
Chapter 2

The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Abstract The potential energy surface (PES) is a central concept in computational

chemistry. A PES is the relationship – mathematical or graphical – between

the energy of a molecule (or a collection of molecules) and its geometry. The

Born–Oppenheimer approximation says that in a molecule the nuclei are essentially

stationary compared to the electrons. This is one of the cornerstones of computa-

tional chemistry because it makes the concept of molecular shape (geometry)

meaningful, makes possible the concept of a PES, and simplifies the application

of the Schr€odinger equation to molecules by allowing us to focus on the electronic

energy and add in the nuclear repulsion energy later; this third point, very important

in practical molecular computations, is elaborated on in Chapter 5. Geometry

optimization and transition state optimization are explained.

2.1 Perspective

We begin a more detailed look at computational chemistry with the potential energy

surface (PES) because this is central to the subject. Many important concepts that

might appear to be mathematically challenging can be grasped intuitively with the

insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls

(atoms) held together by springs (chemical bonds); in fact, this simple picture is the

basis of the important method molecular mechanics, discussed in Chapter 3. If we

take a macroscopic balls-and-spring model of our diatomic molecule in its normal

geometry (the equilibrium geometry), grasp the “atoms” and distort the model by

stretching or compressing the “bonds”, we increase the potential energy of the

molecular model (Fig. 2.1). The stretched or compressed spring possesses energy,

by definition, since we moved a force through a distance to distort it. Since the

E.G. Lewars, Computational Chemistry,
DOI 10.1007/978-90-481-3862-3_2, # Springer ScienceþBusiness Media B.V. 2011

9



model is motionless while we hold it at the new geometry, this energy is not kinetic

and so is by default potential (“depending on position”). The graph of potential

energy against bond length is an example of a potential energy surface. A line

is a one-dimensional “surface”; we will soon see an example of a more familiar

two-dimensional surface rather than the line of Fig. 2.1.

Real molecules behave similarly to, but differ from our macroscopic model in

two relevant ways:

1. They vibrate incessantly (as we would expect from Heisenberg’s uncertainty

principle: a stationary molecule would have an exactly defined momentum and

position) about the equilibrium bond length, so that they always possess kinetic

energy (T) and/or potential energy (V): as the bond length passes through the

equilibrium length, V ¼ 0, while at the limit of the vibrational amplitude, T ¼ 0;

at all other positions both T and V are nonzero. The fact that a molecule is never

actually stationary with zero kinetic energy (it always has zero point energy;
Section 2.5) is usually shown on potential energy/bond length diagrams by draw-

ing a series of lines above the bottom of the curve (Fig. 2.2) to indicate the

possible amounts of vibrational energy the molecule can have (the vibrational
levels it can occupy). A molecule never sits at the bottom of the curve, but rather

occupies one of the vibrational levels, and in a collection of molecules the levels

are populated according to their spacing and the temperature [2]. We will

usually ignore the vibrational levels and consider molecules to rest on the actual

potential energy curves or (see below) surfaces.

2. Near the equilibrium bond length qe the potential energy/bond length curve

for a macroscopic balls-and-spring model or a real molecule is described

fairly well by a quadratic equation, that of the simple harmonic oscillator

ðE ¼ ð1=2ÞK ðq� qeÞ2, where k is the force constant of the spring). However,

the potential energy deviates from the quadratic (q2) curve as we move away

from qe (Fig. 2.2). The deviations from molecular reality represented by this

anharmonicity are not important to our discussion.

energy

0 bond length, q
qe

Fig. 2.1 The potential

energy surface for a diatomic

molecule. The potential

energy increases if the bond

length q is stretched or

compressed away from its

equilibrium value qe. The
potential energy at qe (zero
distortion of the bond length)

has been chosen here as the

zero of energy
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Figure 2.1 represents a one-dimensional PES in the two-dimensional graph of

E vs. q. A diatomic molecule AB has only one geometric parameter for us to vary,

the bond length qAB. Suppose we have a molecule with more than one geometric

parameter, for example water: the geometry is defined by two bond lengths and a

bond angle. If we reasonably content ourselves with allowing the two bond lengths

to be the same, i.e. if we limit ourselves to C2v symmetry (two planes of symmetry

and a two-fold symmetry axis; see Section 2.6) then the PES for this triatomic

molecule is a graph of E versus two geometric parameters, q1 ¼ the O–H bond

length, and q2 ¼ the H–O–H bond angle (Fig. 2.3). Figure 2.3 represents a two-

dimensional PES (a normal surface is a 2-D object) in the three-dimensional graph;

we could make an actual 3-D model of this drawing of a 3-D graph of E versus

q1 and q2.
We can go beyond water and consider a triatomic molecule of lower symmetry,

such as HOF, hypofluorous acid. This has three geometric parameters, the H–O and

O–F lengths and the H–O–F angle. To construct a Cartesian PES graph for HOF

analogous to that for H2O would require us to plot E vs. q1 ¼ H–O, q2 ¼ O–F, and

q3 ¼ angle H–O–F. We would need four mutually perpendicular axes (for E, q1, q2,
q3, Fig. 2.4), and since such a four-dimensional graph cannot be constructed in our

three-dimensional space we cannot accurately draw it. The HOF PES is a 3-D

“surface” of more than two dimensions in 4-D space: it is a hypersurface, and

potential energy surfaces are sometimes called potential energy hypersurfaces.

Despite the problem of drawing a hypersurface, we can define the equation E ¼ f
(q1, q2, q3) as the potential energy surface for HOF, where f is the function that

describes how E varies with the q’s, and treat the hypersurface mathematically. For

example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the minimum

energy

0

quadratic curve

.

.

.

vibrational levels

true molecular
potential energy
curve

bond length, q
qe

Fig. 2.2 Actual molecules do not sit still at the bottom of the potential energy curve, but instead

occupy vibrational levels. Also, only near qe, the equilibrium bond length, does the quadratic curve

approximate the true potential energy curve
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potential energy geometry is the point at which dE/dq ¼ 0. On the H2O PES

(Fig. 2.3) the minimum energy geometry is defined by the point Pm, corresponding

to the equilibrium values of q1 and q2; at this point dE/dq1 ¼ dE/dq2 ¼ 0. Although

hypersurfaces cannot be faithfully rendered pictorially, it is very useful to a

computational chemist to develop an intuitive understanding of them. This can be

gained with the aid of diagrams like Figs. 2.1 and 2.3, where we content ourselves

with a line or a two-dimensional surface, in effect using a slice of a multidimen-

sional diagram. This can be understood by analogy: Fig. 2.5 shows how 2-D slices

angle
H H

O

O
H H

energy

.

Pmin

q1 = O    H bond length

q1 = 0.958 Å

q2 = 104.5°
q2 = 

Fig. 2.3 The H2O potential energy surface. The point Pmin corresponds to the minimum-energy

geometry for the three atoms, i.e. to the equilibrium geometry of the water molecule

energy

q3

q2

q1

Fig. 2.4 To plot energy

against three geometric

parameters in a Cartesian

coordinate system we would

need four mutually

perpendicular axes. Such a

coordinate system cannot be

actually constructed in our

three-dimensional space.

However, we can work with

such coordinate systems, and

the potential energy surfaces

in them, mathematically
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can be made of the 3-D diagram for water. The slice could be made holding one or

the other of the two geometric parameters constant, or it could involve both of them,

giving a diagram in which the geometry axis is a composite of more than one

geometric parameter. Analogously, we can take a 3-D slice of the hypersurface for

HOF (Fig. 2.6) or even a more complex molecule and use an E versus q1, q2
diagram to represent the PES; we could even use a simple 2D diagram, with q
representing one, two or all of the geometric parameters. We shall see that these 2D

and particularly 3D graphs preserve qualitative and even quantitative features of the

mathematically rigorous but unvisualizable E ¼ f(q1, q2, . . . qn) n-dimensional

hypersurface.

