Introduction to Computational Quantum Chemistry

Lesson 11: Relativistic calculation

Why relativistic quantum chemistry

 For accurate predictions of various prperties of chemical system containing heavy elements

$$m_{rel} = \frac{m_0}{\sqrt{1 - \frac{v^2}{C^2}}}$$

 For light element systems we can forget about relativistic correction. Schrodinger equation

$$\left[-\frac{1}{2}\bigtriangledown^2 + V(r)\right]\psi(r) = E\psi(r)$$

Dirac equation

$$\left[c\alpha \cdot p + \beta \cdot mc^2 + V(r)\right] = E\psi(r)$$

$$\psi(r) = \begin{bmatrix} \psi_1(r) \\ \psi_2(r) \\ \psi_3(r) \\ \psi_4(r) \end{bmatrix}$$

Two-component relativistic methods

- High computational cost of four-component relativistic calculations has motivated the development of computationally less demanding two-component Hamiltonians
- Two-component relativistic Hamiltonians (involving only positive-energy orbitals): pseudopotential and all-electron methods

ZORA: accurate and efficient relativistic DFT

The zeroth order regular approximation (ZORA) to the Dirac equation accurately and efficiently treats relativistic effects in chemistry. ZORA can be applied with spin-orbit coupling or as scalar correction only.

- Spin Orbit Coupling can be included self-consistently
- All electron relativistic basis sets for all elements
- Available for most spectroscopic properties
- Include relativistic effects on structure and reactivity

From Dirac to ZORA equation

Four-component Dirac Hamiltonian

$$\begin{bmatrix} V & c(\sigma.p) \\ c(\sigma.p) & V - 2c^2 \end{bmatrix} \cdot \left(\begin{array}{c} \phi \\ \chi \end{array} \right) = E \left(\begin{array}{c} \phi \\ \chi \end{array} \right)$$

↓ Unitary transformation

Two-component zeroth order regular approximation

$$(V(r) + \sigma p \frac{c^2}{2c^2 - V(r)} \sigma p) \phi_{zora} = E_{zora} \phi_{zora}$$

Amsterdam Density Functional

- "user-friendly DFT software for chemists"
- https://www.scm.com/
- Free trial licence for 30 days
- GUI available only at wolf23

Introduction

- Very fast code
- Uses Slater-type basis functions
- Functionalities:
 - Optimizations
 - Response properties (NMR, EPR, UV-VIS, IR, Mössbauer..)
 - NOCV
 - EDA
 - COSMO model of solvation
 - ZORA scalar and spin-orbit relativistic approach

GUI

- Nice and clear interface
- adfinput
- adfview
- adfoutput
- Only single licence

Running ADF jobs

- Input: keywords in blocks
- adf {-n nproc} < input.adf > output.out
- nmr {-n nproc} < input_nmr.adf > output_nmr.out
- INFINITY takes care of the number of CPUs
- Tape files: binaries containing the orbitals
- http://www.scm.com/Doc/Doc2014/ADF/ ADFUsersGuide/page262.html#keyscheme%20SAVE

NMR

- TAPE10 is required
- Separate input file with NMR keywords
- http://www.scm.com/Doc/Doc2014/ADF/ ADFUsersGuide/page188.html

SCF calculations

- Use the prepared input files distributed in IS
- Write the molecular geometry in same format as .xyz (Å)
- Bond lengths:
 - HCl(scalar): 1.276930
 - HI(scalar): 1.606797
 - HCI(SO): 1.276467
 - HI(SO): 1.609681

NMR calculations

- Calculate the NMR properties of hydrogen in HI and HCI
- For relativity use ZORA Scalar and ZORA Spin-Orbit approximations
- Compare the Experimental, Nonrelativistic, ECP, and Two component approach
- Chemical shielding for benzene ¹H nuclei: