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6 Product Operators†

The vector model, introduced in Chapter 3, is very useful for describing basic
NMR experiments but unfortunately is not applicable to coupled spin systems.
When it comes to two-dimensional NMR many of the experiments are only of
interest in coupled spin systems, so we really must have some way of
describing the behaviour of such systems under multiple-pulse experiments.

The tools we need are provided by quantum mechanics, specifically in the
form of density matrix theory which is the best way to formulate quantum
mechanics for NMR.  However, we do not want to get involved in a great deal
of complex quantum mechanics!  Luckily, there is a way of proceeding which
we can use without a deep knowledge of quantum mechanics: this is the product
operator formalism.

The product operator formalism is a complete and rigorous quantum
mechanical description of NMR experiments and is well suited to calculating the
outcome of modern multiple-pulse experiments.  One particularly appealing
feature is the fact that the operators have a clear physical meaning and that the
effects of pulses and delays can be thought of as geometrical rotations, much in
the same way as we did for the vector model in Chapter 3.

6.1 A quick review of quantum mechanics

In this section we will review a few key concepts before moving on to a
description of the product operator formalism.

In quantum mechanics, two mathematical objects – wavefunctions and
operators – are of central importance.  The wavefunction describes the system of
interest (such as a spin or an electron) completely; if the wavefunction is known
it is possible to calculate all the properties of the system.  The simplest example
of this that is frequently encountered is when considering the wavefunctions
which describe electrons in atoms (atomic orbitals) or molecules (molecular
orbitals).  One often used interpretation of such electronic wavefunctions is to
say that the square of the wavefunction gives the probability of finding the
electron at that point.

Wavefunctions are simply mathematical functions of position, time etc.  For
example, the 1s electron in a hydrogen atom is described by the function
exp(–ar), where r is the distance from the nucleus and a is a constant.

In quantum mechanics, operators represent "observable quantities" such as
position, momentum and energy; each observable has an operator associated
with it.

Operators "operate on" functions to give new functions, hence their name

operator × function = (new function)

An example of an operator is d dx( ); in words this operator says "differentiate
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with respect to x".  Its effect on the function sin x is

d

dx
x xsin cos( ) =

the "new function" is cos x.  Operators can also be simple functions, so for
example the operator x2 just means "multiply by x2".

6.1.1 Spin operators

A mass going round a circular path (an orbit) possesses angular momentum; it
turns out that this is a vector quantity which points in a direction perpendicular to
the plane of the rotation.  The x-, y- and z-components of this vector can be
specified, and these are the angular momenta in the x-, y- and z-directions.  In
quantum mechanics, there are operators which represent these three components
of the angular momentum.

Nuclear spins also have angular momentum associated with them – called
spin angular momentum.  The three components of this spin angular
momentum (along x, y and z) are represented by the operators I I Ix y z,  and .

6.1.2 Hamiltonians

The Hamiltonian, H, is the special name given to the operator for the energy of
the system.  This operator is exceptionally important as its eigenvalues and
eigenfunctions are the "energy levels" of the system, and it is transitions between
these energy levels which are detected in spectroscopy.  To understand the
spectrum, therefore, it is necessary to have a knowledge of the energy levels and
this in turn requires a knowledge of the Hamiltonian operator.

In NMR, the Hamiltonian is seen as having a more subtle effect than simply
determining the energy levels.  This comes about because the Hamiltonian also
affects how the spin system evolves in time.  By altering the Hamiltonian the
time evolution of the spins can be manipulated and it is precisely this that lies at
the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first writing
down an expression for the energy of the system using classical mechanics and
then "translating" this into quantum mechanical form according to a set of rules.
In this chapter the form of the relevant Hamiltonians will simply be stated rather
than derived.

In NMR the Hamiltonian changes depending on the experimental situation.
There is one Hamiltonian for the spin or spins in the presence of the applied
magnetic field, but this Hamiltonian changes when a radio-frequency pulse is
applied.

6.2 Operators for one spin

6.2.1 Operators

In quantum mechanics operators represent observable quantities, such an
energy, angular momentum and magnetization.  For a single spin-half, the x- y-

p

A mass going round a circular
path possesses angular
moment, represented by a
vector which points
perpendicular to the plane of
rotation.
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and z-components of the magnetization are represented by the spin angular
momentum operators Ix , Iy and Iz respectively.  Thus at any time the state of the
spin system, in quantum mechanics the density operator, σ, can be represented
as a sum of different amounts of these three operators

σ t a t I b t I c t Ix y z( ) = ( ) + ( ) + ( )
The amounts of the three operators will vary with time during pulses and delays.  
This expression of the density operator as a combination of the spin angular
momentum operators is exactly analogous to specifying the three components of
a magnetization vector.

At equilibrium the density operator is proportional to Iz (there is only z-
magnetization present).  The constant of proportionality is usually unimportant,
so it is usual to write σeq = Iz

6.1.2 Hamiltonians for pulses and delays

In order to work out how the density operator varies with time we need to know
the Hamiltonian (which is also an operator) which is acting during that time.

The free precession Hamiltonian (i.e. that for a delay), Hfree , is

H Izfree = Ω
In the vector model free precession involves a rotation at frequency Ω about the
z-axis; in the quantum mechanical picture the Hamiltonian involves the z-angular
momentum operator, Iz – there is a direct correspondence.

The Hamiltonian for a pulse about the x-axis, Hpulse, is

H Ix xpulse, = ω1

and for a pulse about the y-axis it is

H Iy ypulse, = ω1

Again there is a clear connection to the vector model where pulses result in
rotations about the x- or y-axes.

6.1.3 Equation of motion

The density operator at time t, σ(t), is computed from that at time 0, σ(0) ,  using
the following relationship

σ σt iHt iHt( ) = −( ) ( ) ( )exp exp0

where H is the relevant hamiltonian.  If H and σ are expressed in terms of the
angular momentum operators if turns out that this equation can be solved easily
with the aid of a few rules.

Suppose that an x-pulse, of duration tp, is applied to equilibrium
magnetization.  In this situation H = ω1Ix  and σ(0) = Iz; the equation to be solved
is

σ ω ωt i t I I i t Ix z xp p p( ) = −( ) ( )exp exp1 1

Such equations involving angular momentum operators are common in
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quantum mechanics and the solution to them are already all know.  The identity
required here to solve this equation is

exp exp cos sin−( ) ( ) ≡ −i I I i I I Ix z x z yβ β β β [6.1]

This is interpreted as a rotation of Iz by an angle β about the x-axis.  By putting
β= ω1tp this identity can be used to solve Eqn. [6.1]

σ ω ωt t I t Iz yp p p( ) = −cos sin1 1

The result is exactly as expected from the vector model: a pulse about the x-axis
rotates z-magnetization towards the –y-axis, with a sinusoidal dependence on the
flip angle, β.

6.1.4 Standard rotations

Given that there are only three operators, there are a limited number of identities
of the type of Eqn. [6.1].  They all have the same form

exp exp

cos sin

−( ) ( )
≡ +

i I i Ia aθ θ
θ θ

{old operator}

{old operator} {new operator}

where {old operator}, {new operator} and Ia are determined from the three
possible angular momentum operators according to the following diagrams; the
label in the centre indicates which axis the rotation is about

x

y

–x

–y z

z

–y

–z

y x

z

x

–z

–x y

I II III

Angle of rotation = Ωt for offsets and ω1tp for pulses

First example: find the result of rotating the operator Iy  by θ about the x-axis,
that is

exp exp−( ) ( )i I I i Ix y xθ θ

For rotations about x the middle diagram II is required.  The diagram shows that
Iy  (the "old operator") is rotated to Iz (the "new operator").  The required identity
is therefore

exp exp cos sin−( ) ( ) ≡ +i I I i I I Ix y x y zθ θ θ θ

Second example: find the result of

exp – exp−( ) { } ( )i I I i Iy z yθ θ

This is a rotation about y, so diagram III is required.  The diagram shows that –Iz

(the "old operator") is rotated to –Ix (the "new operator").  The  required identity
is therefore
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exp exp cos sin –

cos sin

−( ) −{ } ( ) ≡ −{ } + { }
≡ − −

i I I i I I I

I I

y z y z x

z x

θ θ θ θ

θ θ
Finally, note that a rotation of an operator about its own axis has no effect e.g. a
rotation of Ix  about x leaves Ix  unaltered.

6.1.5 Shorthand notation

To save writing, the arrow notation is often used.  In this, the term Ht is written
over an arrow which connects the old and new density operators.  So, for
example, the following

σ ω σ ωt i t I i t Ix xp p p( ) = −( ) ( ) ( )exp exp1 10

is written

σ σω0 1( )  → ( )t Ix tp

p

For the case where σ(0) = Iz

I t I t Iz
t I

z y
xω ω ω1

1 1
p

p p → cos – sin

6.1.6 Example calculation: spin echo

90 180°( ) °( )x
a b

x
e f

delay delay acquireτ τ

At a the density operator is –Iy.  The transformation from a to b is free
precession, for which the Hamiltonian is ΩIz; the delay τ therefore corresponds
to a rotation about the z-axis at frequency Ω.  In the short-hand notation  this is

−  → ( )I by
IzΩτ σ

To solve this diagram I above is needed with the angle = Ωτ; the "new operator"
is Ix

−  → − +I I Iy
I

y x
zΩ Ω Ωτ τ τcos sin

In words this says that the magnetization precesses from –y towards +x.

