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PREFACE TO THE SECOND EDITION

As a practicing engineer, I have used in my technical work the two-volume
von Hippel set as an indispensable reference for dielectric properties of materials.
When 1 realized that they were out of print, I sent copies of selected pages to
Artech House for evaluation with the recommendation that both volumes be re-
published for the benefit of other interested engineers. Several months later,
Artech House notified me that a decision had been made to republish, that the
rights to republish had been secured from the retired author, and that, as implau-
sible as it may seem, neither the previous publishers nor the author have any re-
maining copies of this set, as would be required for the republication process.
Therefore, I supplied the original editions to Artech House for reproduction. I
would like to thank the entire staff at Artech House for their professionalism in
the handling of this republication.

Huntington Beach, California ALEXANDER S. LABOUNSKY
August 1994 Principal engineer/scientist
McDonnell Douglas Aerospace

PREFACE TO THE FIRST EDITION

A treatise intended for physicists, chemists, and electrical engineers is likely
to disappoint three groups of readers. If an author, in spite of this danger, embarks
on such an adventure, intense compulsion must drive him. For a number of years
my demon has urged me to oppose the trend of specialization by helping to develop
a field of knowledge that belongs not only to physics and chemistry but is also of
vital importance for modern electrical engineering. We may call this subject “di-
electrics” by identifying with the name not a narrow class of so-called insulators,
but any nonmetal, and even metals as a boundary case, if their interaction with
electric, magnetic, or electromagnetic fields is under consideration. Dielectrics and
Waves has been chosen as the title of this book because wave phenomena play a
dominant part in our story, whether electromagnetic waves, probability waves of
quantum mechanics, or the elastic waves of crystal lattices.

The phenomena “polarization,” “magnetization,” and “conduction” are the
properties of matter at issue. For macroscopic physics and electrical engineering
this is a familiar subject when viewed from the standpoint of Maxwell’s theory.
Matter appears here as a storage medium and wave guide of electric and magnetic
energy and as a dissipator of such energy by conduction and other irreversible
processes. These properties are considered as given quantities that may be tabu-
lated by introducing some descriptive parameters, for example, the complex per-
mittivity and permeability used in this book. At this point the subject “materials”
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Preface

is dismissed by the present-day electrical engineer in favor of his private world of
field vectors and equivalent circuits.

The physicist and chemist have pushed on to the task of unraveling the mo-
lecular phenomena behind these macroscopic parameters. The structure and be-
havior of isolated atoms and molecules and the behavior of electrons and ions in
gases of low pressure are now relatively well understood; the dielectric properties
of gases at high pressures and of liquids and solids are still known only in rough
outlines. However, this task of “dielectric analysis” has progressed far enough to al-
low a successful beginning of “dielectric syntheses” in which the properties of materi-
als are tailored to order by combining the proper atoms and molecules into specified
arrangements.

This subject of dielectric synthesis is of vital importance to the electrical engi-
neer, promising him a variety of new tools and a release from shackling limita-
tions. Nobody, however, can leave his problems to others without losing control
over his destiny. The electrical engineer has to remember that he is an applied sci-
entist and join his colleagues of physics and chemistry in a co-operative venture of
“molecular electrical engineering.”

Seen from this point of view, I would want the book to be a trumpet of
Jericho; alas it may only loosen some bricks that will fall on the author’s head.
This is a survey book which cannot go into many important details and has to
leave unmentioned many significant contributions. Space does not permit to give
the molecular aspects of conduction more than a cursory glance. I hope to make
“Electric Conduction and Breakdown” the subject of a later volume.

To remedy some of these shortcomings a representative list of books covering
special fields has been added. Much additional information may also be found
in the companion book, Dielectric Materials and Applications, published simul-
taneously.

It is too much to hope that any reader will follow the unfolding of this biogra-
phy of dielectrics with the puzzled attention normally reserved for a detective
story. But it may be of some help in bringing physicists, chemists, and electrical
engineers closer together and provide a better understanding between the mode of
thinking of the theorist and the experimentalist on dielectric problems.

In dedicating this book to Niels Bohr and James Franck I am fulfilling a sim-
ple duty of gratitude to two masters of science who became my friends at decisive
junctures of my life and who have set, with their scientific genius and humanity,
an ideal for our generation.

Cambridge, Massachusetts A. VON HIPPEL
June 1954
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I - MACROSCOPIC APPROACH

0 - Survey

In discussing electromagnetic waves and their inter-
action with dielectric materials, a comprehensive view
will be given without prejudice to the entrenched inter-
ests of the electrical engineer in the low-frequency range
or of the physicist in the optical spectrum. We may
pretend that a dielectric can be exposed to electric or

resonant circuits. Between meter and millimeter waves
the dimensions of the dielectric become comparable to
those of the wavelength, the physical distinction be-
tween coil and condenser begins to disappear, and the
material is customarily inserted into wave guides and
its characteristics are determined by standing-wave
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magnetic fields of any frequencies by filling a capacitor
or a coil with the material in question and connecting
it to a voltage source ranging in frequency from zero
(direct current) to X-rays (=~ 10'® cps). This Mun-
chausen device requires, of course, a number of equip-
ments for its practical realization (Fig. 0.1).

From direct current to about 10® cps a condenser or
a coil represents a lumped circuit element; its proper-
ties may be measured in the lower half of this range by
bridge arrangements and at the higher frequencies in

Traveling wave

Frequency ranges and measuring techniques.

patterns. As the wavelength shrinks further, we move
out of this range of interference optics into that of geo-
metrical optics and determine the dielectric properties
of materials from infrared to ultraviolet by reflection
and transmission measurements. Finally, in the X-ray
region, we return once more to interference techniques
as the size of the atoms and the molecules and their sepa-
ration become comparable to the incident wave-length.

This whole frequency spectrum is ruled by Maxwell’s
two field equations which describe quantitatively how



2 Macroscopic Approach

a time-varying electric field is accompanied by a time-
varying magnetic field, and vice versa. Since both
fields may cause energy storage and energy dissipation
in matter, two pairs of parameters are required to char-
acterize a dielectric as a carrier of electromagnetic
energy.

Various sets of such parameters have been introduced,
depending on the specific interests of the observer. The
scientist and the engineer concerned with the low-
frequency range refer, in general, to permittivity (di-
electric constant) and permeability, and the communi-
cation engineer to. the complex propagation factor; in
optics the complex index of refraction is used. Physi-
cist and electrical engineer, allied in language through
the advent of radar, may, in addition, characterize a
dielectric by its complex impedance, and the chemist
may side with the power engineer in referring to dielec-
tric constant and power factor.

To establish order in this confusion of tongues, we
introduce, by lumped-circuit considerations, the com-
plex permittivity ¢* and permeability u* as the funda-
mental parameters for the macroscopic description of a
dielectric exposed to sinusoidal fields (Sec. 1) and then
proceed systematically in the development of the elec-
tric and the magnetic field concepts.

The electrostatic field is due to the existence of posi-
tive and negative charges. The total or true charge
stored in a capacitor is only in part free to create an
external electric field; the remainder is bound by the
countercharges of the dielectric, that is, by polarization.
The true-, free-, and bound-charge densities are con-
sidered to give rise to three vector fields, characterized
by the electric displacement D, the electric field strength
E, and the polarization P, respectively. The field con-
cept is extended throughout space by the definition
that the electric field strength is equivalent in magni-
tude and direction to the force per unit charge acting
on a detector charge. This dual role of E determines
the dimensions of the dielectric constant. After intro-
duction of the electric dipole concept, the stage is set
for a discussion of magnetic fields created by magnetic
dipoles. The magnetic field vectors, the magnetic flux
density B, field strength H, and magnetization M be-
come defined, and the dimensions of the magnetic dipole
moment are determined by the torque equation (Sec. 2).

Formulating the potential concept, we arrive at Cou-
lomb’s law as a special case of the general force law for
spherical symmetry and at the dipole field by the super-
position of the Coulomb fields of two opposite point
charges. The differential operator V is introduced for
the discussion of the potential gradient of the dipole
field and of the general forces acting on a dipole in an
external field (Sec. 3). Next, space charge fields are

analyzed in integral and differential formulation, and
the divergence (V-E) and the Laplacian (V2) are for-
mulated (Sec. 4).

Thus far, electricity and magnetisin appear as two
new phenomena independent of each other and conse-
quently requiring for their description the introduction
of two new quantities, an electric and a magnetic one,
for example, electric charge and magnetic dipole moment.
Actually, they are interlinked by Ampére’s circuital and
Faraday’s induetion law. The equivalence between the
fields of magnetic dipoles and of circular currents allows
us to attribute the existence of magnetic dipole moments
to molecular currents and to reduce the dimensions of
the magnetic quantities to electrical and mechanical
dimensions (Sec. 5). By extending Ampére’s and Fara-
day’s laws to all space, we obtain Maxwell’s two field
equations; they can be written in complete symmetry
(save for a negative sign) by the use of the complex
permittivity and permeability (Sec. 6).

From these field equations, the wave equations of the
electromagnetic field are derived and solved for plane
waves in unbounded space. A discussion of these waves
leads to the concepts complex propagation factor, wave-
length, phase velocity, and intrinsic impedance (Sec. 7).
Herewith the prerequisites are at hand for a quantita-~
tive formulation of dimensions and units (Sec. 8) and
for the description of dielectrics by various sets of pa-
rameters, alternative to ¢* and u*. Conversion formu-
las and nomographic charts are given in Sec. 9.

After a short digression concerned with the forces op-
erative in electric and magnetic fields (Sec. 10), the
energy of the electromagnetic field and its flow are con-
sidered (Sec. 11). The state of polarization of a field is
defined (Sec. 12), and the radiation emitted by an elec-
tric dipole is calculated (Sec. 13). This extension of the
theory to light sources paves the way for a later dis-
cussion of the dipole radiation of atoms and molecules.

Electromagnetic fields are usually not observed in
free space, but within the confinement of boundaries.
In fact, reflection and refraction of waves at boundaries
provide the essential means for measuring the interac-
tion between electromagnetic waves and dielectric ma-
terials. Boundary conditions are therefore introduced
for static fields as well as for plane waves striking the
interface between two media (Sec. 14). Snell’s laws of
reflection and refraction follow from the continuity of
the tangential components of the E and H fields and
determine the direction of propagation of the reflected
and the refracted beams. Simultaneously, Fresnel’s
equations are obtained which preseribe the amplitudes
of the reflected and the transmitted waves and their
states of polarization (Sec. 15). For dielectrics without
loss, the phenomena of special interest are the disap-
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pearance of one pair of field components when the wave
is reflected at Brewster’s angle, and the occurrence of
total reflection accompanied by the formation of a
guided surface wave with longitudinal components (Sec.
16). At normal incidence, standing waves (Sec. 17) and
useful methods of measuring dielectric properties by
interference (Sec. 18) result.

When electromagnetic waves strike a metal, nearly
total reflection ensues, and the weak transmitted beam
is rapidly attenuated (Sec. 19). The general case of
oblique incidence on media with loss is of great com-
plexity. The index of refraction becomes a function of
the angle of incidence, and complicated phase shifts
arise because of the appearance of longitudinal field
components (Sec. 20).

Viewed from an alternative standpoint, the incident
wave, striking a boundary obliquely, forms, with the
reflected wave, an interference pattern which glides
along the interface with a phase velocity greater than
that of the incident wave; the boundary acts as a wave
guide. To make such a guide more effective, a second
boundary may be placed parallel to the first one in one
of the dark interference fringes, and a parallel-plane
wave guide with cut-off properties results (Sec. 21). By
completing the enclosure we obtain hollow wave guides
which behave like highly dispersive dielectrics and prop-
agate characteristic wave types (Sec. 22). Dielectrics

can be measured in such wave guides with great pre-
cision, whether by mapping with a traveling detector
the standing-wave pattern formed in front of the sample
(Sec. 23) or by evaluating the effect of the material on
the impedance of a cavity resonator (Sec. 24).

Frequently it proves convenient to handle field phe-
nomena by an equivalence approach, in which the role
of the electric and the magnetic fields is assumed by
voltages and currents in electric circuits. By intro-
ducing this complementarity we return to distributed
and lumped-circuit concepts (Sec. 25) and close the
macroscopic discussion with a formalistic representa-
tion of dielectrics by lumped equivalent circuits (Sec.
26).

Summarizing: Part I of this book introduces the com-
plex permittivity and permeability as the fundamental
parameters, develops in rapid succession the essential
field concepts, considers the propagation of electro-
magnetic waves in unbounded space and under suc-
cessively more stringent boundary conditions. In the
course of this treatment we are logically led to alterna-
tive ways of describing the interaction between fields
and matter and to conversion formulas interlinking the
various parameters. In addition to this quantitative
description of fields and dielectrics, the macroscopic
theory provides a quantitative basis for measuring e*
and u*.

1 - Complex Permittivity and Permeability

A capacitor, connected to a sinusoidal voltage source

V = Ve T 1.1)
of the angular frequency
w = 2my 1.2)
stores, when vacuum is its dielectric, a charge
Q = Cy0, (1.3)

1 Throughout this book we will use complex quantities in
treating periodic phenomena and represent them in the complex
plane. Here the z-axis corresponds to the axis of reals and the
y-axis to the axzis of imaginaries. The factor j = 4/—1 in
front of a real quantity signifies an imaginary component ori-
ented in the +4-y-axis or +-j-axis direction. A complex quantity
z = = + jy plotted in the complex plane corresponds in polar
co-ordinates to a radius vector p = Va2 + y? inclined by an
angle 6 = tan~! (y/z) towards the real axis: z = pe’.

The complex function UV = Vge™* = Vg(cos wt + j sin «t) con-
sequently can be plotted in the complex plane as a radius vector
of length Uy, the voltage amplitude, making an angle of «t radians
with the axis of reals. As long as the voltage and current vectors
rotate at the same angular velocity of « radians per second, we

and draws a charging current

d (ot ™
I, = d—? = jwCo0 = Ioe’( ‘*2), (1.4)

leading the voltage by a temporal phase angle of 90°

can forget this rotation in discussing their relative positions in
the complex plane.

We return from the complex functions to actual currents and
voltages by taking the real or the imaginary part: Re (V) =
Vo cos wt, Im (V) = Upsin wt. In dealing with products of com-
plex functions it has to be kept in mind that the product of the
real parts of two complex quantities A; and A is not equal to
the real part of their product, but

Re (A1) Re (4g) = (41 + 442 + A).
The symbol A; signifies the conjugate of A;; for example, if
A; = (z + jy)e™, then 41 = (z — jy)e 7
T
The time average of a periodic function 4 is 4 = 5_11 f Adt,
0

where T is the period of the function. If A; and Ag are such
functions, the product of the averages of their real parts is

Re (41) Re (42) = 3 Re (4:49).



4 Macroscopic Approach

(Fig. 1.1). Cy is the vacuum (or geometrical) capaci-
tance of the condenser.
When filled with some substance, the condenser in-
creases its capacitance to
’
C = Cop— = Co¥, (1.5)
€0
where ¢ and ¢y designate the real permittivities or dielec-

tric constants of the dielectric and of vacuum, respec-
tively, and their ratio «’ the relative dielectric constant of

I,cos wt
e
I,
v, sin wt c
o o
Y
Fig. 1.1. Current-voltage relation in ideal capacitor.

the material. Simultaneously, there may appear, in
addition to the charging current component I, a loss
current component

I = GV (1.6)

in phase with the voltage; G represents the conductance
of the dielectric. The total current traversing the con-
denser,

I=1I.+1, = (juC + G)V, 1.7

is inclined by a power factor angle 6 < 90° against the
applied voltage U, that is, by a loss angle § against the
+j-axis (Fig. 1.2).

8

IL=G‘V

Fig. 1.2. Capacitor containing dielectric with loss.

It would be premature to conclude that the dielectric
material corresponds in its electrical behavior to a ca-
pacitor paralleled by a resistor (RC circuit) (Fig. 1.3).
The frequency response of this circuit, which can be
expressed by the ratio of loss current to charging cur-
rent, that is, the dissipation factor D or loss tangent

tan 6, as

THES Ty s (1.8)
=tand=—=—: .
I. wRC

may not at all agree with that actually observed because

the conductance term need not stem from a migration
of charge carriers, but can represent any other energy-
consuming process. It has therefore become customary
to refer to the existence of a loss current in addition to
a charging current noncommittally by the introduction
of a complex permittivity

6* = E' e .7 E".

(1.9)

The total current I of Eq. 1.7 may thus be rewritten

c
I = (jue' 4 0e") =0 = juCoc*0,  (1.10)
where

(1.11)

K
o

log tan 8 —

log w —»

Fig. 1.3. RC circuit and its frequency response.

¢’ and «’ the loss factor and relative loss factor, respec-
tively. The loss tangent becomes
rr KII

tan6=—7=—,-
€ K

(1.12)

Since a parallel-plate condenser of the area A and
the plate separation d, fringing effects neglected, has
the vacuum capacitance

(1.13)

the current density J traversing a condenser under the
applied field strength

E =v/d (1.14)
becomes, according to Eq. 1.10,
dE
J = (Jue + we')E = e* — (1.15)

dt
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(Fig. 1.4). The product of angular frequency and loss
factor is equivalent to a dielectric conductivity

o = we’, (1.16)

This dielectric conductivity sums over all dissipative
effects and may represent as well an actual ohmic con-
ductivity caused by migrating charge carriers as refer

Je= jwe'E

Jy =we"E

Fig. 1.4. Charging and loss current density.

to an energy loss associated with a frequency depend-
ence (dispersion) of ¢, for example, to the friction ac-
companying the orientation of dipoles.

If the dielectric material is transferred from the elec-
tric field of the capacitor into the magnetic field of a
coil, the voltage U drives through the coil a mag-
netization current I, according to Faraday’s induc-

al
tance law { U = LE as

0 o 5

Im= ,=—

JwLo 8
m

(1.17)

O)L(]Km !

L represents the ¢nductance and Ly the vacuum (or geo-
metrical) inductance of the coil. This magnetization
current lags behind the applied voltage by 90° (Fig.
1.5). The permeabilities 1’ and uo designate the mag-

/ >V
80°
1—-‘/
v
v
Im=-
m wlok!

m
Fig. 1.5. Current-voltage relation in ideal inductor.

netization of the material and of vacuum, respectively,
and their ratio

km = ﬂ’/FO (118)

the relative permeability of the material in which the
magnetic field of the coil resides.

Because of the resistance R of the coil windings, an
ohmic current component V/R exists. In addition, there
may appear, in phase with U, a magnetic loss current I;
caused by energy dissipation during the magnetization
cycle. We shall allow for this magnetic loss by intro-
ducing a complex permeability

Bt Saphergilh (1.19)
and a complex relative permeability
p*
km* = — = Keit. 3 j"m” (120)
m
in complete analogy to the electric case. Thus we ob-

tain the total magnetization current

I=1I1,+1,=

j"’LO"m*

e JUH ) ) 121)
E .
0= W2 + W)
Ho

According to these lumped-circuit considerations the
macroscopic electric and magnetic behavior of a dielec-
tric material in sinusoidal fields is determined by the
two complex parameters e* and u*.

The real and imaginary parts of these complex vari-
ables (¢’ and ¢’ or u’ and u”’) are even and odd func-
tions, respectively, of the variable w, that is, conjugate
functions, and therefore not entirely independent of
each other. Physically speaking, the mechanisms of
energy storage and energy dissipation are two aspects
of the same phenomenon; hence if one of them is given
over the whole frequency spectrum, the other one is
prescribed (see II, Fig. 19.1). Mathematically ex-
pressed, the calculation of an imaginary part (conju-
gate function) from a given real part [an arbitrary func-
tion f(w)] and, vice versa, is prescribed by the Hilbert
transforms, known to physicists as Kramers' theorem.!
This interrelation between the frequency response char-
acteristics of dielectric constant and loss can sometimes
prove helpful in checking the reliability of measure-
ments but, in general, various polarization and conduc-
tion phenomena superpose and the available frequency
range is insufficient for this type of unscrambling (see
also Appendix A, I, 1).

1See, for example, E. A. Guillemin, The Mathematics of
Circuit Analysis, John Wiley and Sons, New York, 1949, p. 339;
H. Frohlich, Theory of Dielectrics, Clarendon Press, Oxford, 1949,
pp- 6 fi.



6 Macroscopic Approach

2 - Polarization and Magnetization

A dielectric material increases the storage capacity of
a condenser by neutralizing charges at the electrode
surfaces which otherwise would contribute to the ex-
ternal field. Faraday®' was the first to recognize this
phenomenon of dielectric polarization. We may visual-
ize it as the action of dipole chains which form under
the influence of the applied field and bind counter-
charges with their free ends on the metal surfaces (Fig.
2.1).

=] [
(+)
) =)
) )
(+) (+)
) @,
- o,
® O B K
@ Dipole © Free charge
Bound charge

Fig. 2.1. Schematic representation of dielectric polarization.
By writing the voltage of the capacitor according to
Eqgs. 1.3 and 1.5 as
Q1
V=—-—
4 Co
we may interpret this equation as stating that only a

fraction of the total charge Q, the free charge Q/«’, con-
tributes to the voltage whereas the remainder, the

(2.1)

i
bound charge Q (1 — —,) , is neutralized by the polariza-
K

tion of the dielectric.

To obtain a clearer conception of the charge distribu-
tion and its effect in space, we represent charge densities
by field vectors. The total (or true) charge @ concen-
trated in the capacitor is distributed over the surface
area A of the metal electrodes with a density s as

Q=LsdA.

We represent this true charge density s by a vector D,
the electric flux density (or dielectric displacement), such

(2.2)

1 M. Faraday, Phil. Trans., 1837-1838.

that the surface charge density shall be equal to the
normal component of D, or

sda =Dcosadd =D-ndA = D,dA. (2.3)

A positive value of the scalar or dot product of the vec-
tor D and the unit normal vector n indicates a positive
charge.

Similarly, we allocate to the free charge density s/«
a vector E, the electric field strength or field intensity, by
defining

S
i da = eoE'n d4 = GoEn dA (24)
K

and to the bound charge density a vector P, called the
polarization, as

1
s(l ——’)daEP-ndA = P,dA
K

(2.5)

(Fig. 2.2).f From Egs. 2.3 and 2.4 we obtain the rela-
tion between dielectric flux density and field strength

D = ¢E, (2.6)

e

da

N4

=& Bound charge
+ Free charge

Fig. 2.2. Representation of total, free and bound charge densities
by field vectors.

t By postulating that the surface charge densities are equal to
the normal components of the field vectors instead of 4x times
their magnitude, we have decided on a rationalized system of
units.
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and from Eqgs. 2.3 to 2.5 the interrelation between the
three field vectors

P =D — gE = (¢ — ¢)E = xeFE. 2.7
The factor
P bound charge density
o eo—E elkiiinlegy free charge density )

is known as the electric susceptibility of the dielectric
material.

Electric flux density D and polarization P have, ac-
cording to their defining equations, the dimension
“charge per unit area,” whereas the electric field
strength E can have a different physical meaning be-
cause the dimensions of the dielectric constant may yet
be chosen. We take advantage of this possibility and
extend the concept of the electric field into space by
postulating that an electric probe charge @', placed in
an electrostatic field of the intensity E, is subjected to

a force
F = QE. (2.9)

Thus the electric field strength E becomes equivalent in
magnitude and direction to the force per unit charge
acting on a detector charge, and the dielectric constant
obtains the dimensions

charge per unit area
[ = [ ol % ] 2.10)
force per unit charge

Two electric charges of opposite polarity, 4Q, sepa-
rated by a distance d, represent a dipole of the moment

k= Qd; (2.11)

this electric dipole moment is symbolized by a vector of

Fig. 2.3. Electric dipole of the moment p = Qd.

the magnitude [ p.l pointing from the negative to the
positive pole (Fig. 2.3).} The polarization vector P
corresponds in magnitude to the surface charge density

t Chemists frequently represent dipole moments by vectors
pointing from the positive to the negative charge (4 — —);
this convention is incompatible with the definition of P and should
be abolished.

bound at the electrodes by the polarized dielectric, and
it points in the direction of the applied field. The po-
larization P is therefore obviously identical with the
electric dipole moment per unit volume of the dielectric
material (Fig. 2.4).

;ﬁ;ﬁ;‘- _T_
it 1
Metal electrodes
Unit cube of dielectric
P bound
=
churges per ‘?
&2 E unit area =/
PR T
= | / &9
V== / [
/
=/ -EnNE 1 A A

Fig. 2.4. P designating both bound charge density and dipole
moment per unit volume.

The electrostatic field in space obtains physical mean-
ing because the field strength at any point can be meas-
ured by the force acting on a detector charge (Eq. 2.9).
Alternatively, it could be measured by the torque T

exercised by the electric field E on an electric dipole
as
T=|p||E|sing = pxE, (2.12)

which tends to align this dipole in field direction (Fig.
2.5).

Fig. 2.5. Torque acting on electric dipole.

The concepts developed for the electrostatic field
apply for the magnetostatic field with the restriction
that individual magnetic point charges of north and
south polarity are not known to exist in nature. Hence
the magnetic dipole moment

(p = pole strength) (2.13)

(Fig. 2.6) is the starting point of the theory. Visual-
izing that under the influence of a magnetic field H
magnetic dipole chains form in a dielectric in analogy
to the electric polarization of Fig. 2.1, we can introduce

m = pd
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a magnetization vector M, which represents the mag-
netic dipole moment per unit volume of the material.
This magnetization M, together with the magnetic field
strength H in the dielectric, determines the total mag-
netic flux density (magnetic induction) B.

Fig. 2.6. Magnetic dipole.

Unfortunately, at this point the magnetic field theory
deviates in its mathematical formulation from the elec-
tric theory, causing a great deal of confusion. Electric
flux density D and polarization P have identical dimen-
sions (“surface charge density” or “electric moment per
unit volume”), and the interrelating equation

D=¢E+P=¢E (2.14)

allows us to define the electric field strength E as “force
per unit charge’” or “torque per unit dipole moment”

by the proper choice of the dimensions of the permit-
tivity (see Eq. 2.10). The magnetic flux density B,
however, is defined by the equation

B = poH + poM = p'H, (2.15)

where the factors u’ and po represent the permeability
(tnductive capacity) of the material and of vacuum, re-
spectively. Thus the magnetic field strength H obtains
the same dimension (“magnetic moment per unit vol-
ume”’) as the magnetization M, and only the magnetic
induction B can acquire, by a proper choice of the di-
mensions of the permeability, the meaning of ‘“torque
per unit dipole moment.” Thus B appears in the force
and torque equations of the magnetic field, but not H,
and the magnetic analogue to Eq. 2.12 is

T=|ml [Blsin0=m><B. (2.16)
Rewriting Eq. 2.15 for the magnetization, we obtain
1
M=—B—-—H-=yxH, (2.17)
Ko

and define, in analogy to the electric susceptibility of
Eq. 2.8, a magnetic susceptibility

me_=-——]_Exm’—-—1; (218)

k' 18 the relative permeability.

3 - Coulomb and Dipole Fields

The electrostatic E-field and force F originate in free
electric charges and are introduced as pointing from the
positive to the negative polarity. Once created by the
separation of positive and negative charge carriers, an
electrostatic field can exist without further energy sup-
ply; it has a conservative character like the gravitational
field of mechanics. When a probe charge Q' is moved
from a point 1 to a point 2 in space, the field performs
the work

w =£2F-dl = Q’LzE-dl. (3.1)

The work per unit charge done by the field is called the
electromotive force (emf), whereas the work per unit
charge done against the field is designated as the volt-
age U between the two points, or

2
emf =f E-dl = —9. (3.2
1

Work done by the field results in dissipation, work done
against the field, in storage of potential energy.

By definition, the potential energy of a charge at in-
finity is zero. The work per unit charge done against
the field in moving a positive detector charge from in-
finity to any point in space is called the potential ¢ of
that point. In consequence,

1
—f E-dl
2

b1 3
b1 — P2 =f E-dl. (3.3)
1

The potential difference ¢; — ¢2 between two points
is equal to the emf (Fig. 3.1). A surface normal to the
field lines (E-dl = 0) is an equipotential surface. A
charge can be moved along such a surface without en-
ergy expense, and it describes an equipotential line.
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The work done in an electrostatic field depends only on
the initial and final position of the probe charge, but
not on the path traversed, because sections of equi-
potential lines can be inserted at will without changing

Fig. 3.1. Potential difference, emf, and voltage.

the result. The total work done over a closed path is
Zero, or
f E-dl = 0.

Equation 3.4 defines the electrostatic field as conserva-
five in contrast to the whirlpool fields encountered in
the electromagnetic theory.

In an electrostatic field the volume of a conductor
must remain field-free and its surface must remain an
equipotential surface in order that its mobile charge
carriers stay at rest. This is the principle of the Fara-
day cage. A charge Q placed on a conducting sphere of
radius r in field-free space therefore spreads uniformly
over the surface with a charge density

s = Q/4nr?.

This surface charge density creates an electric field
strength at the surface (see Eq. 2.4)

’4Qr2 r’, (3.6)
€4

(3.4)

3.5)

E =

where € is the dielectric constant of the surrounding
medium and r® a unit vector. The field extends radi-
ally into space as may be verified by the force acting
on a detector charge (see Eq. 2.9). Hence the poten-
tial of the sphere is (see Eq. 3.3)

¢ = —f E-dr = Q/¢4nr, 3.7

and the force acting at the surface on a detector charge
Q' equals ,

Qe |,

F = r.

e4mr?

(3.8)

Equation 3.8 is Coulomb’s law.! It serves frequently
as the starting point of the electrostatic field theory.
When written without the factor 4 in the denominator,
it commits us to the unrationalized system of units.
Coulomb’s law is a special case of the general force law
(Eq. 2.9) written for spherical symmetry. The inten-
sity of a Coulomb field varies therefore inversely with the
square of the distance, and a Coulomb potential decreases
inversely with the distance. Electrostatic fields pro-
duced by any arbitrary charge distribution may be con-
sidered to originate from the superposition of the Cou-
lomb fields of point charges.

A simple application of this principle is the derivation
of the field of an electric dipole (see Fig. 2.3) from the
Coulomb field of its opposite charges. Obviously, we
may add either the field vectors of the two elemental
fields vectorially or the potentials arithmetically and
derive the field strength by differentiation. The latter
is the simpler procedure and gives directly for any point

¥4 P

QG'
IEE

d—= > X

_l_oe ~d%o\s e

Fig. 3.2. Dipole at origin producing potential at point P.

P, located in space at distances r and r_ from the two
charges (Fig. 3.2), the potential

Q /1 1
T 39)
€dm \rp.  r_
For r>d, r_ — ry~dcosf and r_r, ~r° hence
é Sk (3.10)
= cosf = 3.
P dnr® '4mr?

The unit vector r® points from the center of the dipole
towards P.

The field of a dipole has cylindrical symmetry and
may therefore be conveniently described either by the

1C. A. Coulomb, Histoire de U'académie royale des sciences,
Paris, 1785.
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polar co-ordinates r and 6 or by the cylindrical co-
ordinates p and z, where

cos = z/r

L = (3.11)
T = ‘\/p2 + 22
(Fig. 3.3). By introducing the latter co-ordinates, Eq.
3.10 of the dipole potential may be rewritten

|1z

e 3.12
¢4n(p® + 2°)% B

¢p =

The electric field strength vector E, according to the
defining Eq. 3.3 for the potential, points normal to the

"

Fig. 3.3. Spherical and cylindrical co-ordinates.

equipotential surfaces in the direction of the steepest
potential fall. To determine E from ¢ is a special case
of a general mathematical problem: to find the maxi-
mum rate of increase of some function at any point of
space (its gradient). On the slope of a mountain, for
example, the gradient of the altitude at any point indi-
cates the direction of steepest ascent, and its magnitude
equals the maximum rate of change in altitude over an
elemental length of distance at that point. If dn de-
notes an element of length normal to an equipotential
surface and n° a unit vector pointing in the direction of
steepest potential rise, the electric field strength is

d
E=—n’ (ﬁ) = —Vo¢.

an

(3.13)

The differential operator V, called the del operator be-
cause its symbol is an inverted Greek capital delta, de-
notes the gradient and may be expressed in various
ways, depending on the system of co-ordinates chosen
(see also Appendix B).

In addition to the normal Cartesian co-ordinates we shall have
to refer at times to cylindrical or spherical co-ordinates or to
general co-ordinates which may correspond to any one of these
orthogonal co-ordinate systems (Table 3.1).

Table 3.1. Orthogonal co-ordinate systems and their

geometrical relations

(See Fig. 3.3)

General co-ordinates u
Cartesian a7
Cireular cylindrical P
Spherical r

o
@NNg

Geometrical relations
Spherical

x = 78in § cos ¢
y = rsin 6 sin ¢
z =1rcosé

Cylindrical

= pcos ¢
y =psin ¢
z2=2

In Cartesian co-ordinates a vector increment of length dl is ex-

pressed by
dl =idzx + jdy + kdz
of the magnitude (3.14)

|dl| = Vdo)? + @y)? + [@2)?;

i, j, and k are unit vectors pointing in the positive z, y, and z
directions, respectively. In general co-ordinates u, v, w, we have
to write instead

dl = u’e du + v'8 dv + w'y dw,
(3.15)

[dl] = Ve(du)? + 4dv)? + v*dw)2

The vectors u®, v, w0 are unit vectors of any one of the systems
in Table 3.1, and «, B, v are scale factors converting the length
of the step taken in the u, v, and w directions to the uniform scale
of a local Cartesian system. Table 3.2 shows the interrelations
derived from Table 3.1 and these equations.

Interrelation of unit vectors and scale factors of the co-ordinate systems

Cylindrical Spherical
o o
& &
k o°
1 1
p r sin 6
1 %

Table 3.2.

General
Symbol Cartesian

u’ i

v ]

wl k

a 1

B 1

% 1

ldi| V(dz)* + (dy)® + (d2)?

V(dp)? + pXd¢)? + (d2)?

V(dr)? + (r sin 0)2(d¢)? + r2(d6)?
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As we move from a point of the potential field comparable
distances in the directions of the co-ordinates u, v, w, the poten-
tial changes by the amounts

3 1o o lop a9 13e

At BoT L S it = 3.16
ol wou o, Bov o, ~vow 20
The gradient is the vector sum of these three quantities
wop V0o wog
de¢ = = —F——4—— 3.17
grecER vé a8u+[360+76w ( )

Hence the differential operator V, the del operator, becomes, in
the three co-ordinate systems,

d a a
Cartesian = ig; +3j a/ + k&’
T a ¢
v —> Cylindrical = p* — + — — 4+ k —> (3.18)

dp p 09 a9z

] e 09
Spherical = r®— N LA L

Fig. 3.4. Dipole field ( field lines, —— equipotential lines).
(After Ollendorff.2)

Making use of the del operation, we obtain for the
ﬁeldlstrength of the dipole field in spherical co-ordinates

3¢p_||1.|c0s0_ porl

E, = =] ;
ar €2mr® €2mrd
(3.19)
logp |p|sineg
Bp=—-—=——
r a0 e4mr
and, in cylindrical co-ordinates,
d¢p |w| o —27
B T T T i A
ol (3.20)
a9, 3pz
Bl pil

ap Py (pz + 22)5/2

The field intensity of a dipole varies inversely with the
third power of the distance, and its axial component E,
vanishes along the conical surfaces z = +p/+/2 (Fig.
342

Placed in an electric field, the two charges of a dipole
experience forces F in opposite directions. In a homo-
geneous field these forces are equal in magnitude; hence
only a torque T results, tending to align the dipole in
the field direction. We have already indicated in Fig,.
2.5 and Eq. 2.12 that the torque,

T=|p||E|sing =pxE, (3.21)

can be represented by a vector, the cross product p x E.
The length of T equals the area of the parallelogram
formed by the dipole moment and the field strength,
whereas its direction coincides with the direction of
motion of a right-hand screw when turned from p to-
wards E.

The potential energy of a dipole in an external field,
with the charges +@Q and — @ at potentials ¢ and ¢,, is

U = Q(¢2 — ¢1) (3.22)

(see Eq. 3.3). Since the length of a dipole, and there-

Fig. 3.5. Dipole in external field.

fore the potential drop across it, is,in general, very small,

d2 > ¢ + Vo d (3.23)
(Fig. 3.5), this energy expression reduces to
U= +Vép=—pE=—|p||E|coss. (3.24)

The dipole will tend to rotate until its potential energy
in the external field reaches its minimum at § = 0, with
the moment lined up in the field direction.

In addition to this orientation by rotation, a dipole will
undergo a translation motion in case the external field
is inhomogeneous over its length. The general forces
in conservative fields, the sum total of translational

2 F. Ollendorff, Potentialfelder der Elekirotechnik, Springer,
Berlin, 1932.
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forces F and torques T, are equal to the negative gra-
dient of the potential energy U. Hence, for our dipole
of constant moment, and, since | E | is a scalar,

= —|p|costV|E|+ |p| |E|sing. (3.25)

The second part of this expression is our previous torque
equation (3.21); the first part shows that the transla-

tional force acting on a dipole of fixed orientation is pro-
portional to the gradient of the field strength.

To arrive at the analogous expressions for a magnetic
dipole, we have only to replace the electric moment p
by the magnetic moment m and the electric field
strength E by the magnetic induction B (see Eq. 2.16).
The translational force or the torque acting on a dipole
in a field can obviously serve for the determination of
its dipole moment.

4 - Space-Charge Fields

As in the case of two charges, the potential created
at a point P by a space charge cloud distributed over a
volume V with a charge density p can be derived by the
superposition of Coulomb potentials as

é f prdV

e v €4dnl
Here pr designates the space charge density at a point
F of the cloud and [ the distance from F to the reference
point P. Also the field strength E may be found from
the charge distribution by integration, because the
charge contained in a volume can be measured by count-

ing the total normal flux of lines that emerges from an
enclosing surface, or

qv
feoE-ndA =f”, :
A vV K

This follows as a logical extension of Eq. 2.4, which es-
tablishes a quantitative connection between free charge
density and field strength.

Equation 4.2 is a special case of the transformation
of a volume into a surface integral known as Gauss's
law! It states in mathematical language the obvious
fact that the difference in the number of deer tracks
entering and leaving a parcel of previously empty wood-
land indicates how many deer are still in the stand.

In general, it is more convenient to derive field dis-
tributions by differentiation. We have already made
use of this possibility in the previous section, by em-
ploying the del operator to obtain the field strength as
the negative gradient of the potential or forces and
torques as that of the potential energy.

To find the differential relation between field strength
and charge density, we apply Gauss’s law to an elemen-

(4.1)

(4.2)

1 C. F. Gauss, Werke, Gottingen, 1867, Vol. 5, pp. 5-7.

tal cube dV = drdy dz (Fig. 4.1). Here the normal
component of the field flux is constant over each side
of the cube, and the field strength changes by its first
derivative when we pass to the opposite side. The sur-

JOE.
==
Ez+ FYs dz

Fig. 4.1. Derivation of divergence in Cartesian co-ordinates.

face integral over the normal flux emanating from the
elemental cube may therefore be replaced by the sum-

mation
oE, OF oK,
fE-ndA=( A )}dV
ox Yy 9z

elemental
cube

av. (4.3)

LR

In Cartesian co-ordinates the field vector E and the del
operator V (see Eq. 3.18) are given as

E =iE, + jE, + kE,
and (4.4)

vty Sy g
=1 _ —
ox Jay dz

where i, j, and k designate the unit vectors in the T
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y, and z directions. Hence the sum in Eq. 4.3 corre-
sponds to the vector operation

dE, OE,
ox oy 0z

V-E = (4.5)

called the divergence of E.

To express the divergence of the vector E in the general orthog-
onal co-ordinates u, v, w (see Sec. 3), we refer to the parallelepiped

v-curve

BYE, dvdw BYE dvdwe - (BYE,)dudvdw
Cd
¢ adu u-curve
w-Curve
Fig. 4.2. Derivation of divergence in general orthogonal

co-ordinates.

(Fig. 4.2) formed by surfaces of constant u, », and w. The con-
tributions of the field strength

°F, + v°E, + w'E,, (4.6)

to the normal flux through the elementary surfaces u = con-
a

stant, and u + du = constant are —BvE, dvdw + i ByYE,) du

dvdw. After computing the corresponding expressions for the
other two pairs of surfaces and recalling that the volume element
dV in the general co-ordinates corresponds to

dV = ofy du dv dw, .7

we obtain from Gauss’s divergence theorem the general expression
for the divergence

9 a a
vE = L[ 2 om) + 20 + @B | 69

By referring to Tables 3.1 and 3.2 of Sec. 3, we arrive at the formu-
lation of the divergence operator in the three co-ordinate systems

oE oF,
Cartesian = — + —~ +
ax ay z
1 6E oF
V.E — Cylindrical = -~ — (p e —%i’ S
P
] oy 5 4.9)
] kg
. 1o p 1 9By
Spherical o (r*Ey) T sind 99
(Eo sin 6).

r sin 6 90

The divergence, by measuring the total flux of field
lines per volume element entering and leaving the en-
closing surface, measures the density of the free charge
per volume element

V-E = p/¢;

it characterizes the sources of the electrostatic field. By

(4.10)

replacing in Gauss’s law (Eq. 4.2) the charge density by
the divergence operator, Gauss’s divergence theorem is

obtained,
§E-ndA =fV‘E av.
A v

Since the electric field strength is the negative gra-
dient of the electrostatic potential,t the divergence rela-
tion between field strength and free charge density (Eq.
4.10) may be rewritten as a differential equation be-
tween the electrostatic potential and the free charge
density,

(4.11)

V-V = Vo= —p/e. (4.12)

This is Poisson’s equation,® which, for a region free of
charge, simplifies to Laplace’s equation 3

Ve = 0. (4.13)

The differential operator V?, named Laplace’s operator
or the Laplacian, represents in Cartesian co-ordinates
the operation

9 oy ot

V= ——4 —+—. 4.14
ax® oyt 972 (4.14)
The Laplacian of the potential may be expressed in the general

orthogonal co-ordinates by substituting in Eq. 4.8 the components
of the field strength by the components of grad ¢ from Eq. 3.17.
The result is

9 aff dp

- 73—]’ (4.15)

d va 3¢
a B adv

V2o = —| ———

1 [6 By d¢
afy Liu a du

or, by referring to Tables 3.1 and 3.2 of Sec. 3,
32 2 2
Cartesian = —v e ?_f,
a? = a2
10% d%

)

e e 1

v%¢ — Cylindrical = —(: 19 e i
pdp ptagp? a2t

19 2
Spherical = — — (r2 %) L 1] L
29 ar/  r?sin® 0 0¢?
(4.16)
1 a . do

———— —\{siné—
% sin 6 96 a9
A laz(’v’) 1 9%
r or? 7% sin? § 9¢?
1 .
s - |\siné—
r“sin 6 89 a6

To illustrate how we actually handle space charge
problems by the integral and the differential approach,
we shall calculate the electrostatic field produced by a

1 In the present discussion electrostatic potential is represented
by ¢ instead of by ¢ to avoid confusion with the angle ¢ of the
cylindrical and spherical co-ordinates.

28. D. Poisson, Nouveau bull. soc. philomath., Paris, 3, 388
(1813).

3P. S. Laplace, Ouvres de Laplace, Gauthier-Villain, Paris,
1782-1786, Vol. 10, p. 312.
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spherical space charge cloud of the radius 7o and of a
constant charge density p:

Method I (Gauss’s law)
The surface integral f «E-n dA, extended over a concentric

sphere of radius r, measures the free charge f -p; dV enclosed in
VK

the volume of the sphere (see Eq. 4.2). For a sphere smaller
than the space-charge cloud (r < ro) we obtain

p 4r

«Edrr? = —’ — (4.17)
3
that is, the field strength inside the cloud
pr
E,=-: 4.1
Te E’ 3 ( 8)
rises proportionally to the distance from its center. If, on the

other hand, we integrate over the surface of a sphere that is
larger than the cloud (r > 7o), the right-hand side of Eq. 4.17

4
assumes the constant value 3'__3’_",_03; hence the field strength
K
outside the space charge sphere,
—r’ (4.19)
falls as 1/r2 (Fig. 4.3).

1
rO

¥ —>

Fig. 4.3. TField strength and potential produced by spherical
space-charge cloud of constant density p.

The electrostatic potential, derived from the field strength by
integration (see Eq. 3.3), is inside the cloud

{ p 70703
¢,_—LE,.dr——§[L dr—!-f 'rdr]

L % (3ro2 — 1), (4.20)
€
and outside Seils 3
P ro p T
St ol Lt e G

Method II (superposition of the Coulomb potentials of
point charges)

According to Eq. 4.1, the potential produced by the space
charge is the sum of the Coulomb potentials of the individual
charge elements. Let us designate with r, the distance of a
charge element dV from the cloud center, with [ its distance from
the reference point P (inside or outside the cloud), and with
the distance of the reference point from the center (Fig. 4.4).

Fig. 4.4. Derivation of space-charge potential at point P by
superposition of Coulomb potentials.

Expressing the element dV in spherical co-ordinates
= (rq sin 0 do)(rs d9) dr,, (4.22)

we obtain the potential at the reference point P as a triple

integral .
- ﬁ; Lm fo j; 74 sin 0 ;lr, de dq&. (4.23)
The distance ! according to the cosine law,
=74 1 — 2rpr, cos 6, (4.24)

can be used to substitute for the variable 6, since by differentia-
tion

ldl = rrgsin 6. (4.25)

When ¢ varies from 0 to =, ! varies for r < 7, from (r, — 1) to

(rs + r), and for r Z rs from (r —rs) to (r + r;). Hence the
potential inside the cloud (r < ) becomes
[ f f(r+ra) fz"' Ts dr, dld¢
i =——
4w o(r—15)
fro f(r.+r) 2T g dr$ dl d¢
(rg—T1) f ]
i 2 2
= — (3rg® — 1%, (4.26)
6¢

and outside (r > rg)

fro f(r+r.) f“ s dr, dide » r03
i P (T—15) = 3¢ ’

in agreement with the solution previously obtained.

(4.27)
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Method III (Poisson’s equation)

Writing the Laplacian in spherical co-ordinates (see Eq. 4.16)
and considering that the potential, for reasons of symmetry, can
depend only on r, we obtain for the potential inside and outside
the space-charge sphere the differential equations (Eqs. 4.12
and 4.13)

d%p; | 2de; P
=L Sherd T &
dr2  r dr ¢
(4.28)
@ gd_“"i =0
drt T rdr
The solutions are 4 ”
T
oi = — p——, + 4+
({13 r
0 (4.29)
¢a=—+ D.
T

To determine the constants of integration, we have the follow-
ing boundary conditions:

(@) As » — 0, the potential ¢; has to remain finite, hence
B =0.

() Asr — o, the potential ¢, has to go to zero, hence D = 0.
(¢) The potential across the surface of the space-charge sphere
must be continuous. Hence

C
Pro = _L702+A=‘—'

” = (4.30)

(d) The field strength across this boundary must also be con-

" . - d
tinuous; hence, since E,, = — Ve, = —7g %’ (see Eq. 3.18),
p c
E, =—-—— - —: ;
- 3¢ 7 o (4.31)

By solving the last two equations for A and C and introducing
the values for the integration constants in Egs. 4.29, we end again
with the previous result.

Method I obviously allows solving the present prob-
lem in the most straightforward manner, but method
III proves superior in more complicated cases.

5 - Correlations between Electric and Magnetic Phenomena

The experimental basis of the electrostatic field con-
cept is the existence of positive and negative charges,
of the force law (Eq. 2.9), of the phenomenon of polari-
zation leading to the distinction between bound and free
charges, and of conductors providing equipotential sur-
faces. The magnetostatic field concepts are based on
the existence of magnetic dipoles, the torque law (Eq.
2.16), and on the phenomenon of magnetization. Free
magnetism in the form of magnetic mono poles appears
only at the boundaries between materials of different
permeability. The H-field arising from free ends of
dipole chains is conservative as is the electrostatic
E-field (see Eq. 3.4)

5EH-dl =0,

and concepts such as a scalar potential and a magneto-
motive force (cf. Eq. 3.2)

(5.1)

2
mmf = f H-dl (5.2)
1
may be used for its description. The B-field, in con-
trast, has no sources, but consists of closed induction
lines since the magnetostatic H-lines find their continu-
ation in the dipole chains of the materials. The diver-
gence equation (see Eq. 4.10)

V-D=p (5.3)

characterizes the true sources of the electrostatic field;

the statement

V-B =0 (5.4)

expresses the fact that no true magnetic mono poles
exist in which the B-field could terminate.

Thus far, electricity and magnetism appear as two
new phenomena independent of each other and conse-
quently requiring the introduction of two new funda-
mental quantities, for example, “electric charge” and
“magnetic dipole moment,”’ for their description. Ac-
tually, they are interlinked, and only one new, inde-
pendent quantity may be introduced. One interrela-

H

—1
e

I—>

Fig. 5.1. Magnetic field encircling electric current.

tion is given by the fact that an electric current creates
a magnetic field according to Ampére’s circuital law,!

fH-dl=I

The magnetic field encircling an electric

(5.5)

(Fig. 5.1).

1A. M. Ampére, Recueil
Crochard, Paris, 1820-1833.

d’observations électrcdynamiques
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current is a whirlpool field of closed lines in contrast to
the magnetostatic field that originates in the free ends
of dipole chains of a magnetic material. The line in-
tegral taken around a closed path is obviously not zero,
but depends on the path itself and the direction of

passage,
fH-dl # 0.

Such nonconservative fields consequently may be de-
scribed quantitatively at any point P in space by the
value of this line integral taken along differential paths

(5.6)

2

dHy  aH,

x oy )“/e\

k(

BaH d
i e
Hy dz 2

Fig. 5.2. Derivation of curl H.

in the (z,y9), (y,2), and (z,x) planes around this point
(Fig. 5.2). The line integral in the (y,2) plane, tra-
versed in a sense of rotation which would advance a
right-hand screw towards the +z-direction, yields

0H, oH,
§H'dl= — — ) dydz.
dy 0z

ABCDA

(6.7)

Divided by the differential area dy dz, it corresponds to
the z-component of a vector curl H. By permutation
of the indices, the ¥ and z components, and thus the
complete vector curl H, is obtained as

0H, oH, . (0H, OH,
oy 9z dz ox

curl H = i(

0H, oH,
rr(Tr- ). (5.9)
a9y

ax

It describes the turbulence of the H-field around P and
may be rewritten alternatively in a determinant form
or by use of the del operator:

s <
d g a

curl H = 8_-1; a_y 5 = VxH. (5.9)
H, H, H,

To calculate the curl operator in general orthogonal co-
ordinates, we have to take line integrals along elementary curvi-
linear rectangles lying in planes normal to u’, v°, and w®. Except
for differentials of higher order, the opposite sides of such a rec-
tangle are equal. Consequently the line integral normal to the
u co-ordinate becomes (see Eq. 3.15)

§H dl = (HuB dv)y + (Hywy dw)y4+dr — (HoB8 aAv)w 4w
u

- (Hw‘Y dw)v,
or, since

a
(Hyy dw)otav = (Huwy dw)s + ™ (Huywy dw)y dv, ete.,

the u-component of the line integral is
fl'ldl a(}El dw) di 6(Hdd
s w) dy — —
) 3 wY 3 28 dv) dw. (5.10)

Thus we arrive at the general formulation of the complete vector
curl H by permutation and dividing by the differential areas
dA, = Bv dvdw, ete., as

179 a
T L T g
curl H = u P [60) (vHy) % (6H.,)]

1 aJ 0
o 2 |2 gy -2
i [aw( H) - = (wa)]

1 ;] a
0
H,) — .
+ w B [au (BHy) 5 (aH'u)] (5.11)
Returning to the three co-ordinate systems of Tables 3.1 and 3.2
of Sec. 3, we obtain for Cartesian co-ordinates, Eq. 5.8, and for

the others: L

curl, H = laHz - ﬁ,
p 99 a4z
indri dH,
Cyhnd.nca.l L e 6H,,
co-ordinates 9z dp
19 1 8H,
curl, H = =— (pHy) — = —2
/ _ 2 pap(qu) T
curl H ) 1 oH (5.12)
curl, H = ——— ——
\ rsin 6 9¢
1 9
— ——— — (Hpsin 6)>»
Spherical T sin 6 36
co-ordinates 10H, 10
curly H = — — —— (rHp),
r a0 T ar
14 1 o6H;
== (rHy) — T
L L ror (rHe) rsin @ dd
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The curl operation V x H characterizes the sources of
the magnetic field (the current density J) just as the
divergence operation V-E describes the sources of the
electrostatic field (the free charge density p/x") (see Eq.
4.10). We show this by referring to Fig. 5.3. The line
integral over any closed path C bounding a surface 4

Fig. 5.3. Replacement of line integral by surface integral

(Stokes’s theorem).

may be found by subdividing A into differential ele-
ments dA and summing over the line integral around
these elemental areas. The contributions of all interior
boundaries cancel since they are traversed twice in op-
posite directions, and only the contribution of the rim
remains. Hence, the left side of Eq. 5.5 may be re-
written as a surface integral by representing the differ-
ential line integrals around the elemental areas by their
curl components normal to the surface elements

£H-dl =L(VxH)-ndA.

By introducing the current density J in Eq. 5.5 and
integrating over the cross section 4 of the conductor,
the right side of Eq. 5.5 may also be written as a sur-

face integral,
I= f J-ndA,
4

hence Ampére’s circuital law assumes the alternative
version (Fig. 5.4)

(5.13)

(5.14)

f(VxH)-ndA =fJ-ndA, (5.15)
A A
or, in differential form,

curlH=VxH = ]J. (5.16)

Hence, curl H, the vortex density of the turbulent H-
field, is equal to the current density J creating it.

The mathematical procedure of converting a line in-
tegral into a surface integral,

fH'dl =

extended over any
closed contour

f(VxH)-n dad

extended over any surface
bounded by that contour

(5.17)

is known as Stokes’s theorem.? It has the same impor-
tance for whirlpool fields that Gauss’s law transforming
a surface into a volume integral (see Eq. 4.11) has for
conservative fields.

Fig. 5.4. Equivalence between curl H and current density.

By applying Ampere’s circuital law to a current ele-
ment, that is, to a differential wire element of the length
dl traversed by a current I, we find for the magnetic
field at a distance r from the wire

I I .

(Fig. 5.5). This equation is frequently called the Biot-
Savart law.?

Fig. 5.5. TIllustration of the Biot-Savart law.

To derive this result, we introduce conveniently a vector poten-
tial O, from which the magnetic field strength H follows by the
curl operation

vx0 =H (5.19)
and the current density consequently (see Eq. 5.16) as
Ux(Vx0) =]J. (5.20)

2 This theorem was first explicitly stated by Lord Kelvin in a
letter to Stokes (July 2, 1850) and published in Stokes’s Smith’s
Prize Examination Paper, February 1854. See A. A. Stokes,
Collected Mathematical and Physical Papers, Cambridge Univer-
sity Press, Vol. V, 1905, p. 320.

3J. Biot and F. Savart, Ann. chimzie 15, 220 (1820).
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The vector operation on the left-hand side, as we easily confirm,
may be rewritten

Vx(Vx0) = V(V-0) — V-VO. (5.21)

If the vector function O represents a purely turbulent field with-
out sources, its divergence is zero,

V-0 =0, (5.22)

and only the Laplacian of Eq. 5.21 remains. Thus we obtain
the analogue of Poisson’s equation (see Eq. 4.12) for the turbulent
field,

V0 = —J. (5.23)

In electrostatics the scalar potential ¢ can be derived from the
charge density by integration (Eq. 4.1). By the corresponding
integral equation, when p/¢ is replaced by J, the vector potential
at any point P, Op, is obtained from the space distribution of the

current density
f JrdV
Op = .
4xrp_F

(56.24)

A conductor element dl carrying a current I gives therefore, at
the distance r, a vector potential contribution

Idl Jdv
do = — = 2
® Soa.r T 5.2
or a magnetic field
dH=vxd0=ﬂ(vx!)- (5.26)
4 r
Expansion of the curl operator yields
1 1
PR . ) (5.27)
r r T

The first term on the right is zero, since the curl operation refers
to the point P and not to the current; thus Eq. 5.18 is obtained.

By integration, we may derive from this law the mag-
netic field produced by any geometrical configuration

z

dH, AHz
dH,

90°

90°

e T
T

Fig. 5.6. Derivation of magnetic moment of circular current
from Biot-Savart’s law.

at,

of steady currents. For example, we find that a ring
current of the magnitude I encircling an area A (Fig.
5.6) produces at a distance, large in comparison to its
radius, a magnetic field which is identical to that of a
magnetic dipole of the moment,

m = [An (5.28)

(Fig. 5.7). This equivalence between the fields of mag-
netic dipoles and of circular currents allows us to ex-
plain the phenomenon ‘“magnetism’ and the nonexist-
ence of magnetic monopoles on the basis that the sources
of magnetism may be molecular ring or Ampére currents.

Fig. 5.7. Magnetic moment of circular current.

A second interrelation between electric and magnetic
fields is given by Faraday’s induction law.* It states
that when the magnetic flux

<I>=fB-ndA
4

traversing a loop of wire changes, whether by a change
of the magnetic induction B or by a change in the posi-
tion or shape of the loop, an emf is created along the
wire, causing an induced voltage U; to appear between

its ends,
b dd
u-=f Edl = - —

proportional to the speed of this change. If the loop is
closed a current I will flow through the loop resistance
R,

(5.29)

(5.30)

(5.31)

that causes a magnetic field opposing the change in
flux.

Because of the interrelation between magnetic fields
and electric currents, the dimensions of the magnetic
dipole moment, and with it of all magnetic quantities,
can be reduced to electrical and mechanical dimensions.

¢ M. Faraday, Experimental Researches in Electricity, Taylor,
London, 1839, Vol. I, pp. 1-109.
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6 - Maxwell’s Field Equations

Ampére’s circuital law and Faraday’s induction law
were discovered and formulated for currents and volt-
ages in wire loops. Maxwell postulated that these laws
are valid in space quite independent of the presence of
detector loops in which currents and voltages might de-
velop, and thus he arrived at the electromagnetic field
equations.!

A discussion of the current drawn by a capacitor will
make the formulation of Maxwell’s first field equation
evident. The current of density J streaming into the
electrode system is equal to the change of the true
charge stored in the condenser, that is,

ds
fJ‘ndA =f—dA.
A adt

The surface charge density s originates the electric flux
density D (see Eq. 2.3); hence
ds dD
—dA = —-ndA.
dt dt
The current density may be measured as the time de-
rivative of the electric flux density at the electrode sur-

face, D
dt

By postulating that this equivalence between the tem-
poral change of the dielectric flux density and an elec-
tric current holds also for the interior of a dielectric,
that is, that this change in flux produces a magnetic
field just like a conduction current, Maxwell arrived at
the concept that the conduction current charging a ca-

pacitor finds its continuation in a field current travers-
ing the dielectric,

dD
fJ~ndA =] —-ndA.
4 4 dt

(6.1)

(6.2)

(6.3)

(6.4)

This field current, which extends through the cross sec-
tion A’ of the dielectric as far as the electric field of the
capacitor reaches, was named by Maxwell the displace-
ment current. By including this displacement current
in Ampére’s circuital law, Maxwell’s first field equation
results in the integral formulation

oD
§H-dl =fJ-ndA+ —-ndA.
A ot

AI
1J. C. Maxwell, A Treatise on Eleciricity and Magnetism,
Clarendon Press, Oxford, 1892, Vol. II, pp. 247-262.

(6.5)

With the help of Stokes’s theorem the line integral on
the left can be transformed into a surface integral, and
the differential formulation

oD
V-H=J+ — (6.6)
at
is obtained (see also Appendix A, I, 6).
The current of the density J may be a true conduc-
tion current obeying Ohm’s law,

J = dE; 6.7)

however, from a more general standpoint, the conduc-
tivity ¢ may be interpreted as the dielectric conduc-
tivity of Eq. 1.16, representing any energy-consuming
process. Thus, by introducing the complex permit-
tivity, the first field equation may be rewritten for
sinusoidal fields and isotropic, linear dielectrics T as

V<H = E*E'
at

(6.8)

The second field equation is a generalization of Fara-
day’s induction law and asserts that the change of a
magnetic flux density creates an emf in space quite in-
dependently of the presence of a loop for its detection:

oB
§E‘dl = —f —-ndA. (6.9)
4 0Ot
In differential form it becomes
B
VxE = — —, (6.10)
at

or, if we recall that also magnetization may lead to
energy dissipation and introduce the complex permea-~
bility, we arrive at a formulation completely symmet-
rical to that of the first field equation, except for the
negative sign, ol

VxE = —”*—-

~ (6.11)

Maxwell’s field equations thus describe the coupling
between the electric and the magnetic field vectors and
their interaction with matter in space and time.

t The designation “linear’ dielectric signifies that the relation
between D and E and between B and H is a linear one, that is,
that the permittivity and permeability are independent of the
field strength. The case of anisotropic dielectrics is treated in
II, Sec. 26, and that of nonlinear dielectrics in IT, Secs. 28 to 30.
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7 - Electromagnetic Waves in Unbounded Space

We will, in general, make use of Maxwell’s field equa-
tions in the differential form for sinusoidal fields just
derived:

oE
VxH = ¢*— (7.1)
at
and
S (7.2)
N '

and under the additional assumption that the field con-
tains neither free electric charges

V-E=0 (7.3)
nor free magnetic poles
V-H=0. (7.4)

An interpretation of the field equations requires, as
a first step, the separation of the field vectors E and H.
This can be done by differentiating the equations with
respect to time and substituting from one equation into
the other. Thus we obtain from Eq. 7.1

d dH
— (VxH) = V¥V«
ot ot

0°E
= ¢*— (7.5)
at

1
= ——*Vx(VxE)
n

or, after carrying through the vector operation (see Eq.

21
5.21), f

VZE = e*u* —]§ (7.6)
at?
In the same way, by differentiating Eq. 7.2, we have
for the magnetic field the completely symmetrical rela-
tion
o*H
at?

V2H = e*u* (7.7
Equations 7.6 and 7.7 are the wave equations of the elec-
tromagnetic field.

We simplify these equations further by assuming at
present that the field vectors E and H depend only on
z and ¢, that is,

—=—=—=—=0. (7.8)

It will prove easy to return later from this special case
to the general solution. The wave equations thus be-
come

’E g *82E
—_— = e —_—
322 gy
5 . (7.9)
PH _ oH
e Lok M (
dx? oo

The solution of these differential equations concerning
us here is a plane wave,

E = E ",
: (7.10)
H = Hye' ™%,
varying periodically in time with the frequency
v = w/2m (7.11)

and advancing in the 4z direction through space with
a complex propagation factor

y = joVeu* = a + jB; (7.12)

a is the attenuation factor, and g8 is the phase factor of
the wave. Introducing these factors, we may rewrite
Eq. 7.10

E = Eoe—azeer(vl—ﬂzﬂw),

H -, Hoe—azej21r(vl—ﬁx/21r). (7'13)
Obviously the wave has a time period
T=1/v (7.14)
and a space period
A = 27/B. (7.15)
Surfaces of constant phase are given by
x
vt — Y = constant, (7.16)
hence propagate with the phase velocity
dx w
— =p =\ =— (7.17)
dt B

For a dielectric without loss (e* = ¢, u* = '), we ob-

tain from Eq. 7.12 the phase factor

8=V, (7.18)
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so that the phase velocity in a loss-free unbounded me-

dium is
1

P =

,\/ eu

To learn about the coupling between the E and H

vectors, we have to return to the field equations and

write out the field components. Because of condition

Eq. 7.8, only the derivatives with respect to  remain,
and the field equations read

(7.19)

aEz aH,
0= ¢ 0= —p* ,
ot ot
oH, oF oE, oH
- £ Y f A —LE U o)
oz at ox ot
oH, o, oE, oH,
= e* = —'u .
axr ot dx at

In addition, since the divergences are zero (see Egs.

7.3,7.4), SE, o1,
=0 = 0. (7.21)
ar dar

These component equations contain three statements:

(1) The z components of the field vectors, the longi-
tudinal field components of the electromagnetic wave,
are independent of space and time, hence may be as-
sumed to be zero. The plane wave is a transverse electro-
magnetic or TEM wave.

(2) The coupled transversal components of the E and
H waves are perpendicular to each other and form, to-
gether with the propagation direction, a right-hand co-
ordinate system of the sequence +2 — E, — H, (Fig.
7.1). This becomes apparent when we introduce the

solution for the E and H vector (Eq. 7.10) into one of
the component equations. Choosing, for example, the
relation

0H, dE,
— = ¢*¥— (7.22)
or at
we obtain
vH, = jwe*E,. (7.23)

Hence, the E, component of the electric field is coupled
to the H, component of the magnetic field, as stated
above.

