency is quoted as 400.13 MHz. What is the separation of these
two lines in Hz and in rad s−1?

E 2–3
Calculate the Larmor frequency (in Hz and in rad s−1) of a carbon-13 res-
onance with chemical shift 48 ppm when recorded in a spectrometer with
a magnetic field strength of 9.4 T. The gyromagnetic ratio of carbon-13 is
+6.7283 × 107 rad s−1 T−1.

E 2–4
Consider a system of two weakly coupled spins. Let the Larmor frequencyOf course in reality the Larmor

frequencies out to be tens or
hundreds of MHz, not 100 Hz!
However, it makes the numbers
easier to handle if we use these
unrealistic small values; the
principles remain the same,
however.

of the first spin be −100 Hz and that of the second spin be −200 Hz, and let
the coupling between the two spins be −5 Hz. Compute the frequencies of
the lines in the normal (single quantum) spectrum.

Make a sketch of the spectrum, roughly to scale, and label each line with
the energy levels involved (i.e. 1–2 etc.). Also indicate for each line which
spin flips and the spin state of the passive spin. Compare your sketch with
Fig. 2.7 and comment on any differences.

E 2–5
For a three spin system, draw up a table similar to that on page 2–10 showing
the frequencies of the four lines of the multiplet from spin 2. Then, taking
ν0,2 = −200 Hz, J23 = 4 Hz and the rest of the parameters as in Fig. 2.11,
compute the frequencies of the lines which comprise the spin 2 multiplet.
Make a sketch of the multiplet (roughly to scale) and label the lines in the
same way as is done in Fig. 2.11. How would these labels change if J23 =
−4 Hz?

On an energy level diagram, indicate the four transitions which comprise
the spin 2 multiplet, and which four comprise the spin 3 multiplet.

E 2–6
For a three spin system, compute the frequencies of the six zero-quantum
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transitions and also mark these on an energy level diagram. Do these six
transitions fall into natural groups? How would you describe the spectrum?

E 2–7
Calculate the line frequencies and intensities of the spectrum for a system of
two spins with the following parameters: ν0,1 = −10 Hz, ν0,2 = −20 Hz,
J12 = 5 Hz. Make a sketch of the spectrum (roughly to scale) indicating
which transition is which and the position of the Larmor frequencies.

E 2–8
The spectrum from a strongly-coupled two spin system showed lines at the Make sure that you have your

calculator set to “radians” when
you compute sin 2θ .

following frequencies, in Hz, (intensities are given in brackets): 32.0 (1.3),
39.0 (0.7), 6.0 (0.7), 13.0 (1.3). Determine the values of the coupling constant
and the two Larmor frequencies. Show that the values you find are consistent
with the observed intensities.

frequency (Hz)

1510 20 25 30 35 40

Fig. 2.18 The AB part of an ABX spectrum

E 2–9
Figure 2.18 shows the AB part of an ABX spectrum. Disentangle the two
subspectra, mark in the rough positions of the effective Larmor frequencies
and hence estimate the size of the AX and BX couplings. Also, give the value
of the AB coupling.