The pulse about x has the Hamiltonian ω1Ix; the pulse therefore corresponds
to a rotation about x for a time tp such that the angle, ω1tp, is π radians.  In the
shorthand notation

− +  → ( )cos sinΩ Ωτ τ σωI I ey x
t Ix1 p [6.2]

Each term on the left is dealt with separately.  The first term is a rotation of y
about x; the relevant diagram is thus II

−  → − −cos cos cos cos sinΩ Ω Ωτ τ ω τ ωωI t I t Iy
t I

y z
x1

1 1
p

p p

However, the flip angle of the pulse, ω1tp, is π so the second term on the right is
zero and the first term just changes sign (cos π = –1); overall the result is

−  →cos cosΩ Ωτ τπI Iy
I

y
x

The second term on the left of Eqn. [6.2] is easy to handle as it is unaffected by
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a rotation about x.  Overall, the effect of the 180° pulse is then

− +  → +cos sin cos sinΩ Ω Ω Ωτ τ τ τπI I I Iy x
I

y x
x [6.3]

As was shown using the vector model, the y-component just changes sign.  The
next stage is the evolution of the offset for time τ. Again, each term on the right
of Eqn. [6.3] is considered separately

cos cos cos sin cos

sin cos sin sin sin

Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω

Ω

Ω

τ τ τ τ τ

τ τ τ τ τ

τ

τ

I I I

I I I

y
I

y x

x
I

x y

z

z

 → −

 → +

Collecting together the terms in Ix and Iy  the final result is

cos cos sin sin cos sin sin cosΩ Ω Ω Ω Ω Ω Ω Ωτ τ τ τ τ τ τ τ+( ) + −( )I Iy x

The bracket multiplying Ix is zero and the bracket multiplying Iy is =1 because of
the identity cos sin2 2 1θ θ+ = .  Thus the overall result of the spin echo sequence
can be summarised

I Iz
x x

y
90 180° − ° − − →( )– ( )τ τ

In words, the outcome is independent of the offset, Ω, and the delay τ, even
though there is evolution during the delays.  The offset is said to be refocused by
the spin echo.  This is exactly the result we found in section 3.8.

In general the sequence

– τ – 180°(x) – τ – [6.4]

refocuses any evolution due to offsets; this is a very useful feature which is
much used in multiple-pulse NMR experiments.

One further point is that as far as the offset is concerned the spin echo
sequence of Eqn. [6.4] is just equivalent to 180°(x).

6.3 Operators for two spins

The product operator approach comes into its own when coupled spin systems
are considered; such systems cannot be treated by the vector model.  However,
product operators provide a clean and simple description of the important
phenomena of coherence transfer and multiple quantum coherence.

6.1.1 Product operators for two spins

For a single spin the three operators needed for a complete description are Ix , Iy

and Iz.  For two spins, three such operators are needed for each spin; an
additional subscript, 1 or 2, indicates which spin they refer to.

spin 1:      spin 2 :  I I I I I Ix y z x y z1 1 1 2 2 2

I1z represents z-magnetization of spin 1, and I2z likewise for spin 2.  I1x

represents x-magnetization on spin 1.  As spin 1 and 2 are coupled, the
spectrum consists of two doublets and the operator I1x can be further identified
with the two lines of the spin-1 doublet.  In the language of product operators I1x

is said to represent in-phase magnetization of spin 1; the description in-phase

Ω2Ω1

J12 J12

The spectrum from two coupled
spins, with offsets Ω1 and Ω2
(rad s–1) and mutual coupling
J 12 (Hz).
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means that the two lines of the spin 1 doublet have the same sign and lineshape.

Following on in the same way I2x represents in-phase magnetization on spin
2. I1y and I2y also represent in-phase magnetization on spins 1 and 2,
respectively, but this magnetization is aligned along y and so will give rise to a
different lineshape.  Arbitrarily, an absorption mode lineshape will be assigned
to magnetization aligned along x and a dispersion mode lineshape to
magnetization along y.

Ω1

Ω2

Ω1

Ω2

I1x I1y

I2x I2y

There are four additional operators which represent anti-phase magnetization:
2I1xI2z, 2I1yI2z, 2I1 zI2 x, 2I1 zI2 y (the factors of 2 are needed for normalization
purposes).  The operator 2I1 xI2z is described as magnetization on spin 1 which is
anti-phase with respect to the coupling to spin 2.