Direction of
propagation

X

Fig. 7.1. Right-hand co-ordinate system for traveling TEM
wave.

(3) The ratio of the coupled electric and magnetic
field vectors follows as

=— =17 (7.24)

This ratio Z, the inirinsic impedance of the dielectric, may
be rewritten with the help of Eq. 7.12 in any one of the

three versions
¥ fu* Jop*
7 = Tae* = = = p . (7.25)

8 - Dimensions and Units

With the preceding development of the electric and
magnetic field concepts the prerequisites have been
established for a reasonable selection of dimensions and
units. Length, mass, and time are generally used as
the three fundamental dimensions for the description
of the mechanical world. Electricity and magnetism
represent two new phenomena not contained in the
framework of mechanical concepts. They are linked
with each other through Ampére’s circuital law, Fara-
day’s induction law, or, summarily, through Maxwell’s
equations; hence it is logical to add one new funda-
mental quantity to the dimensions of the mechanical
system.

The derivations of the preceding sections are inde-
pendent of this choice, since the dielectric constant e
and the permeability uo of free space have been retained
in the equations and are available for interpretation.

It was the tendency in earlier times to make the three
dimensions of mechanics suffice by prescribing that
either the dielectric constant (electrostatic system) or
the permeability (electromagnetic system) be a plain
number. Such a supposition eliminates a fourth di-
mension, because ¢ and p are interlinked through rela-
tions, such as the phase velocity (see Eq. 7.19), which
contain only mechanical dimensions. However, the re-
sult of this artificial reduction is that fractional expo-



Table 8.1. Dimensions and units

Multiplication Factor for
Dimensions in Mks System Converting Rationalized Ratio:
Quantity Symbol Defining Equation Mbks Units 1 to: esz;/ e=mu
3 X 10Y)
Primary Units Derived Units Esu Units Emu Units
Admittance Y Y =1I/0 sec coul’/kg m? | mho 9 X 101 1X10~* c?
Attenuation constant o a= %ln %’ m™! neper
Capacitance C C =@/ sec? coul’/kg m? | farad 9 X 101 1X 10~* c?
Complex dielectric constant €* e = ¢ — je'’ sec? coul’/kg m® | farad/m 367 X 10° 47 X 1071 c?
Complex index of refraction 7 n* = n(l — jk) L 3
Complex permeability u* w* = — g kg m/coul? henry/m 355 < 1018 e 107 1/¢?
Complex propagation function v y=a+jB m™! m™! 1X 102 1X 1072 1
Conductance G G=1/R sec coul’/kg m? | mho 9 X 101 13X 107° c?
Conductivity o o=J/E sec coul’/kg m® | mho/m 9 X 10° 1x 1071 c?
s (siemens,/m)

Current I |I| = 7?— coul/sec amp 3 X 10° 1X 107! ¢
Current density J [J| = % coul/sec m? amp/m? 3 x 101 1Xx 10! c
Dielectric conductivity o o = we”’ sec coul?’/kg m® | mho/m 9 X 10° 1Xx 101 ¢
Dielectric constant (permittivity) ¢ e = ll—D—ll sec? coul?/kg m® | farad/m 36w X 10° 47 X 1071 c?
Dissipation factor (see Loss tangent) | D = tané
Electric charge Q Primary unit coul 3 X 10° 1x 107! c
Electric dipole moment i w=Qd coul m amp sec m 3 X 101 1x 10! ¢
Electric field strength E E- % b5 kg iofeee® goull | vokt/m 1x10~ | 1x 108 1/¢

T =pnxE
Electric flux density (displacement) D § D-ndAd =f pdy | coul/m? farad volt/m? 127 X 10° 4 X 1078 c

v
Electric loss factor ¢’ (= ‘%—' sec? coul’/kgm?® | farad/m 36x X 10° 4r X 1071 ¢l
Electric polarization P P=D—-¢E coul/m? farad volt/m? 127 X 10° 4r X 10°° c
1
Electric potential ¢1=—| E-dl kg m?/sec® coul | volt 5T 12X 108 1/c
Electric susceptibility x=« -1
2
Electromotive force emf E-dl kg m?/sec? coul | volt L1 1 X 108 1/c
1
1

Electrostatic energy U Q) E-al kg m?/sec? joule 1X 107 1% 107 1

(44
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Force

Impedance (characteristic)
Impedance (intrinsic)
Index of absorption

Index of refraction

Inductance

Loss tangent (dissipation factor)
Magnetic dipole moment

Magnetie field strength

Magnetic flux

Magnetic flux density (Magnetic
induction)

Magnetic loss factor

Magnetic permeability

Magnetic susceptibility
Magnetization

Magnetomotive force

Permeability (see Magnetic
permeability)

Permittivity (see Dielectric constant)

Phase constant

Potential (see Electric potential)

Potential difference (see Electromo-
tive force)

Power

Q of a dielectric (quality factor

Relative dielectric constant
Relative magnetic permeability
Resistance (direct current)
Resistivity

Torque

Voltage (see Electromotive force)

Q

N 3 NNMT

tan &

b2 — ¢1

Q

R\

an® my

F = d(mv)/dt
Zc=€U/I
7 = E/H
k=a/f
n = Ao/
KV
Lo
dt
'z
tan6=e—,
€
m = IFn
§H-d1=
®=| B-nd4d
fA n
T=mXB
' =B/H
Xm=“m,_1
M = (B/p) — H
2
mmf = | H-dl
1
B8 = 2m/\
¢2 — ¢1 = —emf
aw
P
- 2l
" tand
k" = ¢€/e
Km' = p'/po
R =v/I
p=1/c
T=Fxd
UV = —emf

kg m/sec?
kg m?/sec coul?
kg m?/sec coul?

kg m?/coul®

coul m2/sec

coul/m sec

kg m?/sec coul

kg/sec coul
kg m/coul?
kg m/coul?

coul/m sec

coul/sec

m™—!

kg m?/sec?

kg m?/sec coul?
kg m3/sec coul?
kg m?/sec?

newton
ohm
ohm

henry

amp m?
= joule/weber/m?

amp/m

volt sec = weber

volt sec/m?

= weber/m?
henry/m
henry/m

amp,/m

amp

m—!

joule/sec = watt

ohm
ohm m
newton m

3 X 10
3 X 107

3 X10°?
3 x 10

1
367 X 10

1
gl —13
36 X 10

3 X 107
3 X 10°

1 X 102

1 X 107

1x 108

1Xx 1073

1 X 108
1 X 108

1 7
2 X 10

it
7
41|_><10

1x1078
1Xx10

13X 102

1 X107

1/c?
1/c?

1/c?

1/c
1/c

1/c?

1/c?

1/c?
1/c?

t Example for use of conversion factors: given the electric field strength

E = 31.3 in. mks system, then E = 31.3 kg m/sec? coul = 31.3 volt/m,
=313 X 1 X 10~* = 10.4 X 10~ statvolt/cm,
= 31.3 X 10% abvolt/cm.

S1TU() pUe SUOISUITII(]
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Table 8.2. Other units and their relation to the mks units
Quantity Symbol and Derivation Mks Unit Other Units Conversion Factors
Angle deg or ° deg radian (rad) 1rad = 57.296 deg
Area, A m? em?, in2,, ft? 1 em? = 10~*
1in.2 = 6.4516 X 10~* m?
1 ft2 = 9.2903 X 102
. Fn E, 1. P . - Ey =
Attenuation a==-In 7 =% In | neper (n) decibel (db)P— 20 log 7 1db = 8.686 n
= A0
= 10 log P
Energy U joule = watt sec | erg, kilowatt hour lerg =107
(kwh), cal, Btu 1 kwh = 3.6 X 10¢8]. ul
1 cal = 4.185 NS
1 Btu = 1055
Force F newton dyne 1 dyne = 10~ newton
Length 1 m ecm, mm, micron (u), mu, | 1 ecm = 102
angstrom (A) 1mm = 1073
lp=10"% m
1mu =10"°
1A = 10710
Magnetic field amp/m or amp _ 108
strength H turn/m oerstedt 1 oerstedt = e amp/m
Magnetic flux B weber/m? gauss 1 gauss = 10~* weber/m?
density
Mass M kg g, pound (Ib) 1g=10"3 }k
11b = 0.45359) <8
Power P watt erg sec !, kw, cal sec™), | 1 erg sec™! = 107
Btu hr~!, hp (horse- | kw = 10°
power) cal sec™ = 4.185 [watt
Btu hr~! = 0.2930
hp = 746
Pressure P newton/m? dyne em™2, b in.~2, 1 dyne em—2 = 10!
atm, cm Hg, bar 11bin.~? = 6.895 X 10°
1 atm = 1.013 X 10° newton/m?
1 em Hg = 1333
1 bar = 10°
Volume 14 m3 em?, in.3, liter, gallon 1cm? =10—¢
1in® = 1.6387 X 10 | ,
1 liter = 103
1 gallon = 3.7854 X 102
Weight w newton dyne 1 dyne = 10— newton
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nents appear in many of the dimensional equations;
fractional dimensions make no physical sense. This
difficulty can be avoided and all concepts simplified by
referring to four fundamental quantities.! Here we
adopt electric charge as the fourth dimension.

As practical units we select the meter (m), kilogram
(kg), second (sec), and coulomb (coul). In addition to
these primary wunits, derived units such as the volt, am-
pere, and ohm are used to shorten the dimensional equa-
tions. Table 8.1 gives a survey of the dimensional re-
lations which are of importance for the macroscopic
theory as here presented.

In the formulation of the theory we adopted a ration-
alized system of units by postulating direct equivalence
between charge density and electric flux density (Eq.
2.3). This direct correspondence between s and D, as-
signing one D line to the unit of true charge, instead of
the 4x lines of the unrationalized system, seems more
logical from our approach to the field theory, in which
Coulomb’s law is not the starting point but only one
consequence of the electrostatic concepts. It has the
additional advantage of removing the factor 4r from
the equations most frequently encountered in dielectric
problems.

Rationalization was originally suggested by Heavi-
side,? and a rationalized system based on the meter,
kilogram, and second (mks system) was first advocated
by Giorgi.? The mks system is therefore also called the
Giorgs system.

To arrive at numerical values requires two more
steps: a measurement of the velocity of light

1
c = —
\/Eoﬂo

(see Eq. 7.19), which establishes the product eguo, and
an agreement as to the value of ¢ or yo. By inter-
national consent the value of uy has been fixed for the
rationalized mks system as

po = 4w X 1077 ~ 1.257 X 107°

(8.1)

(8.2)

1 See the discussion of J. A. Stratton, Electromagnetic Theory,
McGraw-Hill Book Co., New York, 1941, pp. 16 ff.

2 Q. Heaviside, Electrician 10, 6 (1882).

3 G. Giorgi, Assoc. eletirot. italiana, attr 5, 402 (1901).

[henry m™].

The velocity of light has been measured as

¢ = 29979 X 10®~3 X 10® (8.3)

[m sec™]4;

hence the dielectric constant of free space becomes

1
e =—X107°
36

™

~ 8854 X 10712 [farad m™!]. (8.4)

The intrinsic impedance Zgy of free space, determined
by the ratio of permeability to permittivity (see Eq.
7.25), follows as

Zo = Vipo/eo = 120r ~376.6 [ohm]. (8.5)

Table 8.1 contains, in addition to the primary and
derived units, their conversion factors to the rational-
ized electrostatic (esu) and electromagnetic (emu) units.
Both these systems use centimeter (cm) and gram (g)
as the units of length and mass, and, in addition, the
unrationalized esu system postulates ¢y = 1, whereas
the unrationalized emu (Gaussian) system chooses ug
= 1. Consequently, from Eq. 8.1,

€ esu
= 02,
€ emu
(8.6)
Mo esu 1

po emu ¢

Table 8.1 refers only to the primary and derived units
of the mks system. Frequently other derived units are
customary or of more convenient magnitude; those of
importance for this book are listed in Table 8.2, with
their conversion factors.

¢ The most accurate measurements of the light velocity are
no longer free-space determinations over long distances such as
the Michelson-Morley experiment [Phil. Mag. 13, 236 (1882); 24,
449 (1887)], but resonance measurements in wave-guide cavities
[see K. D. Froome, Nature 169, 107 (1952)].

5See also the tabulation of P. Moon and D. E. Spencer,
Am. J. Phys. 16, 25 (1948).
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9 - Description of Dielectrics by Various Sets of Parameters

In Sec. 1 the response of a dielectric material to sinus-
oidal electric and magnetic fields was expressed by the
two complex parameters ¢* and u* which determine the
storage and dissipation of electric and magnetic energy
in the medium. These parameters were derived from
the amplitude and temporal-phase relations between
voltage and current in capacitors and coils. It is now
obvious that we are not restricted to using ¢* and p*,
but may refer to alternate parameters that convey the
same information.

The power engineer replaces the dielectric constant
¢ and the loss factor ¢’ by the combination of ¢ and
power factor cos 0; the radio engineer may choose ¢ and
the loss tangent tan 5, where

eII
tan § = o

€ charging current

loss current

9.1)

Frequently the inverse of the loss tangent, the quality
factor @ of the dielectric,

1 we' By?
we'’ E02

tan é
av. energy stored
per half cycle

%E'Eoz
= 21rv1—2 =
20Ky

energy dissipated
per half cycle

[reactive v—amp] ©0.2)

watts
serves as the figure of merit, especially in wave-guide

problems. An engineer interested in dielectric heating
will probably refer to ¢ and the dielectric conductivity

o = we’ [ohm™ m™!], (9.3)
because the power absorbed per unit volume is
02
P=g¢ - [watt m™3], (9.4)

If, instead of the time relation between current and
voltage, the electromagnetic field in space is considered,
new substitutes for ¢* and u* offer themselves. To de-

t It should be noted that, since cos # = sin 3, the power factor
and loss tangent (dissipation factor) may be considered equal
only for sufficiently small loss angles 3, where sin § = tan & be-
cause cos § >~ 1.

rive them conveniently, we visualize the spatial electric
wave train at some moment #;,

- z
= —az, 2
Ey = Ele 7 = Ele e ™~

(9.5)

(cf. Eq. 7.13). The wave amplitude oscillates in space
with a periodicity A; it is enclosed between exponential
envelopes determined by the attenuation constant o
(Fig. 9.1a). Alternatively, in polar co-ordinates, the
wave amplitude may be depicted as a radius vector
which, rotating clockwise as the distance increases, de-
seribes a logarithmic spiral (Fig. 9.1b). The parameter
z is replaced in the latter representation by the phase

angle ¢ according to the relation U
z ¢
—=— 9.6
AN 2r ©.6)

and the electric field strength is rewritten as

oy

E, = Ele"¢(glf\+j). (9.7)

In vacuum the wavelength is Ag, and the wave travels
with the velocity of light (cf. Eq. 7.19),

]
V eomo
In other media the wavelength normally shortens and
the phase velocity slows down. The ratio of the wave-
length or phase velocity in vacuum to that in the dielec-

tric designates the index of refraction of the dielectric
medium,

(9.8)

C=kuv=

9.9)

For a loss-free medium this equation simplifies to
n=\Veufeopo = Vikn'. —  (9.10)

If, in addition, the magnetization can be neglected
(4" = o), the well-known Mazwell relation t results,

9.11)

t This relation has been abused frequently in predicting static
dielectric constants from optical refraction data. Actually, it
states only that the square of the index of refraction of a non-
absorbing, nonmagnetic material is equal to the relative permit-
tivity at that frequency.
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Fig. 9.1.

The physicist normally uses the index of refraction
as one of his parameters and pairs with it, by making
use of the polar representation of the wave, the attenu-
ation per radian called index of absorption,

a\ «

12
o B (9.12)

By substituting these indices of refraction and absorp-
tion for the attenuation factor « and the phase factor 8
of the propagation factor in Eq. 7.12 we obtain

2r . 2r
vy =j—n(l — jk) =j—n* (9.13)
*o A

0
The propagation factor v used by the communication
engineer may thus be replaced by the complex index of
refraction

n* = n(l — jk) (9.14)

employed in the calculations of physical optics.

The propagation factor + is proportional to the prod-
uct /e*u*, whereas the intrinsic impedance Z is equal
to the ratio 4/u*/e*. Both complex quantities have to
be determined to obtain ¢* and p* individually.

From the intrinsic impedance

E u¥*
in polar form,
Z=|Z|e*
(el'”l + GH#H)2 + (En#.r _ erﬂn)z Y 7
= (6’2 i 5”2)2 ¢ (916)
with
"ot o__ 1.0
tan2f = — " * 9.17)

G,p,l + EIIMII

(b)

Electric wave train in space.

we can derive the phase relation between the electric
and the magnetic wave. It is evident that the electric
field vector is advanced or retarded with respect to the
magnetic vector in temporal phase, depending on the
preponderance of the term pertaining to the electric or
the magnetic loss. For negligible magnetic loss (u'’
= 0)7

2k
tan 2¢ = tan § = ] (9.18)

k2
or

tan ¢ = k; (9.19)
the phase advance of the electric wave is equal to the
arc tangent of the index of absorption. In a loss-free
medium in unbounded space the electric and magnetic
field vectors of an electromagnetic wave are exactly in
phase (Fig. 9.2).

Z

Direction of
propagation

Fig. 9.2. Traveling TEM wave in loss-free dielectric.

The general characterization of a dielectric as the
carrier of an electromagnetic field requires two inde-
pendent complex parameters which have to be deter-
mined by four independent measurements; however,
the situation fortunately simplifies in practice. Ferro-
magnetics excepted, the magnetic polarization is, in
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general, so weak that u* may be replaced by the per-
meability uo of free space for all practical purposes.
Thus, two measurements normally suffice to determine
the dielectric response of homogeneous isotropic mate-
rials at a given frequency. Consequently, in most cases,
our dielectric characteristics show only the specific
dielectric constant,

K = €/e, (9.20)
and the loss tangent tan é.

To allow a convenient change-over from these to
other parameters, we equate the real and imaginary
parts of Eq. 7.12. It follows for the attenuation factor
of a transversal electromagnetic wave (TEM wave)

2

Aw
a=—(u’ + '), 9.21)
4

and for the phase factor

o2 l:(elu, — euuu)
= AN AR
A 2

e/”‘u + €11”'/ 2 %
w4 Jir (EZZV oz
+ + Glﬂl _|_ Gllﬂ,’ ( )
Thus we arrive at the conversion formula.s H
For materials with negligible magnetic loss (¢’ = 0)

we obtain from Eq. 9.22 for the wavelength the simpli-
fied expression

1 1
A = — e .
v [Eew {1 + V1 + tan? 5 })%

(9.23)
If, in addition, the permeability is that of vacuum
(v’ = wo), we may write for the index of refraction

N 1 e = %
n=;=[§:<’{\/1+tan25+l}] . (9.24:)

Similarly the attenuation factor becomes

2r 1 %
a=—”[§x'{\/1+tan2a—1}}, (9.25)

0

and the index of absorption

a_[‘\/l-{—tan"’a—l]%
B LvV1i+tano+1

These equations show that it is convenient to discuss
the effect of the dielectric loss on other parameters by
studying the three boundary cases: tan® § << 1, tan? 5
~ 1, and tan® § > 1.

The attenuation produced by a dielectric is frequently
expressed as the aftenuation distance 1/ through which
the field strength decays to 1/e¢ = 0.368 of its original
value,

k= (9.26)

e 7“’[ 2 ]y [m], (9.27
a 2nl’(V14tan?6 — 1) ml, (9.27)

or as the attenuation in decibels per meter produced by
the material. If the field strength falls from E(0) to
E(x), or the power from P(0) to P(z), over a length z
of the dielectrie, this decibel loss is defined as

E© =10 log-Iﬂ = 8.686ax [db];
E(x) P(x)

that is, the decibel loss per meter is given as

2r[1 %
8.6860 = 8.686 — [EK'{\/l + tan? 5 — 1}]

0
], o

For low-loss materials (tan § << 1) this loss becomes
simply

8.686 — V' tan 5 = 1637 — [de (9.30)
686 — V'« tan § = === !
A Vi Lm

0

20 log

(9.28)

For the convenience of the reader nomographic charts
have been provided which allow a quick evaluation of
1/a (Charts 9.1-9.3), of the decibel loss per meter
(Charts 9.4-9.6), of B8 (Chart 9.7), and of n and k&
(Chart 9.8), when the specific dielectric constant and
the loss tangent are given. Chart 9.9, in addition, gives
the dielectric conductivity in terms of the same param-
eters calculated from the equation

o= we’ =556 X107 tans [ohm™'m™]. (9.31)




Description of Dielectrics by Various Sets of Parameters

29

A= WAVE LENGTH IN METERS
»
!

IN METERS

LRERE LI |

1 1 1
©o 00
W hHO

=
(@}
N

- 005

Chart 9.1.

EQUATION
i Ao
< T tan S'V_C/"
Eo Mo

H
tan § =0000I to 005

¢
Iy

R,>

s tan§

Attenuation distance 1/« for low-loss dielectrics (tan § < 1).

00001

00002 -

0.0003

| SV I YT AT o T

LIRS0 R B |

(&}

002

003

004 +

LR . 85 i 3 |

T N
N Wop
&

005 -

S
= DIELECTRIC CONSTANT

wjw

o



30 Macroscopic Approach

L 04
10
103 EQUATION 005 -
7] 5 i
k e
toz Zc"z%‘?\f EM 3
- EHA [Vhtan‘ 8—|:]
1 y
4 e ™! 2
tan § =005 to50 0.1
3 _:'O.I
21
Loos 02.
- 004
Lt
3003 o 03 -
= }oo2 § 04
= ] = 4
z 05+ 05-
T 04 - [ -
g 5
W03 ,:0.0l ]
w 4 e
I i & 1
> 029 + "Lioo
<~  looos
L 0004 . 28 '<z:
0l 23
__— 0003 - 30 §
. 3120 9
TIoRe tan § 4
0054 5 o
1 o 410 a
004 < 7 g I 6
] e T W<
003 ..F 0.00I A, 10— 5 I
+ [ 4
- KEY T
) o L 3
ooz -~
00005 5 2
i }
. 00004 e,
907} 00003 =Siey
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10 - Forces

The force of an electrostatic field of the strength E
acting on a probe charge @' was postulated to be (see

Eq.2.9) F, = QE. (10.1)

This formulation rests on the tacit assumption that the
detector charge @’ is so small that the field generated
by it may be neglected in comparison to E. Acceding
first to this limitation, we may derive a variety of force
expressions for specific field constellations.

i

3 FC? ®-/3'
®

Axial quadrupole General quadrupole

® O
© ®

Regular quadrupole
Fig. 10.1. Quadrupoles.

If the field E originates from a point charge @, Cou-
lomb’s law results (see Eq. 3.8),
/
F. = ,QQ rO;
e4ar?
because of the spherical symmetry of the field, its
strength decreases inversely proportional to the second
power of the distance from the generating charge Q.
If the field stems from an electric dipole, a force de-
creasing inversely proportional to the third power of
the distance is obtained (see Eq. 3.19). A combination
of two dipoles, a quadrupole, produces a force varying
inversely proportional to the fourth power of the dis-
tance; an octupole, formed by two quadrupoles, acts on
Q' with a force ~ 1/r%; and any higher multipole ar-
rangements lead to forces represented by the corre-
sponding higher members of a power series.!

(10.2)

1 See, for example, J. C. Slater and N. H. Frank, Electromag-
netism, McGraw-Hill Book Company, New York, 1947, pp. 227 ff.

This type of dependence can be perceived easily, if
we remember that the electrostatic potentials of the
generating charges superpose arithmetically (see Eq.
4.1). The dipole arrangement of Fig. 3.2 thus pro-
duces, at a distance r > d, a potential ¢; proportional

va

Fig. 10.2. Field of regular quadrupole (:
field lines).

equipotential lines,

to the gradient of the Coulomb potential (see Eq. 3.10),
port

$a = = —d-Vé.

€4

Since the Coulomb potential varies as 1/r, the dipole
potential has to vary with 1/72 in accordance with the
gradient operation (Eq. 3.18). Quadrupoles (Fig. 10.1)
create correspondingly, at a distance r >> §, a potential
équ proportional to the gradient of the dipole potential

Pqu = —G'Vd’d, (104)

that is, ¢qy varies as 1/r%, and so on (Fig. 10.2).
Although arrangements of alternating positive and
negative charges thus reduce the range of the electro-
static forces below that of a Coulomb field, a favorable
arrangement of like charges may have the opposite

(10.3)
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effect. Well-known examples are the field strength in
a cylindrical capacitor which varies proportional to
1/r only, and the field strength in the homogeneous
part of a plate condenser which is even independent of
distance.

Frequently we are not concerned with the action of
a field E on a simple point charge detector §’, but on
some more complicated charge constellation. In Sec. 3
we derived the fact that a dipole in a homogeneous field
is subject to a torque, whereas in an inhomogeneous
field, in addition, a translational force acts proportional
to the gradient of the field strength (see Eq. 3.25).
Since dielectric bodies in electrostatic fields polarize,
the forces exerted on them have to be calculated as a
field action on more or less complicated dipole constel-
lations. The same is true for magnetized materials in
magnetic fields (see Sec. 5).

A cylindrical rod of length d and cross section ¢ = p%r, polar-
ized homogeneously parallel to its axis, can be treated for d > p
simply as a dipole of the pole strength Pg and of the moment

| = Pgd = PV. (10.5)

The vector P, the polarization, represents, as previously, the
dipole moment per unit volume (see Fig. 5.2).

In a few more complicated cases an ‘“equivalent”’ dipole mo-
ment | of the body may be calculated. A typical example is the
case of an uncharged dielectric sphere of radius R placed in a
homogeneous field Eq pointing in the -+z-direction (Fig. 10.3).

The field distribution, produced by the polarization of the
sphere, must be obviously symmetrical around the z-axis, that is,
independent of the angle ¢. The Laplace equation for the spheri-
cal case (see Egs. 4.13 and 4.16) therefore simplifies to
3% '® . 239

Ere

1 9%
AR

1 cos 8 3¢ -0

V2
¢ = 72 sin 6 38

(10.6)

If ¢4 and ¢; designate the potential outside and inside the sphere,
respectively, we obtain the solution

¢a = ('f'i + Br) cos 6,
(10.7)
b = (g + Dr) cos 0.

Since the field intensity at the surface of the sphere remains finite,
¢q must become identical with ¢; at this boundary. According
to Eq. 2.3, furthermore, the normal component of D must be
continuous if no true surface charge exists. Hence

$a = ¢:

" dda ’92-‘. at r = R. (10-8)

APt tr=
At a very great distance from the sphere the external field will
remain undisturbed,

¢a = —Eorcosd = —Egzcosd forr = o, (10.9)
and in the center of the sphere the potential must stay finite,

¢¢ = finite forr =0. (10.10)

These boundary conditions (Eqs. 10.8 to 10.10) determine the
coefficients of Egs. 10.7 as

A———-:—— 3E
o Lo
£ = (10.11)
C =0, \
e’
Dm-——2 __F
@ +2q |

The peteptial outside and inside the dielectric sphere thus

becomes R3
¢a=(€2 _51 I)EOZ’
e’ + 2¢’
(10.12)
| 3’ B
¢; = o + 2 02.
Consequently the field strength in the interior of the sphere,
3a’
E; = — =—— _FE 10.1
Vi RO (1013)
—>E

Fig. 10.3. Dielectric sphere in homogeneous field.

is constant and parallel to the original external field; for e’ > &'
it is smaller, for e’ < ¢’ larger than E; by an amount

« — &
= mE{). (10.14)

The polarization P in the sphere is by definition (see Eq. 2.7)

—El'z

’
P = (o — o)Eis = =L 34/'Ey. (10.15)

I + 2 I
Since this is the dipole moment per unit volumey the sphere acts
to the outside with a dipole moment

—_— El’
l + 2 !
placed in the center of the sphere. Figure 10.3 illustrates the
actual field distribution resulting from the superposition of the
original field Ey and this dipole field of the polarized sphere (see
also Appendix B, 7).
In an inhomogeneous field Ey a translational force would act
on the sphere (see Eq. 3.25)

F =p-VE) = 21rR3e1'

b=VP = —R3P = 41rR3e1 E; (10.16)

V(Eoz). (10.17)

I + 2 ’
driving it, for eg > ¢, into the region of highest and for e < &
into the region of lowest field strength,
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The basic force equation (Eq. 10.1) remains valid in
electromagnetic fields; it describes the action of the
electric field strength E on a charge @', whether or not
E can be derived from a scalar potential. If the charge
is in motion, an additional force arises due to the action
of the magnetic field. That such a force must exist can

z

Fm=Q'vBsin g

Fig. 10.4. Magnetic force on moving charge Q.

be foreseen from the fact that a charge @ moving with
the velocity v corresponds to a current

I=0Qv. (10.18)
A current, according to Ampére’s circuital law (Eq. 5.5),
is surrounded by a magnetic field. For a ring current
this field is equivalent to that of a magnetic dipole (Eq.
5.28), and a magnetic dipole of the moment m suffers

a torque in an external magnetic field (Eq. 2.16)
T = mxB. (10.19)

Thus a linear current element I dl will be subject to a
force. Its value is found to be

dF,, = I dl=xB. (10.20)

In contrast to the electric force, which is directed along
the vector E, the magnetic force operates normal to the
plane defined by the current element and the vector B
(Fig. 10.4).

The total force for a charge @’ moving with the ve-
locity v in an electromagnetic field becomes thus simply
(see Egs. 10.18 and 10.20)

F=F,+F,=@QE-+vxB) [newton], (10.21)

if Q' is expressed in coulombs, E in volts per meter, v
in meters per second, and B in webers per square meter
(see Table 8.1). In the more general case of a volume
V filled with true charge of the density p and currents
of the density J, an electromagnetic field produces the
net mechanical force on this volume

F =pr av +f J=B)dV. (10.22)
v v
In closed systems it frequently proves convenient to
derive the forces acting on an object in electric and
magnetic fields from the maximum decrease in free
energy caused by a differential motion of the body.
Equation 3.25 illustrates this procedure.

11 - Field Energy and Radiation

The energy content of the electromagnetic field is
stored in the electric and in the magnetic field. In ad-
dition, energy may be dissipated as heat during the
electric and magnetic polarization cycle. Let us start,
as in the preceding section, with the electrostatic case
and then proceed by analogy.

That an electrostatic field represents stored energy
follows directly from the fact that work is required for
its creation. Let us visualize a charge @ on a sphere of
radius r;, assembled successively from infinity in =
charge elements dQ. At each step of the transfer, work
has to be done against the Coulomb force of the charge
already present (see Eqgs. 3.7 and 3.8). Hence the total
work required to concentrate the charge on the sphere
is

d
—-W=0+4dQ £ + dQ —
edrr; e4mry
—1)d
MPNCERY
e4rry
_n{n — 1)(dQ)? & ( 1)
' 2¢’4wry N §Q¢ s n) alig

In the limiting case of an infinite number of steps
(n — «,dQ — 0, with n d@ = Q) there will be stored
the potential energy

U= —-W = 3Q¢. (11.2)

In Eq. 11.2 the charge is visualized as the seat of the
electric energy. Alternatively, the field in space, con-
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nected to the charge by the defining equations 2.3 to

2.5, may be considered as the carrier of this energy.

Each volume element of space stores
E-D

hence the total volume V filled by the field contains the
electric energy

U= %fED v = %f ¢E?dV  [joule]. (11.4)
v v
That Egs. 11.2 and 11.4 represent alternative expres-

sions may be verified readily in the special case of a
charged sphere (Fig. 11.1). The field strength E is

Fig. 11.1. Energy content of Coulomb field.

essentially constant within concentric volume elements
dV and is identical with the Coulomb field of Eq. 3.6;
consequently

1
U=—fe'E2dV
2Jy

LERA0% 1
=— | ———4r’dr = -Q¢,
2»£1 € (4m)%rt i 2Q¢

as asserted. The general equivalence of Eqs. 11.2 and
11.4 can be based on the fact that any electrostatic field
can be built up from the Coulomb fields of point
charges.

In the example of a single charged sphere the neu-
tralizing countercharge —@Q resides at infinity. If, in-
stead, it is located at a finite distance, the potential
difference U between the two charges replaces the po-
tential ¢ in Eq. 11.2, that is,

= 3QU = 3CV?,

with C the capacitance of the condenser system.
According to the same type of argument, either the
current I traversing a coil of the inductance L may be

(11.5)

(11.6)

visualized as carrier of the magnetic energy

U=1iLP, (11.7)

or the magnetic field in space may be considered as its
seat,

wop f H-BaV =1 f WH2 AV [joule]. (11.8)
v 14

By summing over the electric and magnetic energy,
stored and dissipated, we obtain the electromagnetic en-
ergy of sinusoidal fields in isotropic dielectrics as

U= %fe*Ez av + %fu*Hz aV  [joule]. (11.9)
v v
The electric and magnetic field strengths of a TEM

wave in an unbounded medium are interrelated by the
intrinsic impedance (see Eqs. 7.24 and 7.25) as

E?  pu*
E = e_* (11.10)
Equation 11.9, rewritten as
U =fe*E2 av =fu*H2 av, (11.11)
v v

shows that in traveling waves the electric and magnetic
energy densities in each volume element are equal at
any moment.

The rate of decrease of the electromagnetic energy
in a volume V, due to other causes than heat loss, meas-
ures the outward flow of the energy through the enclos-
ing surface. The intensity of this electromagnetic radi-
ation, the energy per second crossing a unit area normal
to the direction of propagation, can be described by the
Poynting vector !

S=ExH [watt m™?], (11.12)

and the total radiation emanating from a volume V
becomes

oH
Jon et

=f(ExH)-ndA [watt]. (11.13)
A

The energy flow in an electromagnetic field cannot
be observed for a monochromatic wave,

E = qett—p2) (11.14)

because the wave train would have infinite extent and
duration. A wave train of finite length, and therefore

1 See the discussion of the Poynting theorem in J. A. Stratton,
Electromagnetic Theory, McGraw-Hill Book Co., New York, 1941,
p- 131.
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of finite energy content, cannot be monochromatic but
consists, according to Fourier analysis,? of a wave group
formed by the superposition of waves. In the simplest
case a wave group or signal can be composed of two
waves, E; and E,, of equal amplitude deviating from
each other by a differential value dw in frequency and

dB in phase as
()]

o L]
The resultant field strength
E=E +E;
= ae“'F92 cos <d—: zr — d?w t) (11.16)

(11.15)

is modulated, with maxima (antinodes) appearing for

d d
—éx—?wt—mqr(wherem—o 1,2,

2 -+) and minima

dap w T
(nodes) at;x _?t = mE(wherem =1,35 )

(Fig. 11.2). This is the familiar phenomenon of beat
frequencies. The propagation velocity of a specific beat,

a cos(w-A“’)t ocos(m»ézﬂ)t

IWAWAWA
\\/[\\/Q\/[\\/ AV VRV

\’7\ AT
YL VAN

Fig. 11.2. Beat frequencies produced by two waves of slightly
different wavelengths.

the signal velocity or group velocity of the modulated
wave, is given by
dz dw

— =y, =-—=dvd\
a fT g T

t For example, see E. A. Guillemin, The Mathematics of Circuit
Analysis, John Wiley and Sons, New York, 1949.

(11.17)

since a plane of constant modulated amplitude is de-

scribed by
ag
— x — —{ = constant.
2 2

(11.18)

In comparing the group velocity v, of a modulated
wave with the phase velocity v of a monochromatic wave
(cf. Eq. 7.19), we obtain

dv
”g=£ +B(%=U—)\d—)\'

dw

(11.19)

Group and phase velocity are identical only in media
in which the propagation velocity is frequency inde-
pendent, that is, in nondispersive dielectrics.

The superposition of two waves leads to a periodic
sequence of beats. By the superposition of many plane
waves, covering a frequency interval with prescribed
amplitudes, we may construct pulses or wave packets of
any desired shape (Fig. 11.3). The fact that any wave

Wave shape obtained
by addition of three
harmonics.

18t Harmonic
34 Harmonic
5™ Harmonic

Fig. 11.3. Synthesis of wave shapes by superposition of
harmonics.

phenomenon may be compounded from plane waves
justifies simplifying the discussion of the field equations
by the condition of Eq. 7.8 without loss in generality.
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12 - Polarized Radiation

The theory outlined thus far leads to the following
arrangement for measuring ¢* and p* in unbounded
space (Fig. 12.1): An incoming modulated TEM wave

Planes of constant
phase

4 Direction of
~ propagation

Fig. 12.1. Arrangement for measuring ¢* and p* in unbounded
space.

passes in succession the planes A and B, oriented per-
pendicularly to the direction of propagation. At 4, an
electric and a magnetic receiver, arranged normally to
each other, measure the ratio E/H; at B, a second E
or H detector compares the signal with that in 4 as to
magnitude and time difference = of arrival. The first
measurement gives the intrinsic impedance or \/u*/e*;
the second, the propagation factor or vV e*u* for a
known signal frequency.

This measurement presupposes that the dielectric is
homogeneous and isotropic, that is, that the state of
polarization of the wave does not change from A to B.
In other words, the field vectors E and H, when pro-
jected on a screen normal to the direction of propaga-
tion, must traverse the same geometrical pattern in the
same space orientation at any distance x.

To derive a more quantitative description of this
wave polarization, let the electric field be composed of
the components

E, = acoswi
and (12.1)

E, = bcos (wt + 8) = b(cos wt cos § — sin wt sin 8).

These components oscillate on the screen in the y- and
z-directions of a Cartesian co-ordinate system, with

amplitudes a and b, and follow each other with a rela-
tive shift in temporal phase, § (Fig. 12.2). If we re-
write Eq. 12.1,

vy . .
—sin § = cos wi sin 6,
a

E E 12.2
——ycosﬁ—f=sinwtsin6, (12.2)
a

we obtain, by squaring and adding, the orbital equation
E\? E,E E.\?
(__,,) 2= L f oog b (——) =sin? 5. (12.3)
a a b b
For a phase difference of 90° between the components

m™
(6 =+ 5), this reduces to

(ol L
o b [ ( -4)
the well-known normal form for an ellipse, oriented with

its axes 2a and 2b in the y- and z-directions, respectively.

4
\

LR

i\ \ d

le— o —

Fig. 12.2. Elliptically polarized radiation.

The general equation (12.3) depicts an ellipse in-
scribed within a rectangle of the sides 2a and 2b; the
principal axes of the ellipse are turned by an angle 6
into the y’- and z’-directions (Fig. 12.3). This can be
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shown as follows. The ellipse is represented as
E,\?> (E.\?
= |l e,
u w

E, = ucos (wt — 0) = E,cos 6 + E,sin 6,

(12.5)
where
(12.6)
E, = wsin (wt — 0) = —E,sin 4 E, cos 6.
By introducing these expressions for the components
into Eq. 12.5, the form of the general equation (12.3)

is regained as

sin? 6

. cos® 9 . 1 1
Ev u2 + w2 - 2EyEz sin 0 CcOS (/] ;2- — ;2-
cos®6  sin?@
+ E22 w? I ug = 1.

F 4

(12.7)

st
LAY
l

E \B, N it

2b/'

Fig. 12.3. Analysis of polarized light.

A comparison of Eqgs. 12.3 and 12.7 yields the corre-
lation between the parameters a, b, and & of the y, 2
co-ordinate system and u, w, and 8 of the y’, 2’ system:

s uw
a sin = [
v/ uw? cos? 0 + u? sin® @
h ding et (12.8)
v i +/u? cos? § + w? sin® 9 -
ab sin & ww?
cosd  sin @ cos0{u? — w?)
In addition,
a® + b = u? + wl. (12.9)

If the parameters a, b, and § are given, u, w, and 6 may
be found as

tan 26 = FEREY cos § = tan 28 cos 9,
tan B = —
a (12.10)
sin 2« = =+ sin 28 sin J,
w
tan a = —-
u

A temporal phase shift § between the two field com-
ponents creates, therefore, in general, elliptically polar-
1zed radiation (Fig. 12.4). If the two components have
equal amplitudes and a phase shift of an odd multiple
of #/2, circularly polarized radiation results. If the ob-
server, facing the oncoming wave, sees a clockwise rota-
tion of the radius vector, the polarization is called righi-
hand circular, whereas a counterclockwise rotation cor-
sponds to left-hand circular polarization. For a phase

A7 OO

8=45° 8-=90° 8=135°

SRS LR

3 :180° 3=225° 8 =270° 8:315°

Fig. 12.4. Various states of polarization (@ = b).

shift of a multiple of , the ellipse degenerates into a
straight line (6 = +mx, m = 1, 2, 3, ...), the wave

is linearly polarized, and, according to Eq. 12.10,
tan 6 = E (=™, (12.11)

a

The state of polarization of a wave, that is, a/b and 4,
may be found by determining first the position of the
principal axes ¥, 2’ in space and then delaying one of
the two field components E, or E,, by an additional
quarter wavelength in order to produce linearly polar-
ized radiation. By measuring the angle « of this linear
radiation with respect to the y’-axis, the ratio w/u is
established (see Eq. 12.10); by the position of the y'-

axis, in relation to the y-axis, the angle 6 is found; hence
a/b and & are obtained.
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13 - Dipole Radiation

The theory of polarization and magnetization is based
on the dipole concept. In Sec. 3 we derived the electric
field surrounding a static dipole of the permanent mo-
ment p. Frequently, however, we do not deal with
such permanent moments, but with moments induced
by the external field and varying with it as a periodic
function of time,

p(t) = Qde™! = poe’. (13.1)

An induced dipole moment u(t) can be visualized as a
dipole of the constant length d, in which the charge
alternates periodically between a (+—) and a (—+)
constellation. Such a dipole is equivalent to a linear
dipole antenna of the length d traversed by an alter-
nating current (Fig. 13.1),

_dQ _1fdp(t)

dt d dt

Dipole antennas are the simplest source of polarized
radiation. In fact, Maxwell’s electromagnetic theory

1—?° G

M(t) —
P s

Fig. 13.1. Equivalence of alternating dipole and dipole antenna.

(13.2)

I

was confirmed when Hertz! succeeded in calculating
this radiation and in verifying its existence by experi-
ment. The electromagnetic field of an alternating di-
pole is thus of great importance for the macroscopic as
well as the molecular theory. We will analyze it briefly.
The field vectors E and H have to satisfy Maxwell’s
equations, and therefore the wave equations (7.6 and
7.7). Assuming that the dipole is surrounded by an
isotropic medium without loss, we may write these
equations
1 3’E

(13.3)

where v is the phase velocity of the electromagnetic
waves in the dielectric (see Eq. 7.19).

1 H. Hertz, Ann. Physik 36, 1 (1888).

The wave equations hold when the divergence con-
ditions, Eqs. 7.3 and 7.4, are fulfilled. Hence they are
valid everywhere in space except at the location of the
charges and the current elements of the dipole proper.
However, we know already the magnetic field in the
immediate surroundings of a current element. It is de-
scribed by Biot-Savart’s law (Eq. 5.18), which, for our
dipole antenna of the length d, may be rewritten ac-
cording to Eq. 13.2:

I 1 dlp@| (dxx°
H=—(dxr°)= Ip‘()l( l')
4qr? 47r?  dt d

(13.4)

Our first problem is therefore to find an expression for
the magnetic field strength H that obeys the wave
equation in space and reduces to the Biot-Savart equa-
tion (13.4) at the dipole.

We can guess at the proper solution by the following
consideration. In Sec. 5 we derived the Biot-Savart
law by the introduction of a vector potential O from
which the magnetic field strength was obtained by the
curl operation (see Eq. 5.19). This vector potential is
spherically symmetric and can be written for the dipole
antenna according to Eqs. 5.25, 13.1, and 13.2 as

Id 1 dpt) Jow

=—-=——_—____p.e.70’t

4ar  A4wr dt 4xr (13.8)

The electromagnetic field created by the dipole antenna
will travel outward with a phase velocity v, hence must
appear at a distance r from the wire delayed by a tem-
poral phase

i .2
—Jw = —j=r

i RInEmg t R (13.6)

The simplest assumption is that the vector potential O
of Biot-Savart’s law has only to be modified, by the
introduction of this retardation factor, as

(D)

to give the magnetic field of the alternating dipole.
Carrying through the curl operation (see Egs. 5.12
and 5.27), we obtain the field expression

H=Vx0

A, T 2
==! I_P-Ol e'm(t_;) {— ;‘0;2- +

47

0=— (13.7)

g ; (13.8)
%

w } (dxr?)
d
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or, written in spherical co-ordinates:

H, =0,
Hy =0, (13.9
| w@® |o _,.,,,:( w? w) 3
= (- = 4j—)sine.
£ dr—— r? ik ) "

In the near zone of the dipole (r < \) the term in 1/r%
dominates, and the magnetic field becomes identical
with the Biot-Savart field of Eq. 13.4 save for the re-
tarding phase factor. In the far zone, at great distance
from the dipole (r >> \), only the term varying with 1/r
remains.

To calculate the accompanying electric field, we have
to introduce the expression for H of Eq. 13.8 into Max-
well’s first field equation (Eq. 7.1), written for a dielec-

tric medium without loss
JE
V<H = ¢ —-
ot

The curl operation, carried through as above, leads to
the electric field components

3 —iwt (2 2
E’_=Iil—()|.e’=(_+j7w)cosa,
edr e %

I F’(t) | —J'wz(l . @ “’2) 5
Ey = e '|—= — — —]sing, (13.11
y 4 r3 % v » )

E¢ = 0.
In the near zone of the dipole (r << A) the term in
1/r® dominates, and the electric field intensity becomes

(13.10)

¥ [ () l cos 6 e_jms

e 2mr®

E,

b

13.12
—Me—mg U542)

'4nrd

Ey

It is identical, as a comparison with Eq. 3.19 shows,
with the field of an electrostatic dipole, save that now
the dipole moment is a periodic function of time and
that the retardation factor e~ ° appears again.

Thus in the near zone the electromagnetic field of an
alternating electric dipole or a linear dipole antenna
consists of the components

B = | p@ | cosﬂe_,-,,:

¢ 2xr® ’
t)|sind _;,T
Ep = M—e 5, (13.13)
4nrd
dlp@| sing _;’
¢ = e e l'
dt  4ar?

It is built up by the electric field of a dipole that con-
sists of a radial component E, and of a component Ej
tangential to the circles of longitude of a polar sphere.
Superposed on it is the magnetic field of the dipole an-
tenna current Hy oriented tangentially in the direction
circles of latitude of the polar sphere.

For the far zone (r >> \) only the terms varying with
1/r remain of importance, that is, the electromagnetic
field consists of the two tangential components (Fig.
13.2),

@l p@)| sing _;r
= ¢ ]
dat?  dar?

d? pnt) | sin g _j*
I ———— e D.
a2 4wy

Ey 3

(13.14)
Hy

Fig. 13.2. Tangential components (far zone) and Poynting

vector.

This field at great distance from the dipole antenna con-
sists of TEM waves propagating radially outwards.
The field amplitudes diminish proportional to 1/r, that
is, the field energy with 1/r%, as we would expect for
any point source of radiation. They are furthermore
proportional to the second derivative of the dipole mo-
ment, that is, the first derivative of the antenna cur-
rent. Finally, the radiation pattern is directive; the
intensity is a maximum perpendicular to the alternating
dipole and zero in the direction of the dipole moment.
Equations 13.9 and 13.11 represent Hertz’s famous
solution of Maxwell’s equations for spherical waves,
which has the unusual feature of describing simultane-
ously the light source (alternating dipole of near field)
and its radiation field in space (antenna field of far zone)
(Fig. 13.3).2
The energy density of the radiation field in a volume
element dV at a distance r from the source is (see Eq.
11.9
) AU = pdV = L(¢E? + w’H?) dV  (13.15)
or, by introducing the field intensities from Eq. 13.14,
ro'p?(t)

=7 gin2
7RER: sin“ 6 dV.

avu (13.16)

2 G. Joos, Lehrbuch der theoretischen Physik, Becker und Erler
Kom.-Ges., 6th ed., 1945.
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Z

Fig. 13.3. Radiation pattern of E-field of dipole antenna. (After Joos.?)

It streams outwards with the velocity v; the energy flow
per second through a surface element dA of the polar
sphere is therefore (see Eq. 11.12)

SdA =r%pdA, (13.17)
and the total energy P radiated away per second

(K 2 p
P = §§dA L Ij‘—02r2-;rf sin? @ sin 0 d§
4m)%r% 2 0
7,4
=22 p? [wattht (13.18)
1270

This power loss of a linear dipole antenna due to ra-
diation can be expressed as being equivalent to that of
a nonradiating antenna of the resistance R,, in which
the same power

(13.19)

is annihilated in Joule heat. By equating the two ex-
pressions for P and recalling that po stands for the

t § is the mean value of the energy crossing a unit area of the
polar sphere in the direction of the normal r%; it can also be caleu-
lated as a real part of the complex Poynting vector, Re (S*).
(See footnote, Sec. 1, p. 3, and J. A. Stratton, Electromagnelic
Theory, p. 436.)

maximum dipole moment of the antenna and I, for the
maximum current traversing it,

Po = Qod,
d 13.20
B e

we obtain for the equivalent radiation resistance of the
dipole antenna in vacuum [v = ¢; p'c = Zy = 1207 (see
Eq. 8.5)],

2
R, = 80x? (;) [ohm], (13.21)

It will prove useful for the later molecular discussion
to represent the power loss of a dipole antenna alterna-
tively as caused by a radiation friction force F, attenu-
ating the dipole oscillation. In this equivalent picture
the dipole moment changes with time, not because its
charge alternates but because its length d varies with
time as d = doe/®®. The factor w’p2() of Eq. 13.16
has therefore to be interpreted as representing

d*(d)
dt?

The power emitted in a time interval 0 — ¢ becomes
equal to the work done in changing the length of the

2
() = @ [ ] = Q%*d%.  (13.22)
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dipole against the action of an opposing force F\,

[ra-f QZ[dif;”]dt
Efo d()

By partial integration we change the left-hand side of
this integral equation into the form

d*(d )] ot d3(d) d(d)
2 | 7 2 ik Al
61rvf Q [ dt? Grvfo Q at  dt as

[ W di(d) @]‘

(13.23)

2
61r1)Q d? dt

(13.24)

The second term vanishes, when the attenuation is
small, and the radiation friction force becomes

#'Q? d3(d)
6mv di®

In contrast to ordinary friction forces which change
proportionally to the first derivative of the position
vector, that is, proportional to the velocity of motion,
the friction force simulating radiation damping changes
proportional to the third derivative of the dipole length.
This becomes obvious when we consider that the second
derivative of the dipole moment represents the change
in current that originates the electromagnetic field.

F, = — (13.25)

14 - Boundary Conditions

Electromagnetic waves are, in general, not observed
in unbounded space but confined by various types of
boundaries. This is no disadvantage; on the contrary,
the reflection and refraction of fields by matter provides
the essential means for directing and modifying such
fields and for measuring the dielectric properties of
materials.

The interaction of static fields with boundaries is
simple. The surfaces of conductors in electrostatic
fields are, by definition, equipotential surfaces; hence
the field lines must be perpendicular to them. At the
interface between two nonconducting media the nor-
mal component of the electric flux density D has to be
continuous when there is no surface charge (see Eq. 2.3),

D,, = D,,. (14.1)

Consequently, there must be a jump in the amplitude
of the normal component of the field strength E at the
interface in the inverse ratio of the dielectric constants
of the two media (see Eq. 2.6)
E, &
/g

[ )

(14.2)

L
uy
~

because the free ends of dipole chains produce free
charges. The tangential component of E on the other

hand must be continuous,
E, = E,, (14.3)

by reason of the fact that the field is conservative (see

Eq. 3.4). A closed path may be chosen which hugs the
boundary and consists for all practical purposes of only
the tangential field components in the two media (Fig.
14.1). From Egs. 14.2 and 14.3 it follows that field E,

Fig. 14.1. Continuity of the tangential field components.

inclined in medium 1 at an angle o; with respect to the
normal, will continue in medium 2 at an angle oo (Fig.
14.2) in accordance with the refraction law for electro-
static field lines ! ,

i Ll (14.4)

tan o Egl

Normal to

Fig. 14.2. Refraction law for static field.
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Analogous reasoning leads for magnetostatic fields to
the magnetostatic refraction law

tan !
i (14.5)

tan as  uo’

For electromagnetic waves striking the boundary be-
tween two media a much more complicated situation
arises because the waves are partly reflected and partly
refracted, thus changing their direction of propagation
as well as their amplitudes and phases. The basic facts
will become clear by reference to Fig. 14.3.1

Let O be a fixed origin located on the interface plane
S, and r be a position vector drawn from O to any point
P in medium 1 or 2. Furthermore let k° be a unit vec-
tor pointing in the direction of propagation of a TEM
wave, and let the indices 7, r, ¢ signify the incident, re-
flected, and transmitted waves, respectively. By speci-
fying a unit vector n normal to the boundary and point-
ing from medium 2 into medium 1, we may define the
interface S as

n-r =0, (14.6)
whereas

k°-r = constant (14.7)

designates a plane of constant phase of the TEM wave.
The electric and magnetic field strengths of the inci-
dent, reflected, and refracted waves may now be writ-
ten (cf. Egs. 7.10 and 7.24)

5 Jot—y1l®-r
E; = Ege™™ 1

. 1
Hi = Hoejwt_ylk‘o'r = — (kio x Ez),
Zy

7 jot—y1kel-r
E, = g

H, = " = 1 (k0. E,); )
Zy

= oot —yoke® -t
Et = Eze y

) 1
Ht = H26Jwt_72k‘0.r = E (kto X Eg).
2

By introducing the general distance parameter k-r
of a phase plane from the origin in place of a definite
space co-ordinate, we have gained the freedom of treat-
ing the direction of propagation as a variable of our
problem. The alternative expressions for the H vectors
in Egs. 14.8 relating them to the E vectors result from
the definition of the intrinsic impedance (see Eq. 7.25)
and from the condition that k° E, and H must form a
right-hand co-ordinate system (see Fig. 7.1).

18ee also J. A. Stratton, Electromagnetic Theory, McGraw-Hill
Book Co., New York, 1941, pp. 490 ff.

The incident, reflected, and refracted waves are inter-
connected by the boundary condition: the tangential
components of E and H must be continuous in travers-

ing the interface S, or
nx(E;+ E,) = nxE,
( ) ¢ (14.9)
nx (H; + H,) = nxH,.

This condition is a consequence of Ampére’s circuital
law and of Faraday’s induction law where applied to a

Fig. 14.3. Reference system for reflection and refraction of
TEM wave.

path hugging the boundary as in the static case (see
Fig. 14.1); again only the tangential components con-
tribute and have to equal each other (see also Appendix
A, 1, 13).

The boundary condition can be fulfilled only if the
amplitudes as well as the exponential functions of the
tangential components obey it on the interface, that is,
Eq. 14.9 splits into the two sets of conditions:

nx (B + E;) = nxE,,

(14.10)
nx (Ho + H;) = nxHy,
and

1k r = v k%1
L f . o (14.11)
71k v = 12k -r.

The first condition, prescribing that the sum of the
amplitudes for the tangential components of the inci-
dent and reflected waves at the interface must be equal
to the amplitude of the tangential component of the
transmitted wave, leads to Fresnel’s equations.? The
second condition, demanding equality of the phases at

2 A. Fresnel, Mém. acad. sciences 11, 393 (1832). The complete
Fresnel equations were first presented to the Académie des
Sciences in 1823, but the manuscript was lost. Nine years later
it was found among Fourier’s belongings and posthumously
published.
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the boundary, contains Snell’s laws of reflection and re-
fraction.?

To analyze the phase condition, Eq. 14.11, we split
the position vector r into its components parallel and
perpendicular to the interface (Fig. 14.4),

r= (nr)n — nx(nxr). (14.12)

(n-r)n

r

Fig. 14.4. Components of position vector.

Since n-r at the interface is zero (see Eq. 14.6) and by
making use of the vector rule

k% nx(@mxr) = (k®xn)-(nxr), (14.13)

we can rewrite the phase condition (Eq. 14.11)
(k®xn — k%xn)-(nxr) =0,

14.14
(k,-oxn—ﬁkgoxn)-(nxr)=0. ( )
71

3'W. Snell established this law experimentally, probably in
1621. A theoretical derivation was given by Descartes in his
Dioptrigue (Leyden, 1638), but no credit was given Snell. Huy-
gens states in one of his letters that Snell’s results were known to
Descartes prior to the publication of the Dioptrique (E. T. Whit-
taker, A History of the Theories of Aether and Electricity, Thomas
Nelson and Sons, London, 1951, p. 10).

The cross products of the three propagation vectors k°
and the normal n are equal to the sines of the angles of
incidence (), reflection (¢'), and refraction (¢) (see Fig.
14.3), or

k,‘o xn = gin ¢,

kxn = sin ¢/, (14.15)

ktoxn = Sin'll.

Hence, the first line of Eq. 14.14 states that k2, k.°,
and n lie in one plane and that

sin ¢ = sin ¢'; (14.16)
the angle of incidence is equal to the angle of reflection
(Snell’s reflection law). According to the second line of
Eq. 14.14 the unit vectors k.0, k,°, and n are also co-
planar and

BT e (14.17)

m

This is Snell’s refraction law, which may be written in
terms of the alternative parameters e*, u*, or Z (see
Eqgs. 7.12 and 7.25) as

sin ¢ - e2¥ug*® o Zyiug*
sin ¢ \J a*m*  Zom*

For a medium without magnetization and loss (u* =
uo, €F = ¢') it simplifies to

(14.18)

sin ¢ e M .
—_— —_— = e = — = 21-

- - (14.19)
sin ¢ €@ A M

The common plane of the unit vectors, containing
the direction of incidence and the normal to the inter-
face, is called the plane of incidence.

15 - Fresnel’s Equations

Returning to the amplitude conditions (Eq. 14.10),
we have to prescribe the state of polarization of the
incident TEM wave. The field vectors are perpendic-
ular to the direction of incidence and normal to each
other,

k?-E, =0,
kS-H, = 0, (15.1)
Eo-Hy = 0,

but their orientation relative to the plane of incidence
may still be arbitrarily chosen and will influence reflec-

tion and refraction. We therefore resolve each field
vector into two components, an n component pointing
normal to the plane of incidence (that is, tangent to the
interface S) and a p component lying parallel to this
plane (Fig. 15.1), and investigate the two components
separately.

(a) The electric field normal to the plane of
incidence
Since these E, components are normal to n,
(15.2)

Il‘Eo.ﬂ = n'El_,, = n~E2,,, = 0,
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the first of Egs. 14.10 reads simply

EO. nalih El, n = E2. ne (153)
The magnetic components of Eq. 14.10, rewritten in
terms of the electric field
1 1
nx (k°xE + k.° < Ey) s (ke xEg) —
1

Z (15.4)

and expanded, lead to the additional interrelation

VA
cos ¢ (Eo, n — Eq, ») = Z—l cosy Eg, ».  (15.5)

2

Equations 15.3 and 15.5 together allow us to express
the amplitudes of the reflected and refracted beams in

Fig. 15.1. Plane of incidence and field components.

terms of the incident amplitude, the angles ¢ and ¥,
and the impedances of the two media,

- Zycosp — Z; cosy
Zocos ¢ + Z; cosy

E,

»

(15.6)

275 cos ¢
Eg n = Eop, n.

Zscos ¢ + Z; cosy

(b) The electric field parallel to the plane of
incidence
Since in this case the magnetic components are per-
pendicular to the plane of incidence, we can repeat the

calculation just performed for the H, vectors and obtain
in place of Egs. 15.3 and 15.5

Ho, » + Hy, » = Hy, 4,

VA 15.7
cos ¢(Ho, » — Hy, ») = ;cos YH;, n. flem
1

Thus, in analogy to Eq. 15.6, the reflected and trans-
mitted normal magnetic field components become

Zycos¢p — Zycosy

Hl. n = X109, ny
Zycos ¢ + Zycosy
(15.8)
27
He, , = e Hp, ».
Zicos o + Zs cosy
By making use of the impedance relations
EO = —Zl(kioxHo), ete., (159)

these magnetic components may be transformed into
the accompanying electric field components parallel to
the plane of incidence

Zocosy — Z; cos ¢

E,p= i
¥ Zicos ¢ + Zycosy Tt

(15.10)
275 cos ¢

Egl p=
Zycos ¢+ Zycosy

0, p-

In the same way the still missing relation for the mag-
netic field components parallel to the plane of incidence
may be derived from Eq. 15.6, as

Zicosy — Zycos ¢
Hl:’p = 0, p»

Zycosy + Zscos

(15.11)
271 cos ¢

T Zyicosy + Zscos ¢

Equations 15.6, 15.8, 15.10, and 15.11 together repre-
sent a general formulation of Fresnel's equations; they
prescribe the amplitudes and phases of the reflected and
refracted waves in their dependence on the amplitude
and angle of incidence of the incident wave and on the
dielectric parameters (intrinsic impedance and propa-
gation function) of media 1 and 2. The cosine of the
angle of refraction in these equations can be replaced
by the angle of incidence, since, according to the re-
fraction law Eq. 14.17,

1®
cosy = 1 — —sin®¢.
Y2

In the discussion of reflection and refraction phe-
nomena, the relative amplitudes and intensities of the
partial beams are normally of importance, but not their
absolute values. Defining the ratio of the reflected to
the incident amplitude at the boundary as the reflection

coefficient

H;, p

0, p+

(15.12)

e = E1/Ey, rg = H;/H,, (15.13)

and the corresponding ratio of transmitted to incident
amplitude as the transmission coefficients,

te = E3/Eo, tg = Hy/H,, (15.14)
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we may reformulate Fresnel’s equations for the com-
ponents normal and parallel to the plane of incidence as

(El) Z2 cos ¢ — Z1 cosy
T8 =\ 0= =

e = —THp
E, Zycos¢ + Z; cosy .
(15.15)
E, Zocosy — Zycos ¢
T.Ep = —_— = = _an)
Eo/p Zgcosy + Zicosg
and
Ey 274 cos ¢ Zs
tE'n = | — = = _tH‘;’
Ey/n Zscosp+ Zycosy Z,
(15.16)

E, 275 cos ¢ Zs
tg,=(—) = =Ztg.
Eo/p Zscosy+ Zicosed Z
For perpendicular incidence (¢ = ¢ = 0) the distinec-

tion between the n- and p-components disappears, and
Fresnel’s equations simplify to

Zy — 7
TE=——r = —rpg,
Zy+ 7,
(15.17)
27, Zs
g = ——— = —1pg.
Zy+ 7, Z

It is important to note that only for perpendicular
incidence the amplitude of the incident wave equals the
sum of the amplitudes of the reflected and transmitted
waves. At oblique incidence the refracted beam
changes cross section and the relation holds only for
the components normal to the plane of incidence.
These components are parallel to each other and tan-
gent to the interface and therefore have to be continu-
ous according to the boundary condition, Eq. 14.9.
This statement reads, expressed with reflection and
transmission coefficients,

L (15.18)

tHn = TH" =ull

The minus sign enters, because the direction of propa-
gation is reversed for the reflected beam.

The intensity of the average energy flow normal to
the interface, on the other hand, must be continuous
according to the energy principle, that is, if S repre-
sents the time average of the Poynting vector T (see
Eq. 11.12),

nS;+S,) =n-S, (15.19)
Equation 15.19 may be rewritten by changing over from
the H to the E vector with help of the impedance con-
cept,

1 1
— (B2 — E;2 = — E,2 . (15.20
2Z1( 0 1°) cos ¢ A 2 cosy. ( )

By introducing the ratio of reflected to incident normal
energy flow as the energy coefficient of reflection or the
reflectivity

il

n-:Sy E12

n'gs - E—o2'

R

(15.21)

and the corresponding ratio of transmitted to incident
normal energy flow as the energy coefficient of transmis-
sion or the transmissibility

< 2
el Ameeh (15.22)
n-S; Ey®’Z,cos¢
it follows that
R+T=1 (15.23)
as required.
A comparison of the amplitude coefficients of reflec-
tion and transmission with the energy coefficients leads

to the conversion formulas

R = l Tﬂz"
7=y Zy cosy ) (15.24)
Zz COS ¢

t Note that the mean intensity of the energy flow is S = Re (E)
X Re (H) = % Re (E X H), with f indicating the conjugate of
H in accordance with the algebra of complex quantities (see
J. A. Stratton, Electromagnetic Theory, 1941, p. 136).
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16 - Reflection and Refraction of Plane Waves by Loss-Free Dielectrics

Snell’s laws and Fresnel’s equations together deter-
mine unambiguously the direction, intensity, and po-
larization of the reflected and refracted beams as a
function of the properties of the incident TEM wave
and of the dielectric characteristics of the two abutting
media.

