Molekulární docking a design léčiv – predikce komplexu léčiva Donepezil s acetylcholin esterasou

1. Identifikace vazebných míst v receptoru a jejich druggability

- nalezněte potenciální vazebná místa ve struktuře Acetylcholin esterasy (<u>1EA5</u>) v databázi <u>DrugEBIlity</u>
 - při rozhodování berte v potaz zejména konsenzuální předpověď (ensemble)
 - stáhněte výsledky ve formátu PDB (jako druggebility.pdb), budete je potřebovat při řešení úkolu v 3. sekci
 - zobrazte potenciální vazebné místa v PyMOLu a ověřte které z nich obsahuje katalytická residua s pomocí databáze <u>CSA</u>

2. Příprava struktury ligandu Donepezilu

- připravte strukturu ligandu pomoci konvertoru CORINA
 - stáhněte 3D strukturu ve formátu PDB (pojmenujte **donepezil.pdb**)

3. Příprava komplexu molekulárním dockováním s programem AutoDock Vina

- příprava receptoru k dockování
 - načtěte strukturu acetylcholin esterasy (1EA5) do Pymolu
 - odstraňte molekuly vod: Action -> remove waters
 - vyberte a odstraňte molekuly N-acetyl-D-glucosaminu residua NAG: Action -> remove atoms
 - v záložce Receptor pluginu Autodock Vina generujte receptor pro položku 1EA5
- příprava ligandu
 - načtěte strukturu ligandu (donepezil.pdb) do Pymolu
 - v záložce Ligands pluginu Autodock Vina
 - aktualizujte selekce: Import selections
 - generujte ligand pro položku **donepezil**
- výběr relevantního regionu (tj. obsahující druggable vazebné místo)
 - načtěte soubor druggebility.pdb
 - vyberte druggable site (identifikované místa jsou reprezentovány residui SPH)
 - modifikujte selekci tak, aby obsahovala residua v okolí 4 Å od vybraného místa: Action > modify -> around -> resiudes within 4 Å
 - v záložce Grid Settings pluginu Autodock Vina
 - vyberte Calculate Grid Center by Selection, je třeba použít ENTER
 - upravte rozměry boxu, tak aby zahrnoval celé druggable site (vybrané residuum SPH) – sekce *Parameters* – X,Y,Z-points např. (60, 60, 90)
- proveďte samotný výpočet molekulového dockování
 - v záložce Docking pluginu Autodock Vina vyberte správný receptor a ligand
 - nastavte počet predikovaných vazebných módů (# Poses) na 5
 - run vina
- analyzujte výsledky molekulového dockování
 - v záložce View poses pluginu Autodock Vina načtěte soubor s výsledky (donepezil.1ea5.docked.pdbqt): *load -> Show all*

- v záložce Score/rank pluginu Autodock Vina je pro jednotlivé vazebné mody uvedena predikovaná volná energie
- jaká residua jsou v kontaktu s nejlepším vazebným módem?
- jaká je jeho vazebná energie?

4. Porovnání predikované struktury komplexu s experimentem

- porovnejte predikovaný vazebný mód s experimentální strukturou komplexu (PDB-ID 1EVE)
 - jak moc se vazebné módy liší? (Donepezil residuum E20)
 - volitelně zobrazte si pro elektronovou hustotu ligandu z EDS databáze
 - PDB-ID 1EVE, Download Maps, formát mapy: CCP4; typ: 2mFo-DFc
 - rozbalte (např. 7-zip) a přejmenujte CCP4 mapu 1eve.ccp4 \rightarrow 1eve_map.ccp4
 - vytvořte selekci sele obsahující residuum E20 a zobrazte jeho elektronovou hustotu příkazem: *isomesh ed, 1eve_map, 1.0, sele, carve=1.6*
- porovnejte predikovanou vazebnou energii s experimentálně stanovenou hodnotou z databáze <u>BindingDB</u>
 - např.: Compound -> Name -> Donepezil
 - jak moc se energie liší?

Jako e-learningová podpora ke cvičení je k dispozici videotutorial popisující tento protokol: <u>http://loschmidt.chemi.muni.cz/sbiol/videos/cv08/08_dokovani/08_dokovani.html</u>