Ω1

Ω2

Ω1

Ω2

2I1yI2z

2I1zI2y2I1zI2x

2I1xI2z

Note that the two lines of the spin-1 multiplet are associated with different spin
states of spin-2, and that in an anti-phase multiplet these two lines have different
signs.  Anti-phase terms are thus sensitive to the spin states of the coupled spins.

There are four remaining product operators which contain two transverse (i.e.
x- or y-operators) terms and correspond to multiple-quantum coherences; they
are not observable

multiple quantum : 2 2 2 2I I I I I I I Ix y y x x x y y1 2 1 2 1 2 1 2

Finally there is the term 2I1 zI2 z which is also not observable and corresponds to a
particular kind of non-equilibrium population distribution.

6.1.2 Evolution under offsets and pulses

The operators for two spins evolve under offsets and pulses in the same way as
do those for a single spin.  The rotations have to be applied separately to each
spin and it must be remembered that rotations of spin 1 do not affect spin 2, and
vice versa.

For example, consider I1 x evolving under the offset of spin 1 and spin 2.  The
relevant Hamiltonian is

H I Iz zfree = +Ω Ω1 1 2 2

absorption dispersion

The absorption and dispersion
lineshapes.  The absorption
lineshape is a maximum on
resonance, whereas the
dispersion goes through zero at
this point.  The "cartoon" forms
of the lineshapes are shown in
the lower part of the diagram.

Ω1
spin state
of spin 2α β

The two lines of the spin-1
doublet can be associated with
different spin states of spin 2.
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where Ω1 and Ω2 are the offsets of spin 1 and spin 2 respectively.  Evolution
under this Hamiltonian can be considered by applying the two terms sequentially
(the order is immaterial)

I

I

I

x
H t

x
tI tI

x
tI tI

z z

z z

1

1

1

1 1 2 2

1 1 2 2

free →

 →

 →  →

+Ω Ω

Ω Ω

The first "arrow" is a rotation about z

I t I t Ix
tI

x y
tIz z

1 1 1 1 1
1 1 2 2Ω ΩΩ Ω → +  →cos sin

The second arrow leaves the intermediate state unaltered as spin-2 operators
have not effect on spin-1 operators.  Overall, therefore

I t I t Ix
tI tI

x y
z z

1 1 1 1 1
1 1 2 2Ω Ω Ω Ω+ → +cos sin

A second example is the term 2I1xI2z evolving under a 90° pulse about the y-
axis applied to both spins. The relevant Hamiltonian is

H I Iy y= +ω ω1 1 1 2

The evolution can be separated into two successive rotations

2 1 2
1 1 1 2I Ix z
tI tIy yω ω →  →

The first arrow affects only the spin-1 operators; a 90° rotation of I1x about y
gives – I1 z (remembering that ω1t = π/2 for a 90° pulse)

2 2 2

2 2

1 2 1 1 2 1 1 2

1 2

2

1 2

2

1 1 1 2

1 2

I I t I I t I I

I I I I

x z

tI

x z z z

tI

x z

I

z z

I

y y

y y

ω ω

π π

ω ω → −  →

 → −  →

cos sin

The second arrow only affects the spin 2 operators; a 90° rotation of z about y
takes it to x

2 2 21 2
2

1 2
2

1 2
1 2I I I I I Ix z

I
z z

I
z x

y yπ π → −  → −

The overall result is that anti-phase magnetization of spin 1 has been transferred
into anti-phase magnetization of spin 2.  Such a process is called coherence
transfer and is exceptionally important in multiple-pulse NMR.

6.1.3 Evolution under coupling

The new feature which arises when considering two spins is the effect of
coupling between them.  The Hamiltonian representing this coupling is itself a
product of two operators:

H J I Iz zJ = 2 12 1 2π
where J12  is the coupling in Hz.

Evolution under coupling causes the interconversion of in-phase and anti-
phase magnetization according to the following diagrams
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IV V
x

yz

–x

–yz zz

y

–xz

–y

xz zz

angle = πJt

For example, in-phase magnetization along x becomes anti-phase along y
according to the diagram d

I J t I J t I Ix
J t I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π π π → +cos sin

note that the angle is πJ12t i.e. half the  angle for the other rotations, I–III.