In the usual case of nonmagnetics (u;* = us* = yg)
Snell’s refraction law (Eq. 14.18) simplifies to

Sl'ﬂ(,b Zl o ’52*
Si]’.’l\ll E Zz 61*

and Fresnel’s equations (Eqgs. 15.15 and 15.16) assume
the convenient form

(16.1)

W intal by sl i i)
B T in (6 + ¥)
(16.2)
i i e
& i tan (¢ +¢) ’
A Z2_2$inglzcos¢
BT g, sin(e+¥)
(16.3)
Zs 2 sin ¢ cos ¢
tEp = tH,,_

Z;  sin (¢ + ¥) cos (6 — ¥)

Even this case represents a very complex situation.
We shall therefore begin with a further simplification
and first treat dielectrics without loss (¢ = 0), where

sin ¢

\/E?
. = adiy= hai.
sin e’

(a) Waves incident on a medium of higher
dielectric constant (e’ > ¢')

Because the angle of refraction is always smaller than
the angle of incidence (¢ < ¢), a refracted beam ap-
pears at a real angle for any angle of incidence. The
coefficients of transmission are positive (see Eq. 16.3),
showing that the transmitted and incident waves are
in phase at the boundary. Of the reflected field com-
ponents, E, always undergoes a phase jump of = with
respect to the incident wave as the minus signs of Eqgs.
16.2 indicate, whereas H,, stays in phase. For the other
pair, E, jumps by = whereas H, stays in phase as long
as the sum of the angles (¢ + ¢) < 90°; at angles

(16.4)

(¢ + ¢) > 90° the signs reverse. At (¢ + ¢) = 90°,
the denominator tan (¢ + ) becomes infinite, and the
component pair E,, H, of the reflected beam vanishes.

Figure 16.1 illustrates the situation for optical waves
and for microwaves striking the surface of water at
various angles of incidence.
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Fig. 16.1. Reflection of optical and microwaves from water

surface.

The condition for the disappearance of the reflected
pair of components

¢+ ¢ =090°
or (16.5)
cos ¢ = siny

may be written, in view of Eq. 16.4, as

’ ’

€2

tan ¢ = = Noy.
€1

This angle ¢, at which circularly polarized incident light
becomes linearly polarized by reflection, is called the
polarizing or Brewster angle, after D. Brewster,! who
first derived the equation.

The phase relations between the E and H vectors are
due to the fact that the direction of propagation re-
verses for the reflected beam, and that consequently

1 D. Brewster, Phil. Trans., 1815, p. 125,

(16.6)
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either the E or the H vector must reverse phase in order
that the right-hand co-ordinate system (Fig. 7.1) and
the correct direction of power flow be maintained.

(b) Waves incident on a medium of lower
dielectric constant (e’ < ¢;”)

Since the angle of refraction is now larger than the
angle of incidence, the situation becomes more involved.
For siny < 1 the preceding discussion still holds, the
only difference being that the phases of the reflected
components are inverted. The Brewster angle still oc-
curs at tan ¢ = maq; but at a larger angle of incidence,
where

sin
bt _1

siny =
21
that is, (16.7)

sin ¢; = ma;,

total reflection sets in.
This statement can be confirmed as follows: for
sin ¥ > 1, cos ¢ becomes imaginary,

cosy = —V1—sin?y

sin? ¢ — ngy?2 = Lu, (16.8)

Noy N2y

the angle of refraction becomes complex, and Fresnel’s
equations 16.2 and 16.3 may be rewritten

cos ¢ — ju
r = —7 =
b He ™ os ¢+ ju
(16.9)
y —ng1® cos ¢ + ju
r = -— F — ;
s B ng® cos 6 + fu
Zy 2 cos ¢
tg, = tg,— = ——————
Z, cos¢+ ju
(16.10)
Zz 21’&21 cos ¢
tEp = tH” ==

Zy  naeosé + ju

Changing over from amplitude to energy coefficients of
reflection and transmission (see Eqgs. 15.24), we find

R,=R,=rgig =1

16.11
T=1-R=0, ae.i1)

that is, the average power carried by the reflected wave
is equal to that carried by the incident wave; this means
total reflection.

The refracted wave, however, has not disappeared
for siny > 1; it has only assumed some new and sur-
prising aspects. To discuss these we refer to a definite
co-ordinate system with the y-z plane representing the
boundary S, the z-z plane that of incidence and the

+z-direction pointing normal to the boundary and di-
rected into medium 2 (Fig. 16.2). The transmitted
electric wave becomes (see Eq. 14.8)

Et = Eze:fwt—w(z cos Y-tz sin ¢)

(16.12)

Plane of incidence

Fig. 16.2. Reference system for discussion of total reflection.

Since we specified nonmagnetic, loss-free media, it fol-
lows from Snell’s refraction law that

2
Y2 = Yifg1 = ] — N2y,
A

(16.13)

and Eq. 16.12 may be rewritten

—g;—z m J?r(vt-—-z s)‘i.n ¢
1 ¢ v/ (16.14)
A refracted wave results which is exponentially attenu-
ated in depth as it penetrates into medium 2; it propa-
gates parallel to the surface of the dielectric with a phase
velocity
dz U1

;1—1: sin ¢

Et = E26

Vg = 0 (16.15)
which depends on the angle of incidence and is larger
than that in medium 1.

The planes of constant amplitude are parallel to the
interface and the planes of constant phase normal to
it; since they do not coincide, the transmitted surface
wave is a nontransverse wave. How the energy pene-
trates in the region of total reflection into the medium
2 of lower index of refraction, and then returns again
into medium 1, has been demonstrated recently by Goos
and Hinchen 2 in a remarkable experiment.

These authors measured, by multireflection, how an
optical beam PQ, striking the interface at ¢ under an
angle of total reflection (¢ > ¢:), is not directly re-
flected as a beam QR but penetrates for some distance

3F. Goos and H. Hinchen, Ann. Phys. [6] 1, 333 (1947).
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mto medium 2 and emerges as a beam ST, displaced
parallel by a distance D (Fig. 16.3). They found for
this displacement distance the expression

M

) i g et
IszSiﬂaﬁb — ngy®

(16.16)
where & = 0.52 and ny = \o/As. The distance is de-
pendent on the depth of penetration, since Eq. 16.14
may be reformulated

z zsin ¢
—2xkng = j2x (yt—
Et = E26 2 € M

(16.17)

As we decrease the angle of incidence towards the
Limiting angle of total reflection (¢;), the displacement
distance and penetration depth increase. At ¢, itself
D becomes infinite, the attenuation in medium 2 dis-
appears, and the transmitted wave travels as a homo-

geneous surface wave parallel to the boundary. The
boundary acts as a wave guide (see Sec. 21). The exist-
ence of a nontransverse surface wave in the region of

Fig. 16.3. Experiment on total reflection. (Goos and Hénchen.?)

total reflection (¢ > ¢;) causes the reflected wave to be
elliptically polarized, as the complex character of the re-
flection coefficients (Eq. 16.9) indicates (see Sec. 20).

17 - Standing Waves

At normal incidence the incoming and reflected waves
superpose and form, by interference, a standing-wave
pattern. This standing-wave pattern in space can serve
for a determination of the dielectric properties of the
abutting media.

Let the incident wave E,, H, propagate in the +-z-
direction through medium 1 and strike the boundary
of medium 2 (Fig. 17.1) at £ = 0. The reflected wave,

Fig. 17.1.

Formation of standing waves.

returning in the —z-direction, combines with it to yield
the resulting field strength

E,, = Eoe* ™" + Eet72,

H,, = Hod"™"* + Hyd* ™, G

By introducing the reflection coefficients at the bound-
ary £ = 0, ro and —rg for the electric and the magnetic
waves, and by expressing the magnetic field in terms of
the electric field and impedance, we may rewrite this
equation as :

E,, = Eoe“'(e™ " + roe™),

Ey . _ 17.2
Hoe —2 giot(e”™ — roe™). G
1

Let us assume for the present that the transmitted wave
continues in medium 2 without further reflection,

Eﬂz = E2ejm‘_wx:
(17.3)

The reflection coefficient for normal incidence is, in this
case (see also Eq. 15.17).

Zy — 7,
Zo+ 7,

There will be no reflection (ry = 0) when the intrinsic
impedances of the two media are matched, that is, if

o (17.4)

€1 M1

—_—=— 17.5

e* et S
or, for loss-free media,

Dl Bl

— = — 17.6

DB (17.6)
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This invistbility condition for a boundary at normal
incidence postulates that the electric and magnetic flux
densities must change by equal ratios in traversing the
interface if reflection is to be avoided.

The opposite extreme, total reflection, requires a com-
plete mismateh of the two flux densities, whether by
adjoining media with very low and very high permit-
tivity or permeability, or by a mismatch in losses, as,
for instance, by choosing as medium 2 a metal. In
metals, up to the optical frequency range, the conduc-
tivity dominates over the real part of the dielectric con-
stant. Consequently, if magnetic loss can be neglected
(& = 0), the inirinsic impedance of a metal may be
written (see Eq. 7.25)

Zy = Vps'/—je&" = Vijops'[os. (A7)

Because of the high conductivity o, | Zs | < I Z | ; the
reflection coefficient at the metal boundary thus be-
comes

Zz—'Zl

=—n~~ —1, 17.8
Zs+ Z; LY

To

Under this condition of total reflection and for a loss-

2 S
free medium 1 (71 = ﬁ) , Eq. 17.2 simplifies to

) . 2mx
E, = —j2E*! sin —>
A
(17.9)
2EQ " 2w
H, = — ¢*“' cos —
Zy M
or, by changing over to the real field components,
; . 2mx
Re (E,,) = 2E, sin wt sin —
1
(17.10)
2E0 2rx
Re (H,) = —— cos wt cos —-
Z1 )\1

This equation represents a standing wave for which
the electric-field strength has its minima or nodes at the

A
metal surface and at distances —z = n;l n=1, 2
3, ...), whereas the antinodes (maxima) of E are
A
found at —z = mzl- (m =ad:850:5; e OIR(Figs 17-.2).

The nodes and antinodes of the magnetic wave appear
in the reverse order.

In comparing Figs. 9.2 and 17.2 and the correspond-
ing equations of a progressing and a standing TEM
wave in a loss-free medium, we find an essential differ-
ence between the two wave types. Although no phase
difference exists between the electric and the magnetic

fields in the traveling wave, in the standing wave the
two fields are displaced by 90° with respect to each
other in spatial and temporal phase. In the traveling
wave the energy is equally divided between the electric
and the magnetic fields; in the standing wave it alter-
nates between total electric and total magnetic energy
storage.

To visualize the standing-wave pattern in the general
case of partial reflection, we rewrite the electric wave of
Eq. 17.2

Ey, = B~ (1 4 rye?®), (17.11)

that is, we express it as the product of the incident wave
and of a term in brackets which gives rise to the stand-

Fig. 17.2. Standing wave in loss-free dielectric in front of total
reflector.

ing-wave pattern. By writing the distance and the re-
flection coeflicient in polar form,

R ;
T =—0¢,

27 (17.12)
ro = | role=9%,

and by introducing the index of absorption k (see Eq.
9.12), this term may be reformulated as

1+ 706® = 1+ | g |[e?¢e20 9 (17.13)

Its second part, r¢¢®"®, now represents a radius vector
in the complex plane which, at the interface ¢ = 0, has
the length | 7o |, and points at an angle —2¢ (Fig. 17.3).
As we move from the boundary into medium 1 in the
—z-direction, the radius vector spins clockwise one full
turn for each half wavelength (¢ = =, 2w, etc.) and
shrinks simultaneously, thus describing a logarithmic
spiral. The vector 1 + ree®"* originates at the point
—1 and connects to the tip of this radius vector. Simi-
larly, the vector 1 — re®™® of the magnetic wave con-
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nects from the point —1 to the tip of the radius vector
which starts its spiral 180° displaced.

Reverting from polar to linear scale (Fig. 17.4), we
obtain the relative amplitude of the standing-wave pat-
tern and may read off from both diagrams immediately
the dielectric information which the standing-wave pat-

tern contains.
+J

Fig. 17.3. Polar diagram of standing wave.

The ratio of the two field vectors at the boundary
(z =0),
E1 (0) ol 1 + To

) RS —

Z(0) = , (17.14)
known as the terminating impedance of medium 1, can
be found by measuring the amplitude [1‘0[ and the
phase angle 2 of the reflection coefficient ry. Obvi-
ously, the first minimum of the E wave is reached when
the radius vector has rotated through an angle

240 = 7T — 2, (17.15)

or, in linear scale,

(17.16)

Hence, by measuring the distance zo of the first mini-
mum from the boundary of the dielectric, the phase
angle is obtained as

1 o
2 = 4 <— - —)-
4 N

The ratio of the electric to the magnetic field strength
at this minimum is
Emin i

Hmax

If the attenuation in medium 1 can be neglected (oy

(17.17)

1 — [ rg [~

1 1 + I To ‘6_2'1110.

(17.18)

~0), Hyax = %mff and Eq. 17.18 simplifies to
1

Epnax _ 1+ | T0|

Emin 15— | TOI
This ratio of maximum to minimum electric field in-
tensity is called the voltage standing wave ratio (VSWR).

(17.19)

m

(X)

-

m

3

r

1+71,

‘ Emin
Eo 1 > =X

- Xo o P

Fig. 17.4. Linear diagram of standing wave (attenuation in
medium 1 overemphasized).

Thus, by measuring the ratio 'of maximum to mini-
mum field strength and the distance of the first mini-
mum from the dielectric boundary, the magnitude and
phase of the reflection coefficient 7, are determined.
With it the terminating impedance Z(0) is found if the
intrinsic impedance Z; of medium 1 is known.

Since the tangential field components are continuous
through the boundary, the terminating impedance for
normal incidence is the same whether seen from me-

dium 1 or 2:
B0 _ B0
Hy(0) H(0)

Consequently, if no further reflection takes place in
medium 2 (see Eq. 17.3), the terminating impedance
measured by the standing-wave pattern in medium 1
is directly equal to the intrinsic impedance of medium 2,

In case the media 1 and 2 are loss-free, and medium 2
is of infinite extent, the reflection coefficient at the
boundary is real (see Eq. 17.4); the phase jump 2y is
either zero or 7, and the VSWR simplifies for e’ > &’

(ro = —| 70 ]) to
Erpax Zl 52,
= = A/ T Mo1;
Emin Z2 €1

it is equal to the relative index of refraction of the two
media.

Z(0) =

(17.20)

(17.21)
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18 - Measurement of Dielectrics by Standing Waves;' Interference Optics

The dielectric medium 2 of the preceding section will,
in general, not approximate infinite length, but will con-
sist of a layer of thickness d, followed by a medium 3,
ete. (Fig. 18.1). Additional reflections will therefore
occur at the boundary 2-3 and possibly subsequent
boundaries, and a part of this reflected energy will re-
turn into medium 1. The reflected wave in medium 1,
thus composed of several partial
beams, will itself be the resultant
of an interference phenomenon.

This more complex situation
does not affect the measurement
of the standing-wave pattern in
medium 1, but it changes the in-
terpretation of the reflection coeffi-
cient r¢ and terminating impedance

(1) (3)

Reflected
wave

Incident
wave

-t

Fig. 18.1. Wave re- " 5 4
fected on diclectrie Z (0). Before proceeding with this
layer. discussion, we shall reformulate

Z(0) in terms of the directly meas-
urable parameters Emin/Emax, o, and Ay, to arrive at
an expression useful in actual calculations.

Setting

ro=e>*  (whereu = p+j¥), (18.1)

we may write the terminating impedance (Eq. 17.14)

18
Z(0) =zll+r°

= Z; coth u, (18.2)

— 7
and the inverse standing-wave ratio (Eq. 17.19)
Ein 1—e2
Briax 14 ¢720

By expanding coth % and recalling the relation between
¥ and zy (Eq. 17.17), we obtain the desired expression

= tanh p. (18.3)

tanh p — jcot ¢
= 1 — jtanh p cot ¢

Emin . 21r120
— J tan ——
max x1
Ei 2nx
1—j—tan e
max >\1

Z00) =2

(18.4)
= 7

18, Roberts and A. von Hippel, Publication of the Massachu-
setts Institute of Technology, March 1941; J. Appl. Phys. 17,
610 (1946).

The terminating impedance is thus determined ex-
perimentally by measurements on the standing-wave
pattern in medium 1, as discussed. To obtain from it
the properties of medium 2, we consider the situation at
the boundary 2-3 at z = d.

At this boundary a reflection coefficient ro3 produces
a reflected wave which, together with the incident wave,
sets up a standing wave (cf. Eq. 17.2) in medium 2,

Ey’ = Ezeiwt {e—‘ﬂ(z—d) + T23372(z—d)},

H, = E%e:imt {e—vz(ﬂ:—d) -5 ngew("'—d)}. (18.5)
22 Z2

The terminating impedance at 2 = 0, seen from me-

dium 2, is

200) = E5(0) _ T + roge 1

Hz(O) P e“d — T238—72d

. (18.8)

In case the transmitted wave continues in medium 3
without further reflection, the reflection coefficient at
the boundary 2, 3 becomes (cf. Eq. 17.4)

Zs — Zy
Zs + Zy
If medium 3 is a metal, approximately total reflection
takes place at d,

(18.7)

Tog =

(18.8)

Trog = -1

(cf. Eq. 17.8), and the terminating impedance for this
short-circuit measurement of medium 2 simplifies to

Z(0) = Z, tanh v.d. (18.9)

In case the shorting metal plate is placed a distance
A behind d (Fig. 18.2), a standing wave forms in me-
dium 3,

E, = E3ejwt(e—‘ra(z—d—A) 2 by e‘va(z—d—A))’

H, = _E_.3 e]'wt(e—'ya(::—d—A) + e-ya(,,_d_A))' (18.10)
3

Since the impedance at = d is the same, whether seen

from medium 2 or 3

().~ @)
sz z=d Hls I=d’

(18.11)
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the reflection coefficient ro3 can be expressed in its de-
pendence on the layer thickness A as

251 — €72 — Zy(1 + e7 2
C Za(l — e 2) 4 Zy(l + e 27)

To3 (18.12)

2
For A = \3/4 and a loss-free medium 3 (73 =7 )\—W) j
3

we obtain
reg = +1; (18.13)
the combination, a quarter-wavelength section termi-
(1) (2) (3) Metal
X=0Q X

et

Fig. 18.2. Arrangement for measuring a dielectric 2 by standing
wave in medium 1.

nated by a short circuit, corresponds to an open circuit,
and the terminating impedance becomes

Z(0) = Zs coth yzd. (18.14)

Thus, by performing an open-circuit and a short-
circuit measurement of the terminating impedance, we
obtain two equations for Z, and v, and can calculate
the complex dielectric constant and the complex per-
meability of medium 2. For a nonmagnetic dielectric
(u2* = uo), one of the measurements suffices.

The problem just discussed is a typical problem of
interference optics which the physicist customarily
treats by superposing partial beams and introducing re-
flection coefficients only. We can change over to this
language by referring to the termination reflection co-
efficient

Z(0) — Z;

Z(0) + Z,

to the reflection coefficient of the partial beam at the
interface 1-2

To (18.15)

Zy — 7y
Zy+ 7,

and to the reflection coefficient which measures the re-
flection of the boundaries 2-3, etc., as it appears at
z = 0 (see Eq. 18.6)

(18.16)

T2 =

—2ved _ Z(O) n Z2.
Z(0) + Z,

Toge (18.17)

In terms of these reflection coefficients Eq. 18.6 can
be rewritten

—2vod
T2 + Toge” "

R

To

As the layer thickness d increases, the radius vector rg

winds eccentrically to the asymptotic value r;2 because

the partial beams returning from the inner boundaries
2-3, and so on, become attenuated.

If medium 3 is a metal (rp3 >~ —1), the expression

simplifies to

12 — e—2vad

To = 2y

S (18.19)
1- T12€

A comparison of Eqgs. 18.9 and 18.19 makes it obvious
that the impedance concept leads to the more conven-
ient formulation.

Two additional cases of interference may be discussed
briefly since they are of great practical importance.

(1) Plane-parallel dielectric between two
identical media

The operation of most interferometers and the design

of radomes is based on this situation; here r1o = —7a3,
hence
r12(1 — e~ 2%
ro = m (18.20)

Figure 18.3 shows the reflection on such a dielectric
layer in free space at normal incidence as a function

No loss

(el

o
>
>
>

5

5\ 3)
4 2

rof>

1
A
q

o

d

Fig. 18.3. Reflection on dielectric at normal incidence as function
of the layer thickness d.

of the layer thickness. Without attenuation, a layer

of the thickness d = n}zE (where n =1,2, 3, ...) is
invisible.

That the interference maxima occur at odd multiples
of Az/4 and the minima at multiples of Ap/2, becomes
obvious from the phase relations of the partial beams.
The electric wave, when reflected from the front sur-
face of the interference plate (for e’ > ¢’ and tan é
« 1), suffers a phase change of w, whereas the beam
reflected at the back surface stays in phase with the
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incident wave; for e’ < ¢, the role of the partial beams
is reversed (see Sec. 16). The total phase difference of
the two partial beams is therefore

2
= —2xm (18.21)
2
They are in phase for
Az
2d=2mZ (m=1,3.5...) (18.22)
and in opposition for
A
2d = 2m—2—2 (m=0,1,2...), (18.23)

as indicated.

For oblique incidence, the geometrical path differ-
ence between the two partial beams increases from 2d
to the distance A — B — C in medium 2 minus the

Surface
normal

Incident ST i

bearr? 1= Partial beam
T 230 partial beam

n

(2)

(1
Fig. 18.4. Reflection at oblique incidence.

distance A — D in medium 1 (Fig. 18.4). Thus the
total optical phase difference becomes

2r 2d 27 .
A=—————2dtany sin ¢ + .

(18.24)
By substituting for sin ¢ the expression A;/Az sin ¢ ac-
cording to Snell’s refraction law, we obtain the well-
known phase shift equation of interference optics,

B L coS ‘b -+ T, (18.25)

2
which applies, for example, in the discussion of the color
of thin layers and the evaluation of interference pat-
terns 2 (see also Appendix A, I, 14).

(2) Nonreflecting surfaces

It has become a technique of great practical impor-
tance (nonreflecting lenses,® camouflage, etc.) to make

2 See, for example, M. Born, Optik, Springer, Berlin, 1933,
pp. 118 ff.

3 A. Smskula, DRP 685767 (1935), Z. Instrumentenkunde 60,
33 (1940); C. H. Cartwright and A. F. Turner, Phys. Rev. 686, 595
(1939); K. B. Blodgett, Phys. Rev. 55, 391 (1939).

the interface between two media 1 and 2 invisible by
the insertion of a thin dielectric layer 2. At normal in-
cidence we obtain from Eq. 18.18 the condition for in-
visibility (rg = 0),

r12 + re5e” 7™ = 0. (18.26)

It simplifies for nonmagnetic media of small absorption

2
(72 ~j %) to the two conditions: (1) The thickness
2
of the inserted layer must correspond to an odd multiple

of Na/4 to fulfill the phase relation

e M = —1. (18.27)

(2) The ratio of the dielectric constants of the three
media must fulfill the condition

T12 = To3. (1828)

Equation 18.28 may be rewritten in the impedance ter-
minology as

(see Eqgs. 18.7 and 18.16); (18.29)

by referring to the relative indices of refraction it be-
comes

Ng1 = Ngg (see Eq. 14.19), (18.30)
or, in terms of the dielectric constants,
e2' 63'
S =5 S0 (1831)
€ e

Hence the boundary becomes invisible when the
thickness of the inserted layer is properly chosen and
its dielectric constant is selected as the geometric means

Incident
Wave

] s

Nonreflecting surface produced by insertion of
dielectric layer.

Fig. 18.5.

of those of the adjacent media. In this case the partial
beams reflected from the two surfaces of the interposed
layer cancel each other in amplitude and phase (Fig.
18.5). The electric engineer calls this procedure m-
pedance maiching.
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19 - Skin Effect

Metals have been treated as total reflectors in the
preceding discussion; actually, a highly attenuated
wave penetrates into their interior.

If medium 2 represents a metal of negligible magnetic
loss, its propagation factor is, according to Eq. 17.7,

. Joops' T
Yo = ag + jB2 = 7 = V jous'as.

(19.1)

2

Bof——————— %
|
|
|
|
|
|
|
45° |
|
"2,
Fig. 19.1. Propagation factor of metal.

Since v is oriented at 45° to the real axis of the com-
plex plane,

loz| = | 82| = Vvwd'os (19.2)
(Fig. 19.1). The wavelength in the metal
2w 4
Ne=—=  [—— (19.3)
B2 Vg 02

and the field strength falls to 1/e = 0.368 of its surface
value at a depth

oy  \mvuy'es 27

In angular measure this depth of penetration d corre-
sponds to a distance of one radian.
The impedance

(19.4)

E ) 14
Zy = 2= =

H 2 (3]
indicates that the E vector leads the H vector in tem-
poral phase by 45°. As the frequency is increased, the
magnitude of the electric field in the metal increases

(19.5)

relative to that of the magnetic field, but for reasonably
low frequencies the intensity of the electric field in good
conductors is much smaller than that of the magnetic
field. The wave propagates in the metal with a phase

veloeit,
¥ vg = PAg = V2w/us’ o, (19.6)

that is, v, is zero for direct current or for infinite conduc-
tivity or permeability, and increases with the square
root of the frequency. This peculiar behavior of waves
in metals is caused by the conduction current set up
by the electric field.

The field at any depth z in the interior may be ex-
pressed in terms of the field at the surface (x = 0) as

£ -(wt_2ﬂ)
E2 = E()e deJ t ‘

(19.7)

It produces, according to Ohm’s law, a current density

_z j(w,_%_x
= 0’2E06 de M

(19.8)

which is large at the surface and attenuates rapidly with
depth (Fig. 19.2). An equivalent current of the uni-

(1)

(2)

Fig. 19.2. Current and magnetic field caused by TEM wave
penetrating into metal.

form density o2Eoe’ @2/, confined to a layer of the
depth d, would cause a power loss identical with that
actually observed. Since the current is limited to small
depth, the conduction phenomenon is called skin effect,
and the distance d is known as the skin depth of the
metal.

The nomographic chart (Chart 19.1) allows a quick
evaluation of the wavelength A; and phase velocity vs
for TEM waves in nonmagnetic metals as a function of
frequency and d-¢ conductivity. Chart 19.2 gives the
skin depth as a function of resistivity and free-space
wavelength.
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20 - Reflection and Refraction by Media with Loss

In the preceding sections we have treated special
cases of the general problem as to how electromagnetic
plane waves are reflected and refracted by dielectrics:
loss-free dielectrics (Sec. 16) and metals (Sec. 19) repre-
sent the two extremes in materials; for media of any
arbitrary absorption we prescribed normal incidence
(Secs. 17 and 18).

The general case of arbitrary dielectrics and oblique
incidence is of great complexity. We approach it here
with the restriction that medium 1 be loss-free, whereas
medium 2 may be chosen at will, that is,

— g, = 27
Y1 =P =] )\1' (20.1)
Y2 = ag + jBa.

The ratio of the propagation function is now complex
and may be expressed conveniently by the relative com-
plex index of refraction (see Eq. 9.14),

Y2

— =g *(1 — jk2), (20.2)
21
with
ng1 = Ba/B1,
(20.3)
k2 = az/Be.
According to Snell’s refraction law (see Eq. 14.17),
Y2 siny = v; sin ¢ = jB; sin ¢, (20.4)
whereas
vaco8y = yoV1 —sin’y = p +jq.  (20.5)

The transmitted electric wave may be written in the
co-ordinate system of Fig. 16.2 as

Ey = By~ ooy tssng), (20.6)

By substituting the expressions of Eqs. 20.4 and 20.5,
we reformulate this equation

E‘ = E2e_Pzej(“’t_qz_ﬁlz sin ¢).

(20.7)

The surfaces of constant amplitude (pr = constant) of
this transmitted wave are parallel to the interface,
whereas its planes of constant phase
gr + Bizsin ¢ = x cosy’ + zsin ¢’
= constant

(20.8)
propagate at a true angle of refraction ¢’ (Fig. 20.1).

Since

B1 sin ¢
VE+ BsinZ
a geometrical index of refraction n(¢) can be defined

which relates this true angle ¢’ to the angle of incidence
according to a modified Snell’s refraction law

sing V¢+pisine
—* — = n(g).
sin ¢/ B1
This index of refraction for the planes of constant phase
is a function of the angle of incidence; it can be meas-

siny’ =

(20.9)

(20.10)

Planes of constant

amplitude
1 1 1
IRRY R
! \l \l Direction of
\| : propogation of
\ "il Y phase fronts.
T X

+_—Planes of constant
phase

(2)

Fig. 20.1. Reflection and refraction on medium with loss.

ured by the customary optical methods as long as me-
dium 2 is of sufficient transparency.

A detailed calculation shows that the propagation
factor B2 and loss factor ay of the material are related
to n(¢), ¥/, p, ¢, and B, as

Bi’n(¢) — p* = B2 — ad?,

Pq = o3P, (20.11)
Bin(e)p = azﬂz,-
cos ¢

Again we treat first the extreme cases of the general
refraction phenomenon: total reflection from a loss-free
medium and reflection from a metal (Fig. 20.2). In the
former instance, as a comparison of Eqs. 16.8 and 16.13
with Eq. 20.5 shows, ¢ = 0, that is, the planes of con-
stant amplitude and of constant phase are normal to
each other, and the refracted wave propagates parallel
to the surface as previously deduced.
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In the case of metals, we define the wavelength in
medium 2 in terms of the geometrical index of refrac-
tion as

Sy i (20.12)

T V@t AIsn’e '
Metal

Dielectric

Metal

Planes of constant
amplitude and phase

(a)

Total reflection

§i

§> €&

e e
e
hd s e —

/. T
Planes of constant (l:lanes of constant

amplitude phase

(b)

Fig. 20.2. Two extremes in refraction: refraction accompanying
(@) reflection from metal, (b) total reflection from loss-free
medium,

For normal incidence (sin ¢ = 0), the wavelength was
given by Eq. 19.3, hence

q = Be. (20.13)
Since for metals in general
A
28 (20.14)
Mo B

it follows from Eq. 20.9 that sin ¢’ < 1 or ¢’ approaches
gero. Thus in metals up to the optical range (as long
as the conductivity dominates) the planes of constant
phase are essentially parallel to the planes of constant

q

Phase difference (radians)
LE]
T

o
o
)

20 30 40
Angle of incidence (degrees)

amplitude and propagate normal to the conductor sur-
face.

It will not be possible, in general, to observe the re-
fracted wave in a highly absorbing medium, but the
dielectric properties can be derived from the state of
polarization of the reflected wave. Returning to Fres-
nel’s equations for nonmagnetic dielectrics (see Eq.
16.2), we obtain for the ratio of the reflection coefficients
parallel and normal to the plane of incidence

TEp _ COS @+¥ _
TEn €08 (¢ — ¥)

Here p stands for the ratio of the amplitudes and

pe %, (20.15)

0=120p— 0n (2016)

for the temporal phase difference of the two components
of the reflected polarized radiation (see Eq. 12.1).

Let the incident light be linearly polarized at 45° to
the plane of incidence (Eo,, = Ep, »). Since the sine
and cosine of the angle of refraction are complex (see
Eqgs. 20.4 and 20.5), the phase shift between the re-
flected components will usually be & = 0. Linearly
polarized incident light becomes, in general, elliptically
polarized by reflection from an absorbing medium. Ex-
ceptions are normal incidence (¢ =0, p =1, § = 0)
and grazing incidence (¢ = 7/2,p = 1,8 = =), in which
cases the linear polarization is preserved.

Obviously there must exist an intermediate angle of
incidence at which the relative phase shift between the
two reflected components becomes 7/2,

d=u/2, € =—j até =g (20.17)

This principal angle of incidence, ¢y, at which an inci-
dent TEM wave, linearly polarized at 45° to the plane
of incidence, becomes circularly polarized by reflection,
is identical with the Brewster angle for loss-free dielec-
trics (see Sec. 16). When there is no loss the phase dif-
ference jumps abruptly from zero to = at this angle;
with loss in medium 2 the phase change becomes more
and more gradual as the absorption increases (Fig. 20.3).

Principal angle of
/ incidence
41 | | |
50 60 70 80 90

Fig. 20.3. Relative phase shift between E, and E, for various dissipation factors of the reflecting medium 2.
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To discuss the dependence of this principal angle on
the dielectric properties of the two media, we form,
with the help of Eqs. 20.4, 20.5, and 20.15, the expres-

sion .
14 pe% __ ©os ¢ cos 1/
1 — pe# a sin ¢ sin ¢
_ Vni/ra)? —sin’g.
sin ¢ tan ¢

By replacing the ratio of the propagation factors with
the complex index of refraction (see Eq. 20.2), and des-

(20.18)

¢=0° 50° 63.5° 75° 90°

(b) Dielectric with loss

v v \) \
$=0° 50° 63.5° 75° 90°
Fig. 20.4. Polarization by reflection on dielectric.

ignating the amplitude ratio of the reflected compo-
nents at the principal angle ¢o by pg, we rewrite Eq.

20.18 for this angle
1—jpo _ V(n*? — sin® ¢o
1+ joo sin ¢o tan ¢o

Finally, if we square this equation, multiply each term
by its conjugate and expand, we obtain ¢, in terms of
the relative index of refraction and the index of absorp-

tion of medium 2 as

sin4 ¢0 ta.n‘ ¢y = 'n214(1 + k22)2
+ 2n5:%(1 —[k,?) sin® go + sin® ¢! (20.20)
1 See M. Born, Optik, Springer, Berlin, 1933, pp. 261 ff.

(20.19)

If medium 2 is a metal, this expression can be simpli-
fied appreciably. Below the optical frequency range,
the equations derived in Sec. 19 are valid; hence

Ngy > 1, k2 — 1, (20.21)
and the first member on the right-hand side of Eq.
20.20 dominates. Thus

A
sin ¢o tan ¢o = nzl'\/_ = }\—1' ‘\/_2-. (20.22)
2

For the very high frequencies of the optical spectrum
(v > 3 X 10" sec™!) the simple skin-effect equations
begin to lose their validity, but still only the first mem-
ber on the right side of Eq. 20.20 need be considered
and

sin ¢o tan ¢g = N2y V14 kzz. (20.23)

A general treatment of the reflection as a function of
the angle of incidence requires discussion of Eq. 20.18
itself.? By multiplying numerator and denominator by
(1 — pe’®) and defining

p = tan B, (20.24)
the left-hand side of this equation reads
(14 pe™#) (1 — pet®) 1 — p? — 2jpsin s
(1= pe ™)1 — pe™) 1+ o2 + 200088
cos 23 — j sin 28 sin &
) 1 + sin 28 cos & .

The right-hand side of Eq. 20.18 can be simplified, as
long as

(20.25)

n212(1 — kg?) > sin? ¢, (20.26)
by the approximation
V ng ** — sin® ¢ ~n21(1 — Jk2) )

sin ¢ tan ¢

= (20.27)
sin ¢ tan ¢
Hence

cos 28 — j sin 28 sin & jii ng1(1 — jks)
14 2sin28cos é

or, split up into the real and the imaginary part,

- (20.28)
sln ¢ tan ¢

cos 28 - Ni21
1+ 2sin28cosd sin ¢ tan ¢

(20.29)
sin 28 sin & _ naiks
1 4 2sin 28 cos & i sin ¢ tan ¢

From these equations we obtain the relative index of
refraction and the index of absorption of medium 2 as

2 See also J. A. Stratton, Electromagnetic Theory, McGraw-H ill
Book Co., New York, 1941, pp. 505 ff.
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a function of the angle of incidence ¢, of the amplitude
ratio of the reflected components (p = tan 8), and of
the temporal phase shift § between these components as

sin ¢ tan ¢ cos 28
n. = 1
S ] + 2 sin 26 cos & (20.30)
ko = sin 6 tan 286.

At the principal angle of circular polarization (sin § = 1)
ke = tan 28, (where pp = tan 8p). (20.31)

Figure 20.4 illustrates the state of polarization (relative
amplitudes in the z’,3’ plane) of the reflected beam as a
function of the angle of incidence for (a) a loss-free and
(b) a lossy material. The incident wave is linearly
polarized at 45°, the principal angle observed at ¢ =
63.5°.

Summarizing: (1) Refraction of TEM waves by ab-
sorbing media produces, in general, a transmitted beam

which has longitudinal field components since the planes
of constant amplitude and of constant phase do not
coincide; the planes of constant amplitude are always
parallel to the interface. (2) In metals, the planes of
constant phase are practically parallel to those of con-
stant amplitude, and the transmitted beam propagates
therefore about normal to the metal boundary for all
angles of incidence as long as the skin-effect equations
are valid. (3) Linearly polarized incident light be-
comes, in general, elliptically polarized by reflection
from an absorbing medium. (4) In place of Brewster’s
angle for loss-free media, a principal angle of incidence
may be observed at which the reflected wave is circu-
larly polarized. (5) The complex permittivity of an
absorbing medium may be calculated from the geo-
metrical index of refraction, the principal angle of inci-
dence or, quite generally, from the state of polarization
of the reflected wave as a function of the angle of inci-
dence.

21 - Guided Waves

At normal incidence, as discussed in See. 17, incom-
ing and reflected waves superpose to form a standing-
wave pattern. At oblique incidence, an interference
pattern forms in the crossover region of the incident
and the reflected beam (Fig. 21.1). In this case, how-
ever, the interference phenomenon is not standing in
space but glides along the interface.

To see this in mathematical formulation we refer to
the co-ordinate system of Fig. 21.1, for which the nor-
mal distance of the planes of constant phase of the two
waves from the origin becomes

k2-r = z cos ¢ + zsin ¢,
(21.1)
k.r = —zcos¢p + zsin ¢.

By superposing both waves, the field strengths in the
interference region may be written in analogy to Eq.
17.2

E, = Eoert—'nz sin ¢(e—'nz cos ¢ + roe?® e ¢),
Eo

H a1 = _Z_ert—'nzsm ¢(e—113008¢ | roe‘vwoot!v’)
1

(21.2)

2
If medium 1 is loss-free ('yl =3 %) and medium 2 a
1
metal (rg >~ —1), the real field components of the in-

terference pattern are simply

L 27z sin ¢
Re (E,1) = 2E, sin (wt )

(Zm: )
X sin | —cos ¢ ),
A1

(21.3)
Re (H;;) = 2— cos(

(2—n-x )
X cos| —cos¢ ).
M

27z sin ¢>

As in the case of the standing waves (see Eq. 17.10), a
system of interference fringes has formed parallel to the
interface, with the nodes of the electric field (or anti-
nodes of the magnetic field) at the distances

(wheren =0,1,2,3...) (21.4)

in front of the boundary. However, the entire pattern
glides along the surface in the --z-direction with a phase

velocity

dz w)\l 31
_—__=— = — = 1)‘-,

(21.5)
dt 2wsing sing

which is larger than the phase velocity of the incident
wave and dependent on the angle of incidence.
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The existence of phase velocities which may exceed
the velocity of light was encountered previously for the
surface waves forming at total reflection (see Eq.

Surface of constant phase
& ; v

l‘io / [

f(kio" xcos¢
/ $7T
//
z
Z sing l
X

l Interference
o region

(b)

Fig. 21.1. Interference at oblique incidence: (a) distance of
plane of constant phase from origin, (b) cross-over reg.on of
incident and reflected beam.

16.15). The phenomenon is easily explained (Fig.
21.2). In the direction of propagation the planes of
identical phase follow each other at distances equal to
the wavelength \;; parallel to the interface, however.

they are separated by the larger distance — This
distance A sin ¢
AN = — (21.6)
8In ¢

is the wavelength of the interference wave. A point P
of constant phase, traced parallel to the surface in the

7 7 /
/ / /
PRy _w’ A S
/‘sin¢u sing s
k® ; k’®
/ i h / r
// 4} /
/ 4 7 4--1»-¢
7
// / Ny
Z ¥ L > Z
Y
X

Fig. 21.2. Derivation of wavelength and phase velocity of

interference wave.

interference pattern, has, therefore, to travel with the

velocity "

v; = )\,’l’ . ’ (217)
as just derived. -

The energy flow along the surface, on the other hand,
proceeds with a group velocity v, < v;. Traveling in
the direction of propagation of the incident and re-
flected wave, the energy traverses per second only the
distance (21.8)

parallel to the boundary. The product of phase and
group velocity of this interference wave is thus equal

v = vy 8in ¢

~——=-- Surfaces of constant phase

a=Incident wave b=Reflected wave

by b. 0 by sa b\ ,a ,a
N 5 g bRl /
Ay
N 1/ \_\ ,r n II \\ ’/
\ / N\ /s N /7
\\ ’l \\ l/ LY /f N ’f
\ N\
— R — - — E=Emax
// \\ ,f \\ ,r A ,/ \\ d
\ y N a3 & S / Nodal planes
AL/ N/ N
¥, E=0
] ’ % N N \ :
X ’ / ok N N \ Antinodal
\ 7 7 X
2 cos fﬁ vyl 7 ol \\ol % 3 planes
X /(4 g N % ] E =Emax
1 \
facosd / }(\/\ \ ’ \\ X \\
Pd A X N Y z
Py

Fig. 21.3. Interference pattern in cross-over region.
to the square of the phase velocity »; in unbounded
space, (21.9)

Since in the nodes of the electric wave the state of
the electromagnetic field is the same as at the boundary
of a perfect metal (Fig. 21.3), we may place a second
metal plate parallel to the first one at a distance (see
Eq. 21.4) i

v, = 012,

(21.10)

at one of the interference minima without causing a dis-
turbance of the field pattern between the plates (Fig.
21.4). Although the reflected radiation previously es-
caped into space, it is now guided between the two
plates by multiretlection; the two parallel metal mirrors
represent the prototype of a wave guide.

n=6

Fig. 21.4. Plane-parallel wave guide.

The properties of such a wave guide can be discussed
without explicit reference to the angle of incidence by
combining Egs. 21.7 and 21.10 as sin® ¢ 4 cos? ¢ = 1
to form the expression

uy (zﬂ_)_
(Ui) + 2b b

(21.11)




Electromagnetic Fields in Wave Guides 69

The ratio of the phase velocities in unbounded space
amd in the guide, plotted as function of the ratio wave-
Bength in free space to plate separation, is represented
by the elliptical characteristic of Fig. 21.5. As the

Fig. 21.5. Relative phase velocity as function of wavelength to
plane separation.

spacing b of the parallel-plane guide shrinks, we ap-
proach a critical cut-off wavelength

Aie = 2b/n (21.12)
ar cut-off frequency
vy nn
Ve = ;l—c = EE’ (21.13)
at which
v; = o, that is, »; = 0. (21.14)

This situation, according to Eq. 21.7, corresponds to

22 - Electromagnetic

In the preceding treatment of the interference phe-
nomenon between parallel plates we considered only the
exponential phase functions of the incident and re-
flected waves without regard to the state of polariza-
tion of the wave pattern. If we now include the orien-
tation of the electric and magnetic field vectors in our
discussion, obviously two principal interference pattern
types may be distinguished (Fig. 22.1). If the direct
wave is polarized with the electric vector normal to the
plane of incidence, the interference pattern gliding along
the plates will have transverse electric components, but
its magnetic components will be transverse and longi-
tudinal ones. In the language of the wave-guide theory,
these are the T'E modes of propagation. The opposite
case of polarization leads to the transverse magnetic or
TM modes. It is convenient to break down the wave

the case of perpendicular incidence (¢ = 0). The inter-
ference pattern appears here simultaneously parallel to
the whole surface of the mirror, that is, with infinite
phase velocity. The interference phenomenon, how-
ever, has come to a standstill; hence no energy is trans-
ferred parallel to the boundaries (v, = 0).

For longer wavelengths, that is, lower frequencies,
the wave guide cannot accommodate n interference
fringes; it blocks the propagation of the corresponding
electromagnetic mode. The longest mode possible in the
parallel plane guide contains one fringe (n = 1); A\;/2
in this case is equal to the guide separation.

Although Rayleigh! as early as 1897 discussed the
propagation of waves through tubes, open transmission
lines or coaxial cables were used exclusively until 1936,
because the cut-off properties of hollow wave guides
made them impractical at the frequencies then avail-
able. The development of magnetrons and other short-
wave oscillators overcame this obstacle; and in 1936
the properties of hollow and of dielectric guides were
rediscovered independently by Barrow 2 and South-
worth.? Since that time, the theory and applications
of wave guides have developed rapidly under the im-
pact of radar,* and provide today a well-founded basis
for modern microwave techniques.

1 Lord Rayleigh, Phil. Mag. 43, 125 (1897).

' W. L. Barrow, Proc. Inst. Rad. Eng. 24, 1298 (1936).

3 G. C. Southworth, Bell. Syst. Tech. J. 15, 284 (1936).

¢ See Massachusetts Institute of Technology Radiation Lab-
oratory Series, McGraw-Hill Book Co., New York, Vols. 8-13.

Fields in Wave Guides

patterns developing in any type of guide into these two
classes of TE modes and TM modes.

A general discussion of wave propagation in guides
of arbitrary cross section requires that we turn from

Kk° k®
H E
E H
TM wave TE wave
Fig. 22.1. TM waves and TE waves.

the instructive graphical approach of superposing inci-
dent and reflected waves to a mathematical treatment
of the wave equations of the electromagnetic field
(Eqgs. 7.6 and 7.7) with prescribed boundary conditions.
We will carry the analysis through for the rectangular
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guide (Fig. 22.2) and then draw some general con-
clusions.

The wave pattern progressing through such a guide
in the 4z-direction has to satisfy the wave equations

VzE = el*yl* ﬂg’i (221)
9t
V2H = 61*[41* ﬂ-l (222)
a2
We assume the solution
= jwt—v1'z
E = Eo(y; z)eJ ’ (223)

H = Hy(y, 2)e* "™,

In addition to the fact that the electric and magnetic
field amplitudes are now functions of y and z, this solu-
tion differs from the one previously assumed for TEM

Zz
Fig. 22.2. Rectangular wave guide.

waves in unbounded space (see Eq. 7.10) as follows.
The complex permittivity and permeability, ¢* and
u1* of the wave equations refer to the dielectric prop-
erties of an isotropic and homogeneous medium 1 in
unbounded space, and determine the inirinsic complex
propagation factor {Eq. 7.12)

7= jw\/il*m* (22-4)
of the dielectric material. In Eq. 22.3 there appears in
place of this intrinsic propagation factor of the free
medium a characteristic propagation factor +v,’ which
allows for the fact that the field is confined. The dis-
tributed capacitance, inductance, and resistance of the
bounding wave guide have changed the energy storage,
dissipation, and propagation of the electromagnetic
field.

Introducing the solution (Eq. 22.3) into the wave
equations, we obtain for the x-components of the elec-
tric and magnetic field strengths the differential equa-
tions

9’E, &°E,

ay; — + " - B =0,
®H, o°H, ; , 25
6y2+?+(hh_h)Hz=0-

Hence longitudinal field components E, and H, have
become possible owing to the stabilizing influence of
the confining walls, expressed by the difference between
the characteristic and the intrinsic propagation factors.

As stated previously, two types of vibrations may
coexist independently of each other, the TE and the
TM modes. In the reference system of Fig. 22.2 the
field components of these modes are

E, =0,
{Ey, E, H, H, H.;
H, =0,

H, H., E., B, E..

For both types we have to introduce the boundary
condition (assuming infinite conductivity of the metal
walls) that the tangential electric field components at
the metal surfaces are short-circuited, that is, must be
zero.

Starting with the TM modes we have to fulfill, in
consequence, the conditions at the boundaries parallel
to the z-y plane:

(22.6)
T™M {

E.=0
atz=0andz =b, (22.7)
E,=0
and parallel to the z-z plane:
E”=°} ty=0andy = (22.8)
E.—0 aty =0and y = a. E

The differential equation for the E, component (Eq.
22.5) is a partial differential equation of the second
order in two variables. It may be solved by assuming
that the solution can be expressed as the product of

two functions,
wo functions E, = vZ, (22.9)

where Y is a function of ¥ and Z a function of z only.
Substituting this expression into Eq. 22.5 and dividing
by YZ, we obtain, by this method of separation of vari-
ables, the total differential equation
1d°Y  1d°Z
____+__= vy 7!2_72.
Y dy?  ZdZ? i it
Since the quantity on the right side of this equation
is independent of y and z, each term on the left side
must correspond to a constant, or
1 d?Y 1d%Z
=——=—4,;,, —— = <4,
Y dy? Z dz
Hence Y and Z can be represented by the exponential
functions

(22.10)

(22.11)

Y Clei\/ziu e Cze—j\/rlll7
Z = C36jmz + C4e_jmz.

(22.12)
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The boundary condition for E, (Eq. 22.8) demands
Y =0 for y = 0; thus C; = —C;. Furthermore Y
= 0 for y = a; hence \/A4; = mwx/a and

. mr . mw
=y Y

Y=C(e°® —e¢ ©')=2iCysin (ﬂ'> y.  (22.13)
a

In analogy we obtain from the boundary condition,
Eq. 22.7,
nmw

Z= Cg(esz — e—j_bq) = 2jC5 sin (?) z; (22.14)

consequently E,, the product of the two functions,

becomes
mx nr
E,= —Csin (—) y sin (?) 2. (22.15)
a

From Eqgs. 22.10 and 22.11, it follows, in addition, that

mr\?2  [nr\2
A+ 4, = (7) + (?) =71 — v’ (22.16)
The integers m = 0,1,2,3 ... andn =10,1,2,3 ...
designate the number of half wavelengths occurring
across the height a and the width b of the wave guide.

To find the other field components we have to return
to Maxwell’s equations (7.1 and 7.2). In view of the
solution, Eq. 22.3, the curl components can be written

oH.  oH, 0B, oE,
e Y ]we*Ex; s N _JUI‘*H:V:
oy 0z Yy 0z
it s 3 ol ol e 4 5
+ vi'H, = jwe*E,, + Y'E; = —jwu*Hy,
9z a9z
' 0H, ’ 0E, h
-n'Hy — i joe*E., | —v1'Ey — = —Jou*H,.

(22.17)

Since for the TM modes H, = 0 and E, is given by
Eq. 22.15, we obtain for the remaining four field com-
ponents

B = ' dE,
v T T2 e P
71 Y1© oy
7’ mm mm AL
=———|—)Ccos| —)ysin{— )z
71 =" a a b
E i 'Yll aEz
A W Sy e U ey
71 v1°© 92
T’ nw . [ mz nw
= T Csin|— )ycos|— )z
=1 \b a b
. (22.18)
Juwe
Hj ==/,
Y1
jwe*
H, = E,.

’

14!

Equation 22.16 allows us to express the characteristic
propagation factor v;’ by the intrinsic propagation fac-
tor 1, the mode integers n and m and the guide dimen-
sions @ and b as

NENCRE)
SN N Co

This factor must be complex or imaginary if the wave
is to be propagated, hence the angular frequency must

WA e (22.20)

¢ eFu*

The low-frequency limit designates the cut-off frequency
of the rectangular wave guide for the mode characterized
by the integers m and n. Its value for a loss-free me-

dium 1 is therefore
m\? n\?
(5) - (az)

\/ m\ 2 n\2
-G+ E)-
By choosing a = «, the rectangular guide is trans-
formed into the parallel-plane guide, and Eq. 22.21 be-
comes identical with Eq. 21.13.

As long as the loss in the dielectric and in the walls of
the guide can be neglected, Eq. 22.19 may be simpli-
fied to i

12 . ’ . @ vG 2
i =38 =3—J1—|\—
(31 v
( 2
14

The phase velocity of the wave pattern in the guide
becomes correspondingly

(22.21)

(22.22)

v1

w
ol

(22.23)

i =

its wavelength
(22.24)
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and group velocity

1 v\?
vg=——=1; |1 — (—) (cf. Eq. 11.19). (22.25)

Ve

dw

The product v;-v, is again equal to the square of the
free space velocity as established in Eq. 21.9. Figure
22.3 illustrates the frequency dependence of phase
velocity, group velocity, and wavelength.

D e

Fig. 22.3. Frequency dependence of phase velocity, group
velocity and wavelength of TM wave in rectangular guide.

The wave guide, as this figure shows, behaves like a
highly dispersive dielectric; the product of permittivity
and permeability falls below that of free space. This
can be seen by specifying a permittivity e,,’ and perme-
ability pgy’ of medium 1 in the guide and a phase velocity
of the interference pattern as

1

v = ———

! 7 4
V €g1 Mgl

in analogy to the expression for the phase velocity in
the unbounded medium

(22.26)

1
\/61'#1'

The ratio of the guide value to the free space values
of the dielectric constants and permeabilities becomes

(Eq. 22.23)
(2) -t (2
Vg e’ v/’

" (7.20)

(22.27)

For a loss-free medium 1, it follows from Eqgs. 22.19
to 22.22 that

’Yl' v\? v Uy
2 2 e =
Yis =) Ve Ve Vg
Jjwer” v fel' v 1
7112 - 712 ve N p ve Zy
By substituting these expressions into Eq. 22.18, we

arrive at the final formulation for the field components
of the TM modes in the rectangular loss-free wave guide:

mm nw
—C sin (—) y sin (—) 2,
a b
v v [mm mr . [nm
C—— <—) cos (—) y sin (—) z,
veU; \ Q a b
v v [ mar nw
E,=C—— (—) sin (—) Y COS (——) 2,
ve¥; \ b a b

(22.29)

(22.28)

E,

H, =0,
C v <n1r> . (m1r> (nr)
— ——{—)sin{—)ycos|— ]z
Z1 Ve b a b
Cv (’mﬂr) (TN/II') . (mr)
H,=——|—)cos|— )ysin|— )=
Zive\ a a b

It is apparent that near cut-off the longitudinal E,
component dominates the electric field, but with in-
creasing frequency the transversal components become
decisive and the wave approaches the character of a
normal TEM wave, as already evident from Fig. 22.3.

Returning to Eq. 22.17, we can derive, with the con-
dition E, = 0, the TE modes of the rectangular wave
guide and find for a loss-free medium 1, in analogy to
Eqgs. 22.29, the field components

E, =0,

v [nr mmr . [nT
E, = BZ,— (——> cos (—) y sin (——) 2,
ve \ b a b
v [MmT mrw nmw
E, = BZ,— (—) sin (—) Y COS (—) 2,
ve \ @ a b
mmr nw
—B cos (——) Y cos (—) 2,
a b
v U fmmwy | mar nw
H,=—-B—— (—) sin (—) Y COS (—) 2,
v Ui \ @ a b
v vy fnw mar na
B—— (—) cos (—) 1 sin (—) 2
v i \ b a b

L
[

n

(22.30)

e
8
ll

&
I




Measurement of Dielectrics in Shorted Wave Guides 73

The integers m and n indicate the number of half
wavelength or nodal lines which the interference wave
possesses in the y—z cross section of the rectangular
pipe. Thus the checkerboard pattern of Fig. 22.4 re-
sults, in which each individual mode of vibration can
be identified by the double integers m and n. These

Top view

End view
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Fig. 22.4. Identification of wave modes in rectangular guide by
integers m and n.

integers are used as subscripts in the mode designation,
that is, we refer to TE,,, and TM,,, modes. For the
index values m = n =0, the TM field components
vanish, and the TEy, mode degenerates into a constant
longitudinal magnetic component; for m = 0 or n = 0,
no TM modes are possible. The lowest-order modes
that may be supported by a rectangular guide are the
TEo; and the TE;y modes (Fig. 22.5). The lowest-

order mode of a wave-guide system is called its domi-
nant mode.

If the rectangular guide is opened up into a parallel-
plane arrangement (@ = ), the periodic functions con-
taining a in Egs. 22.29 and 22.30 are removed, the com-~
ponents with 1/a in the denominator become zero, and

y End view
TE o, mode R

= =
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Fig. 22.5. Lowest order modes in rectangular guide.

the factors (nx/b) are removed. The result is that for
n = 0 no TE wave exists between parallel-plate con-
ductors, and that the TM, mode degenerates into a
TEM wave with only transversal field components.
This wave is generated by connecting the two conduc-
tor plates to opposite poles of an oscillator. Such a
TEM or principal wave can obviously exist also in a
coaxial line, but not in any uniconductor wave guide.

23 * Measurement of Dielectrics in Shorted Wave Guides

In Secs. 16 and 20 it was shown how the dielectric
properties of a medium can be derived from the angles
of incidence and refraction and from the state of polari-
zation of the reflected and refracted beams. This is the
normal optical procedure employing traveling waves;
it is based on Snell’s laws and Fresnel’s equations.
Carried over into the microwave range these methods
become definitely inferior. Boundary effects arise be-
cause the wavelength is comparable to the sample di-
mensions, and standing waves are formed between
transmitter and receiver, producing intensity fluctua-
tions.

The macroscopic size of the wavelength, on the other
hand, proves of great advantage if the standing-wave

methods discussed in Sec. 18 are applied, because a de-
tector may travel directly through the profile of the
wave pattern. Drude’s two classical methods ! already
utilize this possibility and have since been employed in
many variations.? The use of open transmission lines
(Lecher systems?®) of the type shown in Fig. 23.1 has
been a handicap. An empirical calibration of the con-
denser system was required, and extreme care had to be

1P. Drude, Wied. Ann. 55, 633 (1895); 61, 466 (1897).

2 See, for example, G. Potapenko, Z. Physik 20, 21 (1923);
M. Seeberger, Ann. Phystk 16, 77 (1933); R. King, Rev. Sci.
Instr. 8, 201 (1937); K. E. Slevogt, Ann. Physik 36, 141 (1939);
H. Slatis, Ann. Phystk 36, 397 (1939).

3 E. Lecher, Wied. Ann. 41, 850 (1890).
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taken to avoid perturbation of the waves by the detec-
tor system and disturbance of the detector by stray
fields. These limitations have been overcome by en-
closing the electromagnetic field in wave guides.t All
boundary and stray effects thus disappear automati-
cally, and small amounts of a dielectric can be meas-
ured with precision on the basis of the theory given in
Sec. 18.

The type of wave-guide instrument, developed for
these measurements in the Laboratory for Insulation
Research during World War I1} is shown in Fig. 23.2.
A stabilized klystron oscillator radiates monochromatic
waves of a preseribed frequency into one end of a co-
axial line or hollow wave guide; they are reflected by a
shorting metallic boundary at the other end. Standing

coupling Tuner Glow tube
detector
Fig. 23.1. Drude’s arrangement for measuring the dielectric

constant of liquids in the microwave range.

waves are set up and can be measured by a probe de-
tector traveling along a narrow slot cut in the guide
parallel to its axis. The dielectric is inserted in the
closed end of the guide opposite the transmitter. For
the short-circuit measurement, the sample is placed in
direct contact with the metal short; for the open-circuit
measurement, it is located a quarter wavelength ahead
of the termination (see Sec. 18). It is essential that the
sample intimately fit the walls of the guide and the
shorting plate, and that its faces be perpendicular to
the guide axis.

The standing wave is measured in air (medium 1)
above the dielectric sample of thickness d (medium 2);
the terminating impedance Z(0) of medium 1 is found
by determining the ratio of minimum to maximum elec-
tric field strength and the distance zy of the first mini-
mum from the dielectric boundary. Since the detector
would be overloaded and the field distribution dis-
turbed if Ena.x were measured directly, the ratio
E nin/E nax s usually found indirectly by measuring the

48. Roberts and A. von Hippel, Phys. Rev. 57, 1056 (1940);
J. Appl. Phys. 17, 610 (1946).

5 A. von Hippel, D. G. Jelatis, and W. B. Westphal ‘“The Meas-
urement of Dielectric Constant and Loss with Standing Waves in
Coaxial Wave Guides,” NDRC Contract OEMsr-191, Labora-
tory for Insulation Research, Massachusetts Institute of Tech-
nology, April 1943.

distance Az between the two positions where the cur-
rent in the detector doubles its minimum value

ﬂ

Jgecn s = Tuner
@ | [@
Input ———f - I ::
E <-1--- Tuning detector
e B ---Coaxial line

Traveling --
detector
_________ Sample holder
Fig. 23.2. M.LT. coax instrument.
(Fig. 23.3). For a detector of “square-law’’ response

(I ~ E?), for example, a germanium diode, it can be
easily shown 45 that

Emin T Az

(f Emill <0 1) (23 1
or 5 . 0
E = )

max

Emax x1 ?

Z

T

Fig. 23.3. Measurement of standing-wave ratio with square
law detector.

The half wavelength \;’/2 in the air space of the guide
may be obtained by directly measuring either the dis-
tance between two minima of the standing wave with
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the traveling detector or by setting the tuning plunger
m the head of the guide to two consecutive resonance
positions.

As shown in the preceding chapter, the impedance
and the propagation function of a wave in a hollow
wave guide differ from their values in unbounded space.
We denote the quantities pertaining to the guide by a
prime and write the terminating impedance expression
of Sec. 18 (Eq. 18.4) as

Emin . 21!' X
—Jtan —-
max 1

5 Emin
1—-3

Z0) = Zy

(23.2)

21!'320

tan ;
max 1

Using the short-circuit method we have the additional
equation for the terminating impedance, as seen from
medium 2 (Eq. 18.9)

Z'(0) = Zs' tanh vy'd. (23.3)

The parameters Z,” and Z,’ may be called the char-
acteristic wave impedances of media 1 and 2 as distin-
guished from the intrinsic impedances. For the o’
parameters we introduced in Sec. 22 the name charac-
teristic propagation factor. All field impedances (E/H)
used here relate only to the transverse field components
because only these obey the continuity condition
(Eq. 14.9).

To measure the transverse components of the electric
field, we operate conveniently with TE waves and a
detector probe coupling with this electric field. Fig-
ure 23.4 refers in particular to the dominant TEgy,

Fig. 23.4. TEgy mode and standing-wave detector.

mode in a rectangular wave guide and shows the orien-
tation of slot and detector in relation to the wave
pattern.

The characteristic wave impedance for TE waves,
according to Eq. 22.30, is given as

(23.4)

whereas the characteristic propagation factor follows
from Eqs. 22.22 and 22.27 as
, v

0 i el
Vg

(23.5)

hence
7'y = Zy. (23.6)

Since for nonmagnetic dielectrics Ziv; = Zyvs (see
Eq. 7.25), it follows that

7
i bz e,

{/

Y2

(23.7)

Hence Eq. 23.3 may be rewritten for nonmagnetic

dielectrics
. 7 tanh ’72’d
Z0) s Byl e s,
v2'd

Equating Eqs. 23.2 and 23.8 and noting that medium 1

(23.8)

.2 :
is loss-free ('yl' =3 )\_:';)’ we can derive vy’ from the

measured quantities by the expression

Emin . 27"1;0
T — 7 tan —-
tanh ‘)’2’d _])\1’ Eax )\1,
72’d 21l'd 3 Emm 27"370
f—=g an —-—
Emax )‘11
= (e, (23.9)

The function Ce’* is found by measuring the thick-
ness d of the sample, the wavelength A’ in the air-
filled pipe, the inverse VSWR Ein/Fmax, and the dis-
tance xy of the first minimum from the surface of me-
dium 2. Next the function

vo'd = Te" (23.10)

has to be determined from charts or from a series ap-
proximation of the function

tanh Te'™
Tei™

= Ce*. (23.11)
In Fig. 23.5 a survey map drawn by S. Roberts ¢ is
given, with the argument r the ordinate, the absolute
value of T the abscissa, whereas C' and { are parameters
of intersecting curves; 7 and ¢ are expressed in degrees.®
The hyperbolic functions are multivalued so that meas-
urements with a single thickness d of the dielectric may
leave the value v5’ in doubt. But if two different thick-
nesses are used, only one set of values 7/d and r will
satisfy both experimental results.

8 Detailed charts may be found, for example, in the companion
volume, Dielectric Materials and Applications, Technology Press
of M.I.T. and John Wiley and Sons, New York, 1954, Sec. II
A, 2.
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After the characteristic propagation factor v’ is
obtained, the intrinsic propagation factor vy, of the
dielectric in free space can be calculated from Eq. 22.19

as
In 3 mr\2  [nr\?
oS A =) Rl et I
a b
We may rewrite this expression by referring to the cut-

off wavelength A, of the guide. From Eq. 22.21 it fol-
lows that

(23.12)

N=to—— 1 . @313
Ve m\? [ n\?
\/ G+ @)
hence, according to Eq. 23.12,
2 2 2r\?
7't = v2" + (Z) . (23.14)

Since for air as the loss-free medium 1 the correspond-
ing equation may be written as

- 2\ 2 5 2m\?
7?2 = — (=) = —Pemo+ (=) + (23.15)
Xl >‘¢

we may express the complex dielectric constant of a
nonmagnetic medium 2 finally in the convenient form

(1 2 721 2
! ) (R (6.0
— Y2 Rc) ( 21r)
62* = wzyo = € ( 1)2+( 1 )2' (23.16)
e A
The cut-off wavelength for the lowest order waves in
the customary types of wave guide are

rectangular pipe A, = 2 X width (see Fig. 22.5),

1.71 diameter,

round pipe A,

0,

coaxial line A,

For the TEM wave of the coaxial line Eq. 23.16 reduces

therefore to 5
o (‘Yz)
€2 = €'\ v .
¥

Summarizing, the procedure of determining e * begins
with measurements of £min/E max, %o, d, and A;’. From
these measured values, C and ¢ are calculated with the
help of Eq. 23.9. From C and { the values of T and =
are found from charts or by a series approximation. By
dividing Te’™ by d, v,’ is obtained; finally e* is deter-
mined from v," by Eq. 23.16 or 23.17.