2.2 Stationary Points

Potential energy surfaces are important because they aid us in visualizing and under-

standing the relationship between potential energy and molecular geometry, and in

understanding how computational chemistry programs locate and characterize structures

angle
H H

O

O
H Henergy

slice parallel to bond length axis

energy

energy

bond length

2D surface

1D "surface"

bond angle

1D "surface"

slice parallel to
angle axis

q2 =

q1 = O    H bond length

Fig. 2.5 Slices through a 2D potential energy surface give 1D surfaces. A slice that is parallel to

neither axis would give a plot of geometry versus a composite of bond angle and bond length, a

kind of average geometry
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of interest. Among the main tasks of computational chemistry are to determine the

structure and energy of molecules and of the transition states involved in chemical

reactions: our “structures of interest” are molecules and the transition states linking

them. Consider the reaction

O

O O

transition state

reaction (2.1)

O

O O
isoozone

+
O

–O O

ozone

A priori, it seems reasonable that ozone might have an isomer (call it isoozone)

and that the two could interconvert by a transition state as shown in Reaction (2.1).

We can depict this process on a PES. The potential energy Emust be plotted against

only two geometric parameters, the bond length (we may reasonably assume that

the two O–O bonds of ozone are equivalent, and that these bond lengths remain

equal throughout the reaction) and the O–O–O bond angle. Figure 2.7 shows the

PES for Reaction (2.1), as calculated by the AM1 semiempirical method (Chapter

6; the AM1 method is unsuitable for quantitative treatment of this problem, but the

potential energy surface shown makes the point), and shows how a 2D slice from

H
O

F

energy

Pmin

q2 = O    F bond length

q1 = O    H bond length

Fig. 2.6 A potential energy surface (PES) for HOF. Here the HOF angle is not shown. This

picture could represent one of two possibilities: the angle might be the same (some constant,

reasonable value) for every calculated point on the surface; this would be an unrelaxed or rigid

PES. Alternatively, for each calculated point the geometry might be that for the best angle

corresponding to the other two parameters, i.e. the geometry for each calculated point might be

fully optimized (Section 2.4); this would be a relaxed PES
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this 3D diagram gives the energy/reaction coordinate type of diagram commonly

used by chemists. The slice goes along the lowest-energy path connecting ozone,

isoozone and the transition state, that is, along the reaction coordinate, and the

horizontal axis (the reaction coordinate) of the 2D diagram is a composite of O–O

bond length and O–O–O angle. In most discussions this horizontal axis is left

quantitatively undefined; qualitatively, the reaction coordinate represents the

O

O

OO
O O

O

O O
energy

transition state
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0-
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intrinsic reaction coordinate (IRC)

Fig. 2.7 The ozone/isoozone potential energy surface (calculated by the AM1 method; Chapter

6), a 2D surface in a 3D diagram. The dashed line on the surface is the reaction coordinate

(intrinsic reaction coordinate, IRC). A slice through the reaction coordinate gives a 1D “surface” in

a 2D diagram. The diagram is not meant to be quantitatively accurate

2.2 Stationary Points 15



progress of the reaction. The three species of interest, ozone, isoozone, and the

transition state linking these two, are called stationary points. A stationary point on

a PES is a point at which the surface is flat, i.e. parallel to the horizontal line

corresponding to the one geometric parameter (or to the plane corresponding to two

geometric parameters, or to the hyperplane corresponding to more than two geo-

metric parameters). A marble placed on a stationary point will remain balanced, i.e.

stationary (in principle; for a transition state the balancing would have to be

exquisite indeed). At any other point on a potential surface the marble will roll

toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the

potential energy with respect to each geometric parameter is zero1:

@ E

@ q1
¼ @ E

@ q2
¼ � � � ¼ 0 (*2.1)

Partial derivatives, ∂E/∂q, are written here rather than dE/dq, to emphasize that

each derivative is with respect to just one of the variables q of which E is a function.

Stationary points that correspond to actual molecules with a finite lifetime (in

contrast to transition states, which exist only for an instant), like ozone or isoozone,

are minima, or energy minima: each occupies the lowest-energy point in its region

of the PES, and any small change in the geometry increases the energy, as indicated

in Fig. 2.7. Ozone is a global minimum, since it is the lowest-energy minimum on

the whole PES, while isoozone is a relative minimum, a minimum compared only to

nearby points on the surface. The lowest-energy pathway linking the two minima,

the reaction coordinate or intrinsic reaction coordinate (IRC; dashed line in

Fig. 2.7) is the path that would be followed by a molecule in going from one

minimum to another should it acquire just enough energy to overcome the activa-

tion barrier, pass through the transition state, and reach the other minimum. Not all

reacting molecules follow the IRC exactly: a molecule with sufficient energy can

stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima

represents a maximum along the direction of the IRC, but along all other directions

it is a minimum. This is a characteristic of a saddle-shaped surface, and the

transition state is called a saddle point (Fig. 2.8). The saddle point lies at the

“center” of the saddle-shaped region and is, like a minimum, a stationary point,

since the PES at that point is parallel to the plane defined by the geometry parameter

axes: we can see that a marble placed (precisely) there will balance. Mathemati-

cally, minima and saddle points differ in that although both are stationary points

(they have zero first derivatives; Eq. 2.1), a minimum is a minimum in all direc-

tions, but a saddle point is a maximum along the reaction coordinate and a

minimum in all other directions (examine Fig. 2.8). Recalling that minima and

maxima can be distinguished by their second derivatives, we can write:

1Equations marked with an asterisk are those which should be memorized.
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For a minimum

@2E

@q2
> 0 (*2.2)

for all q.
For a transition state

@2E

@q2
> 0 (*2.3)

for all q, except along the reaction coordinate, and

@2E

@q2
< 0 (*2.4)

along the reaction coordinate.
The distinction is sometimes made between a transition state and a transition

structure [4]. Strictly speaking, a transition state is a thermodynamic concept, the

species an ensemble of which are in a kind of equilibrium with the reactants in

Eyring’s2 transition-state theory [5]. Since equilibrium constants are determined by

free energy differences, the transition structure, within the strict use of the term, is a

free energy maximum along the reaction coordinate (in so far as a single species can

minimum

transition state

transition state
region

reaction coordinate

energy

Fig. 2.8 A transition state or saddle point and a minimum. At both the transition state and the

minimum ∂E/∂q ¼ 0 for all geometric coordinates q (along all directions). At the transition state

∂E2/∂q2< 0 for q¼ the reaction coordinate and> 0 for all other q (along all other directions). At a
minimum ∂E2/∂q2 > 0 for all q (along all directions)

2Henry Eyring, American chemist. Born Colonia Juarárez, Mexico, 1901. Ph.D. University of

California, Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the

theory of reaction rates and on potential energy surfaces. Died Salt Lake City, Utah, 1981.

2.2 Stationary Points 17



be considered representative of the ensemble). This species is also often (but not

always [5]) also called an activated complex. A transition structure, in strict usage,
is the saddle point (Fig. 2.8) on a theoretically calculated (e.g. Fig. 2.7) PES.

Normally such a surface is drawn through a set of points each of which represents

the enthalpy of a molecular species at a certain geometry; recall that free energy

differs from enthalpy by temperature times entropy. The transition structure is thus

a saddle point on an enthalpy surface. However, the energy of each of the calculated

points does not normally include the vibrational energy, and even at 0 K a molecule

has such energy (zero point energy: Fig. 2.2, and Section 2.5). The usual calculated

PES is thus a hypothetical, physically unrealistic surface in that it neglects vibra-

tional energy, but it should qualitatively, and even semiquantitatively, resemble the

vibrationally-corrected one since in considering relative enthalpies ZPEs at least

roughly cancel. In accurate work ZPEs are calculated for stationary points and

added to the “frozen-nuclei” energy of the species at the bottom of the reaction

coordinate curve in an attempt to give improved relative energies which represent

enthalpy differences at 0 K (and thus, at this temperature where entropy is zero, free

energy differences also; Fig. 2.19). It is also possible to calculate enthalpy and

entropy differences, and thus free energy differences, at, say, room temperature

(Section 5.5.2). Many chemists do not routinely distinguish between the two terms,

and in this book the commoner term, transition state, is used. Unless indicated

otherwise, it will mean a calculated geometry, the saddle point on a hypothetical

vibrational-energy-free PES.

The geometric parameter corresponding to the reaction coordinate is usually a

composite of several parameters (bond lengths, angles and dihedrals), although for

some reactions one two may predominate. In Fig. 2.7, the reaction coordinate is a

composite of the O–O bond length and the O–O–O bond angle.