Anti-phase magnetization along x becomes in-phase magnetization along y;
using diagram V:

2 21 2
2

12 1 2 12 1
12 1 2I I J t I I J t Ix z

J t I I
x z y

z zπ π π → +cos sin

The diagrams apply equally well to spin-2; for example

−  → +2 21 2
2

12 1 2 12 2
12 1 2I I J t I I J t Iz y

J t I I
z y x

z zπ π π– cos sin

Complete interconversion of in-phase and anti-phase magnetization requires a
delay such that π πJ t12 2= i.e. a delay of 1/(2J12).  A delay of 1/J12 causes in-
phase magnetization to change its sign:

I I I I Ix
J t I I t J

y z y
J t I I t J

y
z z z z

1
2 1 2

1 2 2
2 1

2
12 1 2 12 12 1 2 122π π= = →  → −

6.4 Spin echoes

It was shown in section 6.2.6 that the offset is refocused in a spin echo.  In this
section it will be shown that the evolution of the scalar coupling is not
necessarily refocused.

6.4.1 Spin echoes in homonuclear spin system

In this kind of spin echo the 180° pulse affects both spins i.e. it is a non-selective
pulse:

– τ – 180°(x, to spin 1 and spin 2) – τ –

At the start of the sequence it will be assumed that only in-phase x-magnetization
on spin 1 is present: I1x.  In fact the starting state is not important to the overall
effect of the spin echo, so this choice is arbitrary.

It was shown in section 6.2.6 that the spin echo applied to one spin refocuses
the offset; this conclusion is not altered by the presence of a coupling so the
offset will be ignored in the present calculation.  This greatly simplifies things.

For the first delay τ only the effect of evolution under coupling need be
considered therefore:

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

The 180° pulse affects both spins, and this can be calculated by applying the
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180° rotation to each in succession

cos sinπ τ π τ π πJ I J I Ix y z
I Ix x

12 1 12 1 22 1 2+  →  →

where it has already been written in that ω1tp = π, for a 180° pulse.  The 180°
rotation about x for spin 1 has no effect on the operator I1x and I2z, and it simply
reverses the sign of the operator I1y

cos sin cos sinπ τ π τ π τ π τπ πJ I J I I J I J I Ix y z
I

x y z
Ix x

12 1 12 1 2 12 1 12 1 22 21 2+  → −  →

The 180° rotation about x for spin 2 has no effect on the operators I1x and I1 y, but
simply reverses the sign of the operator I2 z.  The final result is thus

cos sin cos sin

cos sin

π τ π τ π τ π τ

π τ π τ

π

π

J I J I I J I J I I

J I J I I

x y z
I

x y z

I
x y z

x

x

12 1 12 1 2 12 1 12 1 2

12 1 12 1 2

2 2

2

1

2

+  → −

 → +

Nothing has happened; the 180° pulse has left the operators unaffected!  So, for
the purposes of the calculation it is permissible to ignore the 180° pulse and
simply allow the coupling to evolve for 2τ.  The final result can therefore just be
written down:

I J I J I Ix
x

x y z1
180

12 1 12 1 22 2 2τ τ π τ π τ− ° − → +( ) cos sin

From this it is easy to see that complete conversion to anti-phase magnetization
requires 2πJ12τ = π/2 i.e. τ = 1/(4 J12).

The calculation is not quite as simple if the initial state is chosen as I1y, but the
final result is just the same – the coupling evolves for 2τ:

I J I J I Iy
x

y x z1
180

12 1 12 1 22 2 2τ τ π τ π τ− ° − → − +( ) cos sin

In fact, the general result is that the sequence

– τ – 180°(x, to spin 1 and spin 2) – τ –

is equivalent to the sequence

– 2τ – 180°(x, to spin 1 and spin 2)

in which the offset is ignored and coupling is allowed to act for time 2τ.

6.1.2 Interconverting in-phase and anti-phase states

So far, spin echoes have been demonstrated as being useful for generating anti-
phase terms, independent of offsets.  For example, the sequence

90°(x) – 1/(4J12) – 180°(x) – 1/(4J12) –

generates pure anti-phase  magnetization.

Equally useful is the sequence

– 1/(4J12) – 180°(x) – 1/(4J12) –

which will convert pure anti-phase magnetization, such as 2I1xI2z into in-phase
magnetization, I1y.
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6.1.3 Spin echoes in heteronuclear  spin systems

If spin 1 and spin 2 are different nuclear species, such as 13C and 1H, it is
possible to choose to apply the 180° pulse to either or both spins; the outcome of
the sequence depends on the pattern of 180° pulses.

Sequence a has already been analysed: the result is that the offset is refocused
but that the coupling evolves for time 2τ.  Sequence b still refocuses the offset of
spin 1, but it turns out that the coupling is also refocused.  Sequence c refocuses
the coupling but leaves the evolution of the offset unaffected.