In complete analogy to this short-circuit method
based on the equation

Z'(0)s = Zy' tanh v5'd,

(23.17)

(23.3)

we can use the open-circuit method, in which a quarter
wavelength of dielectric is inserted between medium 2
and the shorting plate. This arrangement (see Eq.
18.14) leads to the expression

Z’(O)o = Zg’ coth ‘)’2'd. (2318)

Since the hyperbolic tangent and cotangent are recip-
rocals of each other, the product of the two types of
impedances is

Z'(0):Z'(0)o = Zy". (23.19)

The characteristic wave impedance of a dielectric is the
geometrical mean of its short-circuited and open-cir-
cuited impedances. Thus Z,’ can be found without
reference to hyperbolic functions if both input imped-
ances for the shorted and for the open dielectric are
measured. This suffices for nonmagnetic materials,
since Zy' determines vo’ (see Eq. 23.7). Magnetic
materials, on the other hand, require a separate calcu-
lation of Zy' and vy’ because the impedance contains
the ratio, and the propagation factor the product of
pe* and e*. In this case we have to exploit the short-
circuit method as well as the open-circuit method to
their full extent.”

" For permissible simplifications of these methods, see W. B.
Westphal in Ref. 6.

24 - Short-Circuited Guides and Cavity Resonators

The standing-wave method of Sec. 23 has the advan-
tage of depending only on the wave-guide section be-
tween detector probe and shorting plate. The input
part of the guide between the detector and tuning
plunger (cf. Fig. 23.2) does not enter into the final re-

sult; the setting of the plunger affects only the inten-
sity of the standing-wave pattern. Thus we are freed
of the errors inherent in the imperfect contact between
tuning plunger and guide walls, but we have to put up
with a traveling detector requiring a slotted line and



78 Macroscopic Approach

appropriate shielding. The shielding problem has been
solved satisfactorily, and most of the precision instru-
ments used today employ traveling detectors and
slotted wave guides. However, if we want to avoid
this approach, we have the alternative of measuring
the input impedance of the whole guide as a function
of its length or of the exciting frequency. The guide
in this case serves as a cavity resonator.

The impedance of a shorted line

We have already encountered resonance phenomena
in our discussion of interference optics (see Sec. 18)
without referring to them explicitly. Equation 18.9
describes the input impedance of a dielectric resonator
as a function of its length, and Fig. 18.3 illustrates how
the reflection from a dielectric layer varies from reso-
nance to antiresonance as the layer thickness increases.
Let us return to this equation and examine in more de-
tail the input impedance of a wave-guide section ex-
tending from « = 0 to z = | and terminated first at [
only, later at both ends, by a metallic short circuit.

Seen from x = 0, the input impedance of the shorted

line filled with a medium 1 is
Z'(0) = Z,' tanh v,'l; (24.1)

the primed quantities refer, as previously, to the field
in the guide. Without attenuation the equation simpli-
fies to

2
2(0) = Z,'j tan Xl I (24.2)
1

the field in the guide consists of the real components
(see Eq. 17.10)
; . 2r
Re (E,1) = 2E, sin ot sin 3 (x =10
1
(24.3)

2E0 27
Re (H,;) = — cos ot cos — (z — ).
Zy M

The standing electric and magnetic waves in front of
the short circuit (Fig. 24.1) are displaced with respect

———r——

|
[
3)
a
I
—_ X

Fig. 24.1. Standing-wave in front of short-circuited guide.

to each other by a quarter wavelength in space and by
a quarter period in time.

The impedance Z’(0) is obtained by measuring at
z = 0 the amplitude ratio of the E and H field and the
temporal phase angle between the field vectors. E and
H of Eq. 24.3 are in time quadrature, and the imped-
ance is purely reactive. It is zero at the end of the
line (at I), varies from 0 to 4+ as the reference point

is moved backwards a quarter of a wavelength, at this

A 7
point jumps to —, and returns to 0 again at [ — —21— )

/Anﬂresonunce\

y

2 |
5 X |
5 I

E-Lb |

0 L —X !

Resonance g,.%. i-l% 2

e I !
5 I

g -yX i }

g I |

o | |
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Fig. 24.2. Reactance of loss-free line, shorted at x = L.

At an even number of quarter wavelengths the line is
in resonance, at an odd number of quarter wavelengths
in antiresonance. While lengthening the line from reso-
nance to antiresonance, we note a positive or inductive
reactance; further extending it from antiresonance to
resonance, we observe a negative or capacitive reactance
(Fig. 24.2).

For the general case of a shorted line with attenua-
tion (v’ = a + jB), Eq. 24.1 may be rewritten

Z'(0) = Zy’ tanh (a« + jB)l = R + jX. (24.4)

Since
sinh (@ 4+ jB) = sinh « cos 8 4 j cosh a sin g,

(24.5)
cosh (o + jB) = cosh @ cos 8 + j sinh a sin g,

the resistance R and the reactance X of the guide section
become
sinh «l cosh al

cosh? al cos? Bl + sinh? ol sin® 81

R=Z1,

(24.6)
sin Bl cos Bl

! cosh? ol cos? Bl + sinh? of sin® 81

X=1Z
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These relations may be mapped conveniently in the
eomplex plane by plotting the normalized resistance

and reactance,
= R/Z].,)

® - X/ZII:

as the abscissa and ordinate respectively, and by draw-
ing, in addition, lines of constant attenuation, ol, and
of constant phase, 8l. These lines prove to be two
families of circles (Fig. 24.3).! The circles of constant

(24.7)

X
BI=60°

wfl=0.52

Fig. 24.3. Circles of constant attenuation (al) and constant
phase (BI).

ol have their centers on the r-axis at an abscissa r;;
their radius is p,, where

r1 = coth 2al
(r —r)? + ®? = pa*

pa = CSC 20l = 2l

(24.8)

H e—2al

The circles of constant 8l have their centers on the (x)
axis at an ordinate (x); and have a radius pg, where

®)1 = —cot 24,
”? + (® — ®1)? = pd%, (24.9)
ps = csc 241

Thus the impedance circle diagram of Fig. 24.4 re-
sults, in which all the cireles of constant attenuation sur-

‘1 See, for example, J. C. Slater, Microwave Transmission,
MecGraw-Hill Book Co., New York, 1942, pp. 30 ff.; W. Jackson,
High Frequency Transmission Lines, Methuen and Co., Lon-
don, 1945.

round the point 7 = 1, (x) = 0, whereas all the circles of
constant phase, 8l, pass through this point. We read
this diagram as follows. If the attenuation of the wave
guide is constant, we trace out a circle al = constant
as the length of the line increases. Since the phase

4
function varies with 281 = G l, this circle is described

h 1o® 100>
-z p— \\

Fig. 24.4. Impedance circle diagram of transmission line.

once for each increase of the guide length by A\,’/2.
Starting, for example, from A we arrive at B, C, D,
and A again by lengthening the line in successive steps
of one eighth of a wavelength. Actually, the total at-
tenuation increases with the length of the guide; hence
we shall not arrive at A again after one full turn but at
some point £ of higher attenuation. We do not travel
on a circle ol = constant, but on a spiral, which gradu-
ally winds up to the point r = 1, (x) = 0 (Fig. 24.5).
This situation is identical with that discussed previ-
ously for the reflection coefficient ry as f(d) (see Eq.
18.18).

The radius vector from the origin of the circle dia-
gram to any point of the spiral represents in magnitude
and phase the normalized impedance Z'(0)/Z,’. It is
small and purely resistive when the length of the wave
guide corresponds to an even number of quarter wave-
lengths, and large and purely resistive when the length
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corresponds to an odd number. These are the cases of
resonance and antiresonance; at intermediate lengths
the reactance is inductive or capacitive in accordance
with Fig. 24.2.

Fig. 24.5. Impedance spiral as function of line length.

The Q of cavity resonators

The preceding discussion of the shorted line pre-
seribed only a short circuit at = I while leaving the
boundary condition at the input end (z = 0) unspeci-
fied. The term resonance really implies the existence
of some reflector at ¢ = 0 and the build-up of high field
amplitudes by multireflection between the two termina-
tions. We have to ask whether or not the introduction
of a real boundary at x = 0 changes the impedance
expression (Eq. 24.4).

Obviously, if we tune the guide to a multiple of half
wavelengths,

I =n\'/2 (withn =1,2,3...), (24.10)

and transform it into a cavity resonator by shorting at
x = 0, nothing will change (Fig. 24.6). The wave pat-

Line

Cavity

Fig. 24.6. Transformation of line into cavity resonator.

tern in this special case can fulfill the short-circuit
condition at both ends. For any arbitrary length I,

however, a phase mismatch results between the stand-
ing wave building up in front of the shorting plate at

z =1 and that required by the boundary at z = 0.
Destructive interference ensues, and decreases the
standing wave amplitude. But the impedance expres-
sion (Eq. 24.4) remains valid for z > 0 since its only
prerequisite is that a wave entering from the left is
totally reflected at z = ! and superposes with the re-
turning wave to a standing-wave pattern.

The field energy of the standing wave alternates be-
tween electric and magnetic energy storage. For a
resonator filled with a nonmagnetic medium, this
energy is (see Eq. 11.11)

U= f woH? AV = f wY2E2dV;  (24.11)
14 Vv

the field strength and the characteristic wave admittance
Y’ = 1/Z’ in the cavity varies from point to point,
depending on the geometry of the resonator and the
type of mode excited.

The energy oscillating in the cavity can be charac-
terized by the energy input sustaining it. If the volt-
age across the input probe is kept constant, the field
strength £ remains constant and the sustaining energy
is proportional to the square of the input admittance
Y’(0). By plotting Y’(0)2 as f(I) or f(v), a resonance
characteristic of the cavity is obtained.

The input admittance of the resonator follows from
Eq. 24.4 as

1
Y/(0) = coth (a + jB)l.

Z0) 2z

The absolute value of the coth function is the square
root of the sum of its squared real and imaginary parts or

| coth (« + j8)1 |
cosh (a + jB)I }
sinh (a + 78){
J sinh? ol cosh? al 4 sin? Bl cos? Bl

(sinh? ol cos? Bl + cosh? od sin? BI)2 .

(24.12)

(24.13)

If we are interested only in the behavior of cavities of
low attenuation and in small phase deviations A from
resonance, the approximations

sinh? al — (ad)?,

cosh?al — 1,

(24.14)
sin? gl — A?,
cos? Bl — 1,
hold. Hence Eq. 24.13 simplifies to
1
| coth (a + j8)I| = /m- (24.15)
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When the guide is approximately tuned to resonance,
equals about a multiple of half wavelengths (see Eq.
24.10), and «l may be replaced by
an\’ «
= — .
2

Thus the square of the input admittance may finally
be written for small variations from resonance

1

1
Zl2 2
y A% 4 (g'mr)
B

The energy delivered to the guide varies with ¥’(0)?
and falls to its half value, when the line is detuned from
resonance by a change in phase

al ~

(24.16)

Y'(0)% =

(24.17)

Ap o
A=—=+&—nm
2 B

This detuning can be accomplished by changing the

(24.18)

Azxp,
cavity from its resonance length I to I & 5 The

change in length producing the required phase change
is (see Eqs. 24.18 and 24.16)

(24.19)
Alternatively, the phase shift can be produced by

changing the input frequency from its resonance value
Ay

B !
vo t0o v = o Since
Azx Ay,
ey (24.20)
l Vo
the energy input falls to its half value, when
Avy, a
— = 4+ —p. (24.21)
2 B

Az, and Avy, the half-width of the resonance character-
istic, represent the distance between the two half-
power points in the line-length scale and in the fre-
quency scale, respectively (Fig. 24.7). The relative
half-width or relative phase change between the half-
power points,

ASCh Avh A h

o
l Vo g nr

is identical in both scales.

To interpret this characteristic property of a resona-
tor, we recall that, according to Eq. 9.26, for TEM
waves and low loss (tan?s < 1)

; (24.22)

2 g ~ tan é. (24.23)

Hence the relative half-width is equal to the loss tan-
gent, or its inverse, according to Eq. 9.2, is equal to the
Q of the resonator,

B nr [ reactive v-am
apfat L 2eg lleri raa(24024)
watts
This quality factor of a resonator can be visualized
in a still different way by referring to the transient be-
havior of the cavity. The energy content of a free

TI.0

®
2
=
o
[z
Axy g--O.S Ay
| 1
z %
X —3 V—>

Fig. 24.7. Half width of resonance characteristic.

oscillator, if not replenished, is attenuated exponen-
tially and falls to 1/e of its original value after a time
(see 11, Eq. 4.18),

1

T =
2w Avy,

[see]. (24.25)

Consequently,

r=— [sec] (24.26)

o
is the ringing time of the resonator; or, if Ty = 1/
designates the time required for one oscillation, the ratio

T Q

s B 24.27
TO 27 ( )

represents the number of free oscillations required to
reduce the energy content of the resonator to 0.368 of
its starting value.

The great advantage of cavity resonators is their
excellent “ringing” quality in comparison with that of
open-line resonators. Since no energy is lost by radia-
tion, @ values of 10* can be obtained without much
difficulty, and even 10 may be realized by the excita-
tion of favorable modes in large cavities, whereas values
not higher than 10° may be expected from an open
transmission line in the microwave region. It is this
high @ which enables us to measure low-loss dielectrics
in closed-wave guides with high precision.

Measurement of dielectrics in tuned guides

In Sec. 23 we have shown how the dielectric proper-
ties of a material can be evaluated in a shorted line
from the ratio of minimum to maximum field strength
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and the distance of the first minima from the dielectric
boundary. In place of this ‘“inside’”’ method, which de-
termines the standing-wave pattern in the line with a
traveling detector, we now have an alternative “out-
side” method which obtains the @ of the cavity and its
resonant length or resonant frequency from the input
impedance. Obviously, the two methods are closely
interrelated, and, for low loss, the choice between them
is essentially one of experimental convenience. For high
loss, the traveling detector method is superior because the
resonance characteristic becomes asymmetrical, and the
distance between the half-power points loses its simple
meaning.

To establish the connection between the two tech-
niques for low loss, we return once more to the standing

Tuning Tuning
(plunger (plunger

[V

Empty resonator

(Sample

Resonator with sample

Fig. 24.8. Effect of dielectric on resonator length.

wave in the shorted line. Through superposition of in-
cident and reflected wave, the standing electric wave
results,
E@) = Eoejwt{e—n’(z—l) = en’(:z—l)}
= —2Eu ™ sinh {(« + j8)(x — I)}. (24.28)

By expanding this equation and using the approxima-
tions of Eq. 24.14, we obtain the simplified expression

E(z) = —2E“t{a(x — 1) cos Bz — 1)

+ jsin Bz — )}, (24.29)

7

. A nA
For the resonating wave guide (l = — ) we observe

2

at £ = 0 a field strength minimum

Bin = 0l2Boe™ = alBpa, (24.30)
hence (cf. Eq. 24.24)
Bl =2 GTPNE < (24.31)
Eoax B2 QN

By inserting a dielectric of the thickness d into a
tuned guide, we alter its original resonance length z, =
myA’/2 to a new resonance length (Fig. 24.8)

mahy’

+ 29+ d
(wherem =0,1,2,3, ...).

To =
(24.32)

Thus the retuning distance, 5 — z;, is a measure of ;.

The Q has to be measured for the empty and for the
filled guide in order to separate the losses of the cavity
proper from those of the dielectric. Since the wall
losses of the cavity produce an attenuation factor a,,
which adds to the a of the dielectric material, the ob-
served loss tangent is the sum of the loss tangent of
dielectric and guide.

tan § = tan d; 4+ tan §,

or (24.33)
1 1 il

Q Q Q
After the Qg4 of the dielectric has been obtained, its
propagation factor v’ can be evaluated 2 as in the pre-
vious method (see Eq. 23.9), except that the ratio
E in/E max is replaced by the expression of Eq. 24.31.
Thus

wl . 27zq
tanh v4'd 5 gyt IR
2 d
— = —. (2434
vo'd 27d .owl 210
1—3 tan
Qa\y/ N

2 See, for details of this resonance method, W. B. Westphal in
Ref. 6, Sec. IT A, 2.

25 - Treatment of Field Phenomena by Equivalent Circuits

Thus far, we have used the language of the field
theory in discussing the propagation of electromagnetic
waves and their reflection and refraction on dielectric
and metallic boundaries. Frequently, however, it may
prove convenient to handle field phenomena by an
equivalence approach in which the role of the electric

and magnetic fields in space corresponds to the inter-
play of voltages and currents in electric circuits com-
posed of the proper capacitance, inductance, and re-
sistance elements.

This equivalence, in the case of guided waves, may
be a real one: the electromagnetic field patterns in
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space are one aspect of the physical phenomenon, the
charge and current distribution in the guide structure
its complement. Knowing the one we can derive the
other unambiguously. Let us illustrate this comple-
mentarity for the TEM mode of a coaxial wave guide

(Fig. 25.1).

Fig. 25.1. Relation between E-H field and voltage-current

distribution in coaxial line.

The electric flux density, and with it the electric
field strength, in a system of cylindric symmetry, falls
with 1/r; hence the field intensity at any distance r
from the center and the total voltage U between the
conductors can be expressed as

Eir;

r

E, =

(25.1)
Ta ra
Y =f E.dr = Eyr;In—-
ri T

The field strength E; at the center conductor is pre-
scribed by the free-charge density on this conductor
surface (see Eq. 2.4). If dQ designates the true charge
density on a section element dl of the coaxial cable,
this field intensity is

dQ
€ 2rmr dl

(25.2)

Introduced into Eq. 25.1, it determines the capacitance
of the cable element as

c E@ _ €2mdl

0 In (ra/a‘

(25.3)

Thus the voltage U between the conductors and the
capacitance per unit length of coaxial cable

2me

" In (ra/r)

are given when the geometry of the electric field, its
magnitude at one point, and the dielectric constant of
the filling medium are prescribed.

(o} [farad m™!] (25.4)

The current flowing in the cable may be found from
the line integral of the magnetic field encircling the
conductors (Ampeére’s circuital law, Eq. 5.5). For any
distance r from the center we obtain for the current
enclosed

I= f H,-dl = 2rrH,. (25.5)

In the field space between the conductors this line inte-
gral is constant, since (see Eq. 25.1)

E, o)
rH, =r— =

Z  Zln (re/7) ; (25.6)

the enclosed current is that traversing the inner con-
ductor. Forr > r, or r < r;, that is, in the metal walls
of the conductors, the electric field E,, and with it H,
and the line integral of the magnetic field, falls rapidly
to zero, indicating that no net current is enclosed. The
current streaming along the outer conductor is equal
and opposite to that passing along the center conduc-
tor, and both currents are limited to surface layers as
already discussed in Sec. 19.

From Eqgs. 25.5 and 25.6 we obtain the ratio of volt-
age to current in a differential length of the coaxial line,

) In (re/rs)

e

25.7
' 2m i

The ratio of transversal voltage to longitudinal current
is called the characteristic impedance of a wave guide,

Z, =/l (25.8)

It plays the same role in the discussion of transmission
line circuits that is assigned in the treatment of electro-
magnetic fields to the ratio of transversal electric to
transversal magnetic field intensity, that is, to the
characteristic impedance Z’. (For TEM waves, Z’ re-
duces to the intrinsic impedance Z of the dielectric.)

Knowing current, voltage, and capacitance of a line
section we can derive its inductance from the fact that
the electromagnetic field carries equal amounts of elec-
tric and magnetic energy (see Egs. 11.6, 11.7, and
(11.11). Thus

LI% = Cv?, (25.9)

and the inductance per unit length of coaxial cable

Ta

’
L=CZ2 = 21111 [henry m~Y]. (25.10)
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A circuit description by capacitance and inductance
alone obviously neglects the existence of dielectric and
conductor losses in the cable. To include such losses
properly in the equivalent picture requires a separate
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consideration of the electric and of the magnetic field
action.

The electric field causes a polarization loss in the
cable segment dl,

= 36V

due to the dielectric conductivity o of the filling medium
(see Eq. 1.16). Thus an equivalent conductance per
unit length of coaxial cable can be defined,

1 1

Ta
ra\2
(»7)
ri

which shunts the capacitance of the wave guide. The
magnetic field, if p”’ 5 0, produces an analogous power
loss in the dielectric during the magnetization cycle

(25.11)

[mho m™!], (25.12)

(2 f “WoH,2 dr) dl = AR,I? dl. (25.13)

In addition, by inducing the current I, it causes a
power loss in the wall resistance of the guide section,

dP, = (3R,I?) dl. (25.14)

Both these losses weaken the induced current; they act
like an equivalent resistor

R =Run+ Ry

placed in series with the inductance L in the current
path. Consequently the complete circuit analogue of
the cable section dl is the equivalent circuit of Fig. 25.2.

(25.15)

L/2 } L/2 L2 | L

df i

Fig. 25.2. Equivalent circuit of coaxial cable section.

The power loss due to wall resistance may be calcu-
lated from the magnetic and electric field intensity at
the conductor surfaces. The relation between these
fields is given by the intrinsic impedance Z; of the metal
(see Eq. 19.5), and shows that the electric field

Eu, _— HwZ2 =i Hw‘\/ jw[.tzl/0'2 (2516)

leads the magnetic field in temporal phase by 45°; thus

the magnitude of the in-phase electric component is
E.,//2j. Recalling that I = 2rrH,, we may express
the wall loss in the section dl of the cable by the product
of the magnetic and the in-phase electric field at the
surface of the inner and outer conductor as

dP <1H2 HoZs  lyo ”)dl
w =\ Hd2rer —= + - Hrim —=
2 w\/2_1 2" W\/2_J

B [1 12(1 + 1) Zs ]dl
“l2er\r, T n/ Vol
Equating the expressions 25.14 and 25.17 yields the
equivalent wall resistance per unit length of coaxial cable

(25.17)

1 Jow’ (11
Bo= o J22 (24 2) hmm (2519

2r N 209 \ry T

The power dissipated in a wave guide section is, in
general, only a small fraction of the transmitted power

P,, that is,
dP, = P,(1 — e”2*) dl ~ P2a, dl. (25.19)

Since the transmitted power is determined by current

and characteristic impedance as
P.dl = 3I%2Z. dl, (25.20)

the attenuation constant of the coaxial cable due to wall
losses follows as

1pR,
Qy = ——
I’Z,
1 £l 1 il
S (— i —) ——  [neper m™1].
2Z N 209 \ro ri/ In (ra/73)
(25.21)

For TEM waves there exists thus a true complemen-
tarity between the electromagnetic field in space and
the current-voltage distribution in the guide system.
The equivalent circuit of Fig. 25.2 corresponds to an
actual alternative picture. Extended to all types of
guided waves the equivalence loses this physical mean-
ing and becomes a formal representation based on the
requirement that the power flow and the energy storage
in the equivalent circuit shall be the same as in the
wave guide.

The parameters of the equivalent circuit (Fig. 25.2)
in this general case have to be determined by equating
the field energies of the electric and magnetic field,
stored and dissipated, to the energies stored and dissi-
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pated in the corresponding circuit elements, that is,

ovial =% f ¢E*dV,

iLrdl =1 f WH? 4V,
(25.22)
1RI?dl = 1 f w"wH? dV + Py, d,

1GV2dl = %fe”wE’z av.

Current and voltage are assumed to be constant over
the length dl of the infinitesimal guide section whereas
the electric and magnetic fields may vary over the cross
section of the guide in accordance with its geometry
and the type of mode excited.

For TEM modes it follows from these equivalence
expressions that we can change over from the equations
of the field theory to those of the circuit theory, and
vice versa, by replacing

E & 0,

H < I,

¢ & C,
(25.23)

w o L,

d'w o G,

p'w o R.

The complex propagation factor of the electromagnetic
waves

= jw\/e* * = V(W0 + jou') ("o + jwe’)  (25.24)

is thus transformed into the propagation factor of a
transmission line

v =a+j8 =V (R + joL)(G + juC), (25.25)

and the intrinsic impedance of a dielectric
.U* p."w _+_ N w#I
S gy duit e (25.26)
e* 'w + jwe
into the characteristic line impedance

[R + joL
= —+J—“’H (25.27)
G + juC

The wave equations of the electromagnetic field for E

(and H),

62
VE = e*,u*—atT = +’E, (25.28)

change over into the so-called telegrapher’s equations for
U (and 1),

2 2

a“0
&~ Bev+ @6 + RC) = + LC—z (25.29)

The theory of propagation, reflection, and refraction of
TEM waves in space becomes the current-voltage
theory of transmission lines, where each line with its
characteristic network elements (Fig. 25.3) is the

TEM wave in space

Transmission line representation

%o 2 Zy % 2

Representation by 4 terminal networks

N, Ng Na |'1']z.
—

Fig. 25.3. Equivalent representations of sequence of dielectric
layers traversed by TEM wave.

equivalent of a dielectric bounded laterally by some
conducting structure, and where the lengths, termina-
tions, and combinations of such lines are the variables
of the problem.

The resonance discussion of the preceding section
was based on the special case of low loss (al K1, see
Eq. 24.14). In the language of the line theory this
means that the power transmitted through a line sec-
tion is much larger than the power dissipated in it,
or G K wC and R <K wL. Under these conditions the
attenuation factor o and phase factor 8 of Eq. 25.25

simplify to
_R\/E_I_G\/E[—l
oz NT iz gt

8=wVLC [m7]

(25.30)

The current and voltage waves are propagated along
the line with a phase velocity (see Eq. 7.17).

| €

(25.31)

Q|

T8 \/
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If the line is shorted at ! and tuned to resonance (see
Eq. 24.10),

Bl = nr (@ = 15203l )E: (25.32)
the resonance frequency becomes
B nw
=——= = 25.33
“TVIC WIC @28

The Q of the resonator (see Eq. 24.24) for dominating
wall losses (R > @) is accordingly

L ILI?
Q= B _wl_ 9y o R
2a R <l) RI?
2
average energy stored per half cycle
- 2r xS L . (25.34)

energy dissipated per half cycle

in agreement with our earlier definition (see Eq. 9.2).
In the opposite case of dominant conductance loss in
the dielectric (G >> R), the @ expression becomes

/3 woC

"2 @
1cv? [volt X ampere

"1
(—) Gv?
2v
Equations 25.34 and 25.35 represent the @ of a resonat-
ing coil and of a resonating condenser, respectively.
It is this complementarity between electromagnetic
fields in bounded space and current-voltage distribu-
tions in the guide system that confers on the microwave

techniques their special flexibility and fascination. In
normal optics the propagation of waves can, in gen-

Q

= ] (25.35)
watt dissipated

eral, be influenced by dielectric means only. In micro-
wave optics it may be altered by changes in the dielec-
tric medium or in the geometry of the guiding walls
(see also Appendix A, I, 15).

The correlation between fields and current-voltage
distributions ceases to be of importance when the wave-
length becomes either very much smaller or very much
larger than the guide dimensions. In the former case
the waves lose their guided character, and we approach
the laws of propagation in free space as formulated in
the language of the field theory in previous sections.
In the latter case the space dependence of the wave
phenomena can be neglected. The line, previously
composed of distributed parameters, that is, of a se-
quence of network elements where voltage and current
vary from element to element, reduces to one single
circuit of lumped parameters in which all parts of a con-
denser electrode are at the same voltage and all sections
of an inductance or resistance are traversed by the same
current at any given moment. Only the time depend-
ence of current and voltage is essential in lumped cir-
cuit analysis; space considerations have become unim-
portant except for an actual determination of the mag-
nitude of the circuit parameters by analytical calcula-
tion or geometrical field mapping.

In spite of this disappearance of a physical comple-
mentarity, it may still prove useful to compare the
time and frequency dependence of some phenomenon
with the response of an electric equivalent circuit com-
posed of the proper lumped network elements. Once
the rules of translation are established, an electric net-
work analysis may prove a powerful method of eluci-
dating phenomena which are not directly accessible.
We shall illustrate this “approach by analogy’’ in the
next section by giving a circuit interpretation of some
typical dielectric characteristics.

26 - Representation of Dielectrics by Lumped Circuit Equivalents

In Sec. 1 of Part I of the book we introduced the
concepts of a complex permittivity and complex perme-
ability by considering the current-voltage characteris-
tics of a capacitor and of a coil. We then incorporated
these concepts into the field theory and studied the
interaction between fields and matter in its macro-
scopic ramifications. Thus it became clear how static
fields as well as electromagnetic waves are influenced
by the polarization and magnetization of dielectrics,
and how this interplay between fields and matter leads

to measuring techniques for determining e* and p*.
What really happens in dielectrics the macroscopic
theory cannot reveal; it can only give some phenom-
enological description in pictures taken from its own
range of experience. Customarily it takes the stand-

point of the electrical engineer and visualizes the mate-
rial as equivalent to a two-terminal network of lumped
circuit components. With a consideration of this inter-
pretation our macroscopic discussion completes its full
cycle and returns to the capacitor of Seec. 1.




Representation of Dielectrics by Lumped Circuit Equivalents 87

The current-voltage diagram of Fig. 1.2, measured
for a capacitor dielectric at one frequency only, allows
any number of circuit interpretations. The simplest
equivalent picture would be that the capacitor housing
contains an ideal condenser C; and a resistor R in series
or in parallel combination (Fig. 26.1). How well either

g e

g.
a
[\ @) %R

CiT Rg (b)

w —>

Fig. 26.1. Simplest equivalent circuits for capacitor dielectric.

one of these circuits simulates the behavior of the actual
dielectric can be established only by calculating the
frequency response of these networks and then com-
paring them with the dielectric response characteristic
actually observed.

In the series arrangement the applied sinusoidal
voltage equals the sum of the voltage drops across the
resistor and the capacitor; in the parallel arrangement
the total sinusoidal current is equal to the sum of the

currents passing the two circuit elements. Hence we
obtain:
Series Arrangement Parallel Arrangement
Idt
G e« gl o N ads
C; R dt
1 I
= I(R + ]w0i>’ = I—B + ij,), (261)
v 1 Tan 1 5 o
Z=7=R+jw0€1 Y=6=E+]w01

In terms of the complex permittivity, a capacitor
of the geometrical capacitance Cy has the admittance
(cf. Eq. 1.10)

. wCo
= (¢ +je) =

€0

Y = (26.2)

N[~

By equating the admittances of the two circuit arrange-
ments to this expression, we arrive at the equivalent
values for the relative dielectric constant, loss factor,
and loss tangent:

Sertes Arrangement Parallel Arrangement
, e C,‘ , Ci
=E—-— K = —»
e Coll + (wRC))? Co
e’ wRC 2
K= — =————————= K = » (26.3)
e Co[l + (wRC)? wRCy
tan & = wRC;, tan § = .
wRC;

Obviously, as Fig. 26.1 shows, the frequency de-
pendence of these two elementary circuits has com-
pletely different trends. Proper combinations of both
circuits may therefore produce a variety of response
curves with maxima or minima of the loss tangent
which may fit an actually measured frequency charac-
teristic when neither of the elementary circuits will.
Figures 26.2 and 26.3 show two typical examples: the
frequency characteristics of water and of the capacitor

85 L%
—

75 5

0 tan

1.0

0.l

----- RC Circuit
0.0l HZO
0.001 1 1 L

1 1 L 1
102 10> 10* 0% 10° 107 10 10° 10°
Frequency in cycles per second

Fig. 26.2. Frequency response of water and its representation
by equivalent circuit.

fluid, Pyranol,t at room temperature. Obviously, even
a simple three-element equivalent circuit may provide
a relatively good fit over an appreciable frequency
range. That the equivalence between the lumped cir-

t Pyranol 1476 (a mixture of isomeric pentachlorodiphenyls),
General Electric Co., Pittsfield, Mass.
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€/e,

0.0l

0.001

0.0001
102 0®> 0% 10° 108 107 10° 10° 10
Frequency in cycles per second

Fig. 26.3. Dielectric characteristic of Pyranol and approximation
by equivalent circuit.

cuit and the dielectric material is a purely formal one
is der.1onstrated in Fig. 26.4 by the alternative placing
of the series capacitor shown in Fig. 26.3. The two

= 5000 pu f

s5860upf 9.95 ohms

Ej 2300upf
2700 f-.E %
e 47 ohms

Fig. 26.4. Two equivalent networks.

circuits are undistinguishable by two-terminal meas-
urements.

Dielectric spectra that can be represented by com-
binations of RC circuits are called relazation spectra.

i}

2

2

Fig. 26.5. Network representing the simplest type of relaxation
spectrum of a polar material.

A common criterion of such spectra is that, whereas the
loss tangent as function of the frequency may rise and

fall, the dielectric constant can only stay constant or
fall, as the frequency increases.

The network corresponding to the Pyranol curve
represents the simplest type of relaxation spectrum
encountered in polar dielectrics and may therefore be
discussed in some detail for future reference (Fig. 26.5).
Its admittance is

1
Y= ] C e L)
(Jw 1+Z2>

1
Zy = Ry 4+ ——
2 2+jw02

where (26.4)

If the capacitor Cs is charged to a voltage Vo and then
the circuit shorted across the R,Cs combination, the
voltage Uy across the condenser will decrease as func-

. ' do
tion of time and cause a current flow C, th through

the resistor. Hence, for the partial circuit EyCs, the
transient equation holds

dUs
RyCy E‘ + V2 =0 (26.5)

with the solution
t

Vy = Ve F4, (26.6)
The voltage drops exponentially with a relazation time
T = RzCz. (26.7)

Introducing o into Eq. 26.4 and separating the real
from the imaginary part, we obtain for the network
admittance the expression

JjwCs
1 + (d27'22

w2027'2
Y =——+ juCy +
TR MR i
By equating Eq. 26.8 with Eq. 26.2, the relative
dielectric constant and loss of the equivalent circuit
become

(26.8)

C; C; 1
A e
C() C() 1 + w T
(26.9)
D Cg w7y k
Co 1 + w21'22 -

hence its complex relative permittivity is
Cy wCguwr 1

" Co ' Coltjurs

Tor the series branch R,C, alone, the loss tangent is

(26.11)

k¥

(26.10)

tan 863 = wry,

but the by-pass condenser C; reduces the overall loss
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tangent by carrying more current as the frequency in-

ereases. Therefore,
tan g

tan & = (26.12)

C
1+ = (1 + wrs?)
Cy

It proves convenient to introduce the specific per-
mittivities for zero frequency, «,/, and for infinite fre-
quency (w> 2w/13), k', as well as their differences
into these equations by defining

Ko = —> (26.13)

K* - Km,_’__—-l

with

(26.14)

SwT2
T 14 WP’
The loss factor reaches its maximum S/2 at the fre-
quency
ws = 1/79, (26.15)

at which «’ — &, has fallen to its half value S/2 (Fig.
26.6). Plotted on a logarithmic frequency scale the

oo

L L
0.01 0. ] 10 100
wTy —>

Fig. 26.6. Frequency response of equivalent circuit of Fig. 26.5.

loss factor describes a symmetrical, bell-shaped absorp-
tion band centered at w, and covering about two dec-
ades above and below this value, whereas «’ traverses
a falling, S-shaped characteristic limited essentially to
the range of one decade on both sides of the center fre-
quency. This characteristic corresponds to the relaxa-

tion spectrum of an electric dipole, as will become evi-
dent in II, Sec. 22.

Relaxation spectra corresponding to RL circuits may
arise in magnetic materials, and finally resonance spectra
may occur. Resonance spectra can be easily distin-
guished from relaxation spectra by the anomalous dis-
persion of the dielectric constant (see II, Sec. 4).

Let us consider the frequency dependence of the
series RLC circuit of Fig. 26.7. The applied sinusoidal

R

L.

C

Fig. 26.7. Series resonance circuit.

voltage U is balanced by the voltages across the three
circuit elements, that is, the differential equation holds,

LdI-I—RI—I—lfIdt—’O (26.16)
dt L ' ’
Its steady state solution for sinusoidal currents is

consequently

i8]
] = —— = Y.

. (26.17)
R + joL + —
JjuC

The current reaches a maximum when the two react-
ance components compensate each other, that is, at the
resonance frequency

wo = 1/+/LC (26.18)
(Fig. 26.8). For U = 0, the differential equation (26.16)

~ Tiaax

-0.707 Iyax 20

- —e

I
wo

w—»

Fig. 26.8. Resonance curve of series circuit.

transforms into the transient equation of the series reso-
nance circuit. By replacing the current I with the
charge @ of the capacitor, it may be written

d? d
L—Q+R g

—= 26.19
de? dt ( )

+-Q=0
C - V.
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Assuming the solution
Q = Ae?, (26.20)

and substituting it into Eq. 26.19, we find that p must
fulfill the condition

1
Lp®> + Rp + 5 = 0. (26.21)
Hence
R ( R )2 1
P = — &k 7= | ==
2L 2L LC
= —a %+ jwg. (26.22)

The freely oscillating RLC circuit has an attenuation
factor
R

=— 26.23
& =r (26.23)

and a frequency

1 R\?
wg = ,|— — (——) = Vw? — o?, (26.24)
LC 2L

which for the undamped circuit is identical with the
resonance frequency of the steady state (Eq. 26.18).
By introducing a and wy into the steady state solu-
tion (Eq. 26.17), we obtain the admittance of the reso-
nance circuit as
W
7
Y =

. 26.25
wo? — w? + jw2a ( )

In case of low attenuation (2a <K wp), it is convenient
to refer, not to the frequency itself, but to the fre-
quency deviation from resonance by approximating:

Aw = wg — o,

(26.26)
w = wo,
J 1
2L Aw + ja

Equating Eqgs. 26.2 and 26.27, we arrive at the rela-
tive permittivity, loss factor, and loss tangent of a
resonating dielectric:

, BAw
K = —
(Aw)® + o? 1
(Where B = )
77l Ba wC()zL
K= W ) (26.28)
W a
tan 6 = el
Aw

(Fig. 26.9). The dielectric constant rises with fre-
quency, reaches its maximum B/2a at Aw = +a, falls
through zero at the resonance frequency to its minimum
—B/2a at Aw = —a, and approaches asymptotically
zero again. This anomalous dispersion characteristic
of the dielectric constant is typical for resonance spec-
tra. It is accompanied by a bell-shaped absorption
characteristic which passes through its maximum B/«

Fig. 26.9. Resonance response of dielectric plotted on a normal-
ized frequency scale.

at wg. The phase angle & swings from zero at low fre-
quency over /2 at resonance to = at high frequencies,
passing the values x/4 and 3w /4 at the points Aw =.+a.
The power delivered to the resonance circuit by a
sinusoidal voltage source of constant amplitude varies
proportionally to I2, that is, proportionally to
b = . (26.29)
4L2(Aw? + o®) '
The points Aw = +a are the half-power points of the
series resonance circuit for low attenuation (see Fig.
26.8), or
(26.30)

is the half-width of the resonance absorption. The
relative half-widih

Awy, = 2

— == (26.31)
wp wo
designates the @ of the lumped circuit in complete

analogy to the preceding discussion of distributed cir-
cuits (see Eqs. 24.24 and 25.34).
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If the elements of the lumped resonance circuit are  constant voltage source traverses a minimum at wo.
placed parallel to the driving voltage (Fig. 26.10), This situation corresponds to the behavior of a dielec-
tric or a transmission line tuned to antiresonance (see

Fig. 24.2).
RS ,_% Cae With the introduction of such equivalent pictures,
1 simulating the response of dielectrics, the task of the
macroscopic theory is completed. The deeper probing
Fig. 26.10. Parallel resonance circuit. question as to why dielectrics behave as they do leads

from the phenomenological to the molecular theory.
the impedance instead of the admittance becomes a
maximum at resonance and the current delivered by a



I1 - MOLECULAR APPROACH

0 - Survey

The interaction between electromagnetic waves and
dielectric materials has been treated in Part I from the
standpoint of an external observer who describes phe-
nomenologically the effects encountered and believes in
the ““one world”’ approach for the electromagnetic spec-
trum. The two complex parameters, permittivity and
permeability, were chosen for a quantitative descrip-
tion of polarization, magnetization, and conduction
throughout the frequency region from direct current to
X-rays. Conversion formulas and nomographic charts
were provided to allow a convenient change-over to
alternate sets of parameters such as propagation fac-
tor, complex index of refraction, and impedance. The
development of the macroscopic theory led automati-
cally to methods of measuring e* and u*. These param-
eters appear in Maxwell’s field theory, not individually
but coupled in characteristic combinations. Hence a
comprehensive discussion of dielectrics has to deal with
their electric as well as their magnetic properties.

This emphasis on a unified approach to electric and
magnetic phenomena is again the tenor of the molecu-
lar discussion. Here we try to discern the interplay be-
tween electrons, atoms, and molecules that causes the
macroscopic effects observed. A straightforward ad-
mission into the molecular world is provided by a rein-
terpretation of the field vectors polarization and mag-
netization. Macroscopically, these vectors represent
the electric and the magnetic dipole moment per unit
volume of a dielectric. Microscopically, the moments
arise from the additive action of a multitude of elemen-
tary moments, and we have to inquire into the origin
and coupling of such moments.

This task is taken up in Sec. 1 for polarization.
Immediately we find ourselves confronted with three
molecular parameters: the number of particles, their
polarizability, and the locally acting field. Further-
more, the concept polarizability proves to be a generic
term, hiding four mechanisms of polarization. Two of
them, the electronic and atomic polarizability, concern
dipole moments #nduced by the displacement of elec-
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trons and nuclei, respectively. A third one, the orien-
tation polarizability, is caused by the rotation of per-
manent dipole moments. In addition, a space charge or
interfacial polarizability may result by the piling up of
migrating charge carriers.

To simplify the initial treatment we eliminate the
unknown local field by substituting, with misgivings, a
known local field that increases proportionally to the
polarization, the Mosottz field. By referring, in addi-
tion, to Avogadro’s number, we arrive at the Clausius-
Mosotti-Lorentz-Lorenz equation (Sec. 2). Here the
polarizability is the only remaining molecular param-
eter and, as long as we concentrate on atoms, it repre-
sents unambiguously the electronic polarizability.

For static fields, the classical model of spherical
atoms produces a polarizability equal to the volume
filled by these spheres, a value somewhat smaller than
observed (Sec. 3). For alternating fields, the model of
quasi-elastically bound electrons leads to the disper-
sion formula of classical physics, which properly de-
seribes the shape of a spectral line. However, neither
the intensity nor the resonance frequency can be de-
rived from this classical picture (Sec. 4). An electron
trapped in the Coulomb field of a nucleus has a kinetic
energy prescribed by the Virial theorem. It is, classi-
cally speaking, a light source which transforms electro-
static energy through kinetic energy into radiation,
while the electron spirals into the nucleus. This col-
lapse of the planetary Rutherford atom is not observed;
instead, series of spectral lines appear, ruled by the
Rydberg-Ritz combination principle. Furthermore,
studies of the black-body radiation and of the photo-
effect lead to a decisive break with classical physies.
Radiation proves to be parceled out in quanta, and
Maxwell’s theory is therefore one of photon statistics
(Sec. 5). On this basis gained by experimental investi-
gations and their interpretation by Planck and Ein-
stein, Bohr’s quantum theory (Sec. 6) and wave me-
chanics (Sec. 7) develop.

Thus, research on the electronic polarization of atoms
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leads to a theory of the structure and of the spectra of
atoms and to an understanding of the periodic system,
of the elements (Sec. 8). It also provides an insight
into the behavior of atoms in electric fields, the Stark
effect (Sec. 9). In accounting for the structure and be-
havior of atoms, it is of fundamental importance that
the angular momenta of the electron clouds and the
mechanical spin of the electrons are quantized and pro-
duce quantized permanent magnetic orbital and spin
moments. That these permanent magnetic moments,
coupled to mechanical gyroscopes, take up quantized
orientations in relation to the axis of a magnetic field is
proved by the Zeeman effect. An external magnetic
field produces, in addition, diamagnetism by inducing
magnetic moments (Sec. 10). In a complete discussion
of the energy level diagram of atoms, the permanent
magnetic moments play a much larger role than is fore-
shadowed by their magnetic interaction energy. The
magnetic quantum numbers codetermine, according to
the Pauli exclusion principle, the charge distribution
of the stationary states and thus their electrostatic
energy (Sec. 11). A scrutiny of the interaction between
electromagnetic fields and the atoms of quantum me-
chanics allows the conversion of the dispersion formula
of classical physics into its quantum-mechanical coun-
terpart (Sec. 12).

Progressing to the interaction of atoms, we find that,
as the partners approach each other, several forces
begin to operate in succession: the nonclassical van der
Waals attraction caused by fluctuating dipole mo-
ments; the classical electrostatic attraction coming
into play as the electron clouds begin to overlap; quan-
tum-mechanical pair-bond formation or quantum-me-
chanical repulsion; and, as a final possibility, electron
exchange and ionic bonding. In consequence, the inter-
atomic separation distance of atoms may be character-
ized by van der Waals, covalent, or ionic radii (Sec. 13).
If molecules are formed, quantum mechanics describes
the electron states by wave functions which change with
the interatomic distance and may either be derived
from overlapping atomic orbitals (Heitler-London
method) or be composed directly of molecular wave
functions (Hund-Mulliken approach). Any possible
electronic configuration contributes to the strength of
molecular bonds according to the concept of quantum-
mechanical resonance (Sec. 14).

When atoms of a single type form symmetrical
diatomic molecules, the build-up process can be dis-
cussed in close analogy to the formation of atoms.
For unlike atoms the electronegativity of the partners
differs, and permanent electric dipole moments result
(Sec. 15). These permanent moments contribute to

the static dielectric constant of gases because the torque

of an external field tends to align the dipole axes in the
field direction. The contribution is temperature de-
pendent and is classically given by the Langevin func-
tion, which describes statistically how thermal agitation
counteracts the electric field and tends to maintain a
random orientation (Sec. 16).

The structure and dipole moments of polyatomic
molecules may be understood by considering the vari-
ous bonds which operate, the ionic interaction of the
partners and the vector addition of dipole moments
(Sec. 17). Molecules are characterized by vibration
and rotation spectra. For diatomic molecules, these
spectra, in a first approximation, can be derived by
using the models of the harmonic oscillator and rigid
rotator. The treatment of polyatomic molecules is
facilitated by referring to the principal moments of
inertia and the normal vibrations (Sec. 18). This back-
ground suffices for a general discussion of the electronic,
atomic, and orientation polarization of gas molecules
(Sec. 19).

In spectroscopy, the bandwidth of a spectral line, its
Q, decides the amount of fine structure that may be
discerned. This bandwidth is determined by radiation
damping, Doppler effect, and pressure broadening (Sec.
20). How well the shape of a spectral line can be meas-
ured actually depends on the resolving power (or Q)
of the analyzing optical instrument. Here the pres-
ent infrared techniques prove to be definitely infe-
rior. Microwave spectroscopy, on the other hand,
using the monochromatic sources and extremely sensi-
tive receivers of the electrical engineer, approaches the
best optical interferometers. Microwave spectra are
therefore a source of amazingly detailed information
concerning the properties of molecules (Sec. 21).

Progressing from gases to liquids and solids we enter
regions mapped only in rough outlines. In principle it
seems a simple approach to proceed from the rotation
spectra of gases by pressure broadening to the relaxa-
tion spectra of the condensed phases, but a real transi-
tion has not yet been made by theory or by experiment.
Debye’s relaxation equations for the orientation polari-
zation are based on the ad hoc model of a relaxation
circuit (Sec. 22).

‘When polar molecules in liquids and solids follow the
response of an orienting field, the susceptibility, accord-
ing to Langevin’s equation, should obey a Curie law in
case the coupling between the dipoles can be neglected,
and a Curie-Weiss law if the Mosotti field describes
their mutual interaction. Any condensed polar mate-
rial should become a ferroelectric. This ‘‘Mosotti
catastrophe” actually oceurs only in rare cases. Mathe-
matically it can be avoided by postulating other types
of local field expressions (Sec. 23). Why physically the
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catastrophe does not occur by the spontaneous orienta-
tion of permanent moments becomes apparent when we
consider the formation and structure of liquids and
solids (Sec. 24) and the dipoles in their various sur-
roundings (Sec. 25).

Although dipoles in liquids are still sufficiently mobile
to jump statistically over potential walls whenever the
activation energy becomes available, in crystals they
are structural elements codetermining the lattice and,
in general, firmly anchored in place. Properly arranged,
they may strikingly manifest their existence in piezo-
electricity (Sec. 26). A piezoelectric effect exists only
in anisotropic crystals. The macroscopic description
of the effect, therefore, requires an involved system of
electrical, mechanical, and electromechanical tensor re-
lations. A clear concept of the molecular situation may
be obtained by visualizing the crystal as a network of
permanent moments subject to the crystal class sym-
metry (Sec. 27).

Ferroelectricity, the spontaneous alignment of elec-
tric dipole moments by mutual interaction, does not
take place by the rotation of permanent moments as
the Mosotti catastrophe foresees, but by the creation
of moments through the ordered displacement of nuclei.
The phenomenon, thus far observed in only a few sub-
stances, is described in detail for BaTiO; (Sec. 28).

Switching over from the electrical effects: orientation

polarization, ferro- and antiferroelectricity, to their
magnetic counterparts: para- and ferromagnetism, we
find ourselves confronted with many analogies but also
with deep-lying differences. The electrical phenomena
arise by ionic bonds between atoms; the magnetic phe-
nomena by orbital and spin moments residing ¢n atoms
and coupled to gyroscopic quantum effects. The vari-
ous attempts to formulate a satisfactory theory of fer-
romagnetism illustrate strikingly the dilemma of quan-
tum mechanics, that it can solve its problems only by
approximations (Sec. 29). In discussing essential as-
pects of ferromagnetism for metals and semiconductors,
we arrive at one of the most active frontiers of solid
state research (Sec. 30).

Up to this point, conduction phenomena played only
a minor role in this presentation, whereas actually the
effects of migrating charge carriers are observed in
many dielectric spectra. An extensive discussion of
electric conduction requires a book in its own right.
However, the principal aspects of interfacial and space-
charge polarization, the fourth mechanism of polariza-
tion introduced in Sec. 1, are briefly presented (Sec. 31).
And, in a final integrating sweep, the formation and the
behavior of mobile charge carriers are surveyed from
gases to liquids and solids, and from low fields up to
the destruction of dielectrics by electric breakdown
(Sec. 32).

1 - Molecular Mechanisms of Polarization

A dielectric material can react to an electric field
because it contains charge carriers that can be displaced.
In Part I this polarization phenomenon was pictured
schematically by the formation of dipole chains which
line up parallel to the field and bind countercharges at
the electrodes (see I, Fig. 2.1). The density of the neu-
tralized surface charge is represented by the polariza-
tion vector

coul
P=( — ¢E= (K —1)¢gE [F] (1.1)

(I, Eq. 2.7). Alternatively, the polarization P proves
to be equivalent to the dipole moment per unit volume
of the material (I, Fig. 2.4).

This latter interpretation of P provides an entrance
from the macroscopic into the molecular world. The
dipole moment per unit volume may be thought of as
resulting from the additive action of N elementary di-

1 ts | I
pole moments ., P - Vg (12)

The average dipole moment p of the elementary parti-
cle, furthermore, may be assumed to be proportional to
the local electric field strength E’ that acts on the particle,

(1.3)
The proportionality factor e, called polarizability, meas-
ures the electrical pliability of the particle, that is, the

average dipole moment per unit field strength. Its di-
mensions are

sec? coul?®
= [ 25| = e
kg
in the mks, or
[¢] = [em?)]

in the esu system, respectively.
Equations 1.1 to 1.3 give us the two alternative ex-
pressions for the polarization

P = (K — 1)¢E
= NoFE/,

p = oE.

(1.4)

(1.5)
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linking the macroscopically measured permittivity to
three molecular parameters: the number N of contribu-
ting elementary particles per unit volume; their polariz-
ability «; and the locally acting electric field E’. This
field will normally differ from the applied field E, owing
to the polarization of the surrounding dielectric me-
dium. It is the goal of the molecular theories to evalu-
ate these parameters and thus to arrive at an under-
standing of the phenomenon polarization and its de-
pendence on frequency, temperature, and applied field
strength.

Such theories are not the result of metaphysical
speculation, but the product of experiments and their
interpretation. It is beyond the scope of this book to
trace in detail the interplay between experiment and
theory that led to our present-day ideas about the
structure of matter. We have to reverse the approach
and to introduce at this point some general concepts
which are the outcome of this development and allow
us to foresee various mechanisms of polarization.

Matter, electrically speaking, consists of positive
atomic nuclei surrounded by negative electron clouds.
Upon the application of an external electric field the
electrons are displaced slightly with respect to the
nuclei; tnduced dipole moments result and cause the
so-called electronic polarization of materials. When
atoms of different types form molecules, they will nor-
mally not share their electrons symmetrically, as the
electron clouds will be displaced eccentrically toward
the stronger binding atoms. Thus atoms acquire
charges of opposite polarity, and an external field act-
ing on these net charges will tend to change the equi-
librium positions of the atoms themselves. By this
displacement of charged atoms or groups of atoms with
respect to each other, a second type of induced dipole
moment is created; it represents the atomic polarization
of the dielectric. The asymmetric charge distribution
between the unlike partners of a molecule gives rise, in
addition, to permanent dipole moments which exist
also in the absence of an external field. Such moments
experience a torque in an applied field that tends to
orient them in the field direction (see I, Eq. 2.12).
Consequently, an orientation (or dipole) polarization
can arise.

These three mechanisms of polarization, character-
ized by an electronic polarizability a., an atomic polariz-
ability a,, and an orientation (or dipole) polarizability
a4, are due to charges that are locally bound in atoms,
in molecules, or in the structures of solids and liquids.
In addition, carriers that can migrate for some distance
through the dielectric usually exist. When such car-

riers are impeded in their motion, either because they
become trapped in the material or on interfaces, or be-
cause they cannot be freely discharged or replaced at
the electrodes, space charges and a macroscopic field
distortion result. Such a distortion appears to an out-
side observer as an increase in the capacitance of the
sample and may be indistinguishable from a real rise
of the dielectric permittivity. Thus we have to add to
our polarization mechanisms a fourth one, a space
charge (or interfacial) polarization, characterized by a
space charge (or interfacial) polarizability o,.

Assuming at present that the four polarization mech-
anisms indicated schematically in Fig. 1.1 act inde-

No field Field applied

-« E
Electronic polarization

Atomic polarization

MO @ OWWO

Orientation polarization

Lelipi v B

M AE

Space charge polarization
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(clelololc] OO0
000eo OO0
Fig. 1.1. Mechanisms of polarization.

pendently of each other, we may write the total polar-
izability « of a dielectric material as the sum of the four
terms

a=a,+ ag+ oa+ o (1.6)

where each term again may represent a sum of contri-
butions. How these four effects actually shape the
response characteristics of dielectrics will be discussed
in subsequent sections.

In Eq. 1.5 we took for granted that the polarizability
a is a real quantity. Actually, in alternating fields, a
temporal phase shift may occur between the driving
field and the resulting polarization, and a loss current
component appear (see I, 1), as will be discussed in de-
tail. Thus « becomes complex, and Eq. 1.5 has to be
replaced by the more general formulation

P = («* — 1)E = NaE'. (1.7)
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2 + The Clausius-Mosotti-Lorentz-Lorenz Equation

Confronted with three molecular parameters (N, «,
E’) at once, our tendency will be to concentrate initially
on the most instructive one and to eliminate the other
two by reasonable approximations. In the present case
the parameter o contains the primary information on
the electric charge carriers and their polarizing action.
Hence we shall try to eliminate N and E'.

We can foresee that the locally acting field E’ will be
identical with the externally applied field E for gases at
low pressure where the interaction between the mole-
cules can be neglected. At high pressures, however,
and especially in the condensed phases of solids and
liquids, the field acting on a reference molecule A may
be modified decisively by the polarization of the sur-
roundings. To take this effect into account, we try the
following model (Fig. 2.1).

/-—-+
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Vi Vil
i Y
ERR 2R
AT

N

Fig. 2.1. Model for calculation of internal field.

Let our reference molecule A be surrounded by an
imaginary sphere of such an extent that beyond it the
dielectric can be treated as a continuum. If the mole-
cules inside this sphere were removed while the polari-
zation outside remains frozen, the field acting on A
would stem from two sources: from the free charges at
the electrodes of the plate capacitor (E;), and from the
free ends of the dipole chains that line the cavity walls
(Ez). Actually there are molecules inside the sphere
and they are so near to A that their individual positions
and shapes have to be considered. This adds an addi-
tional contribution E;z to the local field E’; hence we

obtain
E’ = E1 + E2 + E3. (21)

The contribution from the free charges at the elec-
trodes is, by definition, equal to the applied field in-

tensity

E1 = E. (22)

To calculate E; we recall that the charge density lin-
ing the cavity walls stems from bound charges and is

correspondingly determined by the normal component
of the polarization vector P (see I, Eq. 2.5) as

P-ndA = PcosfdA (2.3)

(Fig. 2.2). Each surface element d4 of the sphere con-
tributes at A4, according to Coulomb’s law, a radial field

intensity Jussa e
cos

dA. (2.4)

2 =
eodmr?

For each surface element dA there exists its counter-
part, which produces the same vertical but an equal
and opposite horizontal field component. Hence only

-
-

2dE cos 6

Fig. 2.2. Geometry for calculation of internal field.

the vertical components dE; cos 8 count and create a

field intensity ul Lt
cos
E; = f > A,

éo41r7‘2

(2.5)

sphere

orientated parallel to the applied field and strengthen-
ing it. By dividing the cavity walls into ring elements

dA = 27 sin 6 r db, (2.6)

and integrating over 6, we obtain as the field contribu-
tion of the cavity wall charge

"Pecos’0  , . 1P
E, =f 5 2mr sinfdd =——
0 €g41r1' 3 €0

_3x L

2.7

An evaluation of the field contribution E3 which
arises from the individual action of the molecules inside
the sphere requires accurate information on the geo-
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metrical arrangement and polarizability of the con-
tributing particles. Even if this information is avail-
able, the mathematical treatment may prove prohibi-
tively difficult. In a general way we have recognized
the existence of these neighboring molecules already in
the calculation of E; by assuming that the cavity is
scooped out without disturbing the state of polarization
of the remaining dielectric. Hence we postulate for the
present, as a simple expedient, that the additional indi-
vidual field effects of the surrounding molecules on the
particle at A shall mutually cancel, that is,

This assumption, first made by Mosotti! in 1850, is
not altogether a confession of ignorance. It is a reason-
able approximation when the elementary particles are
neutral and without permanent dipole moment, or
when they are arranged either in complete disorder or
in cubic or similar highly symmetrical arrays. It
allows us to substitute for the unknown molecular
parameter E’ the expression

P E
E=E +E=E+—=—K+2), (29
360 3

that is, known macroscopic parameters.

By inserting this local Mosotti field into Eq. 1.5, we
obtain the relation between the polarizability per unit
volume, Na, and the relative permittivity of the dielec-
tric, &/,

Na « -1

3¢9 « + 2‘

For gases at low pressure, ¥’ — 1 < 1; hence, ' 4 2
may be replaced by the digit 3. This is the same as re-
placing the local field E’ by the applied field E, and
Eq. 2.10 simplifies to

Na ,
€0

(2.10)

(2.11)

where x is the eleciric susceptibility of the gas (cf. I,
Eq. 2.8).

Frequently we will refer to an ideal gas under stand-
ard conditions (0°C, 760 mm Hg). The number of
molecules per unit volume, N, is in this case identical

with the Loschmidt number
Np = 2,687 X 10** [m™9].

In other cases, as long as the molecules themselves are

(2.12)

1 0. F. Mosotti, Mem. Soc. Ital. 14, 49 (1850); see also P. Debye,
Polar Molecules, Dover Publications, New York, 1945.

the dipole carriers, it will be convenient to eliminate
the dependence of the polarization on the density of
the material by referring to the polarization per mole.
The number of molecules per mole is Awvogadro’s
number

NM
No = — = 6.023 X 10%,
P

(2.13)

where M designates the molecular weight in [kg] and

p the density in [kg m™3], if mks units are used.
Substituting Ny for N in Eq. 2.10, we obtain the

polarizability per mole (molar polarization),

(2.14)

This is the famous Clausius-Mosotti equation,? in which
we have reached our goal of eliminating N and E’ and
retain the polarizability « as the only unknown molecu-
lar parameter.

Because of the tendency to treat the electrical and
optical frequency range as two separate fields of inter-
est, the same equation was formulated independently
for the optical range by Lorentz ® in Holland and Lor-
enz ¢ in Denmark. In this case, the relative dielectric
constant «’ of Eq. 2.14 may be replaced by the square
of the index of refraction, n?, according to the Maxwell
relation (I, Eq. 9.11). Thus we arrive at the Loreniz-
Lorenz equation

(2.15)

with II called the molar refraction.

Both equations are identical and not quite general
enough, because they assume that « is a real quantity.
By replacing the real permittivity or index of refrac-
tion with their complex counterparts (see Eq. 1.7), we
arrive at the more general formulation of the Clausius-
Mosotti-Lorentz-Lorenz equation

K*—1M n2—-1M
H= =  — —

== ]
3¢ k*+2 p n*2 42 p

(2.16)

In using this equation, we can obtain valuable infor-
mation on the polarizability «, as we shall see in the
following sections. However, we should not be sur-
prised to arrive also at quite erroneous conclusions in
case the “near field”’ E; cannot be neglected.

2 R. Clausius, Die mechanische Warmetheorie, Vieweg, Braun-
schweig, 1879, Vol. II, pp. 62 ff.

3H. A. Lorentz, Ann. Physik 9, 641 (1880).

4 L. Lorenz, Ann. Physik 11, 70 (1880).
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3 - Electronic Polarization

The phenomenon of electronic polarization can be
observed undisturbed by other effects in monatomic
gases. Here the elementary particles are nuclei of the
positive charge +Ze, surrounded by a neutralizing
electron atmosphere of the charge —Ze; the factor Z,
the order number of the atom, designates the position of
the atom in the periodic system of the elements; the
elementary charge e has the value

|e| = 1.602 X 107! [coul]. (3.1)
An external field E will exert a force
F = —Z¢E (3.2)

on the electron atmosphere and displace its charge
center, which previously coincided with that of the
nucleus, by a distance d. Here it will be balanced by
the Coulomb attraction exercised by the positive nu-
cleus +Ze on the eccentric part of the electron cloud
(Fig. 3.1). Let us assume tentatively that the electrons

Fig. 3.1. Displacement of electron cloud by external field
(overemphasized).

originally form a cloud of constant charge density
around the nucleus, confined to a sphere of the radius
rg. After displacement, the eccentric part of the
charge, Qg, is the fraction of the cloud that fills a sphere
(radius d) outside the nucleus; that is,

d3
Qd = —Ze 3’ (33)
To
It acts as if concentrated at the center of the small
sphere, whereas the charge farther out does not exer-
cise a force on the nucleus (see I, Sec. 4). Hence the
Coulomb force between the nucleus of charge 4 Ze and
the negative charge Qq, -
F, = —(ze2 2170,
eo4‘l'd2

(3.4)
has to balance F.

The external field has induced in the atom a dipole
moment

k= (Ze)d = «.E (3.5)
(see Eq. 1.3). From the equilibrium condition
F=F, (3.6)
we obtain this dipole moment as
B = ednro’E; 3.7)
that is, the electronic polarizability of the atom is
a, = epdrred. (3.8)

The molar polarization of our monatomic gas, defined
in Eq. 2.14, becomes

. Noag 4

= No—r1o° ST g
3¢ 0 3 ro® [m°] 3.9)

II

This result has the graphic meaning: the molar polari-
zation (polarizability per mole) of a monatomic gas of
spherical atoms equals the volume actually filled by
these spheres.