A saddle point, the point on a PES where the second derivative of energy with

respect to one and only geometric coordinate (possibly a composite coordinate) is

negative, corresponds to a transition state. Some PES’s have points where the

second derivative of energy with respect to more than one coordinate is negative;

these are higher-order saddle points or hilltops: for example, a second-order saddle

point is a point on the PES which is a maximum along two paths connecting

stationary points. The propane PES, Fig. 2.9, provides examples of a minimum, a

transition state and a hilltop – a second-order saddle point in this case. Figure 2.10

shows the three stationary points in more detail. The “doubly-eclipsed” conforma-

tion (Fig. 2.10a) in which there is eclipsing as viewed along the C1–C2 and the

C3–C2 bonds (the dihedral angles are 0� viewed along these bonds) is a second-

order saddle point because single bonds do not like to eclipse single bonds and

rotation about the C1–C2 and the C3–C2 bonds will remove this eclipsing: there are

two possible directions along the PES which lead, without a barrier, to lower-energy

regions, i.e. changing the H–C1/C2–C3 dihedral and changing the H–C3/C2–C1

dihedral. Changing one of these leads to a “singly-eclipsed” conformation

(Fig. 2.10b) with only one offending eclipsing CH3–CH2 arrangement, and this is

a first-order saddle point, since there is now only one direction along the PES which

leads to relief of the eclipsing interactions (rotation around C3–C2). This route
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gives a conformation C which has no eclipsing interactions and is therefore a

minimum. There are no lower-energy structures on the C3H8 PES and so C is the

global minimum.

The geometry of propane depends on more than just two dihedral angles, of

course; there are several bond lengths and bond angles and the potential energy will

vary with changes in all of them. Figure 2.9 was calculated by varying only the

dihedral angles associated with the C1–C2–C3–C4 bonds, keeping the other

geometrical parameters the same as they are in the all-staggered conformation. If

at every point on the dihedral/dihedral grid all the other parameters (bond lengths

and angles) had been optimized (adjusted to give the lowest possible energy, for

that particular calculational method; Section 2.4), the result would have been a

relaxed PES. In Fig. 2.9 this was not done, but because bond lengths and angles

change only slightly with changes in dihedral angles the PES would not be altered

much, while the time required for the calculation (for the potential energy surface
scan) would have been greater. Figure 2.9 is a nonrelaxed or rigid PES, albeit not

very different, in this case, from a relaxed one.

Chemistry is essentially the study of the stationary points on potential energy

surfaces: in studying more or less stable molecules we focus on minima, and

in investigating chemical reactions we study the passage of a molecule from a
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B, transition state

C, minimum
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Fig. 2.9 The propane potential energy surface as the two HCCC dihedrals are varied (calculated

by the AM1 method, Chapter 6). Bond lengths and angles were not optimized as the dihedrals

were varied, so this is not a relaxed PES; however, changes in bond lengths and angles from

one propane conformation to another are small, and the relaxed PES should be very similar to

this one
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minimum through a transition state to another minimum. There are four known

forces in nature: the gravitational force, the strong and the weak nuclear forces, and

the electromagnetic force. Celestial mechanics studies the motion of stars and

planets under the influence of the gravitational force and nuclear physics studies

the behaviour of subatomic particles subject to the nuclear forces. Chemistry is

concerned with aggregates of nuclei and electrons (with molecules) held together

by the electromagnetic force, and with the shuffling of nuclei, followed by their
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Fig. 2.10 The stationary points on the propane potential energy surface. Hydrogens at the end of

CH bonds are omitted for clarity
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obedient retinue of electrons, around a potential energy surface under the influence

of this force (with chemical reactions).

The concept of the chemical potential energy surface apparently originated with

R. Marcelin [6]: in a dissertation-long paper (111 pages) he laid the groundwork for

transition-state theory 20 years before the much better-known work of Eyring [5,7].

The importance of Marcelin’s work is acknowledged by Rudolph Marcus in his

Nobel Prize (1992) speech, where he refers to “. . .Marcelin’s classic 1915 theory

which came within one small step of the transition state theory of 1935.” The paper

was published the year after the death of the author, who seems to have died in

World War I, as indicated by the footnote “Tué à l’ennemi en sept 1914”. The first

potential energy surface was calculated in 1931 by Eyring and Polanyi,3 using a

mixture of experiment and theory [8].

The potential energy surface for a chemical reaction has just been presented as a

saddle-shaped region holding a transition state which connects wells containing

reactant(s) and products(s) (which species we call the reactant and which the

product is inconsequential here). This picture is immensely useful, and may well

apply to the great majority of reactions. However, for some reactions it is deficient.

Carpenter has shown that in some cases a reactive intermediate does not tarry in a

PES well and then proceed to react. Rather it appears to scoot over a plateau-shaped

region of the PES, retaining a memory (“dynamical information”) of the atomic

motions it acquired when it was formed. When this happens there are two (say)

intermediates with the same crass geometry, but different atomic motions, leading

to different products. The details are subtle, and the interested reader is commended

to the relevant literature [9].

2.3 The Born–Oppenheimer Approximation

A potential energy surface is a plot of the energy of a collection of nuclei and

electrons against the geometric coordinates of the nuclei – essentially a plot of

molecular energy versus molecular geometry (or it may be regarded as the mathe-

matical equation that gives the energy as a function of the nuclear coordinates). The

nature (minimum, saddle point or neither) of each point was discussed in terms of

the response of the energy (first and second derivatives) to changes in nuclear

coordinates. But if a molecule is a collection of nuclei and electrons why plot

energy versus nuclear coordinates – why not against electron coordinates? In other
words, why are nuclear coordinates the parameters that define molecular geometry?

The answer to this question lies in the Born–Oppenheimer approximation.

3Michael Polanyi, Hungarian-British chemist, economist, and philosopher. Born Budapest 1891.

Doctor of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm

Institute, Berlin, 1920–1933. Professor of chemistry, Manchester, 1933–1948; of social studies,

Manchester, 1948–1958. Professor Oxford, 1958–1976. Best known for book “Personal

Knowledge”, 1958. Died Northampton, England, 1976.
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Born4 and Oppenheimer5 showed in 1927 [10] that to a very good approximation

the nuclei in a molecule are stationary with respect to the electrons. This is a

qualitative expression of the principle; mathematically, the approximation states

that the Schr€odinger equation (Chapter 4) for a molecule may be separated into an

electronic and a nuclear equation. One consequence of this is that all (!) we have to

do to calculate the energy of a molecule is to solve the electronic Schr€odinger
equation and then add the electronic energy to the internuclear repulsion (this latter

quantity is trivial to calculate) to get the total internal energy (see Section 4.4.1). A

deeper consequence of the Born–Oppenheimer approximation is that a molecule

has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which

binds them in fixed relative positions (because of the mutual attraction between

electrons and nuclei in the internuclear region) and which defines the (somewhat

fuzzy) surface [11] of the molecule (see Fig. 2.11). Because of the rapid motion of

the electrons compared to the nuclei the “permanent” geometric parameters of the

molecule are the nuclear coordinates. The energy (and the other properties) of a

molecule is a function of the electron coordinates (E ¼ C(x, y, z of each electron);

Section 5.2), but depends only parametrically on the nuclear coordinates, i.e. for

each geometry 1, 2, . . . there is a particular energy: E1 ¼C1(x, y, z. . .), E2 ¼C2 (x,
y, z. . .); cf. xn, which is a function of x but depends only parametrically on the

particular n.

r1 r2

r3a1

a2

Fig. 2.11 The nuclei in a molecule see a time-averaged electron cloud. The nuclei vibrate about

equilibrium points which define the molecular geometry; this geometry can be expressed simply as

the nuclear Cartesian coordinates, or alternatively as bond lengths and angles r and a here) and

dihedrals, i.e. as internal coordinates. As far as size goes, the experimentally determined van der

Waals surface encloses about 98% of the electron density of a molecule

4Max Born, German-British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in

G€ottingen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel Prize, 1954. One of the founders

of quantum mechanics, originator of the probability interpretation of the (square of the) wave-

function (Chapter 4).
5J. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton 1967.

Professor California Institute of Technology. Fermi award for nuclear research, 1963. Important

contributions to nuclear physics. Director of the Manhattan Project 1943–1945. Victimized as a

security risk by senator Joseph McCarthy’s Un-American Activities Committee in 1954. Central

figure of the eponymous PBS TV series (Oppenheimer: Sam Waterston).

22 2 The Concept of the Potential Energy Surface



Actually, the nuclei are not stationary, but execute vibrations of small amplitude

about equilibrium positions; it is these equilibrium positions that we mean by the

“fixed” nuclear positions. It is only because it is meaningful to speak of (almost)

fixed nuclear coordinates that the concepts of molecular geometry or shape and of

the PES are valid [12]. The nuclei are much more sluggish than the electrons

because they are much more massive (a hydrogen nucleus is about 2,000 more

massive than an electron).

Consider the molecule H3
+, made up of three protons and two electrons. Ab

initio calculations assign it the geometry shown in Fig. 2.12. The equilibrium

positions of the nuclei (the protons) lie at the corners of an equilateral triangle

and H3
þ has a definite shape. But suppose the protons were replaced by positrons,

which have the same mass as electrons. The distinction between nuclei and elec-

trons, which in molecules rests on mass and not on some kind of charge chauvinism,

would vanish. We would have a quivering cloud of flitting particles to which a

shape could not be assigned on a macroscopic time scale.

A calculated PES, which we might call a Born–Oppenheimer surface, is nor-

mally the set of points representing the geometries, and the corresponding energies,

of a collection of atomic nuclei; the electrons are taken into account in the calcula-

tions as needed to assign charge and multiplicity (multiplicity is connected with the

number of unpaired electrons). Each point corresponds to a set of stationary nuclei,

and in this sense the surface is somewhat unrealistic (see Section 2.5).

2.4 Geometry Optimization

The characterization (the “location” or “locating”) of a stationary point on a PES,

that is, demonstrating that the point in question exists and calculating its geometry

and energy, is a geometry optimization. The stationary point of interest might be a

minimum, a transition state, or, occasionally, a higher-order saddle point. Locating

a minimum is often called an energy minimization or simply a minimization, and

0.851 Å 0.851 Å

0.851 Å

H

H H

–

–

++

+

The H3
+ cation: 3 protons, 2 electrons

Definite geometry

make the masses of the
nuclei and electrons equal

No definite geometry

Fig. 2.12 A molecule has a definite shape because unlike the electrons, the nuclei are (relatively)

stationary (since they are much more massive). If the masses of the nuclei and the electrons could

be made equal, the distinction in lethargy would be lost, and the molecular geometry would

dissolve
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locating a transition state is often referred to specifically as a transition state

optimization. Geometry optimizations are done by starting with an input structure

that is believed to resemble (the closer the better) the desired stationary point and

submitting this plausible structure to a computer algorithm that systematically

changes the geometry until it has found a stationary point. The curvature of the

PES at the stationary point, i.e. the second derivatives of energy with respect to the

geometric parameters (Section 2.2) may then be determined (Section 2.5) to

characterize the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.

Propanone (acetone) was subjected to ionization followed by neutralization of the

radical cation, and the products were frozen in an inert matrix and studied by IR

spectroscopy [13]. The spectrum of the mixture suggested the presence of the enol

isomer of propanone, 1-propen-2-ol (Reaction 2.2):

C

Reaction 2

O

C

OH

H3C H2CCH3 CH3

To confirm (or refute) this the IR spectrum of the enol might be calculated (see

Section 2.5 and the discussions of the calculation of IR spectra in subsequent

chapters). But which conformer should one choose for the calculation? Rotation

about the C–O and C–C bonds creates six plausible stationary points (Fig. 2.13),
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H

Fig. 2.13 The plausible

stationary points on the

propenol potential energy

surface. A PES scan

(Fig. 2.14) indicated that 1 is

the global minimum and 4 is a

relative minimum, while

2 and 3 are transition states

and 5 and 6 are hilltops. AM1

calculations gave relative

energies for 1, 2, 3 and 4 of 0,

0.6, 14 and 6.5 kJ mol�1,

respectively (5 and 6 were not

optimized). The arrows
represent one-step (rotation

about one bond) conversion

of one species into another
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and a PES scan (Fig. 2.14) indicated that there are indeed six such species.

Examination of this PES shows that the global minimum is structure 1 and that

there is a relative minimum corresponding to structure 4. Geometry optimization

starting from an input structure resembling 1 gave a minimum corresponding to 1,

while optimization starting from a structure resembling 4 gave another, higher-

energy minimum, resembling 4. Transition-state optimizations starting from appro-

priate structures yielded the transition states 2 and 3. These stationary points were

all characterized as minima or transition states by second-derivative calculations

(Section 2.5) (the species 5 and 6were not located). The calculated IR spectrum of 1

(using the ab initio HF/6–31G* method – Chapter 5) was in excellent agreement

with the observed spectrum of the putative propenol.

This illustrates a general principle: the optimized structure one obtains is that

closest in geometry on the PES to the input structure (Fig. 2.15). To be sure we have

found a global minimum we must (except for very simple or very rigid molecules)

search a potential energy surface (there are algorithms that will do this and locate

the various minima). Of course we may not be interested in the global minimum; for

example, if we wish to study the cyclic isomer of ozone (Section 2.2) we will use as

Fig. 2.14 The 1-propen-2-ol potential energy surface (calculated by the AM1 method) (see

Fig. 2.13)
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input an equilateral triangle structure, probably with bond lengths about those of an

O–O single bond.

In the propenol example, the PES scan suggested that to obtain the global

minimum we should start with an input structure resembling 1, but the exact values

of the various bond lengths and angles were unknown (the exact values of even the

dihedrals was not known with certainty, although general chemical knowledge

made H–O–C–C ¼ H–C-C¼C ¼ 0� seem plausible). The actual creation of input

structures is usually done nowadays with an interactive mouse-driven program,

in much the same spirit that one constructs plastic models or draws structures

on paper. An older alternative is to specify the geometry by defining the various

bond lengths, angles and dihedrals, i.e. by using a so-called Z-matrix (internal

coordinates).

To move along the PES from the input structure to the nearest minimum is

obviously trivial on the one-dimensional PES of a diatomic molecule: one simply

changes the bond length till that corresponding to the lowest energy is found.

On any other surface, efficient geometry optimization requires a sophisticated

algorithm. One would like to know in which direction to move, and how far in

that direction (Fig. 2.16). It is not possible, in general, to go from the input structure

to the proximate minimum in just one step, but modern geometry optimization

algorithms commonly reach the minimum within about ten steps, given a reason-

able input geometry. The most widely-used algorithms for geometry optimization

[14] use the first and second derivatives of the energy with respect to the geometric

parameters. To get a feel for how this works, consider the simple case of a

one-dimensional PES, as for a diatomic molecule (Fig. 2.17). The input structure

is at the point Pi(Ei, qi) and the proximate minimum, corresponding to the

optimized structure being sought, is at the point Po(Eo, qo). Before the optimization

energy

geometry

TS

B

A

B′

A′

several steps
several steps

Fig. 2.15 Geometry optimization to a minimum gives the minimum closest to the input structure.

The input structure A0 is moved toward the minimum A, and B0 toward B. To locate a transition

state a special algorithm is usually used: this moves the initial structure A0 toward the transition

state TS. Optimization to each of the stationary points would probably actually require several

steps (see Fig. 2.16)
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energy

geometry

geometry

optimized structure

.

input structure

Fig. 2.16 An efficient optimization algorithm knows approximately in which direction to move

and how far to step, in an attempt to reach the optimized structure in relatively few (commonly

about five to ten) steps

bond length, q
0

qe

E

E–E0 = k(q–q0)2

Input structure
Pi (Ei, qi)

Equilibrium (optimized) structure
Po(E0, q0)

Fig. 2.17 The potential energy of a diatomic molecule near the equilibrium geometry is approxi-

mately a quadratic function of the bond length. Given an input structure (i.e. given the bond length

qi), a simple algorithm would enable the bond length of the optimized structure to be found in one

step, if the function were strictly quadratic
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has been carried out the values of Eo and qo are of course unknown. If we assume

that near a minimum the potential energy is a quadratic function of q, which is a

fairly good approximation, then

E� Eo ¼ k ðq� qoÞ2 (2.5)

At the input point ðdE=dqÞi ¼ 2kðqi � qoÞ (2.6)

At all points d2E=dq2 ¼ 2k ð¼ force constantÞ (2.7)

FromEqs: ð2:6Þ and ð2:7Þ; ðdE=dqÞi ¼ ðd2E=dq2Þ ðqi � qoÞ (2.8)

and qo ¼ qi � ðdE=dqÞi=ðd2E=dq2Þ (2.9)

Equation 2.9 shows that if we know (dE/dq)i, the slope or gradient of the PES

at the point of the initial structure, (d2E/dq2), the curvature of the PES (which for

a quadratic curve E(q) is independent of q) and qi, the initial geometry, we

can calculate qo, the optimized geometry. The second derivative of potential energy

with respect to geometric displacement is the force constant for motion along

that geometric coordinate; as we will see later, this is an important concept in

connection with calculating vibrational spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisticated

algorithms are used, and several steps are needed since the curvature is not exactly

quadratic. The first step results in a new point on the PES that is (probably) closer to

the minimum than was the initial structure. This new point then serves as the initial

point for a second step toward the minimum, etc. Nevertheless, most modern

geometry optimization methods do depend on calculating the first and second

derivatives of the energy at the point on the PES corresponding to the input

structure. Since the PES is not strictly quadratic, the second derivatives vary from

point to point and are updated as the optimization proceeds.

In the illustration of an optimization algorithm using a diatomic molecule,

Eq. 2.9 referred to the calculation of first and second derivatives with respect to

bond length, which latter is an internal coordinate (inside the molecule). Optimi-

zations are actually commonly done using Cartesian coordinates x, y, z. Consider
the optimization of a triatomic molecule like HOF in a Cartesian coordinate

system. Each of the three atoms has an x, y and z coordinate, giving nine geometric

parameters, q1, q2, . . . , q9; the PES would be a nine-dimensional hypersurface on

a 10D graph. We need the first and second derivatives of E with respect to each of

the nine q’s, and these derivatives are manipulated as matrices. Matrices are

discussed in Section 4.3.3; here we need only know that a matrix is a rectangular

array of numbers that can be manipulated mathematically, and that they provide a

convenient way of handling sets of linear equations. The first-derivative matrix,

the gradient matrix, for the input structure can be written as a column matrix
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gi ¼

@E=@q1ð Þi
@E=@q2ð Þi

..

.

@E=@q9ð Þi

0
BBB@

1
CCCA (2.10)

and the second-derivative matrix, the force constant matrix, is

H ¼

@2E=@q1q1 @2E=@q1q1 � � � @2E=@q1q9
@2E=@q2q1

..

.

@2E=@q2q2 � � �
..
. � � �

@2E=@q2q9

..

.

@2E=@q9q1 @2E=@q9q2 � � � @2E=@q9q9

0
BBBB@

1
CCCCA (2.11)

The force constant matrix is called the Hessian.6 The Hessian is particularly

important, not only for geometry optimization, but also for the characterization of

stationary points as minima, transition states or hilltops, and for the calculation of

IR spectra (Section 2.5). In the Hessian ∂2E/∂q1q2 ¼ ∂2E/∂q2q1, as is true for all
well-behaved functions, but this systematic notation is preferable: the first subscript

refers to the row and the second to the column. The geometry coordinate matrices

for the initial and optimized structures are

qi ¼
qi1
qi2
..
.

qi9

0
BBB@

1
CCCA (2.12)

and

qo ¼

qo1
qo2

..

.

qo9

0
BBB@

1
CCCA (2.13)

The matrix equation for the general case can be shown to be:

qo ¼ qi �H�1 gi (2.14)

which is analogous to Eq. 2.9 for the optimization of a diatomic molecule, which

could be written

qo ¼ qi � ðd2E=dq2Þ�1ðdE=dqÞi

6Ludwig Otto Hesse, 1811–1874, German mathematician.
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For n atoms we have 3n Cartesians; qo, qi and gi are 3n� 1 column matrices and

H is a 3n� 3n square matrix; multiplication by the inverse ofH rather than division

byH is used because matrix division is not defined. Equation 2.14 shows that for an

efficient geometry optimization we need an initial structure (for qi), initial gradients

(for gi) and second derivatives (forH). With an initial “guess” for the geometry (for

example from a model-building program followed by molecular mechanics) as

input, gradients can be readily calculated analytically (from the derivatives of the

molecular orbitals and the derivatives of certain integrals). An approximate initial

Hessian is often calculated from molecular mechanics (Chapter 3). Since the PES is

not really exactly quadratic, the first step does not take us all the way to the

optimized geometry, corresponding to the matrix qo. Rather, we arrive at q1, the

first calculated geometry; using this geometry a new gradient matrix and a new

Hessian are calculated (the gradients are calculated analytically and the second

derivatives are updated using the changes in the gradients – see below). Using q1
and the new gradient and Hessian matrices a new approximate geometry matrix q2
is calculated. The process is continued until the geometry and/or the gradients (or

with some programs possibly the energy) have ceased to change appreciably.

As the optimization proceeds the Hessian is updated by approximating each

second derivative as a ratio of finite increments:

@2E

@qi@qj
� Dð@E=@qjÞ

Dqi
(2.15)

i.e. as the change in the gradient divided by the change in geometry, on going from the

previous structure to the latest one. Analytic calculation of second derivatives is

relatively time-consuming and is not routinely done for each point along the optimi-

zation sequence, in contrast to analytic calculation of gradients. A fast lower-level

optimization, for a minimum or a transition state, usually provides a goodHessian and

geometry for input to a higher-level optimization [15]. Finding a transition state (i.e.

optimizing an input structure to a transition state structure) is a more challenging

computational problem than finding a minimum, as the characteristics of the PES at

the former are more complicated than at a minimum: at the transition state the surface

is a maximum in one direction and a minimum in all others, rather than simply a

minimum in all directions. Nevertheless, modifications of the minimum-search algo-

rithm enable transitions states to be located, albeit often with less ease than minima.

2.5 Stationary Points and Normal-Mode Vibrations – Zero

Point Energy

Once a stationary point has been found by geometry optimization, it is usually

desirable to check whether it is a minimum, a transition state, or a hilltop. This is

done by calculating the vibrational frequencies. Such a calculation involves finding

the normal-mode frequencies; these are the simplest vibrations of the molecule,
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which, in combination, can be considered to result in the actual, complex vibrations

that a real molecule undergoes. In a normal-mode vibration all the atoms move in

phase with the same frequency: they all reach their maximum and minimum

displacements and their equilibrium positions at the same moment. The other

vibrations of the molecule are combinations of these simple vibrations. Essentially,

a normal-modes calculation is a calculation of the infrared spectrum, although the

experimental spectrum is likely to contain extra bands resulting from interactions

among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n� 6 normal modes: the motion of each

atom can be described by three vectors, along the x, y, and z axes of a Cartesian

coordinate system; after removing the three vectors describing the translational

motion of the molecule as a whole (the translation of its center of mass) and the

three vectors describing the rotation of the molecule (around the three principal

axes needed to describe rotation for a three-dimensional object of general geome-

try), we are left with 3n � 6 independent vibrational motions. Arranging these in

appropriate combinations gives 3n� 6 normal modes. A linear molecule has 3n� 5

normal modes, since we need subtract only three translational and two rotational

vectors, as rotation about the molecular axis does not produce a recognizable

change in the nuclear array. So water has 3n � 6 ¼ 3(3) � 6 ¼ 3 normal modes,

and HCN has 3n� 5¼ 3(3)� 5¼ 4 normal modes. For water (Fig. 2.18) mode 1 is

a bending mode (the H–O–H angle decreases and increases), mode 2 is a symmetric

stretching mode (both O–H bonds stretch and contract simultaneously) and mode 3

is an asymmetric stretching mode (as the O–H1 bond stretches the O–H2 bond

contracts, and vice versa). At any moment an actual molecule of water will be

undergoing a complicated stretching/bending motion, but this motion can be con-

sidered to be a combination of the three simple normal-mode motions.

Consider a diatomic molecule A–B; the normal-mode frequency (there is only

one for a diatomic, of course) is given by [16]:

en ¼ 1

2pc

k

m

� �1=2

(*2.16)

where ~n¼ vibrational “frequency”, actually wavenumber, in cm�1; from deference

to convention we use cm�1 although the cm is not an SI unit, and so the other units

will also be non-SI; ~n signifies the number of wavelengths that will fit into one cm.

The symbol n is the Greek letter nu, which resembles an angular vee; en could be

O
H H

O
H H

O
H H

1595 cm–1

bend
3652 cm–1

symmetric stretch
3756 cm–1

asymmetric stretch

Fig. 2.18 The normal-mode vibrations of water. The arrows indicate the directions in which the

atoms move; on reaching the maximum amplitude these directions are reversed

2.5 Stationary Points and Normal-Mode Vibrations – Zero Point Energy 31



read “nu tilde”; �n, “nu bar”, has been used less frequently. c¼ velocity of light, k¼
force constant for the vibration, m¼ reduced mass of the molecule¼ (mAmB)/(mA +

mB); mA and mB are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the

molecule toward that vibrational mode – the harder it is to stretch or bend the

molecule in the manner of that mode, the bigger is that force constant (for a

diatomic molecule k simply corresponds to the stiffness of the one bond). The

fact that the frequency of a vibrational mode is related to the force constant for the

mode suggests that it might be possible to calculate the normal-mode frequencies of

a molecule, that is, the directions and frequencies of the atomic motions, from its

force constant matrix (its Hessian). This is indeed possible: matrix diagonalization
of the Hessian gives the directional characteristics (which way the atoms are

moving), and the force constants themselves, for the vibrations. Matrix diagonali-

zation (Section 4.3.3) is a process in which a square matrix A is decomposed into

three square matrices, P, D, and P�1: A¼ PDP�1. D is a diagonal matrix: as with k

in Eq. 2.17 all its off-diagonal elements are zero. P is a premultiplying matrix and

P�1 is the inverse of P. When matrix algebra is applied to physical problems, the

diagonal row elements of D are the magnitudes of some physical quantity, and each

column of P is a set of coordinates which give a direction associated with that

physical quantity. These ideas are made more concrete in the discussion accom-

panying Eq. 2.17, which shows the diagonalization of the Hessian matrix for a

triatomic molecule, e.g. H2O.

H ¼
@2E=@q1q1 @2E=@q1q2 � � � @2E=@q1q9
@2E=@q2q1 @2E=@q2q2 � � � @2E=@q2q9

..

. ..
. � � � ..

.

@2E=@q9q1 @2E=@q9q2 � � � @2E=@q9q9

0
BBB@

1
CCCA

¼

q11 q12 � � � q19

q21 q22 � � � q29

..

.

q91 q92 � � � q99

0
BBBB@

1
CCCCA

k1 0 � � � 0

0 k2 � � � 0

..

.

0 0 � � � k9

0
BBBB@

1
CCCCAP�1

P k

(2.17)

Equation 2.17 is of the form A ¼ PDP�1. The 9 � 9 Hessian for a triatomic

molecule (three Cartesian coordinates for each atom) is decomposed by diagona-

lization into a P matrix whose columns are “direction vectors” for the vibrations

whose force constants are given by the k matrix. Actually, columns 1, 2 and 3 of P

and the corresponding k1, k2 and k3 of k refer to translational motion of the

molecule (motion of the whole molecule from one place to another in space);

these three “force constants” are nearly zero. Columns 4, 5 and 6 of P and the

corresponding k4, k5 and k6 of k refer to rotational motion about the three principal
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axes of rotation, and are also nearly zero. Columns 7, 8 and 9 of P and the

corresponding k7, k8 and k9 of k are the direction vectors and force constants,

respectively, for the normal-mode vibrations: k7, k8 and k9 refer to vibrational

modes 1, 2 and 3, while the seventh, eighth, and nineth columns of P are composed

of the x, y and z components of vectors for motion of the three atoms in mode 1

(column 7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the

force constants, i.e. taking into account the effect of the masses of the atoms (cf.

Eq. 2.16 for the simple case of a diatomic molecule), gives the vibrational frequen-

cies. The P matrix is the eigenvector matrix and the k matrix is the eigenvalue
matrix from diagonalization of the Hessian H. “Eigen” is a German prefix meaning

“appropriate, suitable, actual” and is used in this context to denote mathematically

appropriate entities for the solution of a matrix equation. Thus the directions of the

normal-mode frequencies are the eigenvectors, and their magnitudes are the mass-

weighted eigenvalues, of the Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize

stationary points, and to obtain zero point energies (below). The calculation of

meaningful frequencies is valid only at a stationary point and only using the same

method that was used to optimize to that stationary point (for example an ab initio

method with a particular correlation level and basis set – see Chapter 5). This is

because (1) the use of second derivatives as force constants presupposes that the

PES is quadratically curved along each geometric coordinate q (Fig. 2.2) but it is

only near a stationary point that this is true, and (2) use of a method other than that

used to obtain the stationary point presupposes that the PES’s of the two methods

are parallel (that they have the same curvature) at the stationary point. Of course,

“provisional” force constants at nonstationary points are used in the optimization

process, as the Hessian is updated from step to step. Calculated IR frequencies are

usually somewhat too high, but (at least for ab initio and density functional

calculations) can be brought into reasonable agreement with experiment by multi-

plying them by an empirically determined factor, commonly about 0.9 [17] (see the

discussion of frequencies in Chapters 5–7).

A minimum on the PES has all the normal-mode force constants (all the

eigenvalues of the Hessian) positive: for each vibrational mode there is a restoring

force, like that of a spring. As the atoms execute the motion, the force pulls and

slows them till they move in the opposite direction; each vibration is periodic, over

and over. The species corresponding to the minimum sits in a well and vibrates

forever (or until it acquires enough energy to react). For a transition state, however,

one of the vibrations, that along the reaction coordinate, is different: motion of the

atoms corresponding to this mode takes the transition state toward the product or

toward the reactant, without a restoring force. This one “vibration” is not a periodic

motion but rather takes the species through the transition state geometry on a one-

way journey. Now, the force constant is the first derivative of the gradient or slope

(the derivative of the first derivative); examination of Fig. 2.8 shows that along the

reaction coordinate the surface slopes downward, so the force constant for this

mode is negative. A transition state (a first-order saddle point) has one and only one

negative normal-mode force constant (one negative eigenvalue of the Hessian).
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Since a frequency calculation involves taking the square root of a force constant

(Eq. 2.16), and the square root of a negative number is an imaginary number, a

transition state has one imaginary frequency, corresponding to the reaction coordi-

nate. In general an nth-order saddle point (an nth-order hilltop) has n negative

normal-mode force constants and so n imaginary frequencies, corresponding to

motion from one stationary point of some kind to another.

A stationary point could of course be characterized just from the number of

negative force constants, but the mass-weighting requires much less time than

calculating the force constants, and the frequencies themselves are often wanted

anyway, for example for comparison with experiment. In practice one usually

checks the nature of a stationary point by calculating the frequencies and seeing

how many imaginary frequencies are present; a minimum has none, a transition

state one, and a hilltop more than one. If one is seeking a particular transition state

the criteria to be satisfied are:

1. It should look right. The structure of a transition state should lie somewhere

between that of the reactants and the products; for example, the transition state

for the unimolecular isomerization of HCN to HNC shows an H bonded to both

C and N by an unusually long bond, and the CN bond length is in-between that of

HCN and HNC.

2. It must have one and only one imaginary frequency (some programs indicate

this as a negative frequency, e.g. �1,900 cm�1 instead of the correct 1,900i
(i ¼ ffip

(�1)).

3. The imaginary frequency must correspond to the reaction coordinate. This is

usually clear from animation of the frequency (the motion, stretching, bending,

twisting, corresponding to a frequency may be visualized with a variety of

programs). For example, the transition state for the unimolecular isomerization

of HCN to HNC shows an imaginary frequency which when animated clearly

shows the H migrating between the C and the N. Should it not be clear from

animation which two species the transition state connects, one may resort to an

intrinsic reaction coordinate (IRC) calculation [18]. This procedure follows the

transition state downhill along the IRC (Section 2.2), generating a series of

structures along the path to the reactant or product. Usually it is clear where the

transition state is going without following it all the way to a stationary point.

4. The energy of the transition state must be higher than that of the two species it

connects.

Besides indicating the IR spectrum and providing a check on the nature of

stationary points, the calculation of vibrational frequencies also provides the

zero-point energy (ZPE; most programs will calculate this automatically as part

of a frequency job). The ZPE is the energy a molecule has even at absolute zero

(Fig. 2.2), as a consequence of the fact that even at this temperature it still vibrates

[2]. The ZPE of a species is usually not small compared to activation energies or

reaction energies, but ZPEs tend to cancel out when these energies are calculated

(by subtraction), since for a given reaction the ZPE of the reactant, transition state

and product tend to be roughly the same. However, for accurate work the ZPE
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should be added to the “total” (electronic þ nuclear repulsion) energies of species

and the ZPE-corrected energies should then be compared (Fig. 2.19). Like the

frequencies, the ZPE is usually corrected by multiplying it by an empirical factor;

this is sometimes the same as the frequency correction factor, but slightly different

factors have been recommended [17].