Sequence b

It will be assumed that the offset is refocused, and attention will therefore be
restricted to the effect of the coupling

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

The 180°(x) pulse is only applied to spin 1

cos sin cos sinπ τ π τ π τ π τπJ I J I I J I J I Ix y z
I

x y z
x

12 1 12 1 2 12 1 12 1 22 21+  → − [6.5]

The two terms on the right each evolve under the coupling during the second
delay:

cos

cos cos sin cos

sin

cos sin sin sin

π τ
π τ π τ π τ π τ

π τ
π τ π τ π τ π τ

π τ

π τ

J I

J J I J J I I

J I I

J J I I J J I

x
J I I

x y z

y z
J I I

y z

z z

z z

12 1
2

12 12 1 12 12 1 2

12 1 2
2

12 12 1 2 12 12 1

12 1 2

12 1 2

2

2

2

 →
+

−  →

− + xx

Collecting the terms together and noting that cos sin2 2 1θ θ+ =  the final result is
just I1 x.  In words, the effect of the coupling has been refocused.

Sequence c

As there is no 180° pulse applied to spin 1, the offset of spin 1 is not refocused,
but continues to evolve for time 2τ.  The evolution of the coupling is easy to
calculate:

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

This time the 180°(x) pulse is applied to spin 2

cos sin cos sinπ τ π τ π τ π τπJ I J I I J I J I Ix y z
I

x y z
x

12 1 12 1 2 12 1 12 1 22 22+  → −

The results is exactly as for sequence b (Eqn. [6.5]), so the final result is the
same i.e. the coupling is refocused.

Summary

In heteronuclear systems it is possible to choose whether or not to allow the
offset and the coupling to evolve; this gives great freedom in generating and
manipulating anti-phase states which play a key role in multiple pulse NMR
experiments.

spin 1

spin 2

a

spin 1

spin 2

b

spin 1

spin 2

c

τ τ

τ τ

τ τ

Three different spin echo
sequences that can be applied
to heteronuclear spin systems.
The open rectangles represent
180° pulses.
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6.5 Multiple quantum terms

6.5.1 Coherence order

In NMR the directly observable quantity is the transverse magnetization, which
in product operators is represented by terms such as I1x and 2I1 zI2 y.  Such terms
are examples of single quantum coherences, or more generally coherences with
order, p = ±1.  Other product operators can also be classified according to
coherence order e.g. 2I1 zI2 z has p = 0 and 2I1xI2y has both p = 0 (zero-quantum
coherence) and ±2 (double quantum coherence).  Only single quantum
coherences are observable.

In heteronuclear systems it is sometimes useful to classify operators
according to their coherence orders with respect to each spin.  So, for example,
2I1 zI2 y has p = 0 for spin 1 and p = ±1 for spin 2.

6.5.2 Raising and lowering operators

The classification of operators according to coherence order is best carried out
be re-expressing the Cartesian operators Ix  and Iy  in terms of the raising and
lowering operators, I+  and I– , respectively.  These are defined as follows

I I iI I I iIx y x y+ −= + = − [6.6]

where i is the square root of –1.  I+ has coherence order +1 and I– has coherence
order –1; coherence order is a signed quantity.

Using the definitions of Eqn. [6.6] Ix  and Iy  can be expressed in terms of the
raising and lowering operators

I I I I I Ix y i= +( ) = ( )+ − + −
1
2

1
2 – [6.7]

from which it is seen that Ix  and Iy  are both mixtures of coherences with p = +1
and –1.

The operator product 2I1xI2x can be expressed in terms of the raising and
lowering operators in the following way (note that separate operators are used
for each spin: I1± and I2±)

2 21 2
1
2 1 1

1
2 2 2

1
2 1 2 1 2

1
2 1 2 1 2

I I I I I I

I I I I I I I I

x x = × +( )× +( )
= +( ) + +( )

+ − + −

+ + − − + − − +

[6.8]

The first term on the right of Eqn. [6.8] has p = (+1+1) = 2 and the second term
has p = (–1–1) = –2; both are double quantum coherences.  The third and fourth
terms both have p = (+1–1) = 0 and are zero quantum coherences.  The value of
p can be found simply by noting the number of raising and lowering operators
in the product.

The pure double quantum part of 2I1 xI2x is, from Eqn. [6.8],

double quantum part 2 1 2
1
2 1 2 1 2I I I I I Ix x[ ] = +( )+ + − − [6.9]

The raising and lowering operators on the right of Eqn. [6.9] can be re-
expressed in terms of the Cartesian operators:
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1
2 1 2 1 2

1
2 1 1 2 2 1 1 2 2

1
2 1 2 1 22 2

I I I I I iI I iI I iI I iI

I I I I

x y x y x y x y

x x y y

+ + − −+( ) = +( ) +( ) + −( ) −( )[ ]
= +[ ]

So, the pure double quantum part of 2I1xI2x is 1
2 1 2 1 22 2I I I Ix x y y+( ); by a similar

method the pure zero quantum part can be shown to be 1
2 1 2 1 22 2I I I Ix x y y−( ).