Consequently, we have only to know the radius ry of
our atoms to arrive at numerical results. This radius
can be obtained in various ways, for instance, as the
van der Waals radius in gaskinetic measurements. It
is of the order of one angstrom unit,

1A=1X10"1 [m]. (3.10)

For hydrogen, consisting of one proton surrounded by
one electron, we find

ro~0.53 [A] >~0.53 X 107 [m]. (3.11)

Since the dielectric constant of vacuum is ¢ = 8.854
X 10712 [farad m] (see I, Eq. 8.4), we obtain for the
hydrogen atom the electronic polarizability (see Eq.
3.8)

e = 1.66 X 107*!  [em?]. (3.12)

In the unrationalized esu system the factor eydr dis-
appears, and the electronic polarizability is simply
equal to the cube of the atomic radius,

acr =70° = 1.5 X 1072 [em®.  (3.13)
The molar polarization has the value

My = 37.8 X 1078m?] = 37.8 X 1072 [em®]. (3.14)
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For atomic hydrogen under standard conditions our
simple sphere model thus predicts the susceptibility
(see Eqgs. 2.11 and 2.12)

x =« —12~51 %1075, (3.15)

This static susceptibility, though small, can be deter-
mined with accuracy quasi-statically by a bridge or
beat-frequency measurement, in which a gas-filled
capacitor of about 10™*-meter plate separation might
be used at 20 volts. The maximum field strength of
2 % 10° [volt m™!] thus applied would induce a dipole
moment

p=caF =ed>~33 X 1073 [coulm], (3.16)

that is, displace the center of the electron cloud from
that of the proton by a distance

d~2 X 1077 [m]. 3.17)

By measuring the dielectric constant of the gas, the
electrical engineer has thus performed the amazing feat
of determining this subnuclear length! However, his
record for micro-distance measurements loses some of
its luster when we consider that the electrical tech-
nique employed integrates over the polarization of
about 10'® atoms. Furthermore, the actual meaning
of d is not that of a precise distance.

The purpose of the preceding numerical calculation
is to give a feeling for the orders of magnitude involved.
A measurement of the electric susceptibility of atomic
hydrogen has unfortunately not yet been carried
through because the gas consists normally of diatomic
(H) molecules. However, we can predict! that the
actual value will be about 4.5 times larger than that
just calculated. The concept of a proton surrounded
by an electron cloud of radius ro and constant density,
used above, gives the same result as the Bohr model in
which the electron revolves in a circular orbit of the
radius r, around the proton (see Sec. 6). Quantum

1J. H. Van Vleck, The Theory of Electric and Magnetic Sus-
ceptibilities, Oxford University Press, 1932, pp. 203 ff.

mechanics leads to the picture of a more extended elec-
tron cloud; and since the distant parts of the electron
atmosphere are more weakly bonded to the nucleus,
they contribute appreciably to the polarization (Fig.
3.2) in spite of their rapidly decreasing density.

P
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Fig. 3.2. Various models for electron charge distribution in the

hydrogen atom: (a) electron cloud of uniform density, (b) Bohr

model, and (¢) quantum mechanics (normalized to unit electronic
charge).

The electric field strength exercised by a proton on
an electron at distance 7 is

E, = [volt m™].

5=~ 5 X 10! (3.18)

6041”'0
Compared with such enormous interior fields of atoms
any external field at present attainable represents only
a minor disturbance. This fact justifies the approxi-
mation of Eq. 3.5 that the induced dipole moment is
proportional to the inducing field strength.

4 - Anomalous Dispersion and Resonance Absorption

More detailed information about the structure of
atoms may be obtained by polarization measurements
in alternating fields, that is, by investigating the fre-
quency response characteristics spectroscopically. Not
knowing what to expect in detail, we may start with
the simple model of electrons quasi-elastically bound to

equilibrium positions and reacting to field changes like
linear harmonic oscillators.

Transient response

Such an oscillator, displaced in the z-direction from
its equilibrium position by an amount zy and released,
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will return to its original position in an harmonic mo-
tion prescribed by the force equation

a2z
m —
de

In the absence of a friction force F,, the electron would
describe an undamped oscillation

+ F,+ fz = 0. 4.1)

2 = 2o COS wol (4.2)
of the resonance frequency
wy = \/f m. (43)

Actually, friction is produced according to classical
theory by the radiation of the linear oscillator as calcu-
lated in I, 13. The friction force exerted on an elec-
tronic dipole of the charge @ = e¢ by the emission of
electromagnetic radiation of the phase velocity v = ¢,
is, according to I, Eq. 13.25,

(4.4)

The energy loss per cycle caused by this radiation is
small; hence Eq. 4.4 can be replaced by the approxi-
mation

poezwoz dz

Fy~ —
6rc dt

(4.5)

(The friction force, out of phase by 90° in relation to
the restoring force, must be an odd differential of 2
with respect to t.) By defining a friction factor t

IR
T TR SR (4.6)
mbme
we rewrite the equation of motion (Eq. 4.1)
fEer s Bt 47)
o = z = 0. :
a Ca
Its solution is
z = zoe~* cos wy't, (4.8)
where
wol =V w02 i a2 (49)

designates the reduced resonance frequency of the
damped oscillator. Since for the oscillating electron
the attenuation due to radiation damping is low
(a K wp), the difference between wy and wy’ can usually
be neglected.

Without attenuation, the classical electronic oscilla-

t The attenuation factor o should not be mistaken for the
polarizability «; it is unfortunately customary to designate both
by the same letter.

tor would emit a monochromatic radiation of the wave-

length
2mc
)\0 =l —= [m].
wo

(4.10)

The radiation damping and other causes (see Sec. 20)
broaden this spectral line over an infinite range of
frequencies as may be seen when we express the oscil-
lator amplitude z of Eq. 4.8 by Fourier integrals.!
We obtain

1 L]
z=—={ a(w) coswtd
V; 0 (w) i wl L]
+—f b(w) sin wt dow, (4.11)
Vo (

where the amplitudes of the components are

20 a a
alw) = 2vV'r [a2 + (w — wp)? il a® + (o + wg)2]'
(4.12)
20 w + wo w — wo
2vVr [a2 + (@ + wo)? o+ (0 — w0)2] '
The energy content of the oscillator is proportional

to the square of its amplitude; hence it decreases ex-
ponentially with time as

W = Woe 22t = Woe™*l",

blw) =

(4.13)
where

7=1/2a (4.14)

designates the relaxation time of the oscillator. Conse~
quently, the intensity of radiation which corresponds
to this energy loss will be distributed over the spectrum
proportionally to the square of the Fourier amplitudes,
or as

I = Cla*(w) + b*(w)]

C 1 1

o ; {az 4+ (w4 w)? o+ (w— wp)?
o® + (@ + wo)(w — wo)

[0 + (0 + w0)’l[e® + (& — wo)’]

Near resonance, only the second term of this expression
counts, and, if Iy designates the intensity of the spec-
tral line at the resonance frequency wg, the relative in-
tensity for any other frequency becomes

+2 } . (4.15)

I _ ! (4.16)
Io 1 + (w = w0>2 '

1 See, for example, E. A. Guillemin, The Mathematics of Circuit
Analysts, John Wiley and Sons, New York, 1949.
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The relative intensity falls from its maximum at wg
symmetrically to a half value at the frequencies w =

Avyp .
wp == —~ (Fig. 4.1), where

Awp,
— =7 ly = a
2

(4.17)

The frequency interval Aw; between the half-value
points is the half-width or line-breadth of a spectral line,

1.0—

—
o

Fig. 4.1.

Half width of spectral line.

in analogy to the half-width of a resonator (see I,
Fig. 24.7).

According to Eqgs. 4.14 and 4.17 the relaxation time
of the electronic oscillator is connected to the half-
width of the emitted spectral line as

1 1

i -2—a E 2‘u'Av;..

T

(4.18)

This expression is identical to the ringing time of a
cavity resonator

T = Q/w.

Hence we can compare the qualities of an electronic
and a cavity resonator by referring to the @ of a spec-
tral line,

(1, 24.26)

(4.19)

Steady-state response

If the electronic oscillator is not free but subjected
to a driving force ¢E’ (where E’ represents the locally
acting electric field) the law of motion changes from
Eq. 4.7 to

e
— + 20— + wy’z = —FE. (4.20)
m

We can rewrite this expression in the form of a differen-
tial equation for the polarization P by assuming that

the dielectric is composed of N oscillators per unit vol-
ume, each of them contributing an induced electric
moment

= ez; (4.21)
then (see Eq. 1.2)

P = Nez. (4.22)

If, in addition, we assume that the locally acting field
E’ can be described by the Mosotti approximation (see
Eq. 2.9) as

E =E+ ;:-0, (4.23)
the differential equation becomes
a’p ap , Né& Né
d_t2 + ZaE + (wo = 3m€0> P= 7 E. (4.24)

The effect of the polarization of the surroundings is to
lower the resonance frequency of the individual osecil-
lator from wg to

Né?

31’7’&60

wo = . [wp” — (4.25)
The steady-state solution of Eq. 4.24 for a sinusoidal
driving field :
E = Eg¢’**
Né*/m

P= Poei(wl+¢) = = E.
wo'"? — w? + jw2a

. (4.26)
18

(4.27)

Because of the friction factor 2¢, a phase shift ¥ occurs
between the driving field and the resultant polarization;
P becomes complex. The ratio P/¢E (cf. Eq. 1.1) de-
termines the complex relative permittivity of the
medium in molecular terms as

Neé?/egm

0> — w? + jw2a.

P
k¥*=14+—=1+ (4.28)
E )

€

So far we have assumed that the dielectric contains

only one oscillator type. In the more general case of s

oscillator types which contribute to «* without mutual
coupling, the equation may be generalized as

N .62 / €M

*=1 4.29
‘ + ; 0’32 3 w2 + jw2a. ( )

For nonmagnetic media,
k* = n*%, (4.30)

where n* is the complex index of refraction of the
medium (see I, Eq. 9.14). Equation 4.29 represents
the dispersion formula of classical physics; N, designates
the number of dispersion elecirons per unit volume for
the oscillator type s.
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Far below its resonance frequency (w << w;), each
oscillator type adds a constant contribution

N 332 / €giMs

ws>

(4.31)

to the static dielectric constant of the medium, whereas
far above the resonance frequency its contribution
vanishes. To follow the behavior of the lowest oscilla-
tor type r through its resonance region, we lump the
effect of vacuum and of the remaining resonator types
in a constant contribution

Noe?/my

A=1+ Z_E‘— fors#r. (432
8 Ws

Furthermore, we introduce in place of w the deviation
from resonance

Aw = w, — (4.33)
as the variable, approximate
wr + 0w~ 2“’r
) (4.34)
—~1,
Wy
and thus rewrite Eq. 4.29 as
B
K*=n =4 —. (4.35)
Aw + ja
The factor B stands for
N,€%/egm,
L (4.36)

2w,

The frequency dependence of the real part of the
relative permittivity,

K =n2(1—Kk) = A+ —Aw——- (4.37)
(Aw)? + o '

describes the dispersion characteristic of the dielectric
medium near resonance (Fig. 4.2).1 It rises hyperboli-

cally from the low frequency value A + -20’2 to a maxi-
r

mum : B

Kpax = A + — (4.38)
2a

at Aw = e, falls with a linear slope —B/a? through

the value A at the resonance frequency (Aw = 0),

reaches a minimum

, B
Kmin = 4 — — (4.39)
2a
at Aw = —a, and then rises again asymptotically to

t Cf. I, Fig. 26.9, and the corresponding discussion for the
series resonance circuit on p. 30.

the constant value 4 for very high frequencies (v > w,).
The absorption characteristic of the dielectrie, iden-
tified near resonance by the relative loss factor

Ba
(Aw)? + az,

starts from zero at low frequencies, traverses its maxi-
mum B/a at resonance, and falls again symmetrically
to zero at high frequencies. The half-value points B/2a
of this bell-shaped absorption characteristic are reached
at the deviation from resonance Aw = -, in agree-
ment with the half-width of the emission characteristic
(Fig. 4.1).

Since the real dielectric constant and index of refrac-
tion rise with increasing frequency over the major part

K = 2n%k = (4.40)

———

.
2
. ; |
o) +Aw —wr—>-Aw
W —>
Fig. 4.2. Anomalous dispersion and resonance absorption.

of the dispersion characteristic, this behavior has been
called normal dispersion in contrast to the anomalous
dispersion in the half-width region of the spectral line,
where the characteristic falls toward shorter wave-
lengths. This combination of normal and anomalous
dispersion is typical for resonance phenomena, as we
have pointed out in I, Sec. 26.

For the phase relation between applied field and
induced dipole moment near resonance, we obtain the

relation

24 o

(4.41)

tany = .
v KK — A Aw

At low frequencies (w << w,) the moment follows in
phase, at resonance it lags by #/2, and at very high
frequencies by w. In between, it passes the values r/4
and 3w/4 at half-width points Aw = a. The loss tan-
gent itself,

k'’ aB
tan 6 = — =

) 4.42
¥  A(Aw® + o®) + B Aw ( )

rises from zero through the value B/aA at resonance
to maximum at Aw = —B/2A4 and falls again to zero.
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The ratio B/a, which characterizes the height of the
dispersion and absorption characteristic, has a simple

D, =5896 A
/ D, =5890 A
i f i — w
Fig. 4.3. Anomalous dispersion of sodium D lines. (After
Wood.?)
meaning in the case of radiation damping. By intro-

ducing the value for o from Eq. 4.6 and for B from Eq.

4.36 we find
(4.43)

B
that is, 13 — equals the number of dispersion electrons
«

contained in a wavelength cube at the resonance fre-
quency.?

That the shape of a spectral line corresponds to the
prediction of Fig. 4.2, Fig. 4.3 confirms; it shows the
dispersion near the D-line doublet of sodium vapor as
drawn from an actual photograph.?

2 See M. Born, Optik, Springer, Berlin, 1933, p. 478.
3R. W. Wood, Physical Optics, Macmillan, New York, 1934.

S * Various Aspects of Electromagnetic Radiation

Although the dispersion formula of classical physics
predicts correctly the general appearance of a spectral
line, neither the intensity nor the resonance frequency
can be derived from such classical considerations. This
becomes apparent when we inquire more seriously into
the structure of atoms.

Investigations of Lenard! and Rutherford ? on the
scattering of cathode and « rays by matter showed only
an extremely small fraction of the gaskinetic volume

& Against a back-

4317*0 of atoms to be impenetrable.
ground of small, overall scattering there appeared in-
dividual deflections of these rays through large angles
which indicated the existence of very small mass cen-
ters acting with intense fields. Rutherford thus arrived
at the basic atom model: a positive nucleus of the
charge Ze containing the bulk of the mass and sur-
rounded by a neutralizing atmosphere of Z electrons of
the charge —e. In contrast to the gaskinetic collision
radius of about 107'° [m] the radius of the nucleus
according to the scattering experiments ? proved to be
of the magnitude 10~ to 10~'% [m]. The factor Z,
as van den Broek * first postulated, represents the
atomic number in the periodic system of the elements.

Rutherford’s model corresponds to a planetary sys-
tem in miniature, in which the electrons move in cir-
cular or elliptical orbits around the nuclear sun. Ac-

1 P. Lenard, Ann. Physik 12, 714 (1903).

2 E. Rutherford, Phil. Mag. 21, 669 (1911).

3 See, for instance, H. Geiger and E. Marsden, Phil. Mag. 25,
604 (1913); J. Chadwick, zbid. 40, 734 (1920).

¢ A. van den Broek, Physik. Z. 14, 32 (1913).

cording to the classical laws of mechanics and electro-
statics such a system is stable when the centripetal
force exerted by the Coulomb field of the nucleus bal-
ances the centrifugal forces and electrostatic repulsions
arising in the rotating electronic system. In the hy-
drogen atom, a proton of the mass m is circled by
one electron of the mass m, where

1.6725 X 10727 kg
9.107 X 107*' kg

LCSE

m4
} — = 1836.5f. (5.1)
m m

The position of the electron may be indicated by a
vector of the length | ro |, pointing from proton to elec-
tron and rotating with an angular velocity

v
w=— (5.3)
Ty
as ]
ro = roe]wt, (5.4)

This rotation presupposes, according to Newton’s law,
a central force

d?ry , mvzo
F=m— = —mwiryg = ——1°,

5.5
dtz To ( )
1 Because this ratio is so large, the proton is considered at rest
in the subsequent calculations. An accurate treatment of the
motion of electron and proton around their common center of
gravity gives precisely the same equations, provided the mass m
of the electron is replaced by the reduced mass m, of electron and

proton,
mmy

(5.2)

m'=m+m+
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which has to be provided by the Coulomb attraction
force (see I, Eq. 3.8)

2

e

F.=— = 5.6
6041!'7'02 3 ( )

of the nucleus. The condition of balance

mv? &

—_—= (5.7)

To 6047r7'02

can be written alternatively by referring to the ki-
netic energy &xin and the potential energy U of the
electron, as

Ekin = —%U. (5.8)

This relation, stating that the kinetic energy of an
electron trapped in a Coulomb field equals half its po-
tential energy, is known as the Virial theorem; it holds
quite generally for electrons moving under the influ-
ence of Coulomb fields with velocities very much smaller
than light velocity, as Bohr ¢ first showed.

In the hydrogen atom of the gaskinetic radius ro ~
0.53 A the electron rotates, according to Eq. 5.7, with
a velocity

e
V= —————— =~ 2.2 X 10°
6041I'T0m

[m sec™!]; (5.9)

hence the condition » < ¢ is fulfilled. However, why a
particular orbit r¢ should be preferred above others re-
mains unexplained. The classical laws of mechanics
and electrostatics allow any orbit; if we add the laws
of classical electrodynamics, none can be stable.

This becomes evident if we visualize the hydrogen
atom as a rotating dipole of the moment

p(t) = —erge’. (5.10)

Such a dipole is equivalent to two linear dipoles

w(t) = —eI Ty I(i coswl + ksinwt)  (5.11)

that oscillate with a temporal phase shift of 90° in the
z- and z-directions, respectively (Fig. 5.1). These linear
dipoles, as shown in I, 13, correspond to radiating di-
pole antennas. An electron trapped in the field of a
positive nucleus is, therefore, classically speaking, a
light source. It transforms electrostatic field energy
through kinetic energy into radiation, and, in so doing,
it must spiral into the nucleus.
The power radiated per second by two linear dipole
antennas into free space is, according to Eq. I, 13.18,
4
2P = ';"—w €212

mTe

[watt]. (5.12)

§ N. Bohr, Phil. Mag. 26, 1 (1913).

The electron rotates in the 7y orbit of the hydrogen
atom with a frequency

v w

b= % e ~ 6.5 X 10'® [sec™!]. (5.13)
Its kinetic energy in this orbit is
Bkin = 3mv® 2222 X 1078 [joule], (5.14)
and its energy loss per cycle due to radiation is
ZTP = u—;j—ae%oz ~3 X 1072 [joule]. (5.15)

Hence the energy loss per cycle is small, as assumed in
Eq. 4.5, but the hydrogen atom would radiate in ca. 10°

AZ

2 | K

sin wt £

|
/ |

I

S T
K/Fcos .

Fig. 5.1.

¥x

Rotating electric dipole.

cycles or 107! sec the total kinetic energy initially
available. To replenish this energy the electron has to
move nearer to the nucleus in accordance with the me-
chanical equilibrium condition, Eq. 5.7. This would
compel it to circle faster, the wavelength of the emitted
light, originally

c
N =-~47 X 1078 [m],

14

(5.16)

would shorten, and the radiation loss per cycle rise
with the third power of the frequency. Thus the
planetary Rutherford atom must collapse in an ex-
tremely short time under emission of a continuous
radiation covering a spectral range from A to extremely
short wavelengths.

This obviously does not occur. We are forced to
conclude that nonclassical laws come into play in the
realm of molecular dimensions, which permit the exist-
ence of electrons in selected orbits without radiation.
Such entirely new physical concepts outside the range
of previous experience cannot be deduced by theoretical
speculation; they have to evolve on the basis of an
accurate analysis of all available experimental data. In
the present case these data concern the various aspects
of light radiation.
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Extensive spectroscopic studies® have established
that each atom type is characterized by sets of spectral
lines, and that the resonance frequencies in each of
these spectral series can be represented as the difference
between two spectral terms. This Rydberg-Ritz com-
bination principle " reduces, in the case of the hydrogen
atom, to the Balmer formula,

11 .
v=~Rc|— ——) [sec™],

ny Ny

(5.17)

with n; equal 1 or 2 or 3, etc., and n an integer larger
than n;. For my =1, ng =2, 3, 4 ..., the Lyman
series of the hydrogen spectrum is obtained, located in
the far-ultraviolet (Fig. 5.2); n; = 2;n, =3,4,5 ...

Energy-electron volts
10.19 12.07

lomzatien limit
13.58 ev

12.73 13.04

1215.6 1028.5 972.5 949.5

Wavelength- angstroms

Fig. 5.2. The Lyman series of the hydrogen atom.

corresponds to the Balmer series ® extending from the
visible into the near ultraviolet; n; = 3, ns = 4, 5, 6
... to the Paschen series located in the infrared, ete.
The spectral line with the lowest term values is called
the resonance line of the atom in question.

Spectroscopists refer, in general, not to the frequency
of a spectral line but to its wave number

o= T 5 (5.18)
c A
and therefore write the Balmer formula as
Vv = (i — —1—> (5.19)
n?  ng?

The constant R is known as the Rydberg constant. The
precision of spectroscopic measurements allowed its
determination with extreme accuracy as

R = 10,967,758 [m™Y]. (5.20)

The resonance line of the hydrogen atom, the first
resonance absorption which one would encounter when
subjecting an atomic hydrogen gas to alternating fields

8 See, for example, G. Herzberg, Atomic Spectra and Atomic
Structure, New York, Prentice-Hall, Inc., 1937.

7J. R. Rydberg, Phil. Mag. 29, 331 (1890); W. Ritz, Physik. Z.
9, 521 (1908); id., Astrophys. J. 28, 237 (1908).

8 The discovery of this series and its term relations by J. J. Bal-
mer [Ann. Phystk. 25, 80 (1885), 60, 380 (1897)] marks the be-
ginning of scientific spectroscopy.

of higher and higher frequencies, is located in the far
ultraviolet region of the electromagnetic spectrum at

’ 1 1 6 -1
or (5.21)

1
A = — = 1215.66 A.

v,

This wavelength is about three times as long as that
expected from the classical model (see Eq. 5.16).

Additional information on the properties of radiation
was obtained from investigations of the continuous
spectrum emitted thermally by solids and liquids. The
equilibrium radiation that establishes itself in an iso-
thermal cavity enclosed by completely absorbing walls
may be observed experimentally through a very small
hole in the wall of such a black body. The intensity of
this black-body radiation proved to be a function of
temperature and frequency only,’ and not dependent
on the specific properties of the wall material. Obvi-
ously, thermodynamics and statistics should be able
to calculate the black-body spectrum.

Thermodynamic considerations !° led to the conclu-
sion that the energy density p of the radiation in the
cavity should increase with the absolute temperature as

p =aT* [joule m™3]. (5.22)

In addition to this Stefan-Bolizmann law,"' thermody-
namics could show that the spectral energy density py
contained in a wavelength range between A and A + d\
must rise with the fifth power of the absolute tempera-
ture, and that the proportionality factor in the spectral
density equation can depend only on the product of
wavelength and temperature. Thus

pn d\ = TSF(\T) dA. (5.23)

The experimental characteristic of f(AT) plotted as
function of the wavelength traverses a maximum at
some wavelength Amax. At A = Apax, the differential of
px with respect to A for a fixed temperature is zero;

f AmaxT)
hence ——— = 0, or
d\

AmaxI' = constant = A4; (5.24)
the wavelength of highest radiation density shifts pro-
portional to 1/T. Equation 5.24 is known as Wien’s

® G. Kirchhoff, Berl. Ber. 1859, p. 216; Pogg. Ann. 109, 275
(1860).

0 See M. Planck, Theorie der Wdrmestrahlung, Barth, Leipzig,
1906.

unJ. Stefan, Wien. Ber. 79, 391 (1879); L. Boltzmann, Wied.
Ann. 22, 291 (1884).
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displacement law.* The values of the Stefan-Boltz-
mann constant a¢ and of Wien’s displacement constant
A are
a = 7.563 X 10716 [watt m— deg™],
(5.25)

A =2897 X 1072 [m deg].

There remains the evaluation of the function f(AT')
itself; this requires a statistical approach. Classical
statistics leads to the principle of the equipartition of
energy, which claims that each degree of freedom of a
system in thermal equilibrium contains the same aver-
age energy

&= kT (5.26)

The factor
k= 1.380 X 10722 [joule deg™] (5.27)
is the Boltzmann or molecular gas constant. By apply-

ing this principle to the radiation problem, classical
physics arrived at theoretical conclusions in complete
variance to the experimental facts.

The energy content of the radiation field can be
calculated from the number of standing-wave modes
that can be accommodated in a black-body cavity
since these modes represent the degrees of freedom of
the radiation field. In a linear resonator of the length d,
n standing waves are possible with nodes at the bound-
aries; that is,

A

d=n5v withn =1,2,3 .... (5.28)

Consequently, in a wavelength range between A and A
+ d\ the number of possible wavelengths is

2d 2d 2d d\
N A4dn A

for dh <X, (5.29)

Since the electromagnetic waves are transversal, each
of these dn wavelengths corresponds to two transversal
modes, polarized at right angles to each other, and each
of these two dn modes may contain 3kT of electromag-
netic energy. The total energy density of the linear
radiation field consequently becomes

“d\
p= 2Ich ik o forT>0. (530)
0

The number of possible modes increases towards in-
finity with shortening wavelengths; hence no equi-
librium is possible between the radiation field and the
walls of the container if the classical equipartition prin-

12'W. Wien, Sitz. Ber. Akad. Wiss. Berlin, Feb. 9, 1893, p. 55;
Wied. Ann. 62, 132 (1894).

ciple is valid. Hot bodies would, of necessity, emit a
radiation dominated by the highest frequencies until
their temperature has fallen to the absolute zero point.

This impasse forced physics to a decisive reorienta-
tion. Planck * discovered (October, 1900) a function
FQAT) which led to a radiation formula in complete
agreement with experiment. The Planck radiation law
for the spectral energy density in the frequency range
between v and » + dv,}

8xhy® dy

s,
AT — 1}

py dv = [joule sec™* m™3], (5.31)

represented, however, as was slowly realized, a radical
break with the classical ideas. It introduced a univer-
sal constant of action, the Planck constant

h = 6.623 X 1073* [joule sec], (5.32)

and stated that the energy content of the linear oscilla-
tors lining the walls of the black body as well as the
energy content of the radiation field itself is parceled in
energy quanta or photons hv.

Planck drew only the first of these conclusions. Ein-
stein * extended the idea of quantization to the radia-
tion field in order to explain the photoelectric experi-
ments of Lenard.’® Lenard had observed that the
number of photoelectrons emitted from a metal surface
increases proportionally to the light ¢ntensity, but that
the velocity of these electrons depended only on the
metal used and on the frequency of the irradiating light.
Classically, we would have expected that the intensity
of the electromagnetic field would determine the energy
with which the photoelectrons are ejected. By connect-
ing this observation to Planck’s law, Einstein arrived
at the concept that the energy of the electromagnetic
field is contained in light quania hv. Consequently, if
a photoelectron is liberated by the absorption of such
a quantum, its energy cannot exceed the amount

Imy? = eV = v — P, (5.33)
where the work function P represents the binding
energy of the metal for electrons.

Einstein’s photoelectric equation (Eq. 5.33) suggests a
convenient new yardstick for the measurement of
energy relations in molecular physics: the eleciron volt

13 M. Planck, Verh. deut. physik. Ges. 2, 237 (1900); Ann.
Physik 4, 553 (1901).
1 In switching over from the wavelength to the frequency

¢
scale, we have to substitute d» = — ¥ d\, since v = ¢/,

14 A Einstein, Ann. Phystk 17, 132 (1905).
15 P, Lenard, Ann. Physik 8, 149 (1902).
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[ev]. One electron volt represents the energy acquired
by an electron in falling unimpeded through a poten-
tial difference U of one volt, or

1[ev] = 1.602 X 10~ [joule]. (5.34)

Summarizing: Classical physics had come into a
conflict with the experimental facts of electromagnetic
radiation from which it could not extricate itself. The
planetary Rutherford atom was supposed to collapse
but proved stable. The radiation of atoms consisted
of series of sharply defined spectral lines ruled by the

empirical Rydberg-Ritz combination principle. The
continuous spectrum of black bodies violated the equi-
partition principle, and the energy of photoelectrons
proved dependent on the frequency and not on the in-
tensity of the light. These last two facts compelled
physics to break with its classical continuum ideas and
to conclude that radiation is parceled out in light
quanta hv. Maxwell’s theory thus loses its absolute
validity and becomes a theory of photon statistics.
The remaining great problem was to link the quantum
theory of radiation to the structure of atoms.

6 - Bohr’s Quantum Theory

The first step towards the new theory of atomic
structure was made by Bohr.! His theory assumes
that the electrons of atoms can move in certain stable
orbits without radiation (Rutherford atom). It further
postulates that electron transitions between these stable
energy states of the atom produce the spectral lines by
the absorption or emission of light quanta. Since the
energy of the system (atom plus photon) has to be con-
served, the frequency of the radiation is given by the
energy difference between the initial (6,) and final (&2)
state of the atom as

hV = 81 — 82. (61)

Thus, by representing each spectral line as the differ-
ence of two energy terms, Bohr's frequency condition
(Eq. 6.1) explains immediately the significance of the
Rydberg-Ritz combination principle.

In the hydrogen atom, the electron circling the pro-
ton at a distance r has, according to the Virial theorem
(see Eq. 5.8), the total energy

(6.2)

The frequency condition for an electron transition
from an orbit of radius . to an orbit r; may therefore

be written as
&2 (1 1)
€()81I‘ r1 Tro

By comparing this expression with the empirical fre-
quency condition of the Balmer formula (see Eq. 5.17)

€ (s =)
=3 (B | =2 i K2
g n12 n22

1 N. Bohr, Phil. Mag. 26, 1, 476, 857 (1913).

h = (6.3)

(6.4)

we find that the two equations can be alike only if
(6.5)

that is, if the radii of the possible orbits increase propor-
tional to n%, withn = 1, 2,3 ... (Fig. 6.1).

r = n’ry,

n=4

Fig. 6.1. Sequence of circular Bohr orbits of the hydrogen atom.

Equations 6.3 to 6.5 relate the fundamental orbit of
the hydrogen atom ry to the empirically determined
Rydberg constant R (see Eq. 5.20) as

To = 82/6081I'hCR. (66)

A complete theory, however, should be able to calcu-
late 7o and R directly from fundamental constants.
Bohr accomplished this by his correspondence principle.

A decisive difference between quantum and classical
theory lies in the fact that quantum transitions take
place between two energy states of different physical
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properties, whereas the corresponding classical process
is concerned with only one set of physical conditions.
Thus Bohr’s hydrogen atom radiates when the elec-
tron jumps from a larger to a smaller orbit, whereas
classically the frequency » is emitted when the electron
revolves in a given orbit r with this frequency ». Bohr
now postulated that when the change of physical prop-
erties between two quantum states becomes very small,
the laws of quantum physics approach asymptotically
those of classical physies. This correspondence princi-
ple is one of the powerful tools of the quantum theory
because it links the atomistic world by extrapolation to
the everyday world of macroscopic experience.

Applying the principle to the hydrogen atom, we
claim that electron transitions between neighboring,
very large orbits (n>> 1, dn = 1) produce according to
the Balmer formula a quantum frequency

R(l 1 ) 2Rc
L i v (n 4+ 1)2 T

which approaches asymptotically the classical fre-
quency emitted by an electron circling a very large
orbit of radius r (see Egs. 5.9, 5.13, and 6.5),

e } 1
Ve = >
21!'7!«3 6047r?‘03 m

By postulating for n — o the equality

(6.7

(6.8)

(6.9)

the correspondence principle leads thus to a second
equation between ro and R, which, together with
Eq. 6.6, determines the Rydberg constant and the
radius ro of the hydrogen atom unambiguously and in
complete agreement with experience as

Vg = Ve,

é*m

T o8k

(6.10)

eoh?

To = = (0.528 A.
mTme

2

A further significant result can now be derived easily.
The mechanical stability of an electron in its orbit
r = n?ry requires, according to Eq. 5.9, an angular

momentum
) e2mn’rg
p = mur = .
Eo41l’

By introducing the expression for r¢ from Eq. 6.10, we
obtain Bohr's famous quantization condition of the
rotator h

e tmi o,
i 27

(6.11)

n=123.... (6.12)

The angular momentum of the circling electron must
be an integral multiple of A/27. The integer n is called
the principal or total quanium number and determines
the distance of the electron from the nucleus. The
smallest integer, for hydrogen n = 1, designates the
fundamental or ground state of the atom; the higher
integers correspond to states of higher energy, that is,
to excited states. The combination h/27 is frequently
abbreviated as h (h bar),

h = h/2r. (6.13)

The orbit described by a planet around the sun is in
general not a circle but, according to Kepler's first law,
an ellipse with the sun in one of its two focal points.
In the planetary atom model, elliptical orbits have
therefore to be admitted (Fig. 6.2). The motion of an

Fig. 6.2. Elliptical orbit.

electron around the positive nucleus in an ellipse is,
like the corresponding astronomical situation, a prob-
lem of two degrees of freedom since the kinetic energy
depends not only on the distance r from the focus but
also on the azimuth angle ¢. If ds designates an ele-
ment of the orbit, it becomes in these polar co-ordinates

(see I, Table 3.2)
ds® = dr® + rid¢?; (6.14)

hence the kinetic energy

(&) 3 ] o

To describe such more general motions, physics uses
normally the position co-ordinates ¢ (in this case r
and ¢) and the momentum co-ordinates p, defined as

Ekin =

98kin
ag

p= , (6.16)

where the dot above the position parameter signifies its

5 . . . dzx
derivative with respect to time (x = —, etc.). The

momentum co-ordinates of the ellipse, according to
Eq. 6.15, are

pr = mi, pp = mr’p. (6.17)
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The co-ordinate space in which the positions ¢ are
plotted as the abscissa and the momenta p as the ordi-
nate is called a phase space.

The motion of our electron is a recurrent one; this
means that the integral over the motion in phase space,
the phase integral

must represent a finite area. According to Bohr’s
quantum theory, only certain orbits are permissible,
selected in the case of circular orbits by the quantum
condition Eq. 6.12. In phase space, the selection of
certain orbits corresponds to the fact that the phase
integral can assume only certain values. Sommerfeld 2
first derived a general rule that the image point of the
electron in phase space describes curves of the quan-

tized area
f p dq = nh.

Equation 6.19 is called Sommerfeld’s quantum condition
(see also Eq. 18.14).

For the elliptical orbits of the hydrogen atom, a sys-
tem with two degrees of freedom, we obtain thus the
two quantum conditions

(6.19)

} ¢=2x
fmmmm‘f Do dd = kh.  (6.20)
$=0

The integers n’ and k are designated as the radial and
the azimuthal quantum number. Their sum

n=n'+k (6.21)

corresponds to the total quantum number of Eq. 6.12
whereas their ratio describes the numerical eccentricity
of the ellipse (see Fig. 6.2)

e = MO/MP (6.22)
as
n’ 1 :
k B 1—¢é
or (6.23)
12 9
n_z = 1 s=nenh

It can be shown ? easily that the large and the small
half axis of the ellipse are
a=r=n’r,

6.24
b = nkr,. (6:24)

2See A. Sommerfeld, Atombau und Spektrallinien, Vieweg,
Braunschweig, 1924, p. 99.
3 See A. Sommerfeld, loc. cit., pp. 122 ff.

The large half axis of the ellipse proves to be identical
with the radius of the circular Bohr orbit of the same
principal quantum number (Eq. 6.5). Furthermore,
the total energy & of an electron in its ellipse,

2

€
&= —

€8ma (6.25)
depends only on the major half axis a, that is, on the
total quantum number n, and is thus identical with
that of the corresponding circular orbit (Eq. 6.2).
Consequently, to each principal quantum number 7
belongs one circular Bohr orbit (n’ = 0; k = n) and
(n — 1) elliptical orbits (' =1,2, ..., n —1; k=n
— 1, ..., 1) of the same energy (Fig. 6.3).1 This de-

n=2, k=2

nN=2 k=

Fig. 6.3. Equivalent circular and elliptical Bohr orbits.

generacy of the one-electron system, namely, that cir-
cular and elliptical orbits have the same energy, makes
the hydrogen spectrum especially simple but also
atypical.

A circular orbit is characterized by the momentum
co-ordinates (cf. Eq. 6.17)

pr =0, py = mrle = constant. (6.26)

With these values, the quantum conditions of Eq. 6.20
retransform into Bohr’s quantization condition for the
rotator (Eq. 6.12).

Bohr’s theory proved eminently successful in giving
a quantitative explanation of the spectra of atoms and
ions with one valence electron and in providing the key
for a general interpretation of the structure of atoms

t The case n’ = n, k = 0 is excluded in Bohr’s theory, because
the electron would have to traverse the nucleus.
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and molecules. The quantum nature of the electronic
transitions, Bohr’s frequency condition, was verified by
the experiment of Franck and Hertz 4 (Fig. 6.4). Here

Mercury vapor 4.9V oleaov_iliagy
P ~ Galvanometer '
Thermionic = °* = <
g L
=
3
o
-
L
@
(3
o
o
o
>
| 8
- volt
2 ! ! 1
5 10 15

Voltage of thermionic emitter

Fig. 6.4. The Franck-Hertz experiment.
4J. Franck and G. Hertz, Ber. deut. physik. Ges. 16, 457 (1914).

it could be directly demonstrated that electrons, when
accelerated to a critical kinetic energy (for example,
ca. 4.9 ev for mercury vapor), can lose this energy in
one inelastic tmpact by exciting an atom to the corre-
sponding energy level; the atom then returns to its
original state by the emission of a light quantum,
which corresponds in energy to the kinetic energy the
electron has lost (for mercury, the spectral line 2536.7 A
appears).

Serious difficulties arose for Bohr’s theory, on the
other hand, when it was applied to multi-electron sys-
tems and to the fine structure of spectral lines. Obvi-
ously, the planetary atom with its mysterious stabiliza-
tion of stationary electron orbits was only an interme-
diate concept which has to yield to some more deeply
founded description.

7 - Wave Mechanics

The preceding development introduced a dualism
into the theory of radiation. Although the laws of
propagation and interference of electromagnetic energy
could be described successfully by a wave theory based
on Maxwell’s equations, the exchange of this energy
with matter could be explained only by postulating
the existence of light quanta, that is, of particles of
energy. Since these photons travel with the velocity
of light, their mass, energy, and momentum have to be
defined on the basis of relativistic mechanics.

Einstein’s theory of relativity ! states that the mass
of a particle moving with the velocity » is

Mo

m = =—————
-5
c2

Multiplying this effective mass by ¢* and developing
the denominator in a series, we can rewrite the equa-
tion as

(7.1)

1 4
me? = moe® + —m® +-mo—<+---  (7.2)
2 8 ¢
and read it as follows: A particle at rest has the mass
mo (“rest mass”) representing an energy content mgc?,
which we tap, for example, in the atom bomb. Speed-
ing the particle up to a velocity » < ¢ means adding the
kinetic energy lsmov® in accordance with Newtonian
mechanics. For a photon which does not possess a rest

1 A. Einstein, Ann. Physik 17, 891 (1905).

mass and which travels with the velocity of light the
left-hand side of the equation applies. Its energy is

& = v = mc?; (7.3)
hence we may assign to a photon a mass

&

hv
Wi mr N 7.36 X 10~%1  [kg], (7.4)
c c
and a momentum
hy
p:mc:-—:—- (7.5)
c A

This result can be checked experimentally by the
momentum transfer observed in the scattering of
X-rays, by the Compton effect? (Fig. 7.1) (see also
Appendix A, IT, 1).

g

- o3
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\ol

X-ray scattered by
electron

X-ray incident upon ¢
electron

by g
c

Recoil of electron

Fig. 7.1. The Compton effect.

According to Eqs. 7.3 to 7.5, the behavior of light
may be discussed either from the particle standpoint
by the energy and momentum of photons or from the

2 A. H. Compton, Phys. Rev. 21, 715; 22, 409 (1923).
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wave standpoint by the frequency and wavelength of
the corresponding electromagnetic wave. De Broglie 2
now postulated that this dualism for photons traveling
with the velocity of light also holds for particles of
much smaller velocities » and possessing a true rest
mass my. He assumed that the quantum equations for
the total energy and the momentum

& =hy
(7.6)

¥l >

have universal validity. According to these de Broglie
equations, the motion of any particle is correlated to a
wave phenomenon which statistically prescribes the
motion of the particle by its wave patterns.

This revolutionary speculation was soon confirmed
by the electron diffraction experiment of Davisson and
Germer,? who found anomalies in the reflection pattern
of electrons from a nickel target which could be traced
to the accidental existence of larger single crystals in
the target metal. The single crystals produced diffrac-
tion spots as in X-ray diffraction, and a corresponding
calculation of this interference phenomenon led to a
wavelength of the scattered electrons

huee o ih

= — = —y

o P

(7.7

in agreement with de Broglie’s assumption.

Today, electron-diffraction analysis has become a
standard research tool, and it seems rather puzzling
that this striking phenomenon could elude detection
for over twenty-five years. Interference experiments
have also been performed with molecular beams of
hydrogen and helium ® and with neutrons.® Only the
very short wavelengths of heavier particles prevent
the demonstration of their wave nature.

In X-ray and electron diffraction the photon and the
particle interference patterns appear in complete anal-
ogy as a probability distribution of many bullets over
some target area. This fact tends to obscure a funda-
mental difference between electromagnetic waves and
de Broglie waves. Electromagnetic waves contain
information about the statistical behavior and the en-

3 L. de Broglie, Phil. Mag. [6], 47, 446 (1924); Ann. Physik 3,
22 (1925). ‘

¢ C. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927);
Proc. Natl. Acad. Sci. 14, 317 (1928).

5 F. Knauer and O. Stern, Z. Physik 53, 779 (1929); I. Ester-
mann and O. Stern, ibid. 61, 95 (1930); I Estermann, R. Frisch,
and O. Stern, tbid. 73, 348 (1932).

§C. G. Shull, E. O. Wollan, W. C. Koehler, Phys. Rev. 84, 912
(1951).

ergy of many photons. The radiation intensity, as ex-
pressed by the Poynting vector (see I, Eq. 11.12),
represents the average number of photons traversing a
unit area per second, the density of the photon stream,
times its quantum energy as

| S| = Nhw  [watt m™2]. (7.8)

If the number N becomes too small, violent statistical
fluctuations will take place, and the electromagnetic
theory loses its validity. A de Broglie wave, on the
other hand, is associated with the location of an indi-
vidual particle. Where it is strong, the particle is likely
to be found; where it is weak, the particle will normally
not be. The intensity of the de Broglie wave at any
point in space represents the probability of finding the
particle at that point.

Newtonian mechanics assumed that, once the initial
conditions are given, the position and the momentum
of a particle are precisely defined at all values of time.
It now appears that this claim must be limited to the
macroscopic world. Just as geometrical optics is super-
seded by wave optics, Newtonian mechanics is super-
seded by the new wave mechanics based on the de
Broglie equations whenever the wavelength becomes
comparable to some significant dimension of the
problem.

In the experiences of daily life, where the meter,
kilogram, and second are appropriate yardsticks for the
dimensions encountered, the wavelength proves com-
pletely negligible. From Eqs. 5.32 and 7.7 we obtain
for the mass of 1 kg moving with the velocity of 1 m/sec
the wavelength

h
A=——=6.623 X 1073* [m]. (7.9)
1X1

The small mass of electrons, on the other hand, makes
the application of wave mechanics (quantum me-
chanics) imperative. And it is this wave aspect of
electrons which gives the stationary states of the Ruth-
erford atom a reasonable interpretation. If the posi-
tion of a circling electron is described by a probability
wave, it can obviously persist only in orbits in which
the de Broglie wave can set up a standing wave pat-
tern instead of destroying itself by interference (Fig.
7.2). By prescribing that the circumference of the
circular orbits of the hydrogen atom must correspond
to an integral number of wavelengths, we arrive at the
stability condition

2rm = n\, withn =1,2,3 .... (7.10)

If we introduce, in place of the wavelength, the mo-
mentum, according to de Broglie’s equation, Eq. 7.10
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reverts immediately to Bohr’s quantization condition
of the rotator
(6.12)

Although this outcome is gratifying, it should not be
misunderstood. The stringent assignment of an elec-
tron of a precise momentum to a precise orbit, as pic-
tured in the Rutherford atom and Bohr’s theory, con-
tradicts the spirit of quantum physies. This was real-
ized by Heisenberg,” Bohr, and others, before the ad-
vent of wave mechanics, through statistical considera-
tions concerning the interaction of particles with the
measuring devices of an observer. The existence of
Planck’s quantum of action introduces an uncertainty
in the deseription of a particle as far as a simultaneous
definition of location and momentum are concerned,
and consequently a similar uncertainty in its descrip-
tion by de Broglie waves. We shall come back to this
uncertainty principle (see Sec. 8).

De Broglie’s theory had been largely of a qualitative
nature. To make use of the wave concept for a quan-
titative discussion of molecular phenomena requires
the formulation of a basic wave equation. This task
was first seen and solved by Schrédinger.! We have
already become familiar with wave equations in the
case of the electromagnetic field (see I, Sec. 7). Elec-
tric and magnetic plane waves, for example, moving
towards the +z-direction without attenuation as

p’ = nh.

g i)
(7.11)

were derived (see I, Egs. 7.9 to 7.16) as solutions of the
differential equations

’E n (2#)2E 0
dx? A B

’H n (2#)2}1 0
o2 A S

(7.12)

In analogy, a de Broglie wave traveling in the +z-
direction may be described by a wave function

AN
Y= en) (7.13)

which obviously is a solution of the wave equation

N
dx? A v S0

The frequency of this wave, according to de Broglie’s

7W. Heisenberg, Z. Physik 33, 879 (1925); 43, 172 (1927).
8 E. Schrodinger, Ann. Phystk 79, 361, 489 (1926).

(7.14)

Destructive interference

C Stationary states
in non-allowed orbit

————

Fig. 7.2. Stationary states and destructive interference.

equations, is given by the fofal energy of the particle
& = hy, (7.15)
whereas the wavelength is prescribed by the particle
momentum p or its kinelic energy as
A = h/p,
1 p? 2
Ekin = Emvz = om  omnE

Since the kinetic energy of a particle is the difference of
its total and potential energy,

8kin =§&— U;

(7.16)

(7.17)

we may substitute this energy difference in Eq. 7.14
for the wavelength and obtain

0 o a1 sy (718)
9z K2 uls | .

Finally, if the particle is free to move in any direction,
2,

d
the space derivative % has to be replaced by the La-

place operator (see I, Egs. 7.6 and 7.7). Thus the
famous Schridinger equation results:
2m
Vi + Fey & —-Uw=0. (7.19)

The solutions of Schrédinger’s equation give the
pattern of the wave function ¥ in space. The square
of its absolute value, the product of ¢ and its conju-
gate ¥, in a space element dV, represents the probabil-
ity of finding the particle in that element, as Born ?
first pointed out. The integral of this intensity of the
probability wave extended over all possible space must
be unity, that is,

f wWdav =1, (7.20)

9 M. Born, Z. Physik 37, 863 (1926).
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since the particle, with certainty, must be somewhere
in space. This equation is called the mnormalization
condition of the de Broglie wave. Obviously it requires
that ¢ be finite in space; furthermore, the second deriv-
ative of ¥ with respect to space must be finite because
it represents the kinetic energy according to Eq. 7.19.
Hence ¢ and its first space derivative must be con-
tinuous. This is a very important and restricting con-
dition in wave mechanics. It prescribes that, at a
boundary, two wave functions have to be joined in
such a manner that their amplitudes and slopes are
continuous, and is therefore known as the joining con-
dition.

If a time dependence of the wave phenomenon has
to be considered, we can introduce it into the Schré-
dinger equation by recalling that

A4

Py Jo, (7.21)
and, according to de Broglie’s equations,
w = §/h. (7.22)
Thus, by substituting
&Yy = —jh%: (7.23)

in the Schrodinger equation and rearranging, we obtain
the Schridinger wave equation,t

(7.24)

t It should be noted that, in contrast to Maxwell’s wave
equations and to the original derivation of de Broglie’s, the
Schrodinger equations are nonrelativistic, since they equate hv
to the classical total energy & of the particle.

Maxwell’s equations have been solved accurately for
a very large variety of conditions. Schrédinger applied
his equations with complete success to a treatment of
the hydrogen atom, the linear oscillator, and various
other problems, and they have been tested successfully
by many outstanding contributors in progressively
more difficult situations. We seem to be justified to-
day in assuming that the wave nature of particles, as
formulated, represents a fundamental law of nature,
and that the theory of quantum mechanics founded on
Schrodinger’s equations could give us a quantitatively
correct description of the molecular world. But, in
contrast to the electromagnetic field equations, Schro-
dinger’s equations can be solved accurately only in very
few cases.

The fundamental difficulty lies in the fact that, al-
though the photons of the electromagnetic field do not
interact in general, the particles of wave mechanics
affect each other with strong forces. Thus an electron
moving in the Coulomb field of other charged particles
may preserve its total energy and with it the frequency
of its de Broglie wave. However, its kinetic energy
and thus the wavelength of the electron will vary from
point to point in space. In optics we are normally con-
cerned with homogeneous dielectrics; de Broglie waves
traverse dispersive media in which the index of refrac-
tion varies from point to point. Simultaneously, we
face, in a new language, the old difficulty of classical
mechanics: the two-body problem can be solved rigor-
ously, the multibody problem can be treated only by
approximations.

These are the reasons why quantum mechanics has
not progressed faster and why it puts us continuously
on guard lest the approximations that are chosen neg-
lect essential aspects of the actual physical situation.

8 + The Structure of Atoms

Quantum mechanics introduces an unaccustomed
aspect of complementarity into the description of the
molecular world. The position of particles is deter-
mined by de Broglie probability waves, as interference
experiments testify. The stationary states of electrons
in atoms correspond therefore to standing wave modes,
to electron clouds of characteristic sizes and shapes, and
the electric charge of the electrons appears smeared ouf
over these probability patterns. In impact experi-

ments, on the other hand, as, for instance, observed in
the Wilson cloud chamber or by seintillation, the parti-
cle makes its appearance with its concentrated electric

charge and a definite momentum. Both the particle
and the wave picture describe one and the same physi-
cal entity from different standpoints. The two aspects
are not contradictory but complementary; the only
limitation is that we cannot focus our attention on
both of them simultaneously with an arbitrary ac-
curacy.

The existence of an uncertainty in the definition of
correlated parameters is a typical feature of any wave
phenomenon. A wave function

2x

p=Ade ™ @.1)
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for example, describes a monochromatic wave traveling
in the +z-direction. If it represents the de Broglie
probability wave of a particle, the momentum of this
particle is accurately determined by the wavelength A,
but the intensity of the wave

W= A* (8.2)

is the same from £ = —x to x = - and thus leaves
the position of the particle completely undefined. If
we want to localize its position near z,, we have to
quench the probability pattern outside of .

This localization may be achieved by superposing on
the constant intensity of the wave a Gaussian error
function centered at zo, that is, by altering the wave
function to

_1fz—=0 pere
y=Ale 2N b T g N (8.3)
with the intensity

¢¢=£;CT9_ (8.4)

The particle is now confined to a wave packet of the
half-width
2 Az = 2b, (8.5)

but we have destroyed, in the process of localization,
the accuracy with which its wavelength, that is, its
momentum, is known. Fourier analysis of such a
finite wave train shows, as already discussed in Sec. 4
for the half-width of a spectral line emitted by a damped
oscillator, that the intensity of the wave packet plotted
on a 2w/A-scale does not peak sharply at 2x/\¢ but
spreads around this point in a bell-shaped resonance
characteristic. For the wave packet produced by a
Gaussian error curve in space, the 2x/A-characteristic
is again a Gaussian of the half-width

(e 6

(Fig. 8.1). The product of both uncertainties of defin-
ing the position and the wavelength of the wave packet
has the constant value

sa(Z) -1 o
A

It can be shown that the choice of any other quench-
ing function for the construction of the wave packet
leads to even larger uncertainties, since only a Gaussian
error function, as a Hermitian function, has the sym-

t In this case we define the half-width as the distance between
the points at which the intensity has fallen to 1/e of its maximum
value.

metry property of being converted into an identical
function by Fourier transformation.

A corresponding discussion can be carried through
for a probability wave

Y = Aelt (8.8)
as a function of time and frequency; it leads to the un-

certainty relation
At Aw = 1. (8.9)

By admitting arbitrary quenching functions we can
formulate the uncertainty principle that prescribes the
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Fig. 8.1. Wave packet constructed with Gaussian distribution
in z and 27 /X scale.

definition of correlated parameters of wave phenomena:

Az A (ﬁ) B}
A (8.10)

At Aw > 1.

Quantum mechanics introduces the momentum p for
the wavelength and the total energy & for the frequency
according to de Broglie’s equations (Eqs. 7.6). Thus
the Heisenberg uncertainty principle results:

Aq Ap 2 B,

8.11
At A€ > h. Gy

The total energy of a particle at a given time or its
momentum at a given location cannot be determined
more accurately than Planck’s quantum of action
allows.

By applying this uncertainty principle to the hydro-
gen atom, the binding energy of the electron can be
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obtained.! The total energy of the electron at a dis-

tance r from the proton is

62 p2
+ — 8.12
edwr  2m ( )

& =U+ &in = —

This energy becomes a minimum when r and p assume
their smallest possible values. The average distance
from the nucleus and the average magnitude of the
momentum cannot be smaller than their uncertain-
ties A, and A,, that is, the smallest average values of
the parameters are coupled by the uncertainty rela-
tion as

(8.13)

The energy, expressed as the function of this average
distance,

& h?
8= Tt | 2m? (8.14)
reaches its minimum for d&/d7 = 0 at
Fnin = ;;’n’iz = 0.528 A; (8.15)

this minimum average distance is identical with the
radius 7o of the fundamental Bohr orbit (see Eq. 6.10).
The total energy in this ground state,

4

6028h2

&g = — = —Rhc~ —13.5 [ev], (8.16)

represents the tonization energy of the hydrogen atom;
it serves under the name Rydberg energy as a convenient
yardstick for the measurement of binding energies.

An actual calculation of the stationary states or the
standing-wave modes of the hydrogen atom requires
that we introduce the potential energy U of the Cou-
lomb field in the Schrodinger equation (Eq. 7.19).
Thus we have to solve the equation

v+ 27 (s 4 J Yo=0 @
h? eodnr I
under the condition that the wave function ¢ be single-
valued, continuous, and finite everywhere in space. It
proves to have solutions for all positive values of the
total energy &, but only for certain negative eigenvalues
which are identical with those derived from the Bohr
theory (see Egs. 6.4 and 6.10),

Gn SRV withn =1,2,3 ....
n

(8.18)

18ee F. O. Rice and E. Teller, The Siructure of Matter, John
Wiley and Sons, New York, 1949, p. 7.

This means that, while the electron is trapped in the
Coulomb field of the proton, as in a wave guide, only
selected standing-wave modes can form. Above the
ionization level, however, the electron can move in
unbounded space with any energy. Spectroscopically,
this is verified by the continuum which sets in at the
ionization limit (see Fig. 5.2).

In the hydrogen atom, the electron moves in a central
field, Schrédinger’s equation has to be solved for spheri-
cal co-ordinates, and the wave functions have to be ex-
pressed in spherical harmonics.? The essential facts of

T
2 e
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Fig. 8.2. Standing waves in rectangular potential well of in-
finitely high walls.

the situation, however, can be made clear by adher-
ing to trigonometric functions as previously and refer-
ring to the example of a rectangular one-dimensional
potential well. In the case of such a well, enclosed
by infinitely high walls (Fig. 8.2), an infinite num-
ber of energy states exists, characterized by a sequence
of simple, standing-wave functions cos (mr/a)r and
sin (nw/a)x, with m = 14,34, 34, ... andn =1, 2,3

This situation is completely analogous to the
parallel-plane wave guide of I, Sec. 22.

If the walls are cut down to finite height, obviously
only a finite number of energy states can be accommo-
dated before the top of the well, the ionization limit,
is reached. Above it, the boundary conditions disap-
pear and any energy state is possible (Fig. 8.3). How-
ever, on account of the finite wall height, a new aspect
enters the situation: the electron has a finite probabil-
ity of escaping from the well (cf. tunnel effect, Sec. 14).
This probability obviously increases the higher the
the energy state, that is, the nearer the top, and has
the consequence that the ¢ wave functions are not any-
more terminated by a node at the wall. The periodic
wave functions in the well have to be joined to expo-
nentially decaying wave functions in the wall according

2 See, for example, J. C. Slater, Quantum Theory of Maiter,
McGraw-Hill Book Co., New York, 1951, Chapter 5.
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to the joining condition (see Sec. 7). Expressed in
optical language: the walls cease to be totally reflecting
(see I, Sec. 19).

The well of the Coulomb field has some aspects of both
situations. Its depth is infinite towards the nucleus but
finite towards the outside. Hence, an infinite number
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Fig. 8.3. Energy states and wave functions for rectangular well
of finite height.

of bound states exists and also an ionization limit fol-
lowed by a continuum of allowed states. Since the well
of the Coulomb field resembles a funnel, infinitely deep
below the energy states but of only finite height above
them, the states are crowding together towards the
ionization limit and not towards the bottom of the well
as in Figs. 8.2 and 8.3.

For the ground state of the hydrogen atom, charac-
terized by the total quantum number n = 1, the wave
function proves to be a simple exponential

Y = Ce "™, (8.19)

The normalizing factor C adjusts the integral of the in-
tensity over all space to unity (see Eq. 7.20). The
probability of finding the electron, Y4, has its maximum
in the nucleus (r = 0) and falls exponentially towards
the outside. The probability, on the other hand, of
finding the electron in a spherical shell at a distance
between r and r 4+ dr from the proton,

P(r) dr = C2%e~*/™4xr? dr, (8.20)

reaches its maximum for dP(r)/dr = 0 at the Bohr
orbit r = ry (Fig. 8.4). The wave function in this
fundamental state depends only on the distance be-
tween the electron and nucleus; it is a spherically sym-
metrical or s function. The electron in such a state is
designated as an s electron. More specifically, by add-
ing the integer of the fundamental quantum number as
a prefix, we denote the electron in the fundamental
state of the hydrogen atom as a ‘““1s” electron.
Although Schrodinger’s equation has for the energy
&, of the ground state only this one solution, the first
excited state (n = 2) with 8§ = 148, proves to lead to
four different wave functions of the same energy or to

be fourfold degenerate. One of them is again spherically
symmetrical; it is the 2s function

-
Pore= (— - 2) e/,
To

The other three have directional properties, stand
normal to each other as

_ —r/2r
‘P:v = xe 0;
=y v 2
‘l’y = ye § ro’

—r/2
v, =z o

(8.21)

(8.22)

and are called p functions. The various substates be-
longing to the same principal quantum number n are
designated as orbitals. For n = 1, we had only the 1s
orbital; for n = 2 we find one 2s orbital and three 2p
orbitals. Figure 8.5 schematically illustrates the elec-
tron clouds of these s and p orbitals.

The multiplicity of the wave functions and orbitals
increases systematically. Nine wave functions belong
to the second excited state (n = 3); it is ninefold de-
generate and consists of one 3s, three 3p, and five 3d
orbitals. And so it continues, with the general rule

P
1 | 1
0 I 2 3 4
r/,
v
L [ [
o) [ 2 3 4
r/r,

Fig. 8.4. Radial probability function and probability density
function of 1s electron in hydrogen atom.

that the state of the fundamental quantum number n
is n?-fold degenerate and that its wave functions and
orbitals are composed of n groups, made up by one s,
three p, five d, seven f orbitals, ete., adding up to a
total of n?.

Spherical electron clouds, that is, s orbitals, have
obviously no angular momenta, but the electron motion
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in the less symmetrical, (n — 1) configurations leads to
definite angular momenta p’. In analogy to the ellipti-
cal orbits in Bohr’s theory (see Eq. 6.20), these eccen-
tric electron clouds need, in addition to the total quan-
tum number n, a second quantum number, the azi-
muthal quantum number [, for their complete characteri-
zation. In slight deviation from Bohr’s quantum con-
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Fig. 8.5. Schematic representation of the angular space de-
pendence of the electron density distribution of s and p orbitals.

dition for the rotator (see Eq. 6.12), wave mechanics
leads to the quantization condition

= VIl + Dh. (8.23)
The azimuthal quantum number assumes the values
1=0,1,2,3... (m—1), (8.24)

where | = 0 designates s orbitals, I =
p orbitals, etc.

A net angular momentum of an electron cloud cor-
responds classically to a d-¢ current moving in a closed
orbit. According to Ampére’s circuital law (see I,
Eqgs. 5.5 and 5.28) such a current creates a magnetic
dipole moment. Hence, coupled to the angular me-
chanical moments p’ of electron clouds there must be
permanent magnetic moments. If an atom containing
such electron clouds is brought into a magnetic field,
the torque of the field tends to orient the moments in
the field direction (see I, Eq. 2.16). However, since

1 designates

the magnetic moments are coupled to mechanical mo-

ments, that is, since they point in the axis direction of
a gyroscope, the torque of the magnetic field leads to a
precession of the momentum vector around the field
axis. The angular momentum of precession describing
this additional periodic motion has to be quantized
according to wave mechanics in agreement with Som-
merfeld’s quantum condition (Eq. 6.19), as

= @h. . (8.25)

The new magnetic quantum number @) varies from
@=11-1 , —@1—1), =1, (8.26)

that is, it prescribes for p-states (I = 1) three
orbitals (1,0,—1), for d-states (I = 2) five orbitals
(2,1,0,—1,—2), etc. The precession caused by the
magnetic field removes
the degeneracy of the
states and gives each in-
dividual orbital its dis-
tinguishing energy. £ -2
Thus, any orbital of the
hydrogen atom can be
uniquely described by
the three quantum num-
bers n, I, and @). The
removal of the degener-
acy can be observed ex-
perimentally by the
splitting of a spectral line into fine-structure compon-
ents; this is the Zeeman effect® (Fig. 8.6).

Figure 8.7 shows the corresponding electron cloud
configurations with their identifying quantum num-

No magnetic Magnetic
field field

€)

++

-0- M-0=-N

+

il

£ =0 (1]

Fig. 8.6. Zeeman effect of a hy-
drogen-like atom.

bers. It may be read as follows: The @ = 0 states,
—8 Elecfrons—— p Electrons —— —
. =1
] @ o -1

T

Fig. 8.7. Angular dependence of the electron density ¢¢ of
some s, p, and d orbitals. (After White.4)

seen in the field direction, give a circular symmetrical
electron cloud distribution resembling an s-state and
have no magnetic moment. The (@) > O states have

3P. Zeeman, Phil. Mag. 43, 226 (1897).
+H. E. White, Phys. Rev. 37, 1416 (1931).
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magnetic moments, which, in the case of @ = + pro-
duce a parallel and for m = — an antiparallel com-
ponent. This is indicated by arrows in Fig. 8.7.

The difference between the quantization conditions
for the total angular momentum (Eq. 8.23) and the
momentum vector in a specific direction (Eq. 8.25)
is most important. According to the old quantum
theory (Eq. 6.12) the momentum vectors of the three
p orbitals, for example, would point parallel, perpendic-
ular, and antiparallel to the external field direction
(Fig. 8.8). In quantum mechanics the components

—sm

Quantum mechanics

0Old quantum theory

Fig. 8.8. Orientation and magnitude of total angular momentum.

have the same magnitudes as above, but the actual
momentum vectors are larger and inclined by an angle
0 against the field axis, where

@

€08 = ————-

VIl + 1)

This situation is a consequence of the uncertainty

principle, which does not allow the total angular mo-
mentum to point in any one definite direction.

The description of the stationary states of the hydro-
gen atom can be used to derive a first understanding of
the structure of atoms and of the periodic system of the
elements. According to the Rutherford model, the se-
quence of atoms in the periodic system arises when we
increase the nuclear charge in successive steps of one
elementary charge e and simultaneously add for each
step one compensating electron to the electronic sys-
tem. If we would increase the nuclear charge of the
hydrogen atom from e to Ze, the potential energy of the
Coulomb field would rise to

(8.27)

Ze?
U= — ) (8.28)
6047r7'
the Bohr radii would shrink to
i (8.29)
T = , ]
Z

and the eigenvalues of the Schrodinger equation (see
Eqs. 8.16 and 8.18) would increase to

Z%Rhe FINE
81!. = — 5 = SH — .
n n

(8.30)

The type and number of the orbitals, however, would
stay the same. To build up the various atoms, we
place electrons in these orbitals until the nuclear charge
is neutralized.