The Hessian that results from a geometry optimization was built up in steps from

one geometry to the next, approximating second derivatives from the changes in

gradients (Eq. 2.15). This Hessian is not accurate enough for the calculation of

H C N

HC N

H

C N

47.22

0

219

52.2
0

202

49.7

raw ab initio energy
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reaction coordinate
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Fig. 2.19 Correcting relative energies for zero-point energy (ZPE). These are ab initio HF/6-

31G* (Chapter 5) results for the HCN! HNC reaction. The corrections are most simply made by

adding the ZPE to the raw energy (in energy units called Hartrees or atomic units), to get the

corrected energies. Using corrected or uncorrected energies, relative energies are obtained by

setting the energy of one species (usually that of lowest energy) equal to zero. Finally, energy

differences in Hartrees were multiplied by 2,626 to get kJ mol�1. The ZPEs are also shown here in

kJ mol�1, just to emphasize that they are not small compared to reaction energies or activation

energies, but tend to cancel; for accurate work ZPE-corrected energies should be used
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frequencies and ZPE’s. The calculation of an accurate Hessian for a stationary point

can be done analytically or numerically. Accurate numerical evaluation approx-

imates the second derivative as in Eq. 2.15, but instead of D(∂V/∂q) and Dq being

taken from optimization iteration steps, they are obtained by changing the position

of each atom of the optimized structure slightly (Dq ¼ about 0.01 Å) and calculat-

ing analytically the change in the gradient at each geometry; subtraction gives

D(∂V/∂q). This can be done for a change in one direction only for each atom

(method of forward differences) or more accurately by going in two directions

around the equilibrium position and averaging the gradient change (method of

central differences). Analytical calculation of ab initio frequencies is much faster

than numerical evaluation, but demands on computer hard drive space may make

numerical calculation the only recourse at high ab initio levels (Chapter 5).

2.6 Symmetry

Symmetry is important in theoretical chemistry (and even more so in theoretical

physics), but our interest in it here is bounded by modest considerations: we want to

see why symmetry is relevant to setting up a calculation and interpreting the results,

and to make sense of terms like C2v, Cs, etc., which are used in various places in this

book. Excellent expositions of symmetry are given by, for example, Atkins [19] and

Levine [20].

The symmetry of a molecule is most easily described by using one of the

standard designations like C2v, Cs. These are called point groups (Schoenflies

point groups) because when symmetry operations (below) are carried out on a

molecule (on any object) with symmetry, at least one point is left unchanged. The

classification is according to the presence of symmetry elements and corresponding

symmetry operations. The main symmetry elements are mirror planes (symmetry

planes), symmetry axes, and an inversion center; other symmetry elements are the

entire object, and an improper rotation axis. The operation corresponding to a

mirror plane is reflection in that plane, the operation corresponding to a symmetry

axis is rotation about that axis, and the operation corresponding to an inversion

center is moving each point in the molecule along a straight line to that center then

moving it further, along the line, an equal distance beyond the center. The “entire

object” element corresponds to doing nothing (a null operation); in common

parlance an object with only this symmetry element would be said to have no

symmetry. The improper rotation axis corresponds to rotation followed by a

reflection through a plane perpendicular to that rotation axis. We are concerned

mainly with the first three symmetry elements. The examples below are shown in

Fig. 2.20.

C1Amolecule with no symmetry elements at all is said to belong to the group C1

(to have “C1 symmetry”). The only symmetry operation such a molecule permits is

the null operation – this is the only operation that leaves it unmoved. An example is

CHBrClF, with a so-called asymmetric atom; in fact, most molecules have no
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symmetry – just think of steroids, alkaloids, proteins, most drugs. Note that a

molecule does not need an “asymmetric atom” to have C1 symmetry: HOOF in

the conformation shown is C1 (has no symmetry).

Cs A molecule with only a mirror plane belongs to the group Cs. Example: HOF.

Reflection in this plane leaves the molecule apparently unmoved.

C2 A molecule with only a C2 axis belongs to the group C2. Example: H2O2 in

the conformation shown. Rotation about this axis through 360� gives the same

orientation twice. Similarly C3, C4, etc. are possible.

C2v A molecule with two mirror planes whose intersection forms a C2 axis

belongs to the C2v group. Example: H2O. Similarly NH3 is C3v, pyramidane is C4v,

and HCN is C1v.

Ci A molecule with only an inversion center (center of symmetry) belongs to the

group Ci. Example: meso-tartaric acid in the conformation shown. Moving any

point in the molecule along a straight line to this center, then continuing on an equal

distance leaves the molecule apparently unchanged.

C2h A molecule with a C2 axis and a mirror plane horizontal to this axis is C2h (a

C2h object will also perforce have an inversion center). Example: (E)-1,2-difluor-
oethene. Similarly B(OH)3 is C3h.

D2 A molecule with a C2 axis and two more C2 axes, perpendicular to that axis,

has D2 symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a

molecule with a C3 axis (the principal axis) and three other perpendicular C2 axes is

D3.

D2h A molecule with a C2 axis and two perpendicular C2 axes (as for D2 above),

plus a mirror plane is D2h. Examples: ethene, cyclobutadiene. Similarly, a C3 axis

(the principal axis), three perpendicular C2 axes and a mirror plane horizontal to the

principal axis confer D3h symmetry, as in the cyclopropenyl cation. Similarly,

benzene is D6h, and F2 is D1h.

D2dAmolecule is D2d if it has a C2 axis and two perpendicular C2 axes (as for D2

above), plus two “dihedral” mirror planes; these are mirror planes that bisect two C2

axes (in general, that bisect the C2 axes perpendicular to the principal axis).

Example: allene (propadiene). Staggered ethane is D3d (it has D3 symmetry ele-

ments plus three dihedral mirror planes. Dnd symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted

symmetrically inside a cube. The commonest of these are Td, Oh and I; they will be

simply exemplified:

Td This is tetrahedral symmetry. Example: CH4.

Oh This might be considered “cubic symmetry”. Example: cubane, SF6.

I Also called icosahedral symmetry. Example: buckminsterfullerene.

Less-common groups are S4, and the cubic groups T, Th (dodecahedrane is Th)

and O (see [19,20]). Atkins [19] and Levine [20] give flow charts which

make it relatively simple to assign a molecule to its point group, and Atkins

provides pictures of objects of various symmetries which often make it possible

to assign a point group without having to examine the molecule for its symmetry

elements.
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We saw above that most molecules have no symmetry. So why is a knowledge of

symmetry important in chemistry? Symmetry considerations are essential in the

theory of molecular electronic (UV) spectroscopy and sometimes in analyzing in

detail molecular wavefunctions (Chapter 4), but for us the reasons are more

pragmatic. A calculation run on a molecule whose input structure has the exact

symmetry that the molecule should have will tend to be faster and will yield a

“better” (see below) geometry than one run on an approximate structure, however

close this may be to the exact one. Input molecular structures for a calculation are

usually created with an interactive graphical program and a computer mouse: atoms

are assembled into molecules much as with a model kit, or the molecule might be

drawn on the computer screen. If the molecule has symmetry (if it is not is not C1)

this can be imposed by optimizing the geometry with molecular mechanics

(Chapter 3). Now consider water: we would of course normally input the H2O

molecule with its exact equilibrium C2v symmetry, but we could also alter the input

structure slightly making the symmetry Cs (three atoms must lie in a plane). The C2v

structure has two degrees of freedom: a bond length (the two bonds are the same

length) and a bond angle. The Cs structure has three degrees of freedom: two bond

lengths and a bond angle. The optimization algorithm has more variables to cope

with in the case of the lower-symmetry structure.

What do we mean by a better geometry? Although a successful geometry

optimization will give essentially the same geometry from a slightly distorted

input structure as from one with the perfect symmetry of the molecule in question,

corresponding bond lengths and angles (e.g. the four C–H bonds and the two HCH

angles of ethene) will not be exactly the same. This can confuse an analysis of the

geometry, and carries over into the calculation of other properties like, say, charges

on atoms – corresponding atoms should have exactly the same charges. Thus both

esthetic and practical considerations encourage us to aim for the exact symmetry

that the molecule should possess.

2.7 Summary

The potential energy surface (PES) is a central concept in computational chemistry.

A PES is the relationship – mathematical or graphical – between the energy of a

molecule (or a collection of molecules) and its geometry.

