

PřechledHigh throughput biology Automation Omice Transcriptomics and high throughput transcriptomics High throughput interactomics and how to read it High throughput of anything 1000(+1) genomes, GWAS ENCODE Epigenenome and epitranscriptome Little about Systems biology Omics Holism and modules Gene regulation in E. coli

Phenoscope • leaf area (camera) • photosynthesis (spectra) • weight • temperature (thermo camera) • in a dynamic manner • ... • various ecotypes only, so far • commercially promising

What could be <u>natural variation</u> good for?

What could be natural variation good for?

Quantitative trait loci (QTL)

- nature makes genetic screen for you
- QTL is analogous to gene in genetic screen

Status of cytosine methylations in various tissues can be explored in various tissues (human)

	(a) 17 ¥ 8448748 (b) Go ← → 8448816
- 🤤 🕕 Gene Models	Search 👻 scale 1
OTATOTACTODOCACIONATINACCITICATATTIOTTAAAAAAAAAAAAAAAAAAAAAAAA	TTCAAATOCHGCAATATOCHGGATTCCAATGAAAGATGCTCCCTC
1	
👔 🤤 CpG islands	scale 1 Color •
Adrenal Methylome STL002 • CG • CHG • CHH	scale 0.2 Color +
Adrenal Methylome STL003 © CG © CHG © CHH	scale 0.2 Color +
Aorta Methylome STL602 • CG • CHG • CHH	scale 0.2 Color +
CG • CHG • CHH	scale 0.2 Color -
💫 🤪 Bladder Methylome STL001 🔹 CG 🔹 CHG 🔹 CHH	scale 0.2 Color +
😰 🤤 Esophagus Methylome STL002 🔹 CG 🔹 CHG 🔹 CHH	scale 0.2 Color •
CG CHG CHG CHG CHG	scale 0.2 Color -
Fat Methylome STL001 CG CHG CHH	scale 0.2 Color -
C ST A Methylome STL002 • CG • CHG • CHH	scale 0.2 Color •
Fat Methylome STL003 • CG • CHG • CHH	scale 0.2 Color -
Gastric Methyleme STL001 • CG • CMG • CMH	scale 0.2 Color ·

How to find methylated bases in genome?

Which bases are methylated?

What is methylation of cytosine good for?

Are there other covalent modifications?

The ENCODE project

Mainly cancer cells, lymphocytes etc.

<u>RNA transcribed regions:</u> RNA-seq, CAGE, RNA-PET and manual annotation

Protein-coding regions: mass spectrometry

<u>Transcription-factor-binding sites:</u> ChIP-seq, DNase-seq

<u>Chromatin structure:</u> DNase-seq, FAIRE-seq, histone ChIP-seq and MNase-seq

<u>DNA methylation sites:</u> RRBS assay (cheaper version of bisulfite seq)

ENCODE - summary

~80 % genome associated with biochemical function:

- enhancers, promoters
- transcribed to non-coding RNA
- 75 % genome transcribed, at least little bit
- number of recognition sequences of DNA binding proteins doubled
- E. g. 75 % meaningful number?

Question: where do you see the limits of high throughput biology?

Sometimes low quality data or artifacts occasionally data missing biological material is quite complex what to do with so many data? where is the idea?

"Multidimensional biology"

- o Genomics
- Epigenomics
- Transcriptomics
- Epitranscriptomics
- Translatomics / Proteomics
- Metabolomics
- Interactomics
- Fluxomics
- NeuroElectroDynamics
- Phenomics
- Biomics

Systems theory

Forget about **<u>reductionism</u>**, think **<u>holistically</u>**.

όλος [hol'-os] – greek. all, the whole, entire, complete

Conclusions

- computing capacities allow handling large data sets
- fashionable
- modelling whole cell processes in silico?
 story frequently missing, there will be always question marks

Great web sites	
http://www.yeastgenome.org/	S. cerevisiae
http://www.pombase.org/	S. pombe
http://flybase.org/	Drosophila
http://www.wormbase.org/	C. elegans
http://www.arabidopsis.org/	A. thaliana

Also nice web sites

http://encodeproject.org/ http://www.thebiogrid.org/ http://www.genemania.org/ http://string-db.org/ ...and many others ...pay attention, if they are kept alive and curated