To justify this procedure we have to assume that the
various electrons of an atom move approximately as if
a central field acted on each of them. This central
field is composed of the Coulomb field of the nucleus,
weakened by an average charge of all the other elec-
trons; this average negative charge increases with the
distance from the nucleus, since more and more of the
electronic charge is encircled according to Gauss’s law
(see I, Eq. 4.2). Only in a Coulomb field is the energy
of circular and elliptical orbits of the same principal
quantum number identical (see Eq. 6.25). This de-
generacy is removed in a central field; while we operate
still with hydrogen-like wave functions, each orbital
in multi-electron systems already has a different energy
without an external magnetic field.

Before the construction of atoms can begin, a final
question has to be settled: How many electrons will an
orbital accommodate? The answer to this riddle came
from two different sources.

(1) Uhlenbeck and Goudsmit ® concluded from spec-
troscopic data that an electron possesses an angular
momentum of rotation, an electron spin, which has to
be quantized according to quantum mechanics (see

Eq. 8.23) as
p' = V(s + D,

where s = 1/2. The electron spin imparts to an elec-
tron a magnetic dipole moment which can orient in a

(8.31)

Fig. 8.9. Orientation and magnitude of spin momentum.

magnetic field. The mechanical spin component in the
field direction is, in analogy to Eq. 8.25,

p. = sh (8.32)

and may stand parallel or antiparallel (Fig. 8.9).

8 G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953 (1925);
Nature 117, 264 (1926).
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(2) Pauli ® formulated his exclusion principle, which
states that each electron in an atom must be described
by its individual set of quantum numbers and that no
two sets can be alike.t An orbital, as we just discussed,
is uniquely described by the three quantum numbers
n, 1, and @); an electron in an orbital is characterized,
in addition, by its spin component s pointing up or
down. Hence, an orbital is filled when it contains two
electrons with antiparallel spins.

With this proviso, by filling successively the orbitals
of lowest energy, the Bohr-Stoner arrangement of the
periodic table 7 results (Table 8.1). The periodic char-
acter of the system of elements arises because the elec-
trons form consecutive shells while filling the orbitals
of lowest energy, according to the Pauli exclusion prin-
ciple. This sequence of fundamental shells is pre-
scribed by the successive integers of the total quantum
number n. Recognized from X-ray spectra & before the
advent of quantum numbers, they were designated by
capital letters, starting with K; therefore, the synony-
mous designations: n = 1 or K-shell; n = 2 or L-shell;
n =3 or M-shell, etc. In addition to these main
shells, there are subshells, which, when occupied or
closed, signify electron arrangements of especial stabil-
ity and inertness. This fact is connected with the shape
of the various electron clouds (see Figs. 8.5 and 8.7).

Only the s electrons (I = 0) in each main shell, as
discussed, correspond to a spherical electron distribu-
tion. The (n — 1) configurations characterized by
successive integers of the azimuthal quantum number
l # 0 represent less symmetrical wave modes. How-
ever, a spherical overall symmetry is restored by sum-
ming over the intensities of all modes of the same .
For example, the amplitudes of the three p orbitals
(I = 1) are proportional to z/r, y/r, and z/r (see Eq.
8.22); the total intensity of the p-states is proportional
to the sum of the square of the amplitudes, (x% + 32
+ 22)/r? = 1, and therefore is independent of angle.
Hence, a full occupation of the s and p orbitals does
not fill the main shells for n > 2, but it creates s,p sub-
shells of spherical symmetry and great stability, as
evidenced in the argon, krypton, and xenon cores (see
Table 8.1). These s%,p® subshells are the stable elec-
tron octets of chemistry, first introduced by Kossel ?
and Lewis.!® By adding the ten d electrons, we arrive
again at closed subshells of spherical symmetry but

8 W. Pauli, Jr., Z. Physik 31, 765 (1925).

t For a more general statement of the Pauli principle, see
Sec. 11.

7E. C. Stoner, Phil. Mag. [6], 48, 719 (1924).

8H. G. J. Moseley, Phil. Mag. [6], 26, 1024 (1913); 27, 703
(1914).

® W. Kossel, Ann. Physik 49, 229 (1916).

10 G, N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).

lower stability: the copper, silver, and gold cores. The
chemical reactivity of atoms arises from their outer
electrons in partly filled subshells, that is, from their
valence electrons.

For the rare gas helium the K-shell is filled with two
electrons in antiparallel spin position. Since this is the
n = 1 state and an s orbital (I = 0), the electron struc-
ture of the helium atom can be identified by the symbol
1s%, where the exponent signifies the number of elec-
trons occupying the orbital type. The situation is
repeated for neon, where filling of the L-shell produces
the constellation 1s5?2s?2p% and for argon where the
occupation of the 3s and 3p orbitals (1s22s?2p®3s%3p®)
is completed.

The electron clouds of the hydrogen atom illustrate
the fact that the s electrons approach the nucleus closest
on the average, while the p, d, and f electrons reach
farther and farther into space. In fact, the wave func-
tion of s states has a maximum in the nucleus (see Fig.
8.4) whereas for all other states the wave function at
r = 0, that is, ¥(0), vanishes. Hence, we expect that
first the s orbital and then the p orbitals will be filled
as indicated up to the element argon. For farther out-
lying levels it becomes a complicated problem to decide
which orbital represents the lower energy state, and the
sequence may shift as the nuclear charge increases. For
the element 19 (K) the 4s orbital lies below the 3d level
and fills first, but at chromium and at copper one 4s
electron is lost to the 3d orbitals. The magnetic be-
havior of the iron group arises from the unpaired spin
moments of the filling 3d shell. A similar situation
occurs for the rare earth elements, where the 5s and 4d
orbitals compete, and finally in the transuranium ele-
ments in a complicated competition between 6d and 5f.

Since the outer electronic configuration of the ele-
ments 58 to 71 is so nearly alike, the chemical behavior
of these rare earth elements is approximately identical.
The shell size, on the other hand, must shrink as the
nuclear charge increases, an effect known as lanthanide
contraction.!

During the last fourteen years, nuclear synthesis has
added ten new elements to the periodic system: tech-
necium (43), promethium (61), astatine (85), francium
(87), neptunium (93), plutonium (94), americium (95),
curium (96), berkelium (97), and californium (98).
This extension of the sequence of the heaviest elements
permits a closer scrutiny of the delayed filling of sub-
shells in the radon core. The electronic distribution
for the atoms in the gaseous phase, as shown in Table
8.1, has been proposed by Coryell 2 on the basis of

1V, M. Goldschmidt, Geochemische Verieilungsgesetze der Ele-
mente, Oslo. Akad. Wiss., Pt. 7 (1926), Pt. 8 (1927).

12 C. D. Coryell, Rec. Chem. Prog. 12, 55 (1951); J. Chem. Educ.
29, 62 (1952).
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chemical evidence. It must be kept in mind that in
cases of a precarious energy balance between compet-
ing levels, the state of aggregation may easily affect

9 - Atoms in Electric

The classical model of spherical atoms led us to the
conclusion that the electronic polarizability . is pro-
portional to the volume of these spheres (Eq. 3.8). By
postulating, furthermore, that the atoms react to alter-
nating fields like linear harmonic oscillators, we arrived
at the dispersion formula of classical physics (Eq. 4.29).
Here the range of the classical approach ended. To
gain more precise information, a deeper understanding

the outcome. The information obtained from gas
spectroscopy, ionic solutions, salts, and metals can
therefore be contradictory.

Fields; Stark Effect

electronic structure remains identical but the shell
radius systematically contracts as the nuclear charge
increases in successive steps of one.

If we calculate classically the electronic polarizability
of these particles (see Eq. 3.8) by using the radii of
Table 9.1, the curves of polarizability versus order
number of Fig. 9.1 result.? It illustrates graphically
well-known trends. The negative ions with their large

Table 9.1. Radii of atoms and ions of rare-gas shell structure (s’p®) !
He Core Ne Core A Core Kr Core Xe Core

02— 1.40 2= 1.84 Se?~  1.98 e a2l 21
H- 2.08 F- 1.36 Cl— 1.81 Br— 1.95 1- 2.16
He 0.93 Ne 1.12 Ar 1.54 Kr 1.69 Xe 1.90
Lit  0.60 Nat 0.95 K+ 1.33 Rb* 1.48 Cst 1.69
Be?t 0.31 Mg?+ 0.65 Ca?t 0.99 Sr2t 1,13 Ba?+ 1.35
B3+  0.20 A+ 0.50 Sedt  0.81 Y3+ 0.93 La3+ 1.15
Ct+  0.15 St 0.41 Ti*t  0.68 Zr't  0.80 Cett 1.01

Vit 0.59 Cb3+ 0.70

of the structure of atoms was required. It was pro-
vided, as shown in the preceding sections, by spectro-
scopic studies and their quantum mechanical interpre-
tation.

This more searching inquiry, as always in life, has
left us with a much more complex situation. Electronic
polarization has become an involved phenomenon inte-
grating over the deformation of various types of elec-
tron clouds that are coupled mutually and bound to
the nucleus by fields varying with distance in a com-
plicated manner. However, the preceding discussion
of the periodic system of the elements suggests that
our classical model of spherical atoms will not be far
from correct for the closed s®p®-cores of the rare gases.
These spherical charge distributions of singular stabil-
ity are found not only in the rare gas atoms but neigh-
boring elements tend also to assume them by taking
up additional electrons or by shedding those in excess.
Hence negative ions are formed by atoms of smaller
nuclear charge than the rare gases, and positive fons
from elements of larger-order number. In this way

sequences of similar particles originate such as H—, He,
Lit, Be?**; 0>, F—, Ne, Na™, Mg?™; etc., in which the

size and low nuclear charge are highly polarizable, the
positive ones with their smaller size and higher charge
much more rigid. In addition, the polarizability of cor-
responding ions, for example, the negative halogens or
positive alkali ions, increases as we progress from the
helium to the xenon core.

We may expect that the numerical values calculated
from the classical model of finite spheres will turn out
to be too small. The electron clouds of quantum me-
chanics, as discussed in the preceding section, are not
rigidly confined but extend with rapidly diminishing
density towards infinity (see Eqgs. 8.21 and 8.22).
Since the field binding the electrons to the nucleus de-
creases steeply towards the outside, the distant parts
of the electron clouds are more pliable and make an
appreciable contribution to the polarization in spite of
their small charge content. This effect can be calcu-
lated in the case of the hydrogen atom where the
s electron produces a spherical charge distribution.?

2 See also the semi-empirical data of K. Fajans and G. Joos,
Z. Physik 23, 1 (1924).

3J. H. Van Vleck, The Theory of Electric and Magneiic Sus-
ceptibilities, Oxford University Press, 1932, pp. 203 fi.

! After L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N. Y., 1940, p. 346.
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The outcome is, as already mentioned in Sec. 3, that
the electronic polarizability of H should prove to be
about 4.5 times as large as the classical value based on
the Bohr radius ry (Eq. 3.12).

The static permittivity arises, as the dispersion
theory showed (Eq. 4.29), from contributions of all the
resonance states of an atom. To understand this situa-
tion more clearly, we have to investigate how the reso-
nance states are disturbed by an external electric field.

10
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Fig. 9.1. Polarizability of rare gas-type ions (classical calcu-

lation).

Such a field is obviously very small in comparison to
the central binding field of an atom. Furthermore, its
magnitude changes only extremely slowly (adiabati-
cally) in comparison to the revolution time of an elee-
tron in its Bohr orbit (see Eq. 5.13). Adiabatic dis-
turbances do not produce quantum transitions, that is,
do not change the pre-existing quantum numbers of a
system (the phase integrals of Sommerfeld’s quantum
condition, Eq. 6.19) as Ehrenfest ¢ first derived (adia-
batic law). However, the polarizing field creates slight
changes in the energy of the electronic states. These
perturbations become visible spectroscopically in the
splitting of spectral lines under the influence of an elec-
tric field, in the Stark effect.

Even if the fact is neglected that the electric field

4 P. Ehrenfest, Ann. Physik 36, 91 (1911); 51, 327 (1916).

5 J. Stark, Ber. Berlin Akad. Wiss. 47, 932 (1913); Ann. Physik
43, 965, 983 (1914).

distorts the electron cloud structure of an atom, a
Stark effect may result. As shown in Sec. 6, a one-
electron system like H or He™ is degenerate: its circu-
lar and elliptical orbits of the same principal quantum
number are of equal energy. An electric field removes
this degeneracy; the various orbits assume, without
distortion, different energy values and impart a fine
structure to the spectral lines. The splitting of the
lines increases proportionally to the applied field; this
large linear Stark effect enabled Stark to make his ini-
tial discovery. Normally, a much smaller gquadratic
Stark effect is observed, in which the line splitting in-
creases proportionally to the square of the field strength.

The linear Stark effect of one-electron systems is
frequently dismissed as a somewhat abstruse phe-
nomenon. Actually, it is of great interest, since here
permanent electric moments make their appearance in
atoms. In consequence, the perturbation energy, given
by the product of dipole moment and field strength,
varies here proportionally to the field intensity. The
quadratic effect in atoms stems from the induced mo-
ments of orbital distortions. These moments increase
proportionally to the electric field strength, hence an
E? effect results.

Quantum mechanies, as Schrodinger showed in his
third paper,® treats the Stark effect of the hydrogen
atom by adding to the potential energy — (e2/ednr)
of the Coulomb field in Eq. 8.17 the potential energy of
the electron in the external field. If this field points in
the -+z-direction and z = 0 designates the potential
plane containing the nucleus, the additional potential
energy of the electron in its cloud is ezE, and the
Schrodinger equation becomes

2

0 2m
V¢+h—2<8+ —ezE>¢=0. 9.1)

604‘"'7'
Schrodinger solved this partial differential equation by
the introduction of parabolic co-ordinates in analogy
to a treatment of the Stark effect in the old quantum
theory by Schwarzschild? and Epstein!® We shall
make use of an early, more graphical approach by
Bohr ? that leads to the same result.

An electron in its elliptical orbit moves much more
slowly near its aphelion than near its perihelion. If we
imagine the electronic charge smeared out over the
segments of the orbit according to the speed of passage,
the center of this charge distribution falls at the point
S on the long axis (Fig. 9.2). Let the distance from S

¢ E. Schrodinger, Ann. Physik 79, 361, 489, 734 (1926).

7 K. Schwarzschild, Sitz. kgl. preuss. Akad., 1916, p. 548.

8 P. S. Epstein, Ann. Physik 50, 489 (1916).

9 N. Bohr, Uber die Quantentheorie der Linienspekiren, Vieweg,
Braunschweig, 1923, pp. 98 ff.
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to the nucleus in the perihelion be designated by the  Hence the precession frequency becomes
vector s; its magnitude is found to be 3 ek
= C-Sliwpp oV 4
|s| = $ea, 9.2) vo = o ——nE <193 X 104E. (9.6)

where a represents the major half axis, ¢ the numerical
eccentricity of the ellipse (Eq. 6.22), and ea the dis-
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Fig. 9.2. Characterization of elliptical orbit by average dipole
moment.

tance from the nucleus to the center of the ellipse.
Hence the point S halves the distance from the center
to the aphelion.

This average charge distribution of the electron
allows us to characterize each elliptical orbit by an
average electric dipole moment

9.3)

B = es.

The existence of this dipole moment does not lead with-
out the superposition of an electric field to a permanent
electric moment of the hydrogen atom, because the
ellipse can assume any orientation. Thus the overall
effect cancels. However, the revolving electron has an
angular momentum and corresponds therefore to a gy-
roscope pointing with its angular momentum axis per-
pendicular to the electric dipole moment. The applica-
tion of an external electric field causes a torque on this
average dipole moment and thus a precession of the
angular momentum vector and of the dipole moment
vector around the field axis with a precession fre-

quency 1
3 <an>%
ve =—|—) E.
2 \mn

It is proportional to the electric field strength E (meas-
ured in [volt m™!]) and depends only on the large half
axis a of the ellipse.

This half axis is identical with the radius of the cir-
cular Bohr orbit of the same principal quantum num-
ber n (see Fig. 6.3), that is (see Eqgs. 6.5 and 6.10),

9.4)

eoh?

2.

a = n’rg = n?

(9.5)

mTme

1 See A. Sommerfeld, Atombau und Spectrallinien, Vieweg,
Braunschweig, 1924, p. 384.

The precession adds to the original term energy &, of
the hydrogen atom (Eq. 8.18), a perturbation energy
A&, which has to be quantized as

A8, = Nehve; 9.7

N, represents a new electrical quantum number.

The actual motion of the electron and the meaning
of this quantization are not easily visualized. It is not
that the ellipse of Fig. 9.2 remains intact and precesses
as such around the field axis; not even the dipole length
s, but only the major half axis a remains constant.
However, the charge center S remains in a plane per-
pendicular to the field direction and traverses approxi-
mately an ellipse in an harmonic motion of the fre-
quency v, around the field axis. The product s cos 6 re-
mains constant during this motion, where 6 is the angle
between dipole moment and field axis. Figure 9.3
shows schematically the orbit traversed by the endpoint
of the electric moment vector.!

rE

Path of
electron

Fig. 9.3. Orbit traversed by endpoint of electric moment vector
in linear Stark effect.

The quantum number 7, of the linear Stark effect is
related to Bohr’s radial quantum number n’ of the el-
lipse (Eq. 6.21). The latter may be expressed as the
sum, and n, as the difference, of two quantum numbers
ng and ny:

n' =g+ np

9.8

Ne = Mg — Np.
Thus the total energy of an electron in the nth quantum
state of the hydrogen atom, when an electric field of the

1 See also R. Ladenburg, Muiller-Pouillets Lehrbuch der Physik,
Vieweg, Braunschweig, 11th ed., Vol. 1I, 1929, p. 2240.
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strength E [volt m™!] is superposed, becomes
Rhc 3 €0h2

I RS i
i n? 2 wme

n(n, — np)E. (9.9)
For n, = n; the average electric dipole moment stands
normal to the field direction, and the energy is the same
as without field; whereas for n, > n; the center S of
the electronic charge distribution falls towards the posi-
tive and for n, < n; towards the negative z-axis.

To illustrate the situation, we consider the Stark
splitting of the first line of the Balmer series, H,, which
corresponds to a transition between the principal quan-
tum terms » = 3 and n = 2 (Fig. 9.4). In addition to

nu"'nb =0 Ng+Ny = | Ng+Np = 2
r A A4 2> £ = A Y
Ng-Np=2
Ny =Ny =1
n=3< Mg~Mp=0-
Ng=Nyp=-1

n=2{ Ny -Np=0 = / / /
ng-ny ==l
\ 2 /
v N\ 4
n,+n,=0 Ng+ny =1

Fig. 9.4. Stark components of H, line.

the circular orbits (n, + ny = 0), two elliptical orbits
(ng + ny = 1 and n, + ny = 2) belong to the upper
state, and one ellipse (n, + np = 1) to the lower state
(see Fig. 6.3). Without field their energy is the same
as that of the circular orbits, but with field their energy
levels move symmetrically above and below the undis-
placed energy level because the electric dipole moment
points against or toward the field direction. The split-
ting of the terms increases proportionally to the field
strength and can reach appreciable values, especially
for the larger principal quantum numbers n of the
higher states. For the term n = 3 in a field of 5 X 107
[volt m™!], the energy difference in wave numbers be-
tween the outer levels (n, = 2,1 = 0;np = 2,1, = 0)
becomes, according to Eqs. 9.6 and 9.9,

<1) 1.93 x 10*
Al—)=2X ———
e 3 x 10'°
=128X 108X 3X2X5X107
=384 [em™!].

n(ng — np)E

(9.10)

Figure 9.5 shows the relative intensity of the various
Stark components.

The linear Stark effect of one-electron systems is due
to the fact that the undistorted elliptical orbits have
average electric dipole moments and that these mo-
ments can orient in the external field, and thus produce
energy values different from those of the circular orbits
(removal or degeneracy). The displacement is sym-
metrical to the original energy state towards both
higher and lower energy values. For strong fields we
observe, in addition, a quadratic Stark effect which
results from the distortion of the orbitals, that is, the
induced dipole moments. Since the induced moment
is created by the field, its momentum vector will always
point towards the field direction; the energy terms are

Relative
intensity
L 4 ‘ ’ l '_‘I’_! x
8 -654-3-2-1 0123456 8
A€
e —>

Fig. 9.5. Relative intensity of the sixteen Stark components of
the H, line. (After Sommerfeld.1)

correspondingly displaced, not symmetrically to the
original position, but only downwards. The electrical
quantum number (n, — np) of Eq. 9.9 appears as the
quadratic expression — (n, — n3)2, and the total energy
of the nth quantum state of the hydrogen atom becomes
in this second approximation 12

Rhe 3 €0h2

Wp=——+-——n(n. — np)E
n2+21rme( g

1/ eh\?
= —(i) n*{17n2 — 3(ng — ny)?
16 \wme
— 9k — 1)% + 19}E2. (9.11)

The quadratic Stark effect depends not only on the
principal quantum number n and the electrical quan-
tum number (n, — np) but also on the azimuthal quan-
tum number k (Eq. 6.21). In comparison to the linear
effect in hydrogen, the quadratic effect is very small:
in a field of 5 X 107 volts/m it lowers the term n = 3
by about 1.6 [cm™!], whereas the linear splitting, ac-
cording to Eq. 9.10, amounts to 384 wave numbers.

12 See R. Ladenburg, loc. cit., p. 2248.
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The degeneracy of the one-electron system is due to
the fact that the electron moves solely in the Coulomb
field of the nucleus. As soon as an external field is
superposed, the shape of the various electron clouds
has an influence on their energy, and a fine structure of
the spectral lines results. In multi-electron systems the
interaction between the electrons changes the Coulomb
field into a central field where the shape of the electron
clouds affects their energy (see Sec. 8). This “internal”’
linear Stark effect removes therefore the degeneracy and
creates by itself an energy difference between terms of
the same principal quantum number n but different

azimuthal quantum numbers I. Hence, an external
electric field causes in multi-electron systems, as its
first action, a quadratic Stark effect which produces a
small additional splitting of the spectral lines. Very
strong external fields begin to compete with the internal
interaction of the electrons. Thus, in addition to the
deformation of the orbitals which generates the induced
moments of the quadratic effect, a small linear Stark
effect becomes observable even in multi-electron sys-
tems, indicating a slight orientation of the average
orbital moments against the field axis.

10 - Atoms in Magnetic Fields; Zeeman Effect

Atoms, as the discussion of their structure has shown
(see Sec. 8), may possess two types of permanent mag-
netic moments: those causally connected to the mechan-
ical angular moments of the electron clouds (orbital
moments), and one moment for each electron (spin
moments). The correlation between angular momen-
tum and magnetic moment is based on the macro-
scopic observation that a current I circling an area A
creates a magnetic field identical to that of a magnetic
dipole (see I, Fig. 5.7 and Eq. 5.28)

m = [An. (10.1)

The electron of Bohr’s hydrogen atom, circling the pro-
ton »-times per second in an orbit of the radius r, con-
sequently produces a magnetic moment

(10.2)

m = —eVT21I'.
Simultaneously, it has a mechanical angular moment

p' = mor = mp2rar, (10.3)
designated by a momentum vector p’ antiparallel to m
(Fig. 10.1). Hence the magnetic and angular moments
are interrelated as

m= — — p. (10.4)

Equation 10.4 is called the magneto-mechanical parallel-
ism; it specifies that the magnetic and mechanical mo-
ments of circling electrons are interdependent and that
their gyromagnetic ratio v is classically

(10.5)

The angular moment is quantized in Bohr’s theory }
as (see Eq. 6.12)

7 h h
=n— = N
4 or )
Hence quantum theory leads to an elementary magnetic
moment, the Bohr magneton {

n=123.... (10.6)

e
| mp | = 2—n_zh = 9.27 X 107%* [joule/weber m 2]

(10.7)

=927 X 107! [erg gauss™!].

If the magnetic moment is measured in Bohr magnetons
and the angular momentum in units of h, the ratio of

e

Fig. 10.1. Angular momentum and magnetic moment of orbital

electron.

magnetic to mechanical moment (Eq. 10.5), known as
the g factor, becomes for n = 1
|m| h h

= =y =1  (108)
|p||ms| ~|mz|

g

t Note that quantum mechanics prescribes the slightly dif-
ferent condition, Eq. 8.23.

1 In measurements of the magnetic moments of nuclei the
nuclear magnelon is used as a common unit by substituting the
mass of the proton for that of the electron in Eq. 10.7; hence

| my | = 155 | ma/ =5.05 X 107 [erg gauss™].
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Actual measurements of ¢ on ferromagnetic bars, in
which a mechanical moment was produced by a change
in magnetization (Richardson-Einstein-de Haas effect ')
or a magnetic moment by rotation (Barnett effect 2),
proved that the experimental value was about twice as
large. This magneto-mechanical anomaly found its
explanation in the hypothesis of Uhlenbeck and Goud-
smit ? that an electron itself carries a magnetic moment
of 1 Bohr magneton,* whereas its mechanical spin cor-
responds to only 14 quantum of action (see Eq. 8.32):

(10.9)
Hence for free electrons
g =2 (10.10)

Apparently it is this electron spin, without much addi-
tional contribution of orbital moments, that is meas-
ured in ferromagnetic materials (see Sec. 29).

Fig. 10.2. Balance of magnetic and Ceriolis force.

An external magnetic field exercises a torque on the
permanent magnetic moments. Since these moments
are linked to angular mechanical moments, that is, to
a gyroscope, a precession of the momentum vectors
around the magnetic field axis results. In a field of the

1 0. W. Richardson, Phys. Rev. 26, 248 (1908); A. Einstein and
W. J. de Haas, Verh. deut. physik. Ges. 17, 152 (1915).

2 8. J. Barnett, Revs. Mod. Phys. 7, 129 (1935).

3 G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953 (1925).

¢ Extremely accurate measurements, possible today by com-
bining atomic beam and nuclear resonance techniques, give for
the magnetic moment of the electron in the hydrogen atom
m = (1.001146 &+ 0.000012)mp {S. H. Koenig, A. G. Prodell,
and P. Kusch, Phys. Rev. 88, 191 (1952)]; see also N. F. Ramsay,
Nuclear Moments, John Wiley and Sons, New York, 1953.

magnetic induction B = ygH, an electron traversing
its orbit with the velocity v is subjected to a magnetic
force (see I, Eq. 10.21)

F,, = —e(vxB) (10.11)

(Fig. 10.2). If the electronic orbit precesses around the
field axis with an angular frequency I O I , the electron,
according to classical mechanies, is simultaneously sub-
jected to a Coriolis force

F. = 2m(vx o). (10.12)

The two forces act in opposition and mutually cancel
each other, as Larmor 5 first derived, if the orbit pre-
cesses around the field axis with an angular velocity

e e
Wy = — —B = — '_‘P"OH -~ —'Y;l.oH. (1013)
2m 2m
The magnetic precession frequency
I e
ym = ——po| H| > 1.76 X 10*H  (10.14)
27 2m

is called the Larmor frequency. The magnetic field H
in our equation is measured in amperes per meter; for a
field measured in oerstedts, the numerical value has to
be multiplied by a factor 103/4x (see I, Table 8.2).

The external magnetic field, as previously the electric
field, represents an adiabatic disturbance. It does not
alter the pre-existing quantum numbers of the elec-
tronic system but adds to the original energy &, a
perturbation energy A8, that has to be quantized (cf.
Eq. 9.7). Thus we obtain

Afw = —@hom = @ —hB|,  (10.15)
2m

where (m) represents the magnetic quantum number intro-

duced by Eq. 8.25.

The magnetic perturbation energy has a graphic
interpretation: the angular momentum of an electron
cloud is characterized by the azimuthal quantum num-
ber | (Eq. 8.23). This angular momentum produces a
magnetic orbital moment

m =

1+ 1) mp

where mp is the Bohr magneton (Eq. 10.7). Placed in
a magnetic field of the induction B, the moment con-
tributes a potential energy

U=-m-B=—+10+1)|mp||B|cosé

that depends on the angle of inclination 8 against the
field axis. A comparison of Eqs. 10.15 and 10.17, by
referring to Eqs. 8.27 and 10.7, shows that the mag-

5 J. Larmor, Phil. Mag. 44, 503 (1897).

(10.16)

(10.17)
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netic perturbation energy is this potential energy, and
that the magnetic quantum number corresponds to

@ = Il + 1) cos 6. (10.18)
Since it can assume only the values
=1 1—1, -, —(=1), —1l (826)

the orbital angular and magnetic moments have to
point into fixed angular positions in reference to the
field axis (Fig. 10.3).

Vitg+1)

Fig. 10.3. Quantized orientation of magnetic moments.

The magnetic perturbation energy, caused by the
interaction of the permanent magnetic moments of
atoms with an external magnetic field, produces a
magnetic splitting of the energy terms of atoms and
thus of the spectral lines; this is the Zeeman effect.®

There is obviously a close analogy between the Zee-
man effect and the linear Stark effect of the preceding
section, but also a great difference. By introducing an
elementary electric dipole moment 1

3 €0h2 30
|pe| = =—— =128 X 107%° [coul m], (10.19)
2 mme
we can write the electrical perturbation energy of Eq.
9.9 in the same way as the magnetic perturbation energy

of Eq. 10.17 as a dot product of the moment and field
U= —np,.E. (10.20)

The component of the electric moment in field direction
is quantized,

—n| o | cos 8 = n,, (10.21)

8 P. Zeeman, Phil. Mag. 43, 226 (1897).
t The customary unit, 1 debye, is about four times as small
(see Eq. 15.1).

and the electric quantum number varies like the mag-
netic one from ! to —I,

—ne = VI + 1) cos 6 = @).

The essential difference is that in the magnetic case the
force acts perpendicular to the electron orbit and is of
constant magnitude at any point of the circular orbit.
In consequence, the electron orbit remains intact dur-
ing the precession, the magnetic moment is constant,
and the cosine of the angle between moment and field
is quantized. The angular momentum, and with it the
magnetic moment, are conservative. In the electric
case the force acts in the plane of the orbit and, since
the orbit is an ellipse, the relative effect differs from
point to point because the binding force to the nucleus
changes. Consequently, the electron orbit does not re-
main intact but dissolves into a very complicated Lis-
sajou figure; the average electric moment varies during
the precession and not the cosine 6 but the product of
dipole moment and cosine § is quantized (see Eq. 10.21
and Fig. 9.3).

The Larmor frequencies of the electric and of the
magnetic precession, measured in mks units (Eqgs. 9.6
and 10.14), are of the same order of magnitude. Since
the electric dipole moment depends on the extent of
the electron cloud, that is, on the principal quantum
number n, there appears in the electric precession fre-
quency Planck’s quantum of action. The magnetic
frequency, on the other hand, does not give any hint
that quantum theory applies because the effect of the
Bohr orbit contained in the velocity term v of Eqgs.
10.11 and 10.12 cancels out.

The actual magnetic effect will be more complex than
discussed as yet because, in addition to its orbital mo-
ment, the electron of the hydrogen atom carries its
spin moment of 1 Bohr magneton. Both moments
will tend to precess and also act on each other magneti-
cally. For a multi-electron system with numerous
orbital and spin moments, the situation may become
very complicated.

In treating such cases quantum theory gives a rela-
tively simple answer: not only the individual angular
momenta but also their vector sum has to be quantized.
Two orbital momenta, I; and Iy, may therefore couple
to form a resultant vector L which may take on all inte-
gral values from l; + Iy to l; — l. (It is understood
that the quantum number has to be multiplied with
Planck’s quantum of action h to give the actual value
of the angular momentum.)

As the orbital momentum vectors 1 may add to a
resultant vector L, the spin momentum vectors s of the
multi-electron systems may add to a quantized vec-
tor S. In this case the forces coupling the orbital angu-

(10.22)



130

Molecular Approach

lar momentum vectors together are large, the forces
coupling the spin vectors together are also large, but
the forces coupling the orbital to the spin system are
weak. This situation, called L-S coupling (or Russell-
Saunders because it was first recognized by Russell and
Saunders),” occurs preferentially in lighter atoms. The
resultant of L and S is the inner quantum number J,
which measures the total angular momentum of the
electronic system and is again quantized (Fig. 10.4).

Ji

j-j coupling

L-S coupling

Fig. 10.4. L-S coupling and j-j coupling of orbital and spin
moments.

The opposite extreme is the j-j coupling, present in the
heaviest atoms. Here the interaction between the
orbital magnetic moment and the spin of the same
electron is large, hence the 1 and s of this electron form
a resultant vector j, and the j vectors of the various
electrons couple together to form a resultant J that is
quantized. There are many intermediate cases between
these two extremes, and the patterns of energy levels,
even without an external field, may become extremely
complicated.

If an external magnetic field is applied, the J vector
takes up quantized orientations in relation to the field
axis. A quantized component

M = A/ J(J + 1) cos®

is obtained in the field direction in analogy to the mag-
netic quantum number @) of Eq. 10.18, which described
the orientation of a single orbital moment I. The mag-
netic perturbation energy (see Eq. 10.15) is

A8y = @ghn,

where the g factor (see Eq. 10.8) designates the ratio
of magnetic moment to angular momentum of the

(10.23)

(10.24)

7H. N. Russell and F. A. Saunders, Astrophysical J. 61, 38
(1925).

atom as a whole, and gy, is the classical precession fre-
quency of the atom. The external magnetic field thus
causes a splitting of the multiplet levels of an atom, a
Zeeman effect, that can lead to a determination of ¢
and with it to some detailed information about the
quantum numbers. Since Landé?® was the first to
analyze in detail the effect of magnetic fields on multi-
plet structure, the quantity ¢ is often called the Landé
g factor.®

The magnetic splitting may become very complex
and vary in type with the magnetic field strength.
Sufficiently strong external fields can uncouple the 1
and s vectors and orient, for example, the L. and S
vectors individually in the external field instead of act-
ing on their resultant J. This Paschen-Back effect ' in
strong magnetic fields is the analogue of the appear-
ance of a linear Stark effect in strong electric fields for
multi-electron systems.

Besides the permanent magnetic moments, tnduced
magnetic moments will make their appearance in atoms
according to Faraday’s induction law (I, Eq. 5.30) as
soon as magnetic fields are applied. An electron in its
orbit of radius r represents a current loop. A change
of the external magnetic flux ¢ through this loop will
induce a voltage

d d
fE-dl RIBL] o &
dt dt

B-ndd (10.25)

which tends to create a magnetic field opposing the
change. For our orbit of the area r%r, inclined by an
angle 6 against the field axis, we obtain

dH
E2rr = —r2x (cos 8)uo e (10.26)

If at ¢ = O the magnetic field is switched on and reaches
at the time ¢ its final value H,

¢ r cos 0
fEdt= — woH.
0 2

(10.27)

The integral on the left side, when multiplied by the
electronic charge, represents the action of the induced
electric field on the electron, expressed as a change of
mechanical moment

er cos @

roH. (10.28)

t
feEth—Ap=—
0 ;

8 A. Landé, Z. Phystk 19, 112 (1923).

9 See also J. C. Slater, Quantum Theory of Matter, McGraw-
Hill Book Co., New York, 1951, pp. 167 fi.

10 F. Paschen and E. Back, Ann. Physik 39, 897 (1912); 40, 960
(1913).
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This change in moment expresses itself as a frequency
change of the revolving electron

Ap = —m2rr Av (10.29)

and thus as an induced magnetic dipole moment (cf.
Eq. 10.2) r's

m; = —er’r Av = — —— (cos O)uoH. (10.30)
4m
Since all directions of the orbit in relation to the field

axis are equally probable, we obtain, finally, by aver-
aging:

~ —4.7 X 1072%?B [joule/weber m™2], (10.31)

where a represents the radius r, measured in angstroms.
Even a strong magnetic induction B of 1 weber/m?

(10* gauss, see I, Table 8.2) acting on an electronic
orbit 7 of 1 X 107!° [m] (a = 1) produces only a weak
induced moment m; = —4.7 X 1072° [amp m?] ~
5 X 10® Bohr magnetons (cf. Eq. 10.7). This mo-
ment gives rise to an additional Larmor precession of
the electronic system around the field axis, hence to a
quadratic Zeeman effect in analogy to the quadratic
Stark effect, but its spectroscopic action can usually be
neglected. However, the overall effect of the induced
magnetic moments is important; it represents the dia-
magnetism of a material, while the permanent moments
cause paramagnelism or ferromagnetism, as will be dis-
cussed later (see Secs. 29 and 30). Diamagnetic meas-
urements, at present relatively neglected, might prove
of great value for the study of electronic systems in
various states of aggregation.!!

1 See, for example, W. R. Myers, Revs. Mod. Phys. 24, 15
(1952). ,

11 - The Energy Level Diagram of Atoms

The discussion of the preceding three sections has
laid the basis for a more comprehensive understanding
of the electronic structure of atoms. It has become
apparent that the dominating forces shaping the elec-
tron clouds are the Coulomb attraction of the nucleus
and the electric interaction of the electrons; these
forces are of an electrostatic nature. The central field
formed by the nucleus and electrons leads to the se-
quence of fundamental shells, characterized by the
principal (fundamental) quantum number n. In the
Coulomb field of one-electron systems this quantum
number determines the energy of the stationary states
nearly completely without reference to the orbital
angular momentum of the electron clouds. An exter-
nal electric field removes this degeneracy and gives
terms of the same n, but of different azimuthal quantum
numbers [, different positions in the energy scale (linear
Stark effect). In multi-electron systems the electro-
static interaction of the electrons changes the Coulomb
field into a central field and thus eliminates a priori the
degeneracy (internal linear Stark effect). The various
(n,l) terms assume different altitudes in the energy
level diagram without external action.

Permanent magnetic moments exist, caused by the
angular orbital momenta of the electron clouds and the
electron spins. These magnetic moments interact, but
the direct contribution of their interaction to the over-
all energy balance is minor. An orbital magnetic mo-
ment of 1 Bohr magneton (see Eq. 10.7), coupling to a

spin moment of 1 Bohr magneton at a distance r of 1
Angstrom unit, produces an interaction energy of
approximately
m32 2 .
U ——pg>10"2 [joule]
4qr

(11.1)

~107* [ev],

whereas the electrostatic binding energy is of the order
of 10! ev. However, the magnetic coupling of the orbi-
tal and spin moments makes a very important indirect
contribution to the total energy. The quantum num-
bers of the angular momenta codetermine, according to
the Pauli exclusion principle, the standing-wave modes
that may form. Hence, in this roundabout manner, the
permanent magnetic moments help prescribe the possi-
ble stationary states and with it their electrostatic
energy.

The net effect of the magnetic orbital and spin inter-
action (internal Zeeman effect) is that the (n,l) levels
split into sublevels of a characteristic muliplet struc-
ture. Application of an external electric or magnetic
field produces an additional splitting of the various sub-
levels of a multiplet, that is, a fine structure (quadratic
and linear Stark effect, linear and quadratic Zeeman
effect) (Fig. 11.1).

In Sec. 8 we introduced the four quantum numbers:
n, 1, @), and s, to specify uniquely each electron of an
atom. The magnetic quantum number (@) designates
the quantization of an individual orbital momentum
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A/l + 1) with respect to an external magnetic field
(see Eq. 8.25). We see now that this description was
oversimplified; we can dispense with the external field.
The internal mutual coupling of the various moments
gives the electronic system of an atom a total angular
momentum described by the inner quantum number J.
Its values designate the various energy levels of a mul-
tiplet and are derived as the possible resultants (with
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Fig. 11.1. Multiplet structure (internal Zeeman effect) and fine
structure (external Zeeman effect) of term I = 2, s = 1.

differences of 1) of all the 1 and s vectors of the individ-
ual electrons (see Fig. 10.4).

Before we lose ourselves in more detailed considera-
tions of the multiplet structure, a reappraisal of the
building principles on which the electronic structure of
atoms is based may be in order. We know that quan-
tum mechanics applies, that is, that each electron must
form its standing-wave pattern. The Pauli exclusion
principle prescribes that no two patterns may be iden-
tical, that is, no two electrons may occupy the same
wave pattern at the same time. This statement is an
additional axiom, not derivable from quantum me-
chanics. A consequence of the Pauli principle is that
Fermi statistics applies to electronic problems instead
of Maxwell-Boltzmann statistics.

Electrons by themselves cannot be distinguished. If
electron 1 is characterized by a wave function y¥,, and
electron 2 by a wave function yp,, the simultaneous
existence of electron 1 in state A and electron 2 in
state B corresponds to the product of their probability
functions, that is, to a new wave function

CYa¥s,

There is, however, an equal chance that electron 2
might be found in A and electron 1 in B, that is, that
the wave function might be

¢A132 = (11'2)

(11.3)

'pAzBl = C¢42¢Bl'

Because of this possible exchange of electrons the two
states A1By and A,B; are said to be in quantum mechani-
cal resonance,! and the actual wave function describing
the coexistence of the two states A and B is a linear
combination of Eqs. 11.2 and 11.3,

Vv = CYy¥p, + CYa¥p,.

The function with the plus sign is called a symmetric
function since an exchange of the electrons does not
alter it. The function with the minus sign is antisym-
melric because an exchange of the electrons leaves its
magnitude unimpaired but changes its sign.

In case the electronic wave functions ¥4 and yp are
identical, the antisymmetric wave function is auto-
matically equal to zero. This fact can be used for a
simple formulation of the Pauli exclusion principle in
the language of quantum mechanics. If we describe
each electron of a multi-electron system by an indi-
vidual wave funetion ¢ which depends on its space co-
ordinates z, y, and 2z, and on its spin, the total wave
function of this system must be antisymmetric in the
co-ordinates (including spin) of all its electrons. Thus
the total wave function becomes automatically zero as
soon as two electrons are alike.?

The wave functions ¥4, ¥5, ... of the individual
electrons can be found in a first approximation by
Hartree’s method of the self-consistent field.> Here each
electron is calculated as moving in a central field pro-
duced by the nucleus and all the other electrons. The
order number Z of the nucleus appears reduced by a
shielding constant S which represents the number of
electrons located inward from the electron under con-
sideration. The quantity Z-S takes the place of Z in
the potential energy (Eq. 8.28) and in the eigenvalues
(Eq. 8.30) of Schrodinger’s equation.

The linear combination of these wave functions in
forming the actual wave functions of an atom (see Eq.
11.4) expresses the fact that the motions of the elec-
trons are correlated. For instance, if two electrons of
parallel spin are close to each other, the antisymmetric
wave function, and with it the probability y¢ of find-
ing the electrons in the corresponding element of space,
becomes very small; the electrons stay out of the way
of each other. Vice versa, electrons with antiparallel
spins characterized by the symmetric wave function of

(11.4)

1 The concept of quantum-mechanical resonance was first
introduced by Heisenberg [W. Heisenberg, Z. Phystk 39, 499
(1926)] in his treatment of the helium atom. It has become of
special importance for molecules, where the exchange energy
provides the main strength of the electron-pair bond (see Sec. 14).

28ee J. C. Slater, Quantum Theory of Matter, McGraw-Hill
Book Co., New York, 1951, pp. 185 ff.

3 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111 (1928);
J. C. Slater, Phys. Rev. 32, 339 (1928).
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their space co-ordinates have a strong tendency to
approach each other closely in spite of electrostatic re-
pulsion. This is a completely nonclassical effect which
has a great influence on the energy of the electronic
states. In the former case the electrostatic repulsion
energy between the two electrons is small since they
stay away from each other; in the latter case it will be
large because the electrons are found near each other.
Thus we expect that the wave function which is anti-
symmetric in the electron co-ordinates (parallel spins)
corresponds to a state of lower energy than the sym-
metric one, because of its smaller repulsion term.

Although the spacing of the sublevels can be obtained
only by detailed quantum-mechanical calculations, the
multiplet structure as such may be derived relatively
simply, at least in the case of L-S coupling (see Sec. 10).
The total number of multiplet terms is given by the
number of J values that the total angular momentum
of the electronic system can assume. If L designates,
as above, the resultant angular momentum composed
of the individual orbital momentum vectors 1 and S
the resultant spin vector composed of the spin momenta
s, the total angular moment may vary as

PR ER™ GURATT Dy teriniery gy

Hence the total number of multiplet terms is 2S + 1
for L > S (Fig. 11.2); it reduces to 2L + 1 for L < 8.

(11.5)

J=2
et ) J=y S:!
2
s:-L S=1 i
(I L=Il i Mg L= S=!
—L =
T"'z d=1 49
J=3
S =
L=2 Lz
Jel

Fig. 11.2. Multiplicity for L-S coupling. (After Herzberg.5)

The individual sublevels of a multiplet, since they
refer to the coupled electron system of the atom as a
whole, are designated by capital letters. In analogy
to the designation s, p, d, f, ... for the orbital moments
1=0,1,2,3, ... of the individual electrons (see Sec. 8),

the capital letters S, P, D, F, ... refer to the orbital
moments L = 0, 1, 2, 3, ... of the total electronic sys-
tem. A superscript indicates the possible multiplicity
28 + 1 and a subscript gives the inner quantum num-
ber J of the level.

The vector summation of the orbital and spin mo-
menta is greatly simplified by the fact that the resultant

£=0 L= L-2
continuum/ 2/
n

N

5 e——

«woe

4§ e—

Electron-volts

Resonance
doublet

Fig. 11.3. Energy level diagram of potassium atom (doublet
splitting shown only for I = 1). (After Grotrian.*)

vectors L and S are zero for closed main shells and sub-
shells (see Sec. 8). Hence only the electrons in uncom-
pleted shells contribute to the angular momentum.
The electron spins may line up either parallel (T1) or
antiparallel (T!) to each other. The resultant spin
vector S is therefore a half integral when the number of
electrons is odd, and integral when it is even.t

A one-electron system from the standpoint of the
multiplet structure is H or an alkali atom (S = 1/2);
it can have only a doublet term structure (28 4 1 = 2).
Differently expressed: for a system with one valence
electron, L reduces to I, S to s, and the internal quan-
tum number J to

j=1l+s
with (11.6)
1
s=+—.
2

Figure 11.3 shows the characteristic doublet structure

t It is customary, because convenient, to speak in this slightly
incorrect way about the moments while referring actually to
their components in a given direction (see Fig. 8.9).
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for the potassium atom; ¢ the D-line doublet of sodium
(see Fig. 4.3) in the yellow spectral region corresponds
to the resonance transition fromn = 2,1 = 1ton = 1,
l=0.

Proceeding to helium and the alkaline earth atoms,
we have two outer electrons that can orientate either
parallel (S = 1) or antiparallel (S = 0); hence triplet
and singlet states result. Three electrons outside the
atomic core lead to S =3/2 (TT) or S = 1/2 (TL1),
that is, to quartets and doublets, etc. The possible
term multiplicities are even for an odd and odd for
an even number of valence electrons.

In obtaining the capital letter of the term symbol, the
possible L values of the total orbital angular momen-
tum, we have to consider more carefully whether the
contributing electrons belong to the same subgroup
(n,l) or to different subgroups. In the latter case of
nonequiralent electrons all terms are allowed, since the
Pauli exclusion principle is already fulfilled. For
equiralent electrons of identical n» and [, on the other
hand, fewer terms are possible; the electrons must dif-
fer in one quantum number (Table 11.1). Since for an

Table 11.1. Possible multiplet terms for some
equivalent and nonequivalent electrons

(See Fig. 11.2)

Electrons Terms
s 18,
ss 1Sy, 38,
Sp 1P1;3P2, 3P1, 3Po
p2 ISO; 1D2; 3P2’ 3Pl, 3P0
PP 18o; 1Py; 1Dy; 381; 3Py, 3Py, ®Po; °Ds, 3Dy, 2Dy

empty and for a filled subshell the total angular and
the spin moment are zero (L = S = 0), the same term
configuration is obtained for identical numbers of either
electrons or vacancies in a shell (e.g., p? and p*).’

The spherical electron clouds of the s electrons have
no orbital angular momentum (I = 0) in quantum
mechanics. The electron of hydrogen or the alkali
atoms in its ground state is an s electron, hence the
term must remain unsplit because there is no angular
moment interacting with the spin vector. In spite of
this, the term symbol of the normal state is written as
28,, because the superscript refers to the possible mul-
tiplicity. The normal state of helium and the alkaline
earth atoms is the singlet state 1S, because a triplet

4+ W. Grotrian, Graphische Darstellung der Spectren von Atomen
und Ionen, Springer, Berlin, 1928.

5 See G. Herzberg, Atomic Spectra and Atomic Structure, Pren-
tice-Hall, New York, 1937, p. 132.

ground state would correspond to two electrons with
parallel electron spins in identical orbits, which violates
the Pauli principle.tf Table 8.1 lists the term symbols
of the normal state for the atoms of the periodic system.

The width of the splitting caused by the magnetic
interaction between orbital and spin moments varies
from fractions of one cm™! in the case of hydrogen to

Triplets
Po JDS

3

3, 3
s' P2 Pl

6.08
6

Electron-volts

Fig. 11.4. Energy level diagram and transitions for the Ca atom.
(After Grotrian.*)

several thousand cm™! for heavy atoms; it increases
rapidly with the order number Z. For the doublet of
the alkali atoms, for example, the splitting increases
with Z*; and although the lowest 2P-level doublet is
separated by only 0.34 cm™! for lithium (Z = 3), the
wave number difference has grown to 5540 em™! for
cesium (Z = 53).

A typical example of the energy level diagrams of
atoms and of the spectral lines resulting from transi-
tions is shown in Fig. 11.4.

t There are no intercombinations between the terms of the
singlet and triplet system in helium because the electron spins
would have to change from parallel to antiparallel. This type
of transition is forbidden as inconsistent with dipole radiation.
The two independent spectral systems led early investigators to
distinguish between two different kinds of helium: parahelium
(corresponding to the singlet system, superscript 1) and ortho-
helium (corresponding to the triplet system, superscript 3).
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12 - Atoms in Electromagnetic Fields; the Dispersion Formula

of Quantum Mechanics

In Sec. 4 the response of atoms to electromagnetic
waves was treated on a purely classical basis. An atom
was pictured as composed of noninteracting electronic
oscillators of various resonance frequencies. The
steady-state response of these oscillators to an alter-
nating electric field prescribed the complex permittivity
of the gas by the dispersion formula of classical physics
(Eq. 4.29). The resonance frequencies w, of the s-oscil-
lator types had to be assumed, and the intensity of the
spectral lines had to be determined empirically. We
are now ready to abandon this equivalent representa-
tion for a better model.

Let us first settle a question that began to trouble us
in the development of the macroscopic theory. We
found that the general characterization of a dielectric
as the carrier of an electromagnetic field requires the
determination of two complex parameters, the permit-
tivity €* and permeability u*. We claimed that for-
tunately the situation simplifies in practice because,
except in ferromagnetics, the magnetization caused by
the electromagnetic wave is small as compared to the
polarization. Thus p* can be replaced by the perme-
ability of free space uo for most practical purposes (see
I, Sec. 9). Since we are now familiar with the structure
of atoms, we can check this statement.

The polarization P, the electric dipole moment per
unit volume, is given, according to Sec. 1, as

P = Np = NeE, (12.1)
where N represents the number of atoms per unit vol-
ume of an atomic gas, p. the average electric dipole
moment per atom appearing under the action of the
applied electric field strength E, and « the polarizabil-
ity. In complete analogy we c4n write the magnetiza-
tion M, the magnetic dipole moment per unit volume
(cf. I, Sec. 2), as

M = Nm = No,H, (12.2)
where m designates the average magnetic dipole mo-
ment caused by the applied magnetic field strength H,
and o, a magnetizability. The electric and magnetic

susceptibilities follow from I, Eqgs. 2.7 and 2.18 as

Ip-til P _Na
x=¢£ _G()E- eo’
(12.3)
M

m = kn' — 1 =— = Nap,
X K H a

where &' and «,,/ are the relative permittivity and per-
meability of the gas. Hence the ratio of electric to
magnetic susceptibility of the gas is given by the ratio
of polarizability to magnetizability of the atoms as
sl Ak} (12.49)
Xm A €9
For the hydrogen atom, if we refer at present to in-
duced moments only and to the Bohr model for an
order of magnitude calculation, we obtain from Eq. 3.8
the polarizability

a = €041I'T03, (125)
and from Eq. 10.31 the magnetizability
— 2. 2
my; ero
mw = —— = — . 12.6
a o om0 (12.6)
Hence
24mr
X - T s x 104 (12.7)
Xm € Lo

the electric susceptibility is about 105 times that of
the diamagnetic susceptibility. Thus, in discussing
polarization effects in electromagnetic fields we may,
in general, neglect magnetization effects.

We return now to our classical dispersion formula

N.é?
Aol Y i &2/ egm

T Wee — w2 +jw2oz'

(4.29)

which represents the relative permittivity of an oscilla-
tor gas as a function of the frequency w of the incident
electromagnetic radiation. Each resonance frequency
ws, according to Bohr’s frequency condition (Eq. 6.1),
corresponds to a transition between two stationary
states of the total energy &; and §&;, that is, we have to
substitute

& —&;

-y (12.8)

We = wij =
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The stationary states of atoms are prescribed by the
energy-level diagram as discussed in the preceding sec-
tion. However, as Fig. 11.4 already indicates, not all
imaginable transitions between these states occur; only
selected ones are permitted. Quantum mechanics gives
various selection rules which specify the possible transi-
tions. They may be expressed as the changes A allowed
for the various quantum numbers. The principal quan-
tum number n does not underlie any restrictions; any
value

An=0,1,2,3, ... (12.9)

is permissible. Transitions with An = 0 correspond to
transitions between multiplet structure levels which
may even lie in the spectral region of the electrical en-
gineers. The sequence from An = 1 and up represents
the different members of a spectral series (see Eq. 5.17).

For the azimuthal quantum number ! the prescrip-
tion is

Al = +1; (12.10)

practically, only those states for which the [ value dif-
fers by one unit can combine. This rule has a graphic
physical interpretation: a photon A carries an angular
momentum

p;)hoton = h. (1211)

Hence the selection rule (Eq. 12.10) expresses the law
of conservation of angular momentum for the system,
atom + photon.

Although the condition Eq. 12.10 must be fulfilled
for the electron making the quantum jump, the overall
orbital angular momentum L and the total angular
momentum J of a multi-electron system can change as

AL = 0, %1,

(12.12)
AJ =0, 1.

Furthermore the magnetic quantum numbers obey the
selection rules
A = 0, %1,

AWM = 0, £1,
but AM) = 0 is forbidden for AJ = 0.

These and other special selection rules summarize,
in not very lucid prescriptions, a clearly understandable
physical situation: (a) the system, atom + photon, has
to preserve the conservation laws of energy and momen-
tum; (b) transitions violating the Pauli exclusion prin-
ciple are not allowed (see Table 11.2); and (c) the atom
can radiate and absorb efficiently only when the transi-
tion provides an electric dipole moment with which the
atom can couple to the electromagnetic radiation field
(dipole radiation).

(12.13)

In our classical picture the dipole moment was pro-
vided by the displacement of the electronic oscillator
from its equilibrium position (see Eq. 4.21). In quan-
tum physies, the radiation takes place as a transition
between two states 7 — j, and to each such transition
we may ascribe a ‘“‘virtual oscillator’’ of the resonance
frequency w;;. The dipole moment p.;; of this oscillator
is found by quantum mechanics to be the average di-
pole moment of the mixed wave functions of the two
states

T f Viler)i; dr, (12.14)

all space

known as the matriz element of the dipole moment. -

The electromagnetic energy stored and dissipated is
proportional to the complex permittivity (see I, Eq.
11.9) and varies with the square of the electric dipole
moment (see I, Eq. 13.18). The ¢? factor in the classi-
cal Eq. 4.29 contains this dipole moment term, and an
accurate quantum-mechanical calculation ! leads to the
substitution expression

(12.15)

Finally, one additional change is required to transform
the classical dispersion equation into its quantum-
mechanical counterpart. In the classical formula the
oscillators appear only as absorbers of the incident
radiation; in quantum physics, since a transition be-
tween two states is involved, the atoms in the lower
energy state (IV;) may absorb, whereas atoms in the
higher energy state (N;) may be forced by the radiation
to return to the lower energy state. This forced emis-
ston corresponds classically to special phase relations
between oscillator and field and will manifest itself in a
reduced absorption. Thus we have to substitute for
the number of dispersion electrons

N, —» N: — N,. (12.16)

Carrying out the substitutions indicated in Egs.
12.8, 12.15, and 12.16 we transform the disperion for-
mula of classical physics (Eq. 4.29) into the dispersion
formula of quantum mechanics: ?

s |2
K*=1+_2_Z lell"U'

eoh i w2 — o + jw2a

(N; — Nj). (12.17)

1 See H. Bethe, Handbuch der Physik, A. Smekal, Ed., Springer,
Berlin, 1933, Vol. 24, Pt. 1.

2 A first formulation of the dispersion formula of quantum
physics was given by H. A. Kramers and W. Heisenberg [Z.
Physik 31, 681 (1925)]. For a detailed discussion of the “Quan-
tum Theory of Dispersion,” see G. Breit, Revs. Mod. Phys. 4,
504 (1932); 5, 91 (1933).
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The ratio of quantum mechanical to classical-coupling
factor,
20i5] wij 2 /€
Jigm =2 [
h m

is called the oscillator strength of the transition ¢ — j.

The average life time T of the atom in the excited state
J before returning to the state < is according to the classi-
cal decay law (see Eqgs. 4.6 and 4.14), if we replace the
permeability uo of free space by 1/c%¢, (see I, Eq. 8.1),

(12.18)

3mc®

2 2
2¢ w35

(12.19)

T = 4mweg

The ratio of oscillator strength to life time is designated
as the transition probability of the transition 1 — j:

NI fivi 1 64n'y | pij |?
“’ - 3he®

T 4meg

(12.20)

The transition probability, times the quantum Av;;

emitted, gives the intensily of the spectral line per emit-
ting atom, the energy radiated per second

1 64nxtyt

P, =
! 4:1!'60 3 63

| mij |2 [watt]. (12.21)
This intensity is identical to that of a classical dipole
antenna of the average dipole moment p;; emitting a
frequency »;;, as the equivalence of Eq. 12.21 with the
dipole radiation equation (I, Eq. 13.18) confirms.
Table 12.1 gives some calculated data on oscillator
strength and life time for the hydrogen atom.!

Table 12.1. Oscillator strength and life time for some
transitions of the hydrogen atom

Wavelength (A) Transition fins 7 (108 sec)
1216 1s — 2p 0.416 0.16
(resonance line)
6563 2p — 3d 0.694 1.56
18751 3d — 4f 1.016 7.3
40532 4f — 5g 1.345 23

13 * The Formation of Molecules

Until now we have been concerned with the structure
of the electronic atmosphere that surrounds one nucleus.
We found that the electrons assume energy states which
form a complicated pattern of multiplet terms (Sec. 11).
These stationary states are prescribed by quantum me-
chanics as the standing-wave patterns of probability
waves. The electrons are trapped by the Coulomb
field of the nucleus, and also their mutual interaction
is, in the main, of an electrostatic nature. However,
the electron clouds may have, in addition, orbital mag-
netic moments, and the electrons themselves have mag-
netic spin moments, by which they affect each other
through magnetic dipole forces. This magnetic inter-
action produces a coupling of the orbital with the spin
moments, and not only the individual moments but
also their vector resultants have to be quantized. Each
electron, according to the Pauli principle, is character-
ized by a unique set of four quantum numbers, but
electrons, per se, cannot be distinguished and might
therefore be interchanged. The coexistence of several
electronic states expresses itself in quantum mechanics
as the product of wave functions and the possibility of
interchange by linear combinations of these products
(see Eq. 11.4). These linear combinations are the sta-
tionary states actually realized; the contribution of
various possible states to the actual wave function

produces an extra coupling effect known as quantum-
mechanical resonance.

In extending the discussion to the electron clouds of
molecules we may expect that the same considerations
remain valid, but that the electronic systems surround-
ing several nuclei will prove appreciably more difficult
to treat. For once the systems are of lower symmetry.
In diatomic molecules the spherical symmetry of atoms
is replaced by a eylindrical symmetry around the mo-~
lecular axis; in nonlinear, triatomic molecules only one
or two planes of symmetry remain; in still more com-
plex structures no symmetry at all may be left. Fur-
thermore, the possible wave modes depend critically on
the distance of the nuclei and their mutual orientation
in space. To develop concepts for handling such situa-
tions, we consider first the interaction of atoms as a
function of their nuclear separation.

In approaching each other, atoms will initially un-
dergo an attraction. This was already concluded by
van der Waals in his discussion of the gas laws.! An
ideal gas, held under a pressure p in a volume V at a
temperature 7', obeys the equation of state

pV = nRT, (13.1)

1J. D. Van der Waals, Over de Conlinuiteit van den Gas en
Vloeistoftoestand, Leyden, 1873.
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where V/n represents the volume containing a mole of
the gas (the mole volume), and R the gas constant per
mole (see Eqgs. 2.13 and 5.27):

R = Nok = 8.314 [joule mole™ deg™']

(13.2)
= 1.9864 {[calories mole™! deg™].1

This law does not take into account the forces between
the gas molecules or the volume V; that they actually
fill. Gases may condense into liquids and solids, hence
their molecules must attract each other. Van der
Waals took note of this fact by introducing an internal
pressure p; which assists the external pressure p,. He
furthermore referred to the volume actually available
as the difference of the volume V, of the gas container
and of the volume V;. Thus he arrived at the van der
Waals equation for real gases:

(pa + pi)(Va = Vz) = nRT.

London 2 gave the van der Waals aftraction force
represented by p; its molecular interpretation. The
attraction between atoms is due to their mutual polari-
zation by fluctuating dipole moments. These induced
moments arise because the outer electrons of the ap-
proaching atoms tend to keep away from each other by
electrostatic repulsion. Thus the motion of these elec-
trons in neighboring atoms becomes correlated and a
dipole-dipole coupling force results.

Atom 1, developing a moment p;, creates in atom 2,
at a distance r, a moment

(13.3)

pe = oE; (13.4)

the inducing field strength E stemming from ., is (see
I, Eq. 3.19)
™ ]

6021”'3

E~

(13.5)

The energy of interaction for two dipoles lined up end
to end is found easily by the superposition of their
Coulomb potentials (see I, Eq. 10.4) as

Clwml el (weE
6021'7'3

U, = (13.6)

6021"‘3
For random orientation of the dipoles we obtain an
average binding energy 3

3&[}1-1\2 1

2 (egdm)? 10 .0

t 1 calorie (gram-calorie at 4°C) = 4.185 joules.

2 F. London, Z. physik. Chem. B11, 222 (1930); Z. Phystk 63,
245 (1930); Trans. Faraday Soc. 33, 8 (1937). See also H. Mar-
genau, Phys. Rev. 38, 747 (1931).

3 See, for instance, J. C. Slater, Introduction to Chemical Physics,
McGraw-Hill Book Co., New York, 1939, pp. 363 ff.

This van der Waals binding energy, which is propor-
tional to the electronic polarizability o of the atoms
and to their mean square dipole moment, is inversely
proportional to the sixth power of the interatomic dis-
tance. The van der Waals force between neutral atoms,
the first space derivative of U, is therefore inversely
proportional to the seventh power of the distance; it is
short-reaching. Electrostatic forces of longer range
are obtained between particles carrying permanent di-
pole moments or even net charges. Such forces are
responsible, for example, for the peculiar properties of
colloidal systems.

As two atoms draw closer together under the influ-
ence of the van der Waals attraction, their electron

>
£ |l Repulsion—«——— Attraction —+— Zero interaction
<
w
Internuclear distance —
Fig. 13.1. Electrostatic energy between two rigid spherical

(Adapted from Slater.4)

atoms.

clouds begin to overlap. According to electrostatics,
this causes a true Coulomb interaction, and the attrac-
tion increases rapidly. Gauss’s law shows that a spheri-
cal charge distribution acts towards the outside as if
the charge were concentrated at the center (see I,
Egs. 3.6 and 4.2). Consequently, a rigid atom, that
is, a positive nucleus surrounded by a neutralizing
spherical electron cloud of finite radius, exerts no elec-
trostatic force at outside points. However, when we
penetrate into the negative charge distribution, only
the charge contained in the sphere from the reference
point inwards is found to contribute; the effect of the
negative charge outside this smaller sphere has to be
neglected (see I, Sec. 4). The nearer we move towards
the center, the less shielded is the positive charge of the
nucleus. Thus we expect a potential energy charac-
teristic as function of the internuclear distance of the
partners that starts with zero at large distance, then
falls, as first the van der Waals attraction and there-
after the Coulomb attraction between the electron
clouds of the atoms and the nuclei of their partners
come into play, and finally rises steeply as the repul-
sion between the nuclei takes over (Fig. 13.1).
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Seen from the standpoint of the electrons, the Cou-
lomb potential of each nucleus represents a deep, fun-
nel-shaped trap. When the electron atmospheres begin
to overlap, the potential barrier between the nuclei will
be lowered (Fig. 13.2).# This effect tends to concen-
trate more electric charge between the nuclei, until
finally, for two hydrogen atoms, the quadrupole ar-
rangement (+e¢ < —2¢ — e+) might result. The
binding energy of this constellation, as a comparison
of its electrostatic potential with that of two separate
hydrogen atoms shows, is —3.5(¢?/eodnr) or 1.75 times

Potential
energy 1
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l |
I |
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i |
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: |
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Nucleus A Nucleus B F—

Fig. 13.2. Potential double well formed by two like atoms.

that of the two separate atoms. The Coulomb interac-
tion, by which the electron clouds of atom 1 are at-
tracted to the nucleus of atom 2, and vice versa, de-
pends, in contrast to the van der Waals attraction, on
the average and not on a fluctuating field. It pro-
duces, in consequence, a large, overall polarization of
the electron clouds.