Stationary points on a PES are points where ∂E/∂q ¼ 0 for all q, where
q is a geometric parameter. The stationary points of chemical interest are

minima (∂2E/∂qiqj > 0 for all q) and transition states or first-order saddle points;

∂2E/∂qiqj < 0 for one q, along the reaction coordinate (intrinsic reaction coordi-

nate, IRC), and > 0 for all other q. Chemistry is the study of PES stationary points

and the pathways connecting them.

The Born–Oppenheimer approximation says that in a molecule the nuclei are

essentially stationary compared to the electrons. This is one of the cornerstones

of computational chemistry because it makes the concept of molecular shape
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(geometry) meaningful, makes possible the concept of a PES, and simplifies the

application of the Schr€odinger equation to molecules by allowing us to focus on the

electronic energy and add in the nuclear repulsion energy later; this third point, very

important in practical molecular computations, is elaborated on in Chapter 5.

Geometry optimization is the process of starting with an input structure “guess”

and finding a stationary point on the PES. The stationary point found will normally

be the one closest to the input structure, not necessarily the global minimum. A

transition state optimization usually requires a special algorithm, since it is more

demanding than that required to find a minimum. Modern optimization algorithms

use analytic first derivatives and (usually numerical) second derivatives.

It is usually wise to check that a stationary point is the desired species

(a minimum or a transition state) by calculating its vibrational spectrum (its

normal-mode vibrations). The algorithm for this works by calculating an accurate

Hessian (force constant matrix) and diagonalizing it to give a matrix with the

“direction vectors” of the normal modes, and a diagonal matrix with the force

constants of these modes. A procedure of “mass-weighting” the force constants

gives the normal-mode vibrational frequencies. For a minimum all the vibrations

are real, while a transition state has one imaginary vibration, corresponding to

motion along the reaction coordinate. The criteria for a transition state are appear-

ance, the presence of one imaginary frequency corresponding to the reaction

coordinate, and an energy above that of the reactant and the product. Besides

serving to characterize the stationary point, calculation of the vibrational frequen-

cies enables one to predict an IR spectrum and provides the zero-point energy

(ZPE). The ZPE is needed for accurate comparisons of the energies of isomeric

species. The accurate Hessian required for calculation of frequencies and ZPE’s can

be obtained either numerically or analytically (faster, but much more demanding of

hard drive space).

References

1. (a) Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry:

the SN2 mechanism. Wiley, New York. See particularly Introduction and chapters 1 and 2. (b)

Marcus RA (1992) Science 256:1523. (c) For a very abstract and mathematical but interesting

treatment, see Mezey PG (1987) Potential energy hypersurfaces. Elsevier, New York. (d)

Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics, 2nd edn.

Prentice Hall, Upper Saddle River, NJ

2. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ,

section 4.3

3. Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry: the

SN2 mechanism. Wiley, New York, pp 50–51

4. Houk KN, Li Y, Evanseck JD (1992) Angew Chem Int Ed Engl 31:682

5. Atkins P (1998) Physical chemistry, 6th edn. Freeman, New York, pp 830–844

6. Marcelin R (1915) Ann Phys 3:152. Potential energy surface, p 158

7. Eyring H (1935) J Chem Phys 3:107

8. Eyring H, Polanyi M (1931) Z Phys Chem B12:279

40 2 The Concept of the Potential Energy Surface



9. (a) Carpenter BK (1992) Acc Chem Res 25:520. (b) Carpenter BK (1997) Am Sci March–

April:138. (c) Carpenter BK (1998) Angew Chem Int Ed 37:3341. (d) Reyes MB,

Carpenter BK (2000) J Am Chem Soc 122:10163. (e) Reyes MB, Lobkovsky EB, Carpenter

BK (2002) J Am Chem Soc 124:641. (f) Nummela J, Carpenter BK (2002) J Am Chem Soc

124:8512. (g) Carpenter BK (2003) J Phys Org Chem 16:858. (h) Litovitz AE, Keresztes I,

Carpenter BK (2008) J Am Chem Soc 130:12085

10. Born M, Oppenheimer JR (1927) Ann Phys 84:457

11. A standard molecular surface, corresponding to the size as determined experimentally (e.g. by

X-ray diffraction) encloses about 98 per cent of the electron density. See e.g. Bader RFW,

Carroll MT, Cheeseman MT, Chang, C (1987) J Am Chem Soc 109:7968

12. (a) For some rarefied but interesting ideas about molecular shape see Mezey PG (1993) Shape

in chemistry. VCH, New York. (b) An antimatter molecule lacking definite shape: Surko CM

(2007) Nature 449:153. (c) The Cl + H2 reaction: Foreword: Bowman JL (2008) Science

319:40; Garand E, Zhou J, Manolopoulos DE, Alexander MH, Neumark DM (2008) Science

319:72; Erratum 320:612. (d) Baer M (2006) Beyond Born–Haber. Wiley, Hoboken, NJ

13. Zhang XK, Parnis JM, Lewars EG, March RE (1997) Can J Chem 75:276

14. See e.g. Cramer C (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester,

UK, Section 2.4.1

15. Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction Inc.,

Irvine, CA, p 9

16. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ, p 65

17. Scott AP, Radom L (1996) J Phys Chem 100:16502

18. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd

edn. Gaussian Inc., Pittsburgh, PA, pp 173–211

19. Atkins P (1998) Physical chemistry, 6th edn. Freeman, New York, chapter 15

20. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ,

chapter 12

Added in press:

21. Kraka E, Cremer D (2010) Review of computational approaches to the potential energy

surface and some new twists, the unified reaction valley approach URVA. Acc Chem Res

43:591–601

References 41



Easier Questions

1. What is a potential energy surface (give the two viewpoints)?

2. Explain the difference between a relaxed PES and a rigid PES.

3. What is a stationary point? What kinds of stationary points are of interest to

chemists, and how do they differ?

4. What is a reaction coordinate?

5. Show with a sketch why it is not correct to say that a transition state is a

maximum on a PES.

6. What is the Born–Oppenheimer approximation, and why is it important?

7. Explain, for a reaction A ! B, how the potential energy change on a PES is

related to the enthalpy change of the reaction. What would be the problem with

calculating a free energy/geometry surface?

Hint: Vibrational frequencies are normally calculated only for stationary

points.

8. What is geometry optimization? Why is this process for transition states (often

called transition state optimization) more challenging than for minima?

9. What is a Hessian? What uses does it have in computational chemistry?

10. Why is it usually good practice to calculate vibrational frequencies where practi-

cal, although this often takes considerably longer than geometry optimization?

Harder Questions

1. The Born–Oppenheimer principle is often said to be a prerequisite for the

concept of a potential energy surface. Yet the idea of a potential energy surface

(Marcelin 1915) predates the Born–Oppenheimer principle (1927). Discuss.

2. How high would you have to lift a mole of water for its gravitational potential

energy to be equivalent to the energy needed to dissociate it completely into

hydroxyl radicals and hydrogen atoms? The strength of the O–H bond is about

400 kJ mol�1; the gravitational acceleration g at the Earth’s surface (and out to
hundreds of kilometres) is about 10 m s�2. What does this indicate about the

role of gravity in chemistry?

3. If gravity plays no role in chemistry, why are vibrational frequencies different

for, say, C–H and C–D bonds?

4. We assumed that the two bond lengths of water are equal. Must an acyclic

molecule AB2 have equal A–B bond lengths? What about a cyclic molecule

AB2?

5. Why are chemists but rarely interested in finding and characterizing second-

order and higher saddle points (hilltops)?

6. What kind(s) of stationary points do you think a second-order saddle point

connects?
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7. If a species has one calculated frequency very close to 0 cm�1 what does that

tell you about the (calculated) potential energy surface in that region?

8. The ZPE of many molecules is greater than the energy needed to break a bond;

for example, the ZPE of hexane is about 530 kJ mol�1, while the strength of a

C–C or a C–H bond is only about 400 kJ mol�1. Why then do such molecules

not spontaneously decompose?

9. Only certain parts of a potential energy surface are chemically interesting:

some regions are flat and featureless, while yet other parts rise steeply and are

thus energetically inaccessible. Explain.

10. Consider two potential energy surfaces for the HCN ⇌ HNC reaction: A, a
plot of energy versus the H–C bond length, and B, a plot of energy versus the

HNC angle. Recalling that HNC is the higher-energy species, sketch qualita-

tively the diagrams for A and B.
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