Some further useful relationships are given in section 6.9

6.6 Three spins

The product operator formalism can be extended to three or more spins.  No
really new features arise, but some of the key ideas will be highlighted in this
section.  The description will assume that spin 1 is coupled to spins 2 and 3 with
coupling constants  J12 and J13; in the diagrams it will be assumed that J12 > J13.

6.6.1 Types of operators

I1x represents in-phase magnetization on spin 1; 2I1xI2z represents magnetization
anti-phase with respect to the coupling to spin 2 and 2I1xI3z represents
magnetization anti-phase  with respect to the coupling to spin 3.  4I1xI2zI3 z

represents magnetization which is doubly anti-phase with respect to the
couplings to both spins 2 and 3.

As in the case of two spins, the presence of more than one transverse
operator in the product represents multiple quantum coherence.  For example,
2I1xI2x is a mixture of double- and zero-quantum coherence between spins 1 and
2.  The product 4I1 xI2xI3z is the same mixture, but anti-phase with respect to the
coupling to spin 3.  Products such as 4I1xI2xI3x contain, amongst other things,
triple-quantum coherences.

6.6.2 Evolution

Evolution under offsets and pulses is simply a matter of applying sequentially
the relevant rotations for each spin, remembering that rotations of spin 1 do not
affect operators of spins 2 and 3.  For example, the term 2I1xI2z evolves under
the offset in the following way:

2 2 21 2 1 1 2 1 1 2
1 1 2 2 3 3I I t I I t I Ix z
tI tI tI

x z y z
z z zΩ Ω Ω Ω Ω →  →  → +cos sin

The first arrow, representing evolution under the offset of spin 1, affects only the
spin 1 operator I1 x.  The second arrow has no effect as the spin 2 operator I2z and
this is unaffected by a z-rotation.  The third arrow also has no effect as there are
no spin 3 operators present.

The evolution under coupling follows the same rules as for a two-spin
system.  For example, evolution of I1 x under the influence of the coupling to spin
3 generates 2I1 yI3z

I J t I J t I Ix
J tI I

x y z
z z

1
2

13 1 13 1 3
13 1 3 2π π π → +cos sin

Further evolution of the term 2I1 y I3 z under the influence of the coupling to spin 2
generates a double anti-phase term

spin 2
spin 3

Ω1

J13

J12

α α β β
α β α β

The doublet of doublets from
spin 1 coupled to two other
spins.  The spin states of the
coupled spins are also
indicated.

I1x

2I1xI2z

2I1xI3z

4I1xI2zI3z

Representations of different
types of operators.
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2 2 41 3
2

12 1 3 13 1 2 3
12 1 2I I J t I I J t I I Iy z

J tI I
y z x z z

z zπ π π → −cos sin

In this evolution the spin 3 operator is unaffected as the coupling does not
involve this spin.  The connection with the evolution of I1y under a coupling can
be made more explicit by writing 2I3 z as a "constant" γ

γ π γ π γπI J t I J t I Iy
J tI I

y x z
z z

1
2

12 1 13 1 2
12 1 2 2 → −cos sin

which compares directly to

I J t I J t I Iy
J tI I

y x z
z z

1
2

12 1 13 1 2
12 1 2 2π π π → −cos sin

6.7 Alternative notation

In this chapter different spins have been designated with a subscript 1, 2, 3 ...
Another common notation is to distinguish the spins by using a different letter to
represent their operators; commonly I and S are used for two of the symbols

2 21 2I I I Sx z x z≡

Note that the order in which the operators are written is not important, although
it is often convenient (and tidy) always to write them in the same sequence.

In heteronuclear experiments a notation is sometimes used where the letter
represents the nucleus.  So, for example, operators referring to protons are given
the letter H, carbon-13 atoms the letter C and nitrogen-15 atoms  the letter N;
carbonyl carbons are sometimes denoted C'.  For example, 4CxHzNz denotes
magnetization on carbon-13 which is anti-phase with respect to coupling to both
proton and nitrogen-15.

6.8 Conclusion

The product operator method as described here only applies to spin-half nuclei.
It can be extended to higher spins, but significant extra complexity is introduced;
details can be found in the article by Sørensen et al. (Prog. NMR Spectrosc. 16,
163 (1983)).