Actually, before this occurs, quantum mechanics
interferes through the Pauli exclusion principle, which
forbids shared electrons to occupy identical quantum
states. Bonding will therefore take place only when the
interpenetrating electron clouds can form joint stand-
ing-wave patterns. This is simple when the interacting
orbitals are partly filled (see Table 8.1); such orbitals
may link together by contributing electrons from each
partner, thus forming electron pairs with antiparallel
spins. Lewis® postulated, on chemical grounds, the
existence of such electron~pair bonds even ten years be-
fore the advent of quantum mechanics. The electron-
pair bond is the normal covalent (homopolar) bond of
chemistry.

If such bonding is not possible, the Pauli principle
can be satisfied only if one of the partners goes over
into an excited state. Usually the collision energy

4]J. C. Slater, Quantum Theory of Matter, McGraw-Hill Book

Co., New York, 1951.
5 G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).

will not suffice to bring this about, but, as a pre-stage
for such an eventuality, the electron clouds tend to
avoid each other. Hence, in contrast to the classical
prediction, the electron density between the nuclei
diminishes and a strong repulsion results. This re-
pulsion balances the van der Waals attraction at a dis-
tance of nearest approach, and defines thus a van der
Waals radius r, of the atoms. The volume V; of van
der Waals’ equation (Eq. 13.3) is the sum of the gas-
kinetic volume (4m/3)r,2 of all the molecules contained
in V,.

The van der Waals radii can be determined by vari-
ous means: by gaskinetic experiment, X-ray or electron
diffraction, and, most directly, by the scattering of
atomic beams.! When electron-pair bonds are formed,
the nuclei will obviously approach each other appre-
ciably closer. Covalent radii r, for these bonds have
been calculated by Bragg, Goldschmidt, Pauling and
Huggins 7, and others from investigations of the struec-
ture of homopolar compounds. Furthermore, interact-
ing atoms may give up or take on electrons, thus form-
ing ions of opposite polarity which attract each other
by Coulomb forces. Again, a distance of closest ap-
proach results when this attraction is balanced by the
repulsion called into play by the Pauli principle. By
measuring these distances in ionic compounds through
X-ray analysis, Goldschmidt ® first derived tables of
1onic radit ;, which were later extended and modified,
especially by Pauling.” Finally, by measuring inter-
atomic distances in metals, metallic radii r, may be
derived; the metallic bond is of an intermediate charac-
ter between covalent and ionic binding. Tables 9.1
and 13.1 summarize typical values for these types of
radii.®

These values should not be taken too seriously. It
is convenient to talk about distinct classes of bonds,
but frequently mixed bond types are realized (see
Sec. 14). Furthermore, the radius of an atom varies
with its environment. For accurate computations it is
therefore preferable to refer to tables of interatomic
distances. A critical table of this kind has been pub-
lished by Huggins.'® Concerning the hydrogen bond and
its special role see Sec. 24.

6 1. Amdur, M. C. Kells, and D. E. Davenport, J. Chem. Phys.
18, 1676 (1950); 20, 1620 (1952); H. W. Berry, Phys. Rev. 75,
913 (1949).

7 See L. Pauling and M. E. Huggins, Z. Krist. 87, 205 (1934);
L. Pauling, The Nature of the Chemical Bond, Cornell University
Press, Ithaca, N. Y., 1940, pp. 160 ff and p. 346.

8V. M. Goldschmidt, Oslo. Akad. Wiss. 7 (1926), 8 (1927);
Trans. Faraday Soc. 25, 253 (1929).

° Data from L. Pauling, J. Am. Chem. Soc. 69, 542 (1947) and
Ref. 7; C. A. Coulson, Valence, Clarendon Press, Oxford, 1952.

10 M. L. Huggins, J. Am. Chem. Soc. 75, 4126 (1953).
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Table 13.1. Radii of atoms and ions °
Atomic Covalent Metallic Ionic Van der Waals Atomic Covalent Metallic Ionic Van der Waals
Ion re Tm T3 Ty Ton Te Tm T3 Ty
H 0.37A 1.2A Co 1.16 A 1.25 A
Li 1.34 1.55 A Ni 1.15 1.24
Lit 0.47 A Cu 1.17 1.28
B 0.90 0.98 Zn 1.25 1.38
Ct 0.77 0.91 Ge 1.20 1987
N ¢ 0.73 1.5 As 1.22
of 0.74 1.4 Se 1.17 1.40 2.0A
02— 1.40 Se?— 1.98A
F 0.72 1.4 Br 1.14 1.60 1.95
F- 1.11 Br—
Na 1.54 1.89 Rb 2.11 2.48
Nat+ 0.87 Rbt+ 1.48 ~
Mg 1.36 1.60 Sr 1.91 2.15
Mg?+ 0.65 Sr2t 1.13
Al 1.25 1.43 Zr 1.45 1.60
A3+ 0.50 Zrit 0.80
Si 1.16 1.32 Ag 1.34 1.44
Sitt 0.41 Cd 1.41 1.54
P 1.10 In 1.50 1.66
S 1.04 Sn 1.40
82— 1.84 Sb 1.41
Cl 0.99 1.8 Te 1.41 1.60 2.2
Cl— 1.47 Te?— 2.21
K 1.96 2435 I 1.33 2:2
K+ 1.18 I- 1.78
Ca 1.74 1.97 Cs 2.35 2.67
Ca2t 0.99 Cs™ 1.69
Se 1.44 1.62 Ba 1.98 2.21
Se3+ 0.81 Ba?t 1.35
Ti 1.32 1.47 Pt 1.29 1.38
Tit+ 0.68 Au 1.34 1.44
v 1.22 1.34 Hg 1.44 1.57
Cr 1.17 Tl 1.55 Lo 7L,
Mn iy 157, Pb 1.54 1.75
Fe 1.16 1.26

t Single bonds; for multiple-bond values see Table 17.1.

Tonic and van der Waals radii represent the atoms
as spheres, since the interaction forces have spherical
symmetry. Covalent radii, on the other hand, arise,

Fig. 13.3. Model of alecohol molecule CoHzOH.

in general, from nonspherical wave functions (see Figs.
8.5 and 8.7); hence covalent bonds are directed into
space and the angles between them prescribed by quan-

tum mechanics. By cutting sections from van der
Waals spheres in the proper orientation and depth,
models are made in which the nuclei can approach each
other in the bond directions up to the covalent distance
(Fig. 13.3). Such models ! illustrate the stereostruc-
ture of homopolar molecules with great clarity.

When two atoms or molecules collide, the conserva-
tion laws of energy and momentum will normally com-
pel the partners to separate again. To keep them to-
gether requires the participation of a third body which
can take over the excess of momentum (three-body
impact). However, the particles emerging from a col-
lision need not be identical with the initial ones. The

11 They were first proposed by M. Magat [Z. physitk. Chem.
B16, 1 (1932)], introduced in Germany by H. A. Stuart (see
Struktur des freien Molekiils, Springer, Berlin, 1952), and in this
country made available as Fisher-Hirschfelder-Taylor atom
models (Eimer and Amend, New York).
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motion of the nuclei is slow in comparison to the speed
with which the electronic systems can rearrange them-
selves (Franck-Condon principle) (see also Appendix
ATI, Sec. 8).12 The electronic clouds therefore assume
quasi-instantaneously during a collision the wave

12J. Franck, Trans. Faraday Soc. 21, 536 (1925); E. U.

Condon, Phys. Rev. 28, 1182 (1926); 32, 858 (1928); 41, 759
(1932).

modes prescribed by the mutual constellation of the
nuclei and the total energy of the system. In this
transient molecular state nuclei, electrons, and energy
may be exchanged and radiation emitted. It is this
uncertainty of the outcome and the variety of products
that may form in the breakup of such systems that
make the chemistry of molecular reactions compli-
cated and exciting.

14 - Wave Functions of Molecules and the Concept of

Quantum-Mechanical Resonance

In deriving the electronic structure of molecules, we
have the choice between two antipodean approaches.
We may start with the individual atoms as in the pre-
ceding section and investigate quantitatively how the
wave functions change when the separation distance
shrinks to the actual molecular spacings. This is the
Heitler-London method ! of overlapping atomic wave
functions. Alternatively, we may place, at the outset,
the nuclei at their true equilibrium positions and fill
molecular states by adding the neutralizing electrons
one by one. This method of molecular orbitals repeats,
on a more complicated scale, the procedure used in
building up the electronic structure of atoms (see
Sec. 8); it was originated by Hund 2 and Mulliken.3

Both approaches are approximations which have
their special advantages and shortcomings. The Heit-
ler-London method gives a graphie account of the
interaction of atoms, but fails when new molecular
orbitals arise. The Hund-Mulliken procedure may
describe the electronic structure of the molecule appro-
priately for the nuclei near their equilibrium positions
but fails when, at larger internuclear distances, the
atoms begin to act as individuals. Either starting
point may lead to the same correct solution, as espe-
cially Slater ¢ has shown, if the treatment is extended
by perturbation methods. However, this refinement
requires a prodigious amount of labor in more com-
plicated cases, and only the latest computing machine
techniques offer a prospect of producing quantitative
results.

L' W. Heitler and F. London, Z. Physik 44, 455 (1927).

2 F. Hund, Z. Phystk 51, 759 (1928); 63, 719 (1930); Handbuch
der Physik, 1933, Vol. 24, Pt. 1.

sR. S. Mulliken, Phys. Rev. 32, 186 (1928); 33, 730 (1929);
Revs. Mod. Phys. 4, 1 (1932).

4 8ee J. C. Slater, Quanturr Theory of Matier, McGraw-Hill
Book Co., New York, 1951, Chap. 8.

The show piece of the molecular theory is the hydro-
gen molecule. It has been treated relatively rigorously
from both approaches, and will serve here to develop
some essential concepts.

While discussing the wave functions of atoms we
applied the Heitler-London method (see Egs. 11.2 to
11.4) implicitly. We need only to identify 4 and B
with the two hydrogen atoms, and ¥4 and yp with the
s-wave functions of their ground states. The fact that
each of these functions is simultaneously occupied by
one electron is expressed by the product of the wave
functions, Y4¥g, and the possibility that the electrons
1 and ¢ can be interchanged by the linear combination
of the products: ¥ 4,¥p, + ¥4,¥5,. Thus, by compound-
ing the Hy; molecule from the unperturbed wave func-
tions of the two atoms, the Heitler-London approach
arrives at the two possible wave functions

= C"(Ya¥s, + Ya¥s),
o < (14.1)

= C"(Ya¥B, — Ya¥s),

the one symmetric (+), the other antisymmetric (—)
in the electron co-ordinates (exclusive spins).

The total energy of these two molecular states, &,
is found to consist of three contributions:* (1) The
energy of the two separate atoms, —2Rhc (see Eq.
8.16). (2) A Coulomb energy Hy, that is, the electro-
static interaction energy (4 terms) between the two
atoms, where electron cloud 1 surrounds nucleus 4
and electron cloud 2 nucleus B. These four terms will
mutually cancel unless the two electron clouds inter-
penetrate (see Fig. 13.1). And (3) a nonclassical ex-
change energy Hy several times larger in magnitude than
the Coulomb energy. An accurate calculation leads to

the expression

Hy + H,
&, = —2Rhc + ——
1+

5 (14.2)
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The quantity « represents the product of the two
atomic wave functions when occupied by the same
electron and integrated over all space, the so-called
overlap integral,®

o =f¢41\031 dV =f¢4211132 dV. (14.3)
The magnitude of this integral should obviously depend
on the internuclear spacing, and « proves distance-
sensitive as is easily confirmed: the simple exponential
wave functions ¥4 and yp (see Eq. 8.19) fall rapidly
with the distance from the nucleus A and B, respec-
tively, hence the main contribution to « is made by
the parts of the wave functions midway between A
and B. For widely separated nuclei the quantity «
approaches zero; in the opposite extreme of coalescent
nuclei, an HeV jon is formed, and « represents the over-
all intensity of its probability wave, which is unity (see
Eq. 7.20). Thus « increases from 0 — 1 as the nuclei
of the two hydrogen atoms approach each other.

The quantities ¢’ and C”” in Eq. 14.1 are normalizing factors
which take care of the condition that the intensity of a probabil-
ity wave must integrate to unity (Eq. 7.20). Since the wave
functions of the hydrogen molecule contain the distance-sensitive
factor o, the normalizing factors must also depend on the inter-
nuclear distance. The calculation shows that

1
C'=—
V2(1 + o?)

"o _1—__
V21— &)

(14.4)

If the amount of charge of one electron, held jointly
by both wave functions, is designated as its exchange
charge —owe, the exchange energy H; is the electro-
static energy of interaction (4 terms) between the two
identical, distributed exchange charges and their posi-
tive countercharges -+ ce at the two nuclei.

The exchange energy, plotted as function of the nu-
clear distance, has the same general trend as the Cou-
lomb energy. Initially, the attraction between the
electronic charges and their nuclear countercharges
dominates and the energy becomes negative; as the
nuclei close in, their mutual repulsion dominates and
drives the energy steeply positive.

Since the exchange energy enters the symmetric wave
funection with a plus sign, it leads to a potential mini-
mum and binding. The symmetric wave function, to
satisfy the Pauli principle, has to contain the two elec-
trons with antiparallel spins. Thus the H,; molecule is
formed by the electron pair bond described in Sec. 13.

5 See, for the relation between overlap integrals and chemical
binding, for example, R. 8. Mulliken, J. Am. Chem. Soc. 72, 4493
(1950).

It should now have become quite clear that the energy
of the electron pair bond does not stem from the mag-
netic interaction energy of the antiparallel magnetic
spins but from the electrostatic energy of the quantum-
mechanical exchange forces.

The antisymmetric wave function .contains the elec-
trons with parallel spins, the exchange energy enters
with a minus sign in Eq. 14.2, the hydrogen atoms repel
each other, and a nonbonding state without potential
minimum results.

The H, molecule as a two-electron system can have
singlet and triplet states, the former corresponding to
antiparallel, the latter to parallel electron spins (see
Sec. 11). It is customary to designate the states of
molecules by capital Greek letters in contradistinction to
the capital Roman letters used for the states of atoms.
Y states have no orbital angular momentum around the
axis of the molecule. They are realized here because
the composing s-functions of the atoms have no angular
momentum. The symmetric wave function of Eq. 14.1
refers accordingly to a bonding singlet 2 state, whereas
the antisymmetric function corresponds to an antibond-
ing triplet = state (Fig. 14.1).

Antibonding state (triplet)

>
o
a
Bonding state (singlet)
Fig. 14.1. Bonding and antibonding states of the Ha molecule.

From the standpoint of the molecular orbital method,
the discussion begins with the two protons in place and
initially only one electron added, that is, with the hy-
drogen molecule-ion Hy*. This molecule is the only
one for which the wave equation can be solved exactly.
The problem can be formulated in ellipsoidal co-ordi-
nates with the nuclei as the foci of the ellipsoids; for
this situation the variables can be separated in Schro-
dinger’s equation.®

The two nuclei represent electrostatic potential wells
with a saddle between them (see Fig. 13.2). An elec-
tron, added to one of the protons, can classically trans-

¢ P. M. Morse and E. C. G. Stueckelberg, Phys. Rev. 33, 932

(1929); P. M. Morse, ibid. 34, 57 (1929); E. Teller, Z. Physik 61,
458 (1930).
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fer to the other proton only by jumping over the poten-
tial wall, a process requiring a high activation energy.
Quantum mechanics allows the electron to leak through
the potential barrier by the so-called tunnel effect.

This penetrating of barriers is actually not as absurd
as it first seems; it has its analogue in classical physics.
In I, Sec. 16, we discussed the case of total reflection
and mentioned that the electromagnetic wave pene-
trates for some distance into the totally reflecting me-
dium 2 before being returned to medium 1. If we slice
medium 2 thin enough, some light will leak through;
this trick has been used, for instance, in providing
illumination for an ultramicroscope. Similarly the
probability waves of quantum mechanics leak through
potential barriers at a rate that rapidly increases as the
barrier shrinks in height or width. As time passes, the
electron will be found with increasing probability on
the other side.

For the double well of the Hy' ion this leakiness
implies that, in the stationary state, the electron will
be found with equal probability at nucleus A or B.
The actual wave function is therefore a linear combina-
tion of the two individual s-functions ¢4 and ¥z,

Vi,* <

The (4) function is symmetrie, the (—) function anti-
symmetric in respect to the midpoint of the barrier

= C1(¥4 + ¥8)
(14.5)

= Co(Ya — ¥B).

(Fig. 14.2).
Symmetric
/\ ‘yA i “'B
A B —r I
Antisymmetric
Ya- V’B
A B —=r

Fig. 14.2. Symmetric and antisymmetric wave functions of

Hz+ ion.

Quite generally every one of the stationary states an
electron can assume in a single well splits into two states
when the electron is trapped in a double well; one of the
doublet states is symmetric, the other, antisymmetric.
The closer the coupling, that is, the lower and narrower
the barrier, the wider the splitting. t

t The situation of a double well is illustrated in greater detail
in Sec. 21 by the example of the inversion vibration of the am-
monia molecule (Fig. 21.2).

The antisymmetric state is of higher energy for two
reasons: (@) it corresponds to the shorter wavelength,
hence to a higher kinetic energy (see Eq. 7.6); (b) the
symmetric wave function is higher at the midpoint be-
tween the protons than the individual s-function would
be, while the antisymmetric function is here zero. This
means that the electronic charge shared between the
nuclei in the symmetric case leads to a lowering of the
potential energy; the total energy goes through a mini-
mum, and a stable Hy™ molecule-ion results. Vice
versa, in the antisymmetric case the protons are not
shielded against each other by a shared charge; they
repel each other, and the total energy characteristic,
drawn as a function of the internuclear distance, rises
without a minimum similar to Fig. 14.1.

If we add a second electron to the Hy T system, it also
will spread to both nuclei. The lowest energy state re-
sults when both electrons are placed in the symmetric
wave function with antiparallel spins. This singlet =
state is thus composed of the product of the symmetrie
wave functions of the two electrons,

VY, = C(Wa, + ¥8) W4, + ¥5,)
= C(Ya¥p, + Ya¥s)
+ C(¢A1¢A2 + ‘PBl‘l/Bz)'

A comparison with Eq. 14.1 shows that the first part
of this equation is identical with the symmetric wave
function of Hy obtained by the Heitler-London method.
The second part shows both electrons at the same pro-
ton, hence represents the ionic molecule HTH™. The
molecular orbital method, in its first approximation,
allows the electrons to move freely throughout the
molecule; hence ionic and atomic wave functions carry
equal weight in building up the molecular state.

Obviously, this conclusion has to be modified be-
cause the mutual electrostatic repulsion of the electrons
makes the constellation HYH™ rather unlikely. A
more accurate calculation? allows each of the ionic
structures to contribute only about 2 percent to the
normal state of the molecule. But the principle of de-
cisive importance is that not only one electronic state
or even two different types, but all possible electronic
states which refer to the same type of spin orientation
(same number of unpaired electrons) can contribute to
the strength of a molecular bond. This is the concept
of quantum-mechanical resonance (see also Sec. 11).

We see now that behind this concept, which includes
the exchange energy of the Heitler-London model, lies
the phenomenon of the leaking over of electrons into

78. Weinbaum, J. Chem. Phys. 1, 593 (1933); H. M. James
and A. S. Coolidge, ibid. 1, 825 (1933).

(14.6)
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other wave functions, that is, the tunnel effect. Quan-
tum-mechanical resonance is a coupling phenomenon
in some way akin to the energy fluctuations through
coupled resonance circuits in which the charge spreads
over the various modes of the molecule. Each addi-
tional possible constellation with antiparallel spins,
that is, each symmetric wave function, adds its ex-
change energy to the total bond strength with a weight
factor depending on the likelihood of its occurrence.
The designation “resonance’” has misled people to
believe that an actual observation of the molecule at
various times would disclose it with statistical prob-

ability in the various configurations which are in quan-
tum-mechanical interaction. This is not the case. We
have to visualize the electronic charge as distributed in
an overall probability pattern which can be broken
down by mathematical analysis into contributions
made by the various wave functions to this one energy
state. Each of these functions adds its character to
the molecule as a gene does in a genetic relation. Just
as a child inherits traits from all its ancestors in a
unique mixture and is not expected to be at one mo-
ment only its mother and in the next only its great-
grandfather, the molecule is a distinet new individual.

15 - Bond Energies and Dipole Moments of Diatomic Molecules

The hydrogen molecule is the prototype of the sym-
melrical diatomic molecules, a class representing an espe-
cially simple situation. The nuclei are two equal at-
tracting centers with a potential barrier between them.
An electron placed in this double well will be found with

Fig. 15.1. Symmetric and antisymmetric £ state of hydrogen

molecule.

equal probability at one or the other atom, that is, the
energy states are of the same height at both sides of the
barrier: they are degenerate. Each energy state of the
individual atom splits into two states, the lower one
represented by a symmetrical, the upper one by an
antisymmetrical, wave function in respect to the mid-
point between the nuclei. The symmetric wave fune-

tions designate bonding orbitals; the antisymmetric
wave functions, antibonding orbitals (see Sec. 14).

The fact that such a simple sequence of molecular
orbitals characterizes the symmetrical diatomic mole-

cule with one electron makes it tempting to apply once
more the building principle that served so successfully
for the qualitative description of atoms (Sec. 8). The
sequence of atoms was obtained by increasing the nu-
clear charge in steps of one while inserting successively
compensating electrons into orbitals derived for an
atom containing one electron only. This use of hydro-
gen-like wave functions proved to be a good first ap-
proximation in representing the properties of the peri-
odic system of the elements. Similarly, Hund and
Mulliken ! constructed the sequence of symmetrical
diatomic molecules: H, — He, — Li; — Bey, — ete.
by increasing the nuclear charge of both atoms in steps
of one while simultaneously filling the molecular orbi-
tals derived for Hy 1 with two electrons each of anti-
parallel spins.

The electrons of atoms were grouped in the K, L, M,

. shells and designated, in addition, as s, p, d, ...
electrons according to the angular orbital momentum
(t=0,1,2, ...) of their cloud configuration. Placed
in molecular orbitals these electrons are classified as
o, , 8, ... electrons according to their angular momen-
tum (0, 1, 2, ...) around the molecular axis. The
charge density of the o electrons has cylindrical sym-
metry around the axis without orbital momentum (Fig.
15.1), whereas the m, §, etc., orbitals correspond to more
complex wave patterns. Since the number of molecular
orbitals is twice that of the individual atoms because of
the splitting into bonding and antibonding states, all
the electrons of the K, L, M, ... shells of the atoms

'F. Hund, Z. Physik 51, 759 (1928); ibid. 63, 719 (1930);
Handbuch der Physik, Vol. 24, Pt. I; R. S. Mulliken, Phys.
Rev. 32, 186 (1928); 383, 730 (1929); Revs. Mod. Phys. 4, 1
(1932).
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can be accommodated in corresponding K, L, M, ...
shells of the molecules.

For the Hy molecule we already have found that the
two 1s! electrons of the partners combine in a symmet-
ric wave function with antiparallel spins; that is, a mo-
lecular 1=, state results resembling in saturation the
1S, ground state of the He atom (see Sec. 11). The
additional electron of a third approaching hydrogen
atom would have to be placed in the antibonding orbi-
tal of the asymmetric wave function; hence repulsion
ensues. Four electrons, provided by two helium atoms,
just suffice to fill the lowest bonding and antibonding
orbital, that is, the K-shell of an He; molecule. The
repulsion of the antibonding counteracts the attraction
of the bonding state. Since the excited states of the
helium atom lie about 20 ev above the ground state,
those of the He,; molecule prove to be inaccessible with-
out artificial excitation. Thus no normal Hes; molecule
forms.

The Lis molecule is constructed similarly to the H,
molecule. Its two additional electrons fill the bonding
o orbital of the L-shell (2¢2) above the filled bonding
orbital (16%) and antibonding orbital (1o,%) of the K-
shell. Since the ¢ wave function spreads further out
for the L-shell than for the K-shell, a greater equilib-
rium distance and smaller binding energy than for Hy
result.

In the case of Bes; again a normal molecule will not
form if the additional two electrons occupy the anti-
bonding, 2¢, state. However, the 2p orbitals of the
beryllium atom are not so high above its ground state
that it might prove impossible to arrive at a stable Bes
molecule by using p instead of s electrons.

The p orbitals of atoms have directional properties
(see Eq. 8.22) and an orbital momentum (I = 1). In
the diatomic molecule the molecular axis is an axis of
cylindrical symmetry for one of the p-electron pairs,
while the other two pairs protrude at right angles
(Fig. 15.2).2 Consequently, the symmetrical p pair
forms a molecular ¢ orbital without angular momentum
(po), while the other two pairs produce two molecular
« states (pr). To distinguish between the configura-
tions of these two = orbitals, we may visualize one ro-
tating clockwise, the other counterclockwise around
the molecular axis with an orbital momentum h.

In B, we use the first p-electron pair in a bonding
(po) orbital, whereas for Cy and Ny the bonding (pr)
states will be filled. Hence, N, with the electronic con-
stellation 10%10,220%20,%2(po?)2(px*) should be the
most stable of these molecules because it has three

2 G. Herzberg, Molecular Spectra and Molecular Structure.

1. Spectra of Diatomic Molecules, D. Van Nostrand Co., New
York, 1959; C. A. Coulson, Valence, Clarendon Press, Oxford, 1952.

pairs of bonding electrons. From O, to Ne, the three
remaining antibonding orbitals of the molecular L shell
are occupied; hence the binding energy decreases again
and becomes zero for neon. A normal Ne, molecule
does not materialize.

%P molecular orbital

2px atomic orbitals

2p; atomic orbitals

« molecular orbital

Fig. 15.2. Combination of p orbitals of diatomic molecule.

(Adapted in part from Coulson.?)

Table 15.1 illustrates, in the sequence of binding
energies * and internuclear distances* of the diatomic
symmetrical molecules from hydrogen to neon, the
build-up scheme just described; it can be extended to
the remainder of the periodic system.

Table 15.1. Binding energy and internuclear distance
of symmetrical diatomic molecules from H; to F,

Internuclear
Molecule Binding Energy 3 Distance *

H, 4.47 ev 103.2 keal 0.741 A
Li, 1.12 26 2.67

Be, ? g ?

B, 3.0 69 1.59

C, 3.6 83 1.31

N. 9.76 225 1.09

O, 5.08 117.2 1.20

F, 2.2 72 1.3

This qualitative discussion of symmetrical diatomic
molecules is based on simple electron-pair bonds (co-
valent bonds) without reference to the various combina-
tions of wave functions that are in quantum-mechanical
resonance. We know from the preceding section that
even ionic states make some contribution to the bond

3 A. G. Gaydon, Dissoctation Energies and Spectra of Diatomic
Molecules, John Wiley and Sons, New York, 1947; Landolt-
Bornstein, Tabellen, Springer, Berlin, 1951, Vol. I, Pt. 3, Mole-
keln I1.

¢ H. A. Stuart, Die Struktur des freten Molekiils, Springer, Ber-
lin, 1952.
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strength, but, because of symmetry, no net electric di-
pole moment can result. This situation changes de-
cisively for nonsymmetrical diatomic molecules. The
attraction of the two partners for electrons, their elec-
tronegativity, is different; hence permanent electric dipole
moments must be expected and are an important param-
eter of these molecules. Debye 5 was the first to realize
the significance of permanent electric dipole moments
in problems of molecular physics. Since the separation
of the nuclei is of the order of 10™® ¢cm and the magni-
tude of the displaced charge comparable to that of one
electron (e = 4.8 X 10710 esu), it proved convenient
to express electric dipole moments in the electrostatic
system in units of 1 X 1078 esu, named in honor of
P. Debye:

1 debye = 1 X 1078 esu

=333 X 1073 [coul m]. (15.1)

When this arbitrary unit was chosen, obviously it
had not been realized that the linear Stark effect of the
hydrogen atom leads to an elementary dipole moment
(see Eq. 10.19):

3 €0h2
Pe| == =128 X 1073° [coul m]. (15.2)
2 wme
This elementary unit corresponds thus to
| e | =~ 3.85 [debye] (15.3)

The dipole moments of molecules, like the bond
strength, the intermolecular distance, and other param-
eters, cannot be calculated with accuracy at present,
but have to be measured.® However, we can make
reasonable guesses as to the magnitude of a dipole
moment. Let us illustrate two possible approaches by
the example of the HCI molecule.

In the symbolism introduced by Lewis? and Lang-
muir 8 the chemist indicates each valence electron by
a dot, hence an electron-pair bond by two dots placed
between the atoms. The hydrogen atom contributes
an 1s! electron, the chlorine atom seven outer electrons
(3523p5, see Table 8.1). Taking an extreme standpoint,
we can represent the HCl molecule as either completely

5 P. Debye, Phystk. Z. 13, 97 (1912).

The most powerful methods for determining the dipole
moments of gas molecules are microwave spectroscopy (see
Sec. 21) and the molecular beam experiments of Rabi and his
co-workers [C. A. Lee, B. P. Fabricand, R. O. Carlson, and
I. I. Rabi, Phys. Rev. 91, 1395, 1403 (1953)].

7G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).

8 I. Langmuir, J. Am. Chem. Soc. 41, 868 (1919).

ionic (heteropolar) or completely covalent (homopolar):

HCl
1 iy
ionic covalent
e | H:Cl:.  (15.4)

In the first case a closed octet shell is formed around the
chlorine ion and the partners are held together by Cou-
lomb forces; in the homopolar molecule the octet is
completed by an electron-pair bond which binds the
two atoms without polarity. Obviously the truth lies
somewhere between these extremes and can be found by
approximations from either side.

Ionic approach
The nuclear separation distance H—Cl, determined
spectroscopically, is d = 1.28 A; hence a completely
ionic HYCl™ molecule would have an electric dipole
morment
l I.L ]H+Cl— = ed = 1.6 X 10_19
X 1.28 X 10719~ 6.1 [debye], (15.5)

in contrast to its measured moment of ca. 1.12 debye.
We have to expect that the proton polarizes the electron
cloud of the C1~ ion and creates an induced moment

|| = | E| = ae;::i; (15.6)
that has to be subtracted from | . |+~ Hence
273
p|=ed <1 - 5041rd3)' 15.7)

The polarizability of Cl™, according to Fig. 9.1, is

.~ 6.6 X 107% [em®]. With this value the induced
moment overcompensates the original one, and the
second term in Eq. 15.7 becomes ca. 1.7. The reason
for this overcorrection lies obviously in the assumption
implied in Eq. 15.6 that the induced moment can be
derived from the polarization of the chlorine ion in an
homogeneous external field E. Actually, the distorting
Coulomb field of the proton is strongly inhomogeneous
across the Cl™ ion and only a fraction of it induces a
moment by acting parallel to the molecular axis. A
closer calculation shows that this effect reduces the cor-
rection by about 50 percent and thus leads to the mag-
nitude of the dipole moment actually observed.

Covalent approach

The covalent bond between two like atoms was
described in Eq. 14.6 by a wave function composed of
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atomic and ionic terms. The contribution of the latter
to the bond strength proves to be, in general, of minor
importance. This situation changes when A and B
represent two unlike atoms. The normal covalent
bond A—B will be some average of those for the sym-
metric molecules A—A and B—B, and, in addition, the
bond will be strengthened by a more or less pronounced
contribution of ionic binding energy between the unlike
partners. Pauling ? proposed the relation that the
arithmetic mean or, better still, the geometric mean of
the two bond-energy values D(A—A) and D(B—B)
can be used as representing the energy of the normal
covalent bond between the atoms A and B; that is, the
difference

A = D(A—B) — 2{D(A—A) + D(B—B)}, (15.8)
or, better,
A’ = D(A—B) — {D(A—A) D(B—B)}** (15.9)

characterizes the ionic energy of the unsymmetrical
bond. In this way the ionic bond strength can be
measured thermochemically, since the quantity A is
the heat liberated in the reaction

in the gaseous state.

The bond energies of diatomic molecules can be ob-
tained experimentally by thermochemical or spectro-
scopic methods. Thermochemical data refer frequently
to the decomposition of polyatomic molecules (HyO,
Sg, ete.) into atoms and give, therefore, not the energy
of breaking one individual bond but an average derived
from the breaking of all bonds. Table 15.2 lists the
bond energies of some important diatomic molecules.

Table 15.2. Bond energies and dipole moments of
nonsymmetrical diatomic molecules

Dipole

Molecule Bond Energy 3 Moment #

HF 6.1ev 145 keal 1.91 debye

HCI 4.43 102 181

HBr 3.60 83 0.8

HI 2.75 63.4 0.38

NO 6.49 150 0.1

CO 14 1 256 0.1

Nal 3.1 71.7 4.9

KCl1 4.4 101 6.3

From such bond energies Pauling calculated the
extra ionic energy A or A’ of the unsymmetrical bond
and succeeded in splitting these values into an expres-

9 See L. Pauling, The Nature of the Chemical Bond, Cornell
University Press, Ithaca, N. Y., 1940, pp. 58 ff.

sion comprised of the difference of two terms:

A(A—B) = 23.06(x4 — z5)* [kcal/mole]. (15.11)

The values = characterize the elecironegativity of the
individual atoms. Figure 15.3 shows Pauling’s electro-
negatiity scale of the elements based on the parameter z.

oH

. Pl L S B B AT |
[} 1 2 3 4
Electronegativity value x

il pe T e g

Fig. 15.3. Electronegativity scale of elements. (After Pauling.?)

That a relation such as Eq. 15.11 may represent rea-
sonably well the ionic part of the bond energy might be
foreseen from the fact that the electrostatic interaction
energy of two dipoles is proportional to the product of
their moments (see Eq. 13.6). Hence, if we assign to a
single bond a dipole moment p,4_ g, this bond moment
should be roughly proportional to the electronegativity
difference 4 — g, as pointed out by Malone. Table
15.2 lists the dipole moments of various nonsymmetri-
cal diatomic molecules.

The electronegativity z = 2 in Fig. 15.3 represents
approximately the point of division between metals
and nonmetals; the metals appear as elements of smaller
(r < 2) and the nonmetals as those of larger (z > 2)
electronegativity values.

Returning to the HCl molecule, we find that the co-
valent approach of Pauling, by which the extra ionic
energy of the bond is determined thermochemically,
leads to an electronegativity difference in line with the
measured dipole moment.

Pauling’s z values for the electronegativity of indi-
vidual atoms neglect, by necessity, the effect of the
mutual deformation polarization between two binding
atoms. This deformation polarization, as Fajans
and his co-workers have emphasized for many years, is
of great importance in many chemical problems, for in-
stance, in surface reactions. It may alter the binding
energy and dipole moment of molecules appreciably.!?

10 J. G. Malone, J. Chem. Phys. 1, 197 (1933).

1 See, for example, K. Fajans, Ceramic Age 54, 288 (1949).

12 See, for instance, the electrostatic calculation of E. S. Rittner
for the alkali halide molecules [J. Chem. Phys. 19, 1030 (1951)].
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16 - Static Dielectric Constants and Dipole Moments of Polar Gases

The dipole moments of Table 15.2 have been deter-
mined, in general, by a quasi-static measurement of the
polarization of the dielectric as a function of tempera-
ture. This method is based on a statistical theory of
orientation, first developed for the permanent magnetic
moments of paramagnetic substances by Langevin !
and applied to permanent electric moments by Debye.?

Fig. 16.1. Geometry for calculating average dipole moment.

Molecules carrying a permanent dipole moment suffer
a torque in an electric field that tends to align the dipole
axis in the field direction (see I, Eq. 2.12). Thermal
agitation, on the other hand, tends to maintain a ran-
dom distribution. The outcome of these counteracting
influences is a statistical equilibrium that can be calcu-
lated without reference to the actual rotation of the
molecules and their interaction as long as the electric
field changes so slowly that the equilibrium is reached
with certainty.

The assumptions for a simplified calculation are that
the permanent dipole moment p. of the molecules is un-
affected by temperature and applied field; that the
density of the gas is so low that the dipolar interaction
energy is small in comparison to the thermal equilib-
rium energy kT'; and, finally, that the dipoles can as-
sume any direction with respect to the field axis.

1 M. P. Langevin, J. Physique 4, 678 (1905); Ann. chim. phys.
5, 70 (1905).

2 P. Debye, Physik. Z. 13, 97 (1912); Polar Molecules, Chemical
Catalog Co., Inc., New York, 1929.

The potential energy U of a dipole pointing at an
angle 6 to the field is —| | | E| cos§. Consequently,

the number pointing at a space angle
dQ = 27 sin 6 d6. (16.1)

(Fig. 16.1) is, according to Boltzmann’s statistics,

U
N = Aexp(— —)dﬂ
kT

=A exp (.‘M) dQ_

kT

Each of these dipoles contributes to the orientation
polarization the component | . | cos 6 in the field direc-
tion; hence it appears to the outside observer as if each
molecule carries the average moment

T |n| | E|cosé .
f A exp (———-—) (1. cos6)2msin 6 do
L 0 kT

Fa =

T |n| |E|cosé y
Aexp|l ————— ) 2rsin 6 df
0 kT
(16.3)

The integration over the space angle 8 can be carried
out by introducing the parameters

(16.2)

_ el lE]
o — e = TR
kT
(16.4)
¢ = cosé,
and rewriting Eq. 16.3 as
+1
i f et dg
Vidus §6:11 -l (16.5)
E +1
e d¢
—1
The denominator of this equation is
+1 & — e %
& dy = —— (16.6)
—1 xz

whereas the numerator equals the differential quotient
of this denominator after the parameter z, or
+1 z(e® + e %) — (&% —e™®
f W———r o )
=] x

(16.7)
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Hence

1
= cothz — — = L(z). (16.8)
z

= |E

The function L(z) which describes the ratio of the
average to actual moment of a gas molecule in its de-
pendence on temperature and field strength was first
derived by Langevin in the theory of paramagnetism
and is therefore known as the Langevin function. Fig-
ure 16.2 shows the characteristic L(zx) as applied by

1.0

-
X/3y
0.8 7+ X
= L (x)
= 1Lels y.
© g
3 /|
0.4 /
Ve
0.2-A
o}
o | &3 45 45 6 7 8.9 10
RE
Xs—
kT
L 1 1 1 1 1 L 1 1 1 1 1 il
O RinR2ar3md NSy 6THZ TS 19 (10mliil2
x 107 volt/cm
(¢ =1debye)

(T =298°K )

Fig. 16.2. Langevin function of dipole orientation.

Debye for the electric case; the field scale refers to the
orientation of polar molecules of unit moment, p = 1
debye, against the thermal agitation at room tempera-
ture.

Obviously very high field strengths are required to
produce a deviation from linearity and an approach
towards saturation. For the normal case of relatively
small fields (x << 1) the Langevin function can be ap-
proximated by its tangent x/3; that is, the average
moment due to orientation becomes simply

2
| ] e
36T

The applied field will, in addition, ¢nduce a moment in
the gas molecule by deforming its electron cloud (a.)
and by changing the spacing of the nuclei («;). Thus
deformation and orientation polarization together pro-
duce the total moment per dipole molecule

2
l’-t=(ae+aa+|p‘—l)E-

Our derivation assumed a gas of low pressure. The
polarizability per unit volume and with it the relative
permittivity for static fields, x,’, follows in this case
from Eq. 2.11 as

N N
"ﬂ="s’_ 1 =_<ae+aa+

e(]E €0

g = (16.9)

(16.10)

| w2
3%T

)- (16.11)

We will designate by k.’ the relative dielectric constant
due to the induced moments only,

N
k! =14 — (@ + aa); (16.12)
€
it can be measured at frequencies so high that the
orientation polarization has no time to develop. The
contribution of the permanent dipoles to the static per-
mittivity then becomes

(16.13)

The fact that the orientation of the permanent dipole
moments is strongly temperature-dependent in con-
trast to the practically temperature-independent con-
tributions of the induced moments gives a convenient
method of determining x’ — x,’ and with it the per-
manent dipole moment . of the molecules. To elim-
inate the effect of varying gas density, we refer to the
polarizability per mole II (see Eq. 3.9) in the formula-
tion for low gas pressure

Noa «k/ —1M

II=—= —_

3€o 3 P

If 1I is plotted as a function of 1/7, we can distinguish
easily between polar and nonpolar molecules (Fig. 16.3).

(16.14)

Polar

Nonpolar

/

-_'F-—.-

Fig. 16.3. Molar polarization of polar and nonpolar molecules

as f(1/T).

For the former a straight line is obtained intersecting
the 1/7T axis at a finite angle, whereas the polarization
of a nonpolar gas is temperature-independent, hence
produces a horizontal line.

If we write the molar polarization of the gas in the
form

B
H=A+_ [m3]’

= (16.15)

where

N,
A= 53 (e + aa) = 2.27 X 10%(ae + @) (16.16)
€0

contains the effect of the deformation polarization, and

N 2
B= Nolvl_ 548 X 10%] |2

16.17
360 3’9 ( )
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that of the orientation polarization, we find the dipole
moment as

p =427 X 1072°4/B [coul m]
= 12.74/B [debye]. (16.18)
Figure 16.4 shows the results of measurements on some

80

Molar polarization x 108 (m3)

| W e =
CoH,
o I I I I I
o 0.002 0.004 0.006
1/ TeK

Fig. 16.4. Polarization of polar and nonpolar gases.

in part from Smyth.3)

(Adapted

polar and nonpolar gases.> Extrapolating the straight
lines back to the point 1/T = 0, we obtain the A values,
while their slope determines the B values as

L I, — I,
1Ty, — 1T,

Since the electronic polarization of these compounds
can be determined from measurements of the refractive
index in the visible region according to the Lorentz-
Lorenz equation (Eq. 2.15), the molar polarization II
can be separated into its electronic, atomic, and dipole
contributions. As a rule of thumb, the atomic polar-
ization II, can be estimated as amounting to about
10 percent of the electronic polarization II, for dipole
moments greater than 1 debye.4

In the preceding discussion we have made the as-
sumption that the permanent dipole moment p itself is
independent of temperature. This may not be true for
more complicated molecules, where the dipole moment
is the resultant of group moments and the orientation
of such groups restricted by activation energies. In
such cases a more involved temperature dependence of
the molar polarization arises, as will be shown in Secs.
17 and 25.

3C. P. Smyth, Dielectric Constant and Molecular Structure,
Chemical Catalog Co., New York, 1931.

4See R. J. W. Le Févre, Dipole Momenits, Methuen and Co.,
Ltd., London, 1938.

(16.19)

17 - Polyatomic Molecules

The energy of interaction between two atoms, when
plotted as a function of their nuclear separation, is rep-
resented in the case of covalent bonding by a potential
curve as shown in Fig. 17.1 (see Sec. 14). Its minimum

t

Potential
energy

Dissociation
energy

e r—>

Fig. 17.1. Potential curve of diatomic molecule.

corresponds to the mean distance of separation at the
absolute zero of temperature, whereas the depth of this
minimum measures the energy of dissociation, D. For
ionic bonding a similar potential curve is traversed but
it leads with increasing internuclear distance to a sep-

aration into a positive and negative ion instead of into
neutral atoms.

The actual bond between the atoms of a nonsym-
metrical diatomic molecule is frequently, as the per-
manent dipole moment indicates, a complicated mix-
ture of ionic and covalent binding. In the case of the
NaCl molecule, for instance, the covalent bond prevails
at great distances since the ionization potential of the
sodium (Na — Nat 4 ¢~ — 118 keal/mole) is larger
than the eleciron affinity of the chlorine atom (Cl 4 e~
— Cl™ 4+ 86 kcal/mole). With diminishing nuclear
separation, however, the energy of the ionic state de-
creases more rapidly than that of the covalent one due
to the electrostatic attraction of the oppositely charged
partners, the potential curves cross, and, near the equi-
librium position the ionic state dominates (Fig. 17.2).!

1J. C. Slater, Quantum Theory of Matter, McGraw-Hill Book
Co., New York, 1951.
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The potential energy of a polyatomic molecule con-
sisting of N atoms depends on 3N — 6 (or 3N — 5) co-
ordinates (see Sec. 18) and is therefore much more diffi-
ficult to visualize. However, we know that either def-
inite molecules will form which show small attraction

I Na + Cl
>
o
]
c
@
© —_—
E Internuclear distance
g _
Na*+Cl
Fig. 17.2. Ionic and covalent state of the NaCl molecule.

(Adapted from Slater.)

for further atoms or that atoms may flock together
without limit and build up the structures of solids. In
the former case we can treat the problem as a phenom-
enon of saturating valence bonds by filling the available
orbitals with electron pairs. In solids, on the other
hand, no such saturation will take place when more
atoms are added. The Coulomb field of the Na™ and
Cl™ ion, for example, can attract more ionic partners
and build up the ionic NaCl crystal (Fig. 17.3), or the

Jsis

( ®
)

Fig. 17.3. Crystal structure of NaCl. (O Cl~ ions, ® Na™ ions,
each ion type forming a face-centered cubic lattice.)

metallic bonds between sodium atoms will lead to the
formation of metallic sodium (Fig. 17.4) in a packing
as dense as the particle size allows (see Sec. 24).

The possible shapes and sizes of polyatomic molecules
depend on the types of orbitals that may be used to
saturate the chemical valence of the partners by pair-

bond formation. To establish these orbitals, we have
to go back to the atomic wave functions and to the geo-
metrical patterns of the electron clouds they represent.
According to the concept of the exchange energy (see
Sec. 14), the strength of a bond between two atoms will
increase the more the participating orbitals of the two
partners overlap. The integral of the product of the
orbitals, taken over all space, the overlap integral, is a
measure of the bond strength (see Eq. 14.3). This eri-
terion, first introduced by Slater ? and Pauling,? leads to
the conclusion that an s-p bond is about /3 times and
a p-p bond about 3 times as strong as an s-s bond. If
both s- and p-wave functions are available, we might
therefore expect that p bonds will form, orientated at
right angles to each other; but this is not the only
possibility. A new type of orbital can be realized by

Fig. 17.4. Structure of sodium metal (body-centered, cubic).
a linear combination of the s- and p-wave functions
(see Eq. 11.4), and such s-p hybrid orbitals of tetra-
hedral orientation may be stronger than the original
ones (Fig. 17.5).

Let us make the situation clear by the sequence of
molecules: H,O — NH3; — CHy4. The oxygen atom,
with six electrons (2s?2p*) in the L shell, has two p orbi-
tals only half occupied and therefore available for co-
valent bonding. They can be saturated by forming
electron-pair bonds with two hydrogen atoms, and a
covalent molecule HoO with a valence angle of 90°
would result (Fig. 17.6). However, according to the
electronegativity scale of the elements (Fig. 15.3), the
O-H bond is of about 39 percent ionic character, and
the measured dipole moment of the water molecule is
about 1.85 debye.* Thus the hydrogen atoms are partly
positively charged and tend to repel one another.

2 J. C. Slater, Phys. Rev. 37, 481 (1931).

3L. Pauling, Proc. Nat. Acad. Sci. 14, 359 (1928); J. Am.
Chem. Soc. 53, 1367 (1931).

¢See G. Birnbaum and S. K. Chatterjee, J. Appl. Phys. 23,
220 (1952).
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Hence, the actually measured bond angle is not 90°
but ca. 104°.

Similarly, the nitrogen atom with the constellation
(2s?2p®) has three half-filled p orbitals available for

yo

Fig. 17.5. Tetrahedral s-p hybrid orbitals.

pair-bond formation; hence it is saturated by forming
the ammonia molecule, NH;. Since the p bonds tend
to stand at right angles to each other, a pyramidal
structure results (Fig. 17.7); but the bond angles are

Saturated p orbital

Half-filled p orbitals

Actual molecule
Fig. 17.6. Formation of HyO molecule by p bonds.

Simplified model

again enlarged through electrostatic repulsion of the
hydrogen atoms since the permanent dipole moment of
NHj is 1.46 debyes.

However, there is an alternative explanation for the
enlarged bond angles. Instead of using the p orbitals
of the nitrogen atom, we might hybridize its s- and
p-wave functions and bind the hydrogen atoms by s-p
hybrid bonds to three of the four corners of a regular
tetrahedron. The tetrahedral angle H-N-H would be
109° 28’, in relatively good agreement with the actually
observed angle of 108°.

Whether p bonds and electrostatic repulsion or s-p
hybrid bonds are mainly responsible for the shape of
the ammonia molecule, only an accurate calculation
can show. Although the hybrid s-p bonds are stronger
than p bonds, their formation requires an excitation of
the s electrons which otherwise form a rather stable

NH; molecule True angle

Saturated
s-p orbital

Angle resulting from p bonds Angle resulting from s-p bonds

Fig. 17.7. Alternate ways of forming the NHj3 molecule.

2s? electron pair. The improved bond strength must
outweigh the energy loss arising from this atomic ex-
citation in order to make the hybridized form the state
of lowest energy.

The situation is not in doubt for the carbon atom.
Here, as organic chemists inferred long ago, four equiva-
lent bonds are formed directed towards the four corners
of a regular tetrahedron (see Fig. 17.5). This type of
s-p hybrid orbital is therefore called conveniently a
tetrahedral orbital. By placing four hydrogen atoms at
the four corners, we arrive at methane (CH,), the
mother substance of the aliphatic hydrocarbons.

The existence of four equal tetrahedral orbitals sug-
gests representing the aliphatic carbon atom itself by
a tetrahedron. Two such carbon tetrahedra may com-
bine by sharing one corner, that is, forming a single
bond while the six remaining free corners can be occu-
pied by hydrogen atoms; in this way the molecule of
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H H

S Vi
ethane | H—C—C—H | results. By sharing two cor-
L. N

H H
ners, that is, one edge of their tetrahedron, the two
carbon atoms can be joined by a double bond, and only

four corners remain for occupation by hydrogen atoms.
H

Thus ethylene C=C would be obtained
H H,

with its hydrogen atoms confined to one plane. Finally,

by sharing three corners, that is, one tetrahedron face,

the carbon triple bond of acetylene (H—C=C—H)

might arise, which places the carbon and hydrogen

atoms in a straight line (Fig. 17.8).

Tetrahedral
carbon atom

Single bond
(ethane)

Double bond
(ethylene)

1.33 A H

Triple bond
H i (acetylene)

1L.20A

Fig. 17.8. Various ways of joining two tetrahedral carbon

atoms.

Actually the situation is not so simple as that. In
addition to the tetrahedral s-p hybrid bond there exist
a trigonal and a digonal one, and these two bonds are
invoked for the formation of ethylene 5 and acetylene.®
The trigonal or sp? type leaves one of the original p
orbitals unchanged (for example, p,), whereas the mix-
ing of s, p,, and p, creates three equally strong bonds,
directed in the xy-plane at angles of 120° with each
other (Fig. 17.9). The digonal bond leaves p, and p,

8 E. Hiickel, Z. Physik 60, 423 (1930).

8 C. A. Coulson, Valence, Clarendon Press, Oxford, 1952, pp.
191 ff; G. E. Coates and L. E. Sutton, J. Chem. Soc. (London),
1948, p. 1187.

unchanged and mixes s and p,, into two equivalent bonds
directed at 180°.

The bond strength of the ecarbon double bond is less
than twice the strength of the single bond and that of
the triple bond appreciably less than thrice the single

Trigonal

~, -
S =

Fig. 17.9. The trigonal and the digonal s-p hybrid orbitals.
(After Coulson.8)

bond value (Table 17.1).” This instability of the car-
bon double and triple bonds makes them the favored
starting point for many chemical reactions.

Table 17.1. Bond energy and covalent radii of
multiple-bonded atoms

Energy (keal) Covalent
radius
Bond C.&Ss G.7 Te
c—-C 83 84 0.77A
C=C 146 125 0.67
c=C 201 181 0.60
N—N 39 55 0.73
N=N 100 104 0.61
N=N 226 184 0.55
0—0 34 47 0.74
0=0 117 117 0.57

Around a single bond axis, as the model of ethane
shows, a more or less free rotation of the partners is
possible. A double bond, as in ethylene, exerts much
greater restraining forces by defining a preferential
plane, and the triple bond is still more confining by
specifying a preferred direction. The fact that molecu-

7G. Glockler, J. Chem. Phys. 19, 124 (1951).
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lar groups may rotate around single bonds is of great
importance for stereochemistry; it allows long chain
molecules, for example, to change shape with the flex-
ibility of a rope. How far the possibility of free rota-
tion can actually be realized depends on the mutual
interference of the rotating groups, on their steric
hindrance.

The trigonal carbon bond is again invoked to produce
the hexagonal coplanar configuration of the benzene
molecule, the basic constellation of the aromatic com-
pounds. That the benzene ring molecule (CsHs) is a
plane molecule, coupled by a mixture of single bonds
and double bonds, was proposed by the organic chem-
ists long ago 8 on the basis of various types of valence
pictures (Fig. 17.10). According to quantum mechan-

H H
¢

LN / \C/H H\C/ \C/H

1 1]
N N Y

f |
I-li Kekule forms H

Dewar forms

Fig. 17.10. Classical valence pictures of the benzene molecule.

ics there is some truth in all these constellations; they
are in quantum-mechanical resonance (see Sec. 14).
The total resonance energy contributed to the strength
of the carbon-carbon bond beyond that of the single
bond value is about 37 kcal/mole. The two Kekulé
structures account for nearly 82 percent of the energy,
and the three Dewar structures approximately for the
remainder.®

According to the hybrid bond picture, the s, p,, and
py orbitals have combined into three equal coplanar
bonds, oriented at 120° to each other and determining
the plane of the ring, whereas the p, bonds protrude in
lobes normal to the plane. The exchange between these
p. electrons, which correspond classically to a ring
current, gives the extra stability implied by the valence
pictures.

8 A, Kekulé, Bull. soc. chim. 3, 98 (1865); Ann. Chem. 137, 129
(1866).

9 L. Pauling and E. B. Wilson, Iniroduction to Quantum Me-
chanics, McGraw-Hill Book Co., New York, 1935, p. 378; L. Paul-
ing, The Nature of the Chemical Bond, Cornell University Press,
Ithaca, N. Y., 1942, pp. 128 ff.

For the benzene ring molecule only nonpolar constel-
lations need be considered; dipole molecules such as
H,0 have to be described as resonating between co-
valent and ionic constellations. The four electronic
structures of Fig. 17.11 contribute to the bond strength
of the water molecule. The completely covalent form

o I~ o
P
o o P
(~24%) o d" +
H
[ ] [ ]
) H o e
e o " T
Fully covalent -~ e Fully ionic
(~37%) » O‘?W" (~15%)
e o

Partly covalent,
Partly ionic

Fig. 17.11. Four bond types of the H2O molecule contributing
in quantum-mechanical resonance. (After Pauling.?)

has the highest probability, but the two equivalent
structures with one ionic bond, taken together, out-
weigh it, and even the completely ionic form makes a
strong contribution.

Polyatomic molecules can be visualized as composed
of diatomic groups. Since for diatomic molecules we
arrived at quantitative data for bond strengths and
dipole moments (see Tables 15.1, 15.2, and 17.1), it is
tempting to use this information to evaluate the energy
content and dipole moment of polyatomic molecules.
Actually we can arrive at a first approximation of the
total energy by simply adding arithmetically the indi-
vidual bond energies. Similarly, we can obtain, in a

Dichlorobenzene

(Calculated) p={3 p,=2.67 Debye
(Observed ) p=2.33

p= gy 1,54

p=0
=148 p=0

Fig. 17.12. Vector addition of dipole moments.

first approximation, the overall dipole moment of a
molecule by a vector addition of the individual group
moments, as the classical example,!® dichlorobenzene,
illustrates in its ortho, meta and para forms (Fig. 17.12).

10 See P. Debye, Polar Molecules, Chemical Catalog Co., Inc.,
New York, 1929.
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Quantitative agreement, however, should, in general,
not be expected from this composite procedure. It
misses not only the phenomenon of quantum-mechani-
cal resonance but also the effect of prepolarization
which the various groups exercise on the overall elec-
tronic structure. It is due to this prepolarization that
a substituent can be introduced more readily into cer-

18 - Vibration

In problems of electronic polarization, the atomic
nuclei play, in essence, the role of stationary binding
posts for the electron clouds since the nuclear mass out-
weighs that of the electrons by at least three orders of
magnitude. However, when nuclei find themselves
bound to partners of comparable mass as in molecules
or the condensed phases of liquids and solids, addi-
tional types of polarization result from the vibration
of nuclei relative to each other (atomic polarization)
and the rotation of molecules as a whole or of molecu-
lar groups around internuclear axes (orientation or dipole
polarization). The classical model for a discussion of
these additional modes of motion is the diatomic dumb-
bell molecule, assumed to oscillate as a harmonic oscilla-
tor or to rotate as a rigid rotator (Fig. 18.1).

\

Harmonic oscillator

Rigid rotator

Fig. 18.1. Harmonic oscillator and rigid rotator.

Let r; and 75 be the distances of the mass points m,
and m, from their center C of gravity, and r the mutual
distance of the mass centers; that is,

miry = Malg
and (18.1)
L+ re =7,

By separating r; and r, we obtain

mg
S
my + mg
and (18.2)
"y
¥o = mp————i%

my + Mo

tain positions of an aromatic molecule than into other
apparently equivalent ones or that polymerization re-
actions proceed in certain preferential ways. Phenom-
ena of this kind are being studied extensively today by
chemists and physicists to learn more about the actual
electron distribution and its influence on the kinetics
of chemical reactions.

and Rotation

The restoring force between the atoms results from a
complicated interplay of electrostatic interactions. If
it is proportional to the displacement from the equi-
librium distance 7., the two atoms execute harmonic
vibrations around their equilibrium positions accord-
ing to the force equations

P =
m— = —f(r —r,
Vae
and (18.3)
d27'2
mzd_tz = —f(r — ro).

Substituting for the distances from the center of gravity
the mutual distance, according to Eq. 18.2, we derive
from both equations the identical expression

D e (18.4)
e = —f(r 7o)l .
my + mg di® f

By referring to the reduced mass of the diatomic
molecule,

m
e ALl (18.5)

my + mg

and replacing the internuclear distance r under the dif-
ferential sign with the displacement distance r — 7,
(which is permissible, since . is constant), we can re-
write Eq. 18.4 as

2(p
r. % Ffr—1)=0.  (186)

The vibrations of the two atoms of the dumbbell mole-
cule are identical to the harmonic vibration of a single
mass m, oscillating with an amplitude equal to the dis-
placement distance. The resonance frequency of this
undamped oscillator is (see Eq. 4.3)

Wose = f/mr (187)
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Its potential energy

U= 3f(r —r)?% (18.8)

plotted as function of the internuclear distance, de-
scribes a parabola (Fig. 18.2).

In addition to this vibration, the dumbbell molecule,
freely suspended in space, may rotate around an axis
passing perpendicular to the molecular axis through the

\ [
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Fig. 18.2. Potential curve and vibration states of harmonic
oscillator. (After Herzberg.!)

center of gravity C. The moment of inertia, I, of the
molecule in respect to this axis is

I = myr® + mgry® = m?, (18.9)

and its energy of rotation according to classical me-
chanics

1 2

8rot’. &= §I Wy,

(18.10)

where w, = v/r represents the angular velocity of rota-
tion. Since the angular momentum of this system is

p' = mur = Lo, (18.11)

the kinetic energy of this rotator can also be expressed as

12

P
Erot = — 18.12
T (18.12)

A vibrating molecule will be optically active, that is,
able to emit and absorb electromagnetic radiation ac-
cording to classical theory (see I, Sec. 13) if its dipole
moment changes during the oscillation (dp/dr # 0).
The variation of the dipole moment corresponds to the
equivalent picture of an alternating current traversing
a dipole antenna. The harmonic oscillator has classi-
cally only one resonance frequency determined by the
force constant f and the two atomic masses (Eq. 18.7).

The amplitude of this vibration, and with it the energy,
can assume any desired value. The energy radiated per
second is proportional to the square of the momentum
amplitude (juo2) and to the fourth power of the fre-
quency (see I, Eq. 13.18). It causes radiation damp-
ing which will broaden the spectral line (see Sec. 4).

The dumbbell molecule, as a rigid rotator, will be
optically active if it carries a permanent moment.
Upon such dipole moment (electric or magnetic) the
electric or magnetic field can exercise a torque (see I,
Sec. 2) and make the molecule rotate classically with
any angular frequency. Hence, whereas the classical
vibrator emits a single spectral line, the classical rota-
tor emits a continuum extending with rapidly increas-
ing intensity from zero frequency to the explosion fre-
quency of the rotator.

Vibration and rotation may be described in terms of
general co-ordinates, a space co-ordinate ¢ and a me-
chanical momentum co-ordinate p. The co-ordinate ¢
of the vibrator is the displacement distance r — 7, from
its equilibrium position; for the rotator it corresponds
to the position on the circle of rotation. The momen-
tum p prescribes, according to de Broglie’s equations
(Eq. 7.6), a wavelength

A = h/p. (18.13)

Vibration and rotation are recurrent motions. Classi-
cally, any free recurrent motion may represent a sta-
tionary state. Quantum mechanics admits only states
which correspond to standing wave patterns. Forget-
ting about the uncertainty principle at present, we pre-
scribe that the total path traversed must be an integer
n of the wavelength,

dq_

A
or (18.14)

fpdq= nh.

This is Sommerfeld’s quantum condition (Eq. 6.19).

The momentum p of the vibrator depends on the
displacement ¢; that is, the wavelength changes with
the position of the mass points. It is shortest at the
equilibrium position, where the total energy E has been
converted into kinetic energy

n

1 1p?
Exin = —mv® = e
2

18.15
Y (18.15)

and infinite at the turning points, where only the po-
tential energy (see Eq. 18.8)

U = 3f¢*

(18.16)
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remains. Since the total energy of the harmonic oscilla-

tor, r
g = f_._}.{qi,

= 18.17
2m 2 ( )

must be constant, the relation between p and ¢ is

2
e,

(18.18)
2m& 28

The momentum p, plotted against the space co-ordinate
¢ in the phase space (p,q), represents an ellipse with half
axes \/2m€ and /28/7 (Fig. 18.3).

o

Fig. 18.3. Energy ellipse of harmonic oscillator in phase space.

The phase integral f p dq of the vibrator is the area

of this ellipse and is equal to = times the product of the
two half axes. The quantum condition of the linear
harmonic oscillator thus becomes

fpdq = 208V m/f = vh, (18.19)

or, by introducing the resonance frequency from Eq.
18.7,
(18.20)

8ose = Vhwose y

where v is the vibrational quantum number. Thus the
total energy of the linear harmonic oscillator is quan-
tized in integral multiples of the amount hvese.

For the rigid dumbbell rotator, on the other hand,
the momentum p is constant; hence the phase integral
simplifies to

P f dg = (mv)(2rr) = Jh

or (18.21)
p’ = Jh,

with J representing the quantum number of rotation.
Equation 18.21 is Bohr’s quantum condition of the ro-
tator, as previously derived (see Eq. 6.12). The energy
of the rigid rotator follows from Eq. 18.12 as

&rot = J202/21. (18.22)

A comparison of the energy states of the vibrator and
rotator (Eqs. 18.20 and 18.22) with those found for the
electronic excitation of atoms shows fundamental dif-
ferences. The stationary energy states of a hydrogen-
like atom may be written by generalizing the terms of
the Balmer formula (see Egs. 6.4 and 8.16)

2

(n + a)2'

where R’ is a modified Rydberg constant, n the princi-
pal quantum number, a the so-called Rydberg correc-
tion, and Z the charge of the core of the atom (atomic
number minus the number of electrons in the closed
shells of the core). These quantum states of the atom
form a Rydberg series of terms (withn =1, 2,3, ...)
(Fig. 11.4). As the distance between electron and core
increases, the binding energy (&, negative) diminishes
rapidly according to Coulomb’s law. The terms crowd
closer and closer together until, at the ionization limit
(8. = 0), the discrete energy states join a continuum
of positive energy values. The ionization potential
corresponds to the light energy hv required to move the
electron from its ground state nearest the core to in-
finity, with the separated electron and ion at rest. The
positive energy values &, refer to the electron as free
and carrying the energy &, as unquantized kinetic
energy. The discrete negative energy values charac-
terize the electron as {rapped by the core, and the total
energy &, is divided equally, according to the Virial
theorem (see Eq. 5.8), between potential and kinetic
energy.