The main difficulty with the product operator method is that the more pulses
and delays that are introduced the greater becomes the number of operators and
the more complex the trigonometrical expressions multiplying them.  If pulses
are either 90° or 180° then there is some simplification as such pulses do not
increase the number of terms.  As will be seen in chapter 7, it is important to try
to simplify the calculation as much as possible, for example by recognizing
when offsets or couplings are refocused by spin echoes.

A number of computer programs are available for machine computation
using product operators within programs such as Mathematica or Maple.  These
can be very labour saving.
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6.9 Multiple -quantum coherence

6.9.1 Multiple-quantum terms

In the product operator representation of multiple quantum coherences it is usual
to distinguish between active and passive spins.  Active spins contribute
transverse operators, such as Ix, Iy and I+, to the product; passive spins contribute
only z-operators, Iz.  In a sense the spins contributing transverse operators are
"involved" in the coherence, while those contributing z-operators are simply
spectators.

For double- and zero-quantum coherence in which spins i and j are active it is
convenient to define the following set of operators which represent pure multiple
quantum states of given order.  The operators can be expressed in terms of the
Cartesian or raising and lowering operators.

double quantum,  

DQ

DQ

zero quantum,  

ZQ

p

I I I I I I I I

I I I I I I I I

p

I I I I I

x
ij

ix jx iy jy i j i j

y
ij

ix jy iy jx i i j i j

x
ij

ix jx iy jy

= ±

≡ −( ) ≡ +( )
≡ +( ) ≡ −( )

=

≡ +( ) ≡

( )
+ + − −

( )
+ + − −

( )

2

2 2

2 2

0

2 2

1
2

1
2

1
2

1
2

1
2

1
2 ii j i j

y
ij

iy jx ix jy i i j i j

I I I

I I I I I I I I

+ − − +

( )
+ − − +

+( )
≡ −( ) ≡ −( )ZQ 1

2
1
22 2

6.9.2 Evolution of multiple -quantum terms

Evolution under offsets

The double- and zero-quantum operators evolve under offsets in a way which is
entirely analogous to the evolution of Ix  and Iy  under free precession except that
the frequencies of evolution are (Ωi + Ωj) and (Ωi – Ωj) respectively:

DQ DQ DQ

DQ DQ DQ

ZQ

x
ij tI tI

i j x
ij

i j y
ij

y
ij tI tI

i j y
ij

i j x
ij

x
ij tI tI

i iz j jz

i iz j jz

i iz j jz

t t

t t

( ) + ( ) ( )

( ) + ( ) ( )

( ) +

 → +( ) + +( )
 → +( ) − +( )
 →

Ω Ω

Ω Ω

Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

cos sin

cos sin

coscos sin

cos sin

Ω Ω Ω Ω

Ω Ω Ω ΩΩ Ω

i j x
ij

i j y
ij

y
ij tI tI

i j y
ij

i j x
ij

t t

t ti iz j jz

−( ) + −( )
 → −( ) − −( )

( ) ( )

( ) + ( ) ( )

ZQ ZQ

ZQ ZQ ZQ

Evolution under couplings

Multiple quantum coherence between spins i and j does not evolve under the
influence of the coupling between the two active spins, i and j.

Double- and zero-quantum operators evolve under passive couplings in a
way which is entirely analogous to the evolution of Ix  and Iy; the resulting
multiple quantum terms can be described as being anti-phase with respect to the
effective couplings:
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DQ DQ DQ

DQ DQ DQ

ZQ ZQ ZQ

ZQ

DQ,eff DQ,eff

DQ,eff DQ,eff

ZQ,eff ZQ,eff

x
ij

x
ij

kz y
ij

y
ij

y
ij

kz x
ij

x
ij

x
ij

kz y
ij

y
ij

J t J t I

J t J t I

J t J t I

J

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

 → +

 → −

 → +

 →

cos cos

cos sin

cos sin

cos

π π

π π

π π

π

2

2

2

ZQ,ZQ,eff ZQ,effZQ ZQt J t Iy
ij

kz x
ij( ) ( )− sinπ 2

JDQ,eff is the sum of the couplings between spin i and all other spins plus the sum
of the couplings between spin j and all other spins. JZQ,eff is the sum of the
couplings between spin i and all other spins minus the sum of the couplings
between spin j and all other spins.

For example in a three-spin system the zero-quantum coherence  between
spins 1 and 2, anti-phase with respect to spin 3, evolves according to

2 23
12

3
12 12

13 23

I J t I J t

J J J

z y z y xZQ ZQ ZQ

where  

ZQ,eff ZQ,eff

ZQ,eff

( ) ( ) ( ) → −

= −

cos sinπ π

Further details of multiple-quantum evolution can be found in section 5.3 of
Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two
Dimensions (Oxford University Press, 1987).