These Rydberg series of terms, with their rapidly
diminishing spacing towards higher excitation energies,
are typical for all line spectra of atoms. The linear
harmonic oscillator, on the other hand, according to
Eq. 18.20 has equally spaced energy levels (see Fig.
18.2), and, for the rigid rotator, the energy of the states
even increases quadratically with the quantum num-
ber (Fig. 18.4).

According to Bohr’s frequency condition (Eq. 6.1),
the emission of radiation takes place as the result of a
quantum jump from a higher to a lower energy state,
and the absorption by the converse process. Which
transitions are actually possible is determined by the
selection rules of quantum mechanics (see Sec. 12).
With atoms, line series like those of Lyman, Balmer,
and Paschen appear (Eq. 5.17) because the change of
the principal quantum number underlies no restric-
tions (Eq. 12.9). For the harmonic oscillator the selec-
tion rule specifies that the vibrational quantum num-
ber v of the two interacting energy states must differ
by unity

8 = —R'hc (18.23)

Av = v — v = +1, (18.24)
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and the same condition applies to the rotational quan-
tum number J:

AF =g 2 2 L. (18.25)

A linear harmonie oscillator should, therefore, as Fig.
18.2 indicates, be characterized by only one spectral
line, identical in frequency to that of the classical oscil-
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Fig. 18.4. Energy states and spectrum of rigid rotator. (After
Herzberg.1)

lator. The rigid rotator of Fig. 18.4 should show a se-
quence of lines of the frequencies (see Eqs. 18.11 and
18.21)

h

J
4727

y =

(18.26)

A classical rotator does not resonate; the quantized
rotator has rotational resonance frequencies which in-
crease linearly with the quantum number J.

The simplified treatment, based on Sommerfeld’s
quantum condition, assumes that the position and the
location of the particle can be specified simultaneously
with accuracy. This contradicts the spirit of quantum
mechanics as expressed in the uncertainty principle
(Eq. 8.11). The actual stationary states of the vibra-
tor and rotator are obtained as solutions of the Schro-
dinger equation.! In place of Eqgs. 18.20 and 18.22 we
thus find the slightly different energy expressions

Eose = hvo(v + 3) (18.27)

and
2

3t
=—J(J +1). ]
Exsy=tigaiiGl L) (18.28)

The result for the rotator agrees with the quantization

1 See G. Herzberg, Molecular Spectra and Molecular Structure.
1. Spectra of Diatomic Molecules, D. Van Nostrand Co., New
York, 1950.

condition of the angular momentum derived previously
(see Eq. 8.23). For the vibrator, Eq. 18.27 postulates
that even in the lowest vibrational state, v = 0, that is,
at zero absolute temperature, a zero-point energy of one
half vibrational quantum remains (see Fig. 18.2).

The existence of a zero-point energy for the vibrator,
but not the rotator, is required by the uncertainty rela-
tion. The position and the momentum of the oscillator
at 0°K would be completely defined if a vibrationless
state could be realized. For the rotator this is not so,
because for a molecule without rotational energy the
actual angular position remains still completely unde-
termined.

Let us check the predictions of the theoretical dis-
cussion with the simple example of the HCl molecule.
For a thin layer of the gas and small dispersion, a fun-
damental absorption band is found near 3.5 microns
(Fig. 18.5). Assuming that this is the expected reso-
nance of the vibrator, ves. = 8.65 X 102 sec™, we ob-
tain from Eq. 18.7, with the reduced mass of the HCI
molecule m, = 1.63 X 10727 kg, the force constant as
f = 4.8 X 10? newton/m. To change the internuclear
distance by 1A =1 X 107'° [m] against this force
constant, would require, according to Eq. 18.8, an
energy U = 2.4 X 1078 joule = 15 ev (see Eq. 5.34);
this is a reasonable order of magnitude for molecular
energies.

Absorption
HClI

1 1 1 ]
32 33 34 35 36 37
Wavelength-microns

Fig. 18.5. Fundamental vibration band of HCI in near infrared
(Bjerrum double band).

In addition to this vibration spectrum in the near
infrared (wavelengths <20 u), there is found an ab-
sorption spectrum in the far infrared (>20 p) fitting
the description of the rotation spectrum of HCI (Fig.
18.6).2 After identifying the rotational quantum num-
bers J of the transmission minima according to Eq.
(18.26), we determine from the rotation frequency of
the resonance absorption the moment of inertia of the
HCI molecule as I = 2.71 X 107" [kg m?] and then,

t Actually, this band shows two maxima (Bjerrum’s double
band), because the rotation structure consists of two branches
(see Fig. 18.7).

2 Czerny, Z. Physik 34, 227 (1925); see also Ref. 1, pp. 57
and 81,
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with the reduced mass given above, the internuclear
distance from Eq. 18.9 as r = 1.29 A.

It is convenient to distinguish between near and far
infrared from the standpoint that in the near infrared

100 -

80

60 -

40 (10)

% Transmission
—_—

(9)
20

(8)

o 1 1 L 1 1
45 50 55 60 65
Wavelength-microns

Fig. 18.6. Rotation spectrum of HCl molecule in far infrared.
(After Czerny.2)

the vibration and in the far infrared the rotation spec-
tra of gas molecules are found. The far infrared, still
not easily accessible for the experimenter, continues
without break into the microwave region.

If the principal absorption band of the HCIl gas in
the near infrared is observed with high resolution, a
fine structure becomes visible (Fig. 18.7). This effect

Absorption
A

WY

! 1 L 1 1 | |
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Wavelength - microns

Fig. 18.7. Fundamental vibration band of HCl with resolved
rotation spectrum.

is caused by the modulation of the vibration due to the
excitation of the various rotation states of the HCI
molecule. Since the rotation energy is appreciably
smaller than the vibration energy, we may observe a
pure rotator but normally not a pure vibrator; vibrat-
ing molecules in the gaseous state will be rotating vi-

brators with a principal energy level diagram as shown
in Fig. 18.8.

A more accurate discussion of diatomic molecules has
to take into account that actual molecules are neither
harmonic oscillators nor rigid rotators. The potential
energy of a harmonic oscillator increases indefinitely
with increasing displacement from the equilibrium posi-
tion, whereas a real molecule will dissociate beyond a
critical internuclear distance (Fig. 18.9). The true
molecule is an anharmonic oscillator, and its potential
curve approximates only near the minimum the para-
bola of Fig. 18.2.2 To make allowance for this devia-
tion, we can represent the energy of the oscillator by a
power series which for all practical purposes may be
terminated after the second member. Similarly, the

ef
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Fig. 18.8. Tnergy level diagram and spectrum of rotating

vibrator.

actual rotator does not have a constant internuclear
distance, as assumed, but the separation of the mass
points increases slowly under the pull of the centrifugal
force. Also, in this case an adequate correction can be
made by adding a quadratic term.

An extension of the considerations to polyatomic
molecules leads to situations of rapidly increasing com-
plexity, but classical mechanics provides some guiding
principles of approach. For a rigid body, three mutu-
ally perpendicular principal axes exist, which pass
through the center of mass and around which the mo-
ment of inertia is 8 maximum or minimum (Fig. 18.10).

8 A mathematical expression that represents well the potential
curve of a diatomic molecule has been given by P. M. Morse,
Phys. Rev. 34, 57 (1929) in the form

U(r — ro) = Dy(1 — e=BC—10)2, (18.29)

where D, is the dissociation energy taken from the minimum,
and 8 is a constant. The dotted characteristic in Fig. 18.9 repre-
sents such a Morse curve.
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If these three principal moments of inertia are different,
the molecule is called an asymmetric top; if two are alike,
a symmetric top; if all three are alike, a spherical top.
A linear molecule, like the diatomic molecules just dis-
cussed, represents a special case of the symmetric top,

Similarly, a classical analysis of the vibrations of a
molecular system leads to a useful systematization.
Any complicated oscillation of a system due to har-
monic forces can be represented as the superposition of
independent simple harmonic motions, of the so-called

2| 50
S

0.5 1.0

Fig. 18.9. Potential curve and Morse curve (dotted) of Hy molecule.

for which the third principal moment of inertia around
the molecular axis is practically zero. A typical spheri-
cal top is the methane molecule CHy; by substituting
chlorine for one of the hydrogen atoms, we lower the
symmetry to that of a symmetric top; the ethylene

z z

Rigid body Ellipsoid of inertia

Fig. 18.10. Principal moments of inertia.

molecule, CoHy, finally, is a typical example of the
asymmetric top class to which the great majority of
the polyatomic molecules belong. Each of these classes
has typical spectroscopic characteristics.*

4 See G. Herzberg, Molecular Spectra and Molecular Structure.

I1. Infrared and Raman Spectra of Polyatomic Molecules, D. Van
Nostrand Co., New York, 1945.

2.5 r(10%em)
(After Herzberg.l)

normal vibrations. There are always as many normal
vibrations as there are vibrational degrees of freedom.
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CaH,
CeHe
Fig. 18.11. Normal vibrations of some molecules.

The total number of degrees of freedom of a molecule
consisting of N mass points is 3N. Three of these 3N




Electronic, Atomic, and Orientation Polarization of Gas Molecules 161

degrees of freedom belong to the translation of the mole-
cule as a whole in the z, y, and 2z direction. Three or,
for the linear molecule, two represent the rotation of
the molecule around its principal axes as described
above. Hence 3N — 6 or, for the linear molecule, 3N
— 5 vibrational degrees of freedom remain. Figure
18.11 shows normal modes for some typical molecules.
The vibrations are obviously of two types: in the one,

the valence bonds of a molecule are stretched; in the
other, they are bent. We speak therefore of valence-
or bond-stretching vibrations as contrasted with deforma-
tion- or bond-bending wvibrations. The former are of
appreciably higher frequency, since the head-on mo-
tion of the atoms leads to larger restoring forces.t

t For a detailed discussion of molecular spectra see the funda-
mental monographs by G. Herzberg (Refs. 1 and 4).

19 - Electronic, Atomic, and Orientation Polarization of Gas Molecules

By considering atoms as linear harmonic oscillators,
we arrived in Sec. 4 at the dispersion formula of classi-
cal physics

N32
F=14 Y — 2L (4.29)

T w2 — W + jw2a

Each resonance frequency wo of an atom is represented
in this classical analogue by one special resonator type
s. The electric field E induces in these oscillators an
electric moment

2
L /m__g
N w? — o + jw2e

= | e = (19

Without attenuation (¢ = 0), the moment stands par-
allel to the inducing field when its frequency lies below
resonance (¢ = 0) and antiparallel above resonance
(y = —180°). With attenuation (a # 0), the discon-
tinuous phase jump of ¢ at the resonance frequency is
replaced by a continuous phase shift amounting to
—90° at wy (Fig. 19.1). The in-phase component of
the induced moment below resonance leads to the nor-
mal capacitive energy storage (' — 1 > 0); when the
moment has an antiparallel component (above reso-
nance), the polarization is negative (" — 1 < 0). The
“90° out-of-phase” component of the moment repre-
sents energy dissipation since it produces a current in
phase with the external field (I ~ %) . Thus, while
the induced moment is a maximum at resonance, its
90° position makes it contribute only to the absorption
but not to the dispersion (see also Fig. 4.2).

In static fields the induced moment reduces to (cf.
Eq. 4.3)

= — = ez;

_wo &

it is equal to the dipolar charge times the displacement
distance 2z, where z is given by the ratio of driving force

(19.2)

¢E to force constant f. Far above resonance (w>> wg)
the induced moment falls to zero because the time of a
half cycle is too short to permit any charge displace-
ment.

In substituting for the classical formula (Eq. 4.29),
the dispersion formula of quantum mechanics (Sec. 12),

¢l — 3 sl Mlz.

eoh <G wi? — o + ju2a
we took cognizance of three facts: (1) the classical reso-
nance absorption corresponds to a quantum transition
of the electronic system from a lower (z) to a higher ()
energy state; (2) the number of atoms available for ab-
sorption is given by the difference in the population of
the two states (N; — N;), since the atoms in the higher
energy state can be forced down into the lower one by
light emission; (3) the coupling between the atom and
the electromagnetic field is given by the average dipole
moment of the product of the wave functions of the
two states, the matrix element of the dipole moment,
lL:j, taken in the direction of the external field E.

For atoms the higher energy states lie so far above
the ground state that the chance of thermal excitation
at room temperature (kT ca. 1/40 ev) is negligible.
Consequently, the lower energy state ¢ refers to the
ground state only and all the atoms are found originally
in this state (N; = N, N; = 0). The dispersion for-
mula (Eq. 12.17) applied, for example, to the atomic
hydrogen gas therefore claims that the permittivity of
this gas in its frequency dependence is prescribed by
the frequencies and intensities of the spectral lines of
the Lyman series which arises from the ground state
(see Sec. 5). On the other hand, we found that the
static permittivity of this hydrogen gas is given by the
polarizability of the unexcited hydrogen atom (see
Sec. 3).

At first glance, it seems difficult to reconcile these
two methods of obtaining the static dielectric constant:

(N: =Ny, (1217)
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by extrapolation from the optical spectrum or by a dis-
tortion of the electronic structure of the unexcited atom.
The outcome, however, is the same. The optical
method considers (in the matrix elements) the dipole
moment components in the field direction of the un-

The population of various energy states

The inclusion in our considerations of the population
of the various energy states is a straightforward proce-
dure. If various energy states &; compete for molecules
in thermal equilibrium, the fraction of molecules in each
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Fig. 19.1. Dispersion and absorption of harmonic oscillator, caused by induced moment p;.

disturbed transitions, whereas the static approach refers
to the induced dipole moment of the perturbed ground
state. In calculating this perturbation, the theory
makes use of the same probabilities of transition
to the higher energy states which the line spectrum
contains.

Progressing from atoms to molecules, we are faced
with a much more involved situation. Whereas in
atomic gases only the ground state was occupied, for
molecules the excited states of vibration and rotation
lie low enough for thermal excitation. Atoms, further-
more, are isotropic whereas molecules offer various de-
grees of anisotropy. Finally, although atoms in their
ground state do not act with permanent electric mo-
ments, molecules are likely to have such moments.

of them is given according to Maxwell-Boltzmann sta-

tistics as
e~ &/kT

Z o~ /AT )

:

(19.3)

This expression assumes that all energy terms have the
same statistical weight. Actually, this may be not so;
an energy term, as we discussed in Sec. 11, may be de-
generate, that is, represent several electronic configura-
tions. In a magnetic field these configurations corre-

spond to different energies: the single term splits into a
multiplet of states. Since each of these multiplet terms
counts statistically as one state, each degenerate state
E; appears in the calculation with a statistical weight
factor g; equal to its multiplicity.

Thus, if N is the
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total number of molecules, the population of the states
N; and N; of Eq. 12.17 is, for thermal equilibrium,

T 8:i/kT
N,- = Ng,' ‘i—e_&—ﬂﬂ;
and o= SilkT (19.4)
N; = Nyg;

E o~ S/kT 1

The difference in population density of the lower and
upper state, since & — &; is equal to the absorbed
quantum energy hy;;, may therefore be written as

—S/T _ g o= Si/kT )

N
N;—N,-=W{M g;

t

= N;' {1 . g’:e—lw.'i/kT}.
gi
Let us illustrate the influence of the population
density of the various energy states on the intensity of
spectral lines by returning to the example of the di-
atomic molecules of Sec. 18.
We found for the rigid rotator the energy expression

(19.5)

2
&rot = —J(J + 1). (18.28)
21

The selection rule AJ = =1 prescribes that transitions
can take place only to adjacent states. Thus, to make
a nonrotating molecule rotate requires an energy input
(J =0 — J =1) of h?/I. We may therefore specify
with Debye?! a critical temperature T, for the rotator
molecule at which the average thermal energy k7T just
suffices to start rotation by defining

n2/I = kT, (19.6)

or

7 h? 8.0 X 10746

TR I

For the HC] molecule, with the moment of inertia I =
2.71 X 10~ [kg m?), this critical temperature T, is ca.
30°K, that is, at room temperature many molecules are
excited to higher levels. To obtain the relative number
of molecules in the various rotation states, we have, in
addition, to know the statistical weight g (the multi-
plicity) of the rotation terms.

The angular momentum of the electron clouds of the
hydrogen atom was prescribed by a quantum number
l and could assume in a magnetic field 2/ 4+ 1 positions
(see Eq. 8.26). Similarly, the angular momentum of

1P, Debye, Polar Molecules, Dover Publications, New York,
1945, Sec. 33.

[°K]. 19.7)

the molecular rotator, prescribed by the quantum num-
ber J, can assume 2J - 1 positions. Hence the statis-
tical weight is

g=2J+1. (19.8)

Using this weight factor, we obtain the relative occu-
pation of the various rotational levels in thermal equi-
librium by plotting the function (see Eq. 19.4)

ge—e/kT = 2J + l)e—(Tc/ZT)J(J+1) =f(J) (19.9)
as function of J (Fig. 19.2). Owing to the increasing
2J4+1

/
)
e Available

Relative number of states

Occupied

4

Fig. 19.2. Relative occupation of the various rotation levels of
the HCl molecule at room temperature (7/T, == 10).

multiplicity of the higher levels, the number of mole-
cules first increases with J, reaches a maximum at

’T 1
Jmax = =S
T. 2

and then falls rapidly towards zero.
The tangent on this characteristic, 2J + 1, indicates
equivalent numbers of absorbers in the various energy

(19.10)

T
states. ForJ ?c <« 1, the absorption is very small in

spite of the large number of absorbers, because the
population of neighboring states is practically equal
and the forced emission from the upper state approxi-
mately cancels the absorption from the lower. This
effect makes the rotation lines very weak in the micro-

T
wave region. In the high energy range, J —Tf > 1, the

number of thermally excited molecules becomes very
small; hence the absorption falls towards zero due to
the scarcity of absorbers. Between these extremes the
band of rotational transitions traverses a maximum of
intensity when the difference in population density of
adjacent states becomes most favorable (see Fig. 18.7).
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The rotational states have a multiplet structure
(2J + 1) due to the space quantization of the angular
momentum of the rotator in an external electric or mag-
netic field. This situation has been discussed previously
for the Zeeman effect of atoms in Sec. 10. The vibra-
tion states of the harmonic oscillator represent only a

N
simple sequence of standing-wave patterns n 5 like the

mechanical resonances of a stretched wire or the elec-
trical ones of a transmission line. Thus, in contrast to

PANI\WANG
VAV |

\/\\/\ 3
\

?=0
L 1 L 1 1
-0.2 -0l o ol o2
Angstroms
Fig. 19.3. Wave functions of the vibrator (HCl). (After
Herzberg.?)

the wave functions of the rotator, to each quantum
state of the vibrator belongs only one wave function
(Fig. 19.3); the vibration states have the statistical
weight g = 1.

In the language of the spectroscopist, the wave num-
bers of spectral lines
s
A

’
y =

[em™] (19.11)

serve as a measure of the energy of the transitions since
&=l = he' = 1.985 X 10723/ [joule]
= 1.239 X 10~%'

[ev]. (19.12)

The lowest rotation line of the HC] molecule is found
near 0.48 mm or »* = 20.7, and the fundamental vibra-
tion near 3.5 u or » = 2886 cm™! (see Fig. 18.7). At

room temperature the lowest rotational state thus lies
far below the average thermal energy level kT ~

o L |
0.025 ev (? o~ —1—6> , Whereas the first vibrational state

lies appreciably above kT (for HCI at 0.35 ev). The
population of even the first vibrational level (v = 1)
of HCl amounts therefore to only ca. 1/108 of the non-
excited state in thermal equilibrium at 300°K.

Relation of electronic to atomic polarization

We have seen that the static electronic polarization,
caused by a displacement of the electron clouds with
respect to the nuclei under the influence of a static
electric field, can be found in two ways: either by ex-
trapolation from the undisturbed optical absorption
spectrum that arises from the ground state of the atom
or molecule, or from the perturbation of the electron
clouds of the ground state. Similarly, the atomic polar-
ization, caused by the induced moment arising from a
displacement of the atomic masses under the influence
of a static field, may be found by extrapolation from
the vibration spectrum or from the perturbation of the
charge distribution produced by the alteration of inter-
nuclear distances.

For the electronic polarization, the optical contribu-
tion stemmed from a whole series spectrum of lines
since the principal quantum number was unrestricted.
For the vibration spectrum, the transitions are limited
to neighboring states (Eq. 18.24) and produce, in the
case of the harmonic oscillator, even the same spectral
line. Furthermore, as just shown for the HCI molecule,
the population of the ground state (v = 0) may dom-
inate completely and leave only the transition from
the nonvibrating (that is, zero-point vibration) to the
first excited state to be considered.

The classical dispersion formula (Eq. 4.29) was based
on the model of isotropic harmonic oscillators. A di-
atomic molecule is an anisotropic oscillator of one in-
stead of three degrees of vibrational freedom. We take
account of this anisotropy by inserting a factor 1/3
into Eq. 19.1 for the induced moment; hence

&/3m

|"'iosc 3 E‘

19.13
wo? — W + jw2a ( )

The static induced moment of the molecule, when
lined up in the field direction 2, is, as previously (see
Egs. 4.22 and 19.2),

M, = ez. (19.14)

To interpret the dipolar charge e, we have to plot
the dipole moment of the molecule as a function of the
internuclear distance r. The shape of this curve will
depend on the type of bond linking the atoms of the
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molecule (Fig. 19.4). If the bond is purely ionic, that
is, if HCI, for example, dissociated into H* and Cl~,
the dipole moment will increase with 7 to infinity. For
the covalent bond between like partners, the dipole
moment will remain zero throughout. In the general
case of unlike partners, where the molecule dissociates
into atoms and not ions, we have a covalent bond with
ionic contributions (see Sec. 15). The dipole moment
must be zero for coinciding and for widely separated

lonic bonding

n Covalent bonding with ionic
contribution

Te r —»

Fig. 19.4. Dipole moment and bond type as function of inter-
nuclear distance (r, for HCI molecule). (After Herzberg.?)

nuclei and must traverse a maximum at some interme-
diate distance. At the equilibrium distance 7., the di-
pole moment has some value p., and the induced mo-
ment will be determined, in a first approximation, by
the tangent of the curve at this point as

dje
p“l'c =TI

19.15
= (19.15)

Hence the strength of the oscillating charge ¢ of Eq.
19.14 is identical with the space derivative of the dipole

dj
moment, -; , as already stated in Sec. 18.
r

The tangent of the dipole curve at r, consequently
can be determined from the intensity of the infrared
vibration spectrum. This tangent is usually not steep,
since the ionic contribution to the bond energy is minor
and the equilibrium distance located near the broad
maximum of the dipole curve. The infrared intensity
is therefore, in general, relatively weak, and the con-
tribution of the atomic polarization is only a small
addition to the electronic polarization. It should be
noted that the intensity of the vibration spectrum,

dpe\2
since it depends on (di> , gives only the absolute
r

value of the moment change but not its direction. On
which side of the maximum the equilibrium point is
located must be found from additional information;

2 E. Bartholomé, Z. physik. Chem. B23, 131 (1933); see also
G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New
York, 1959, p. 96.

for HC], according to Bartholomé,? this point lies to
the right of the maximum as shown in Fig. 19.4.

In the formulation of quantum mechanics, the in-
duced moment of the linear oscillator is not given sim-
ply by the classical expression

dp,
Pigse = Ez- 2,
but found (see Eq. 12.14) as the average dipole moment
of the mixed wave functions of the lower (v') and upper
(v'’) state

(19.16)

z=+»

ap. =
— Yoz dz.

dzJ.

Weiprre = (1917)
By introducing this matrix element of the dipole mo-
ment and the factor 1/3 into Eq. 12.17, we change from
the dispersion formula of electronic to that of atomic
polarization (see also Appendix A, II, Sec. 3).

Rotation spectrum and orientation polarization

Electronic and atomic polarization are due to the
displacing force exercised by the external field upon the
electrons and atoms, and measure the induced moments
thus created. The orientation polarization, in contra-
distinction, arises from the forque action of the field on
the pre-existing permanent moments of the molecules.
We have shown that the contributions of the electronic
and atomic polarization to the static dielectric constant
can be obtained by extrapolation from the electron ex-
citation and the vibration spectrum according to the
dispersion formula of quantum mechanics. We will
find for the rotation spectrum that this extrapolation
also holds but that only the first rotation line con-
tributes to the static orientation polarization.

Let us consider first the classical situation (Fig.

19.5). A dipole molecule in a homogeneous field will
E 3 E
Stationary Oscillation Rotation

Intermediate

Positive Negative

Contribution
to orientation polarization

Fig. 19.5. Classical contribution of dipole molecule to orientation
polarization.



166

Molecular Approach

turn parallel to E if no additional forces act; the orien-
tation polarization of polar molecules at rest is always
positive. If the molecule can oscillate around an axis
normal to the field, its positive contribution rapidly
diminishes with increasing amplitude, since it passes
through the parallel position with maximum kinetic
energy and spends most of its time at the turning
points. The contribution will become clearly negative
when the oscillation evolves into a slow rotation be-
cause the molecule traverses the antiparallel position
at a much slower speed than the parallel one. This
negative polarization rapidly diminishes with increas-
ing rotational speed and approaches zero when the
kinetic energy &t becomes much larger than the po-
tential energy U of the dipole in the field. When the
axis of rotation is oriented parallel to the field, the di-
pole moment of the dumbell molecule stands perpen-
dicular to E and does not contribute to the polariza-
tion. Intermediate axis positions can be resolved into
a parallel and a perpendicular component. Hence
classically rotating molecules will not contribute to the
orientation polarization as long as
p/2
2I>> [k| | E] cose.
Quantum physics comes to the same result: the angu-
lar momentum p’ of the diatomic molecule is quantized
in the electric field but stands normal to the dipole mo-
ment. Hence, whereas the mechanical momentum
points in certain field directions, the dipole moment is
not oriented and does not contribute to the polariza-
tion. In consequence, no linear Stark effect (see Sec. 9)
is observed for the rotation lines of these linear dipole
molecules. However, a second-order effect exists that
causes a line splitting. This is not the normal quad-
ratic Stark effect based on dipole moments induced by

(19.18)

the electric field, which can cause only a lowering of
the energy terms because such moments point towards
the field. The multiplet splitting of the rotation lines
is proportional to the square of the permanent moment
and of the field strength (u?E?) and raises some levels
while lowering others (Fig. 19.6).5% The rotating mol-

>

o

-

2

W J=1
J =0

SR =

Fig. 19.6. Stark effect splitting of rotation levels of linear dipole
molecule. (After Debye.l)

ecule, graphically speaking, makes wobble motions, in
which the states shifted towards higher energy corre-
spond to an antiparallel contribution of the moment
and the depressed levels to a parallel one. These con-
tributions accurately balance each other for all higher
rotation levels. Only the dispersion effect stemming
from the transition from the nonrotating to the first
rotating state remains and gives, extrapolated to zero
frequency, the static orientation polarization.4

3See P. Debye, Polar Molecules, Chemical Catalog Co., New
York, 1929, Sec. 29.

4 For a detailed theory of the Stark effect in rotational spectra,
see J. H. Van Vleck, Theory of Electric and Magnetic Susceptibili-
ites, Clarendon Press, Oxford, 1932.

20 - The Bandwidth of Spectral Lines

The dispersion formulas of classical and quantum
physics (Egs. 4.29 and 12.17) contain a damping factor
20 which determines the bandwidth (half-width or line-
breadth) of the spectral line, that is, the @ or the ring-
ing time 7 of the resonator. In Sec. 4 we derived the

relations
1 wo
20 = Awp = — = —»
i

(20.1)

where Aw, is the frequency interval between the half-
power points of the bell-shaped resonance characteristic

(see Fig. 4.1). As the cause of the line broadening we
assumed radiation damping and calculated, on the basis
of the classical theory of dipole radiation, the damping
factor as (see Eq. 4.6)

2
_ Ho"€%wo

2a (20.2)

mbme

In the language of atomic physics, the time 7 repre-
sents the average natural lifetime of an atom or mole-
cule in an excited energy state before it returns to a
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lower state under the emission of a photon hvy. If, for
example, we calculate on this basis the bandwidth of
the green mercury line, located at

Ao = 5461 A
& (20.3)
vo = 5.494 X 10'* [sec™],
we obtain
Awp,
Ay, = — = 1.2 X 10® [sec™1],
2
=134 X 1077 [sec], (20.4)
Q = 4.6 X 105,

Compared with the optimum @ values of about 108 that
an electrical engineer can realize in his cavity resonators
(see I, Sec. 24), the physicist obviously possesses in his
light sources oscillators of very superior monochromacy.

Unfortunately, however, our calculation was mislead-
ing, as a comparison between theory and experiment
shows. The monochromacy of the radiation can be
tested by an interference experiment. Reflecting the
light from the front and back surface of a loss-free
dielectric layer of the thickness d (for example, air), we
may form a standing-wave pattern (see I, Sec. 18).
The reflected light intensity, observed as function of
the layer thickness, exhibits a sequence of interference
maxima and minima. For a truly monochromatic light
source, emitting only the wavelength )\, the thickness d
might be increased ad infinitum without causing a de-
terioration in the definition of these interference stripes.
If the light source emits two wavelengths, A\; and A,
corresponding to the half-power points of the spectral
line, both lines would create their individual inter-
ference systems. Since the difference in wavelength of
the two lines is very small,

)\1 (o Xg ﬁ)\o,

M — Az = AN,

(20.5)

the stripe systems initially overlap. When the layer
thickness is increased to g\¢/2 wavelengths, the maxima
of the first system fall on the minima of the second
and the interference is blurred. As the dielectric layer
reaches a thickness g\g, the patterns coincide again
perfectly and the interference phenomenon is restored
to its original clarity (Fig. 20.1). Thus by measuring
the layer thickness from consonance to consonance, we
obtain the wavelength difference of the two lines as

ANy = No/g. (20.6)

Actually, the bandwidth A\ of our spectral line is
filled with a continuum of additional wavelengths;
hence a continuous sequence of additional stripe sys-

tems is interspersed between the interference maxima
produced by A; and A;. The position of restored coin-
cidence is therefore not characterized by a perfect
blending of two-stripe systems but by a uniformly
illuminated field of view without stripes: beyond this
distance of first consonance, g\g, stripe systems appear
again but they are blurred and hard to see.

A\

\
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Fig. 20.1. Dissonance and consonance of two systems of

interference stripes.

The integer ¢ of Eq. 20.6 which measures the sharp-
ness of a spectral line by interference, is, according to
Eq. 20.1, identical with the quality factor @ of the
electrical engineer,

q=0Q. (20.7)

Consequently, it should be possible to observe inter-
ference stripes with the green mercury line t over a
consonance distance

Qho~ 252 [m]. (20.8)

Fabry and Perot ! performed this interference experi-
ment using a water-cooled, low-pressure, d-c—discharge
lamp as their source, and obtained interference over a
distance of only 790,000 wavelengths, or 43 em. Thus
the @ of this light source proves to be about 600 times
smaller than predicted on the basis of radiation damp-
ing. Obviously, we have overlooked some factors which
contribute decisively to the line width.

One tacit assumption of our calculation has been
that the light source is at rest in relation to the ob-
server. Actually, when atoms or molecules radiate,
this condition is usually not fulfilled. The particles of
a gas are in thermal agitation, and the probability
that they have a velocity component between { and

t Actually, the green mercury line consists of several compo-
nents, and our discussion refers to the width of an individual
component.

1 C. Fabry and A. Perot, Ann. chim. phys. [7] 12, 459 (1897).
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¢ + dt toward or away from the observer, equals, ac-
cording to Maxwell-Boltzmann statistics,

dw = /ﬂ- ¢~ ™/2UT d¢.
2nkT

This relative motion between the radiating particle and
the measuring device produces a Doppler effect.? The
observer will note, instead of the frequency »o, the fre-

quencies
v =1 (1 + E)
C

By replacing the variable { in the distribution law with
the observed frequency », we may rewrite Eq. 20.9,
since

(20.9)

(20.10)

c
¢ =—0—w),
vo

(20.11)
Cc
dg- iV —'dV,
Yo
as
m LI c? v—p)2 C
o= [ g (20.12)
27kT )

The intensity distribution of the radiation over the
various frequencies images this velocity distribution.
Identifying with I, the intensity for the undisplaced
frequency »y at the center of the line, we expect that
the intensity will fall towards both sides due to the
Doppler effect, as

_m c (v—v0)2C
I = Ipe 26T w? — dy. (20.13)

vo
It drops to 1/e or 0.368 of its maximum intensity at a
frequency
141] 2kT

v=pwtt— . [—;
c m

(20.14)

the frequency difference between these half-width
points may be designated as the bandwidth of the line,

2110 2T
Ayp = —
c m

(20.15)

produced by Doppler broadening.

Let us assume that the water-cooled mercury lamp
of Fabry and Perot had a gas temperature 7' of about
300°K. The weight of the mercury atom is mmg =
3.34 X 1072% [kg], and the molecular gas constant k =
1.380 X 1072 [joule deg™]. The half-width of the

2 C. Doppler, Abh. kgl. Bohmisches Ges. Wiss. [5] 2, 465 (1842).

green mercury line due to the Doppler effect then
becomes
(20.16)

it is about 500 times larger than that produced by
radiation damping (see Eq. 20.4). This is the mag-
nitude indicated by the outcome of the Fabry-Perot
experiment.

It is possible to avoid the Doppler effect by using
molecular beams as the light source and directing them
perpendicularly to the direction of observation.? If we
exclude this special case, the light sources presented by
the finest spectral lines of the physicist are of about
the same @ as the best cavity resonators of the electrical
engineer.

In the preceding discussion we have made one addi-
tional tacit assumption: that excited atoms and mole-
cules can live out their natural life span = undisturbed.
Actually, they will collide with other atoms and mole-
cules or with the walls of the container and be forced
to radiate after a normally much shorter collision time
7. Fourier analysis shows that the shorter the pulse,
the wider the bandwidth; hence a collision- or pressure-
broadening of spectral lines will result.

The order of magnitude of 7, can be derived by a
simple gaskinetic consideration as the ratio of the free
path (the average distance [ traversed between colli-
sions) and of the average velocity 7 of the particle:

Al (20.17)

The free path is inversely proportional to the number
N of particles per unit volume and to the target area
47r? that each of them offers. A more accurate calcu-
lation gives

Ay, = 6 X 10® [sec™!];

- 1
=it e bi ey 20.18
/2 Ndxr? ( )
where r designates the collision radius of the particle in

question.

To obtain the average velocity, we recall that each
particle has three degrees of freedom and that the
kinetic energy associated with each degree of freedom
equals, according to the equipartition law of classical
physics, 14kT. Hence

gmv® = 3kT (20.19)

and, as a somewhat more detailed calculation shows,

BET
LR L (20.20)
m
Thus
- (20.21)
™= N(ar)? \ okl '

3 See H. Kuhn, J. Sci. Instr. 23, 249 (1946).




Microwave Spectroscopy

169

Assuming for mercury a collision radius r~1.5 A
and for the water-cooled mercury lamp a pressure of
140 mm at 300°K, that is (cf. Eq. 2.12),

N. 273
N = = x22 392 % 102

-3
7600~ 300 (™1,

(20.22)

we obtain a free path I~ 7.8 X 10™* [m], an average
velocity for the mercury atom of =~ 177 [m sec™],
hence a collision time 7, ~ 4.4 X 107 [sec]. Thus, if
the effect of the collisions is that the natural lifetime 7
of the excited atom must be replaced by the collision
time 7., we expect, according to Eq. 20.1, a bandwidth
due to collision broadening

11
Ay, = 2——z3.6 X 10* [sec™!]. (20.23)

T Te

In our example of the mercury lamp, the natural life-
time is about thirty-three times shorter than the colli-
sion time; hence the effect of pressure broadening can
be neglected. At higher pressures this is not the case,
but the Doppler effect will normally dominate the line
width in the visible and ultraviolet region. For a con-
venient comparison of the broadening by radiation,
Doppler effect, and collision we can write the three

contributions in terms of the relative line width ¢ as
radiation damping

A 1
Apm = 117 3Ke 0 e e

1
Q 4] Ao

Doppler effect

/ T
27X 1078 | —
2y M

collision broadening

/T Ao
+ 488X 107° [——
M1

where A\ is the resonance wavelength in [m], T the
absolute temperature, M the mole weight in [kg], and
[ the free path in [m]. In the case of an atomic hydro-
gen gas at 760 mm pressure and 0°C we would find for
the resonance wavelength A\ = 1.215 X 10~7 [m] (see
Eq. 5.21), and for [ = 8.4 X 10~7 [m], that

Ap~1X107"+ 14X 10° +3.7 X 1077, (20.25)

The Doppler effect still dominates, but the effect of
pressure broadening is already 3.7 times the attenua-
tion caused by radiation damping. At long wave-
lengths, the influence of pressure broadening will clearly
become the decisive factor.

¢ See M. Born, Optik, Springer, Berlin, 1936, Sec. 86.

(20.24)

21 - Microwave Spectroscopy

How well the shape of a spectral line can be meas-
ured depends frequently not on its own bandwidth but
on the resolving power of the analyzing optical instru-
ment. This resolving power, defined by the physicist as
the ratio of the average wavelength A of the spectral
region in question to the observable wavelength differ-
ence A, is identical with the @ introduced by the elec-

trical engineer:
A v

Q=—=—

. 21.1
AN Ay ( )

The @ of the instrument must obviously be larger than
that of the spectral line, before finer details can be dis-
cerned.

In the visible and ultraviolet the resolving power is
given by the dispersion which the prisms, gratings, or
interferometers can provide. For the region of the green
mercury line, a flint-type prism of 10-cm base realizes a
Q of about 10%; a grating of 100,000 lines produces in

its third order a @ of about 3 X 10°; a Lummer-Gehreke
glass plate of 1 em thickness may reach a @ of about
10%; and with the best Perot-Fabry air-plate inter-
ferometer a @ up to 7 X 108 has been obtained.!

In the infrared, the resolving power of the prism or
grating is not the decisive factor, but more stringent
limitations are imposed by the nature of the heat
radiation and the means for its detection. The low
intensity of thermal radiation and the relatively in-
sensitive bolometer or thermocouple receivers require
wide slits. In addition, disturbing radiation emanates
from all parts of the equipment and produces a high
noise level. Thus the overall Q of the equipment may
decrease in the far infrared to 10!, and the experi-
mental difficulties encountered in this wavelength region
have all but discouraged the investigation of the rota-

1 For a detailed discussion of the resolving power of interfer-

ometers, see, for example, G. Hansen, Handbuch der physikali-
schen Optik, Barth, Leipzig, 1927, pp. 185 ff.
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tion spectra themselves. The main sources of our
knowledge on rotating molecules were, until recently,
the vibration-rotation spectra in the near infrared (cf.
Fig. 18.7) and the Raman spectra observed with high
dispersion in the visible and ultraviolet region.?

The microwave techniques of radar, developed dur-
ing World War II, have altered this situation radically.
Very stable new tubes such as the klystron oscillators
have made a microwave spectroscopy possible based on
monochromatic sources of accurately adjustable fre-
quency and phase and on extremely sensitive detectors
rather than on dispersive instruments and broad-band
light sources. Interference techniques thus come into
their own again and allow us to measure wavelengths
and frequencies electronically to seven significant fig-
ures and to analyze line shapes with corresponding
accuracy. The microwave spectroscope, operating at
present mainly in the region of 20 to 0.5 em surpasses
by nearly a millionfold the resolving power of the grat-
ing instruments operating in the far infrared, and
reaches that of the best optical interferometers.® A
typical electronic spectroscope is shown in Fig. 21.1.

/Absorpfion cell

Microwave % E% Diftediaf
oscillator X =

Window Window )

Oscilloscope
Frequency display
sweep >
generator
Fig. 21.1. Electronic spectroscope.

The information obtained by such precise measure-
ments of the structure of molecular lines is of a surpris-
ing variety. Accurate data result as to moments of in-
ertia, bond distances and bond angles, dipole moments
and collision frequencies, nuclear magnetic dipole and
electric quadrupole moments, isotopic masses, and the
internal electric fields of molecules. The limitations of
the method are that microwave absorptions are, in

*In the Raman effect [C. V. Raman, Indian J. Physics 2, 387
(1928)], the spectrum of the scattered light is observed. It
shows, in addition to the original frequency of the incident light
(Rayleigh scattering), weak lines displaced by distances corre-
sponding to the vibrations and rotations.

3For surveys of microwave spectroscopy, see, for example,
D. K. Coles, Advances in Electronics, Academic Press, New York,
1950, Vol. II, pp. 299 ff; E. B. Wilson, Jr., Trans. Faraday Soc. 9,
108 (1950); Conference on Microwave Spectroscopy, Ann. New
York Acad. Sci. 56, 743 (1952); W. Gordy, Physics Today,
December, 1952, p. 5; W. Gordy, W. V. Smith, and R. Tram-
barulo, Microwave Spectroscopy, John Wiley and Sons, New York,
1953.

general, weak (see Sec. 19) and that only heavy mole-
cules have rotation lines in this spectral range. How-
ever, we can observe a host of additional transitions
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Fig. 21.2. Inversion and potential double well of NH; molecule.
(After Herzberg.8)

between fine-structure as well as hyperfine-structure
levels by Stark and Zeeman effect measurements on
atoms ¢ and molecules. Furthermore, nonplanar mole-

4 See, for example, the famous hydrogen experiment by W. E.
Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947) [see also
H. A. Bethe, Phys. Rev. 72, 339 (1947)], which led to a definite
disagreement with modern quantum theory because the inter-
action between the electron and the radiation field had not been
considered.
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cules like ammonia can exist in two equivalent struc-
tures, as Fig. 21.2 illustrates. The “flip-flop” or “in-
version’’ frequency between the two constellations may
produce spectra in the microwave region.

The inversion spectrum of ammonia occupies a unique
position in microwave spectroscopy. It was the first
and only microwave spectrum of gases measured before
the war (in the pioneering, semi-optical experiment of
Cleeton and Williams 5 at 1.25 cm). It has been rein-
vestigated by numerous observers with the high re-
solving power of modern postwar techniques.? Also
the deutero-ammonias have been studied in detail.®
The ammonia absorption may therefore serve as a
classical example to demonstrate what the microwave
spectroscopist sees and how he proceeds in his inter-
pretations.”

The absorption near 1.25 cm wavelength (0.8 cm
in wave numbers) in ammonia gas is caused by the pos-
sibility of turning the NH; molecule “inside out,” that
is, carrying the nitrogen atom through the plane of the
hydrogen atoms to its image position. The original
and the inverted configuration represent, from the
standpoint of the nitrogen atom, two identical potential
wells separated by an energy barrier (Fig. 21.2).28 This
constellation of a double well has been discussed already
in the case of the Hyt ion (see Fig. 14.2). We have
seen that each energy state of a particle in a single well
splits into two states in a double well because the two
configurations are in quantum-mechanical resonance.
We expect, therefore, that the vibration spectrum of
the ammonia molecule shows the same splitting of
each term in a symmetrical and an antisymmetrical
sublevel and will lead to a doublet structure of its
lines. This structure has indeed been found in the far
infrared absorption spectrum of NH; (Fig. 21.3).°

5 C. E. Cleeton and N. H. Williams, Phys. Rev. 45, 234 (1934).

¢ M. T. Weiss and M. W. P. Strandberg, Phys. Rev. 83, 567
(1951); K. A. Sawyer and J. B. Kierstead, M.I.T. Res. Lab.
Electronics Tech. Rep. 188 (1951).

7 Two microwave absorptions troublesome for radar transmis-
sion were the first gas spectra encountered with modern equip-
ment during the war: a water vapor intercombination line be-
tween two rotation states at 1.35 cm, predicted by Van Vleck
{J. H. Van Vleck, Phys. Rev. 71, 425 (1947)] and measured with
various techniques [see R. H. Dicke, R. Beringer, R. L. Kyhl
and A. B. Vane, Phys. Rev. 70, 340 (1946); C. H. Townes and
F. R. Merritt, Phys. Rev. 70, 558 (1946); G. E. Becker and 8. H.
Autler, Phys. Rev. 70, 300 (1946)], and a magnetic dipole absorp-
tion of the paramagnetic Oz molecule between 4 and 6 mm first
observed by Beringer [R. Beringer, Phys. Rev. 70, 53 (1946)] and
calculated by Van Vleck [J. H. Van Vleck, Phys. Rev. 71, 413
(1947)].

8D. M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41, 313
(1932). Figure from G. Herzberg, Infrared and Raman Specira
of Polyatomic Molecules, Van Nostrand, New York, 1945.

9 N. Wright and H. M. Randal, Phys. Rev. 44, 391 (1933).

=1

The average time 7 a particle requires to transfer
from one side of the potential barrier to the other by
tunnel effect, is inversely proportional to the energy
difference of the two sublevels. The probability of
transfer, and with it the doublet splitting, is very small

A a

v x lo '2 cps

Fig. 21.3. Infrared doublet structure of NHj spectrum [path
length 1 c¢m, pressure 8 cm at (4), 10 cm at (5), 7.3 cm at (6)].
(After Wright and Randall.?)

Relative
absorption

for levels which lie low in the potential well, but in-
creases rapidly when, with increasing vibration quan-
tum numbers v, the top of the potential barrier is
approached. The absorption near 1.25 ecm corresponds
to the transition between the two sublevels of the
doublet for the zero-vibration state (ground vibration),
v =0.

When this absorption line is investigated with the
high resolution of the microwave spectroscope, an ex-
tensive fine structure is observed 1 (Fig. 21.4). Such a
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Fig. 21.4. Fine structure of NHj spectrum in microwave range.
(After Townes.!?)

structure would be expected since the ammonia mole-
cule can rotate around its symmetry axis as well as
around an axis perpendicular to the symmetry axis
(Fig. 21.5). These rotations lead to slight centrifugal
distortions of the molecule in two opposite ways: the

1 W. E. Good, Phys. Rev. 70, 213 (1946); C. H. Townes, Phys.

Rev. 70, 665 (1946); B. Bleaney and R. P. Penrose, Nature 157,
339 (1946); Proc. Roy. Soc. (London), A189, 358 (1947).
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rotation around the symmetry axis, characterized by
an angular momentum quantum number K, tends to
flatten the pyramidal molecule, hence to decrease the
potential barrier and increase the inversion frequency;
vice versa, the rotation around a perpendicular axis

Fig. 21.5. Rotation and centrifugal distortion of NHz molecule.

steepens the pyramid, raises the potential hill, and re-
duces the splitting and with it the inversion frequency.
The angular momentum in the latter case is prescribed
by the combination of two quantum numbers J and K
as (J2+J — K"

About thirty fine structure lines have been observed
which correspond to flip-flop frequencies at various
rotation states of the NH3 molecule. The doublet
splitting of the nonrotating molecule in its vibrational
ground state equals 0.66 wave number. For the differ-
ent rotation states of the molecule the inversion lies at
the wave numbers

v = 0.66 — 0.0011(J% + J — K?) + 0.0005K> [ecm™].

(21.2)

The allocation of quantum numbers (J, K) to the vari-
ous lines (see Fig. 21.4) becomes possible if we observe
the intensity of the lines and compare this with the
statistical weight of the terms and the transition prob-
abilities theoretically predicted. For example, levels
J = K have both a large statistical weight and a high
transition probability, and lines with K a multiple of 3
are especially preferred. This leads to the identifica-
tion of the two strongest lines as (J,K) = (3,3) and
(6,6), and so on.

The observed splittings of the lines allow us to deter-
mine the separation of the two minima of the potential
well and the height of the potential barrier between
them.! The height of the NH3 pyramid, which equals
one half the separation distance of the two minima, is

1t See G. Herzberg, Molecular Spectra and Molecular Structure.

1. Diatomic Molecules, D. Van Nostrand, New York, 1950, pp.
221 fi.

found as 0.38 A; the pyramid is thus quite flat, in
agreement with the large bond angle found for the
ammonia molecule (see Fig. 17.7). The height of the
potential hill, the activation energy of inversion, proves
to be 2076 em™! or about 0.26 [ev] (cf. Eq. 19.12).
The flip-flop frequency of the vibrational ground state,
v = 0.66 X 3 X 10'° = 2 X 10 [sec™!], gives the aver-
age time of inversion as

1
r=—~25X 1071

14

[sec]. (21.3)

When an individual rotation line of the fine structure
spectrum (see Fig. 21.4) is carefully examined as a
function of the ammonia gas pressure, a hyperfine
structure may be discerned (Fig. 21.6). This structure
proves to be due to the coupling of the electric quad-
rupole moment of the nucleus N'* with the electronic
structure of the ammonia molecule. Such nuclear elec-
tric moments can arise because the positive charge of
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Fig. 21.6. Hyperfine structure of rotation line of NHs molecule.
(After Good 1 and Townes.!?)

the nucleus need not be spherical in shape. Nuclei

may have angular moments and thus magnetic dipole
moments. The spin axis must be an axis of rotational
charge symmetry, but the charge may be distributed in
the form of an ellipsoid, either prolate or oblate (Fig.
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21.7). Such a charge distribution can be regarded as
the superposition of a spherical charge and of an electric
quadrupole. By convention, the prolate type of nucleus

PoN 2,
GE)< b ()<
‘\®’ S
ﬁ_/

Equivalent to

¥ ¥
Spin axsl Spin nxs‘

Positive nuclear Negative nuclear
Quadrupole Quadrupole

©

Equivalent to

Fig. 21.7. Nuclear quadrupole moment.

is said to have a positive quadrupole moment. The
N1 nucleus has no quadrupole moment, and the hyper-
fine structure of Fig. 21.4, in consequence, disappears.
In addition to the hyperfine structure due to the nuclear
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with N5, or hydrogen with deuterium, large changes
in the inversion frequencies can be produced. This
sotope effect causes the NH; absorption at ca. 24,000
megacycles to move to a more than ten times smaller
frequency for NDj3 (ca. 2000 megacycles). An observa-
tion of such isotope shifts gives the additional equa-
tions needed for the evaluation of the force constants
of the molecule.

By replacing hydrogen partly with deuterium, the
symmetric-top molecules NH3 are converted into the
asymmetric rotors NHsD and ND,H. This changes
the character of the microwave spectrum appreciably.
In the inversion spectrum of the degenerate symmetri-
cal top no rotational transitions occur, whereas in the
microwave spectrum of the partly deuterized molecules
inversion and rotation transitions take place simul-
taneously.® These more complicated spectra can give
information on the sign of the nuclear electric quad-
rupole moment, which turns out to be negative (oblate)
for N'*. Furthermore, additional data on the centrif-
ugal distortion of the molecule result.

The Stark splitting of rotational energy levels by an
external electric field in the microwave region (Fig.
21.8) 12 offers a new method for the determination of

Perturbed
levels

Unperturbed

Energy levels levels

”|~z|

o
n=-0 3

Spectrum m

Oscillogram (obtained with
square-wave modulated
Stark field) m

Fig. 21.8. Stark splitting of rotational levels. (After Strandberg, Wentink, and Kyhl.12)

quadrupole, which produces line shifts of the order of
megacycles, a much smaller shift of the order of kilo-
cycles results due to the coupling of the magnetic
moment of the nucleus with that of the rotating mole-
cule.b

The masses of the nuclei enter into the vibration and
rotation frequencies; consequently, by replacing N

molecular electric dipole moments which has a number
of advantages over older methods.!* The moment is
determined for a certain vibrational and rotational

12 M. W. P. Strandberg, T. Wentink, and R. L. Kyhl, Phys.
Rev. 76, 270 (1949).

13 See, for example, K. B. McAfee, Jr., R. H. Hughes, and E. B.
Wilson, Jr., Rev. Sci. Instr. 20, 821 (1949).
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state of the molecule and not as an average of all
states. Impurities are no longer of importance since
the spectrum of a specific molecule is examined. Micro-
wave measurements on Stark effects are made at gas
pressure of only about 0.01 mm Hg, hence many sub-
stances can be studied in the vapor state without danger
of association. Accuracies to 0.01 debye can be ob-
tained,’* while a measurement of the dipole moment
from the temperature dependence of the dielectric con-
stant (see Sec. 16) is, in general, not more accurate
than 0.1 debye. Stark effect measurements on the NH3
inversion spectrum have led to the permanent moment
# = 1.45 [debye].}s

This superior accuracy of microwave spectroscopy,
however, does not imply that direct electric measure-
ments of dipole moments have become unnecessary.
The Stark effect technique is applicable only for simple
molecules where the theory can be worked out. Fur-
thermore, it does not extend to the liquid and solid
phases, where the resonance spectra of rotation have
been destroyed (see Secs. 22 ff.).

14 See, for example, R. G. Shulmann, B. P. Daily, and C. H.
Townes, Phys. Rev. 78, 145 (1950).

18 See P. Kisliuk and C. H. Townes, Molecular Microwave
Spectra Tables, J. Res. U. S. Nail. Bur. Stand. 44, 611 (1950).

Microwave measurements, finally, allow a detailed
study of the pressure broadening of spectral lines. Asa
first result of observations, as in Fig. 21.6, a comparison
is obtained between the gaskinetic collision time 7, (see
Eq. 20.21) and the actual average time interval between
collisions. This time proves to be about fifteen times
shorter than the kinetic theory predicts; obviously, the
large dipole moment of the ammonia molecule has in-
creased its collision radius appreciably. At higher pres-
sures the collision damping becomes so strong that not
a symmetrical but an asymmetrical broadening of the
line results. The resonance peak shifts to lower fre-
quencies 16 as already foreseen by the simple oscillator
theory (see Eq. 4.9).

Microwave spectral lines like the 3,3 line of ammonia
at 23,870 megacycles are under consideration as pri-
mary frequency standards and for the control of
“atomic clocks” which might compare atomic time
with sidereal time.” Our present frequency standards
are based on “‘quartz clocks” operating by piezoelectric
resonance (see Sec. 26).

18 B, Bleany and J. H. N. Loubser, Proc. Phys. Soc. (London)
A63, 483 (1950).

17 H. Lyons, Phys. Rev. 74, 1203 (1948); Ann. N. Y. Acad. Sc.
55, 831 (1952).

22 - Pressure Broadening and Debye’s Relaxation Equation

In discussing the frequency dependence of the per-
mittivity of gases, we started with the anomalous dis-
persion and resonance absorption of linear harmonic
oscillators (see Sec. 4). The dispersion formula of
classical physics thus derived predicted correctly the
general shape of spectral lines. It was impossible,
however, to foresee the intensity and frequency loca-
tion of these lines from classical considerations because
the existence of stationary energy states of atoms and
molecules is a nonclassical phenomenon. Only by pass-
ing from Newtonian mechanics to quantum mechanics
was an interpretation obtained of the stationary states
of electronic excitation, vibration, and rotation as
standing-wave patterns of the probability waves, and
of the spectral lines as transitions between the various
energy levels. The intensity of the lines proved to be
given by the statistical weight of the terms (their
multiplet structure) and by the transition probabilities
(see Secs. 12 and 19). The line width results from radi-
ation damping, Doppler effect, and collision broaden-
ing (see Sec. 20); for higher pressures, collision damping

becomes the decisive factor. Since the density of the
condensed phases corresponds to that of normal gases
under several thousand atmospheres of pressure, the
pressure broadening of spectral lines has to be con-
sidered as one important aspect in the discussion of
the dielectric absorption of solids and liquids.

That a rapid sequence of interrupting collisions will
make the formation of discrete quantum states impos-
sible can be derived immediately from the uncertainty
relation (Eq. 8.11):

A8 At > h. (22.1)

If the time interval At equals the natural life span = of
the quantum state (Af = maximum), the energy state
8 is defined with optimum sharpness (A& = minimum).
If, on the other hand, a disrupting collision takes place
during every vibration or rotation cycle (At = 1/»), the

uncertainty in the definition of the energy state be-
comes
A8 = hy, (22.2)

that is, of the order of magnitude of the total quan-
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tum energy. The resonance state in this case has van-
ished, and the spectral line has broadened into a con-
tinuum; the resonator, classically speaking, has been
overdamped.

In Sec. 20 we treated the case of pressure broadening
by substituting in the damping factor of Eq. 4.14

20 = 1/, (22.3)

the time interval 7, between collisions in place of the
natural lifetime 7 of the quantum state. This seems
justified if many weak collisions constitute a continuous
drain on the energy of the oscillator without causing
abrupt changes in amplitude and phase. In contrast,
the pool game of gas kinetics visualizes frequently the
interaction of molecules as a statistical sequence of
strong collisions, each of them altering the energy and
momentum of the partners violently. Under such con-
ditions, the amplitude and phase of the classical oscil-
lator varies discontinuously, and not the steady-state
solution (Eq. 4.27) of the force equation applies but
the general solution composed of steady-state and tran-
sient terms.

The dispersion formula of classical physics pictures,
electrically speaking, the resonating atoms or mole-
cules in the gaseous state as L, R, C circuits shunted
by a capacitance (a¢). The classical approach to the
treatment of dipole molecules in the condensed phases of
liquids and solids is to consider the polar molecules as
rotating in a2 medium of dominating friction.! We
postulate, in effect, that the acceleration term can be
neglected, that is, that the L, R, C equivalent circuit
reduces to an R, C circuit (b), (Fig. 22.1). In this ex-

Lz Cz

Cp ==C, A Cy
R

Re -

(b) Rotator in medium where
friction term dominates

(a) Resonator

Fig. 22.1. Equivalent circuits of free resonator molecule and of
rotator molecule in medium of dominating friction.

treme case of weak-collision broadening we thus substi-
tute by hunch for the resonance spectrum of Fig. 4.2 the
relaxation spectrum of I, Fig. 26.5, with its complex
permittivity (see I, Eq. 26.14),

ko
Kw+1+1wr

1P. Debye, Polar Molecules, Chemical Catalog Co., New York,
1929, Chap. V.

(22.4)

Now only the task remains to reinterpret the static and
optical permittivities «;’ and ./, and the relaxation
time 7 by molecular quantities.

The optical dielectric constant «,’, represented in the
electric circuit analogue by the by-pass capacitor, con-
tains the contribution of the induced moments

P = (ae + aa)E'

caused by the electronic and atomic polarizabilities of
the molecules (the deformation polarization). The
static dielectric constant «,’ contains, in addition, the
orientation polarization of the permanent moments .
According to the statistical theory of Sec. 16, when the
electric field energy is small in comparison to the ther-
mal energy of agitation, each dipole molecule con-
tributes an average moment (see Eq. 16.9)

(22.5)

2
Pa = X ow

36T (22.6)

If we could assume that E’ represents the applied field
E, as in gases at low pressure, we would immediately
obtain the static and optical dielectric constants as
given in Eqgs. 16.11 and 16.12 and thus from Eq. 22.4
the complex permittivity

p?
* =14 — { e
S o (ae+a0)+3kT1+j
Actually, the applied field E will have to be replaced
by some local field E’, for example, the Mosotti field
of Eq. 2.9:

} . (227)

P
+—=—(x +2).

22.8
3 (22.8)

In this case we obtain for the polarizability per unit
volume not the «* — 1 of Eq. 22.7, but the more in-
volved equation

N, «x*¥*-—1

360 k* + 2

i 31"_ {<a, L } (22.9)

3kT 1 + jur

This modified polarizability has the static and the
optical value

“""l—iv—{(ae+aa>+—2}

Kk +2 3¢ 3kT

(22.10)
k'’ —1 N
Kw' T+ 2 | 350 (aa+ aa)-

By introducing the expressions on the left into Eq. 22.9,
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we return to the formulation for the complex permit-
tivity given in Eq. 22.4,

Ks' — Koo'

k* =k + ———— 22.11
R R G)
with the new time constant
o T2
s o - (22.12)
Ky + 2

Hence, by replacing the applied field E with the
Mosotti field E’ the interpretation but not the shape
of the relaxation spectrum has changed. Only the re-
laxation time has lengthened from 7 to 7., and the
molecular meaning of the static and optical dielectric
constants has been altered by the introduction of the
denominators s’ + 2 and «,’ + 2 in Eq. 22.10. Simi-
larly, any other type of local field expression will not
change the shape of the absorption spectrum as long
as the motion of the dipole molecule is represented by
a first-order differential equation.

The remaining problem is the molecular interpreta-
tion of the relaxation time 7. According to the assump-
tion of dominating friction, we have to picture the
polar molecules as rotating under the torque T of the

de
electric field with an angular velocity 7 proportional

to this torque, or

T =14 a0 (22.13)

dt ;
The friction factor ¢ will depend on the shape of the
molecule and on the type of interaction it encounters.
If one visualizes the molecule as a sphere of the radius
a, rotating in a liquid of the viscosity 5 according to
Stokes’s law,? classical hydrodynamics leads to the
value

¢ = 8mnad. (22.14)

In a static field, the spherical dipole carriers will have
a slight preferential orientation parallel to this field
and thus contribute the average moment of Eq. 22.6.
A sudden removal of the external field will cause an
exponential decay of this ordered state due to the ran-
domizing agitation of the Brownian movement. The
relaxation time 7 (or 7,) measures the time required to
reduce the order to 1/e of its original value. Debye!
was able to calculate this time statistically by deriving
the space orientation under the counteracting influences
of the Brownian motion and of a time-dependent elec-
tric field and found
§

=—: 22.15
2kT ( )

T

2 G. Stokes, Trans. Cambridge Phil. Soc. 9, 8 (1851).

Combining Egs. 22.14 and 22.15, Debye obtained
for the spherical molecule, if it behaves like a ball
rotating in oil, the relaxation time

4wady 8

kT kT

(22.16)

T =

The time constant is proportional to the volume V of
the sphere and to the macroscopic viscosity of the solu-
tion. Water at room temperature has a viscosity n =
0.01 poise; with a radius of ca. 2 A for the water mole-
cule, a time constant of 7 ~ 0.25 X 1070 sec results.
Figure 22.2 shows that indeed the relaxation time of
water is located near the wavelength of 1 em. The
agreement, however, is somewhat marred by the re-
alization that experimentally we have determined

80
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Fig. 22.2. Relaxation spectrum of water at room temperature.

7¢ =~ 207 instead of 7 itself. Obviously, neither the
sphere model nor the Mosotti field should be taken too
seriously; the essence of Debye’s approach is to postu-
late that the orientation of polar molecules in liquids
and solids leads spectroscopically to a simple relaxation
spectrum.

The Debye equation (Eq. 22.11) may be written in
various forms, which have their special merits for the
evaluation of experimental characteristics. Separating
it into its real and imaginary parts, we obtain the
standard version

vt
ek of Lenipe )
00
1+ o2
’ s
(ks" — Ko )eore
K" = u—_ﬁ, (2217)
1+ w7,
K" (ks — Ko )wTe
I =, A
K ks’ + Ky w T,

If we introduce as a new variable 3

(22.18)

3See H. Frohlich, Theory of Dielectrics, Clarendon Press, Ox-
ford, 1949, p. 73.

z = In w7,
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Eqgs. 22.17 may be rewritten in a normalized form

K — le 1 e~2
Kg, _ le 1 + e2z e? + e~ ?
k" 1
= _, (22.19)
ke — ko €fF+ e
tan & 1
Ksl . - le leez + xs’e“

Figure 22.3 shows this logarithmic plot of the disper-
sion and absorption characteristic, and, added to them,

k'K’ oTe
> Kg =Ko K- Kog
P
’
/
/
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/
/
"
’ wl>
’l Kg =K
’
7
-
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Fig. 22.3. Dielectric constant, loss factor, and conductivity of
simple relaxation spectrum in normalized form.

as a third curve, the relative dielectric conductivity
(see I, Eq. 1.16)

o= wk'’ (22.20)
in the normalized form

OTe é®

ke — ko e+ e ?

(22.21)

The conductivity curve is the mirror image of the «’
characteristic; that is, the orientation polarization
leads to a constant maximum conductivity contribu-
tion beyond the range of the dispersion region.

It may seem surprising that, after the polarizing
action of the permanent dipoles has disappeared, their
existence is still noted with full force as a conduction
effect, but the explanation is simple. As the frequen-
cies range so high that the molecules have no time to
turn, we do not notice that the two opposite dipole
charges are coupled together; their effect on the con-
duction is therefore the full contribution of two ions
of opposite polarity moving in the electric field accord-
ing to Ohm’s law.

Figure 22.3 shows clearly the frequency spread of the
dispersion phenomenon. According to the decade scale,
it is practically limited to one decade for «’ and to two
decades for «’” above and below the center frequency.
One further graphical representation of the Debye

equation proves of value in analyzing and extrapolat-
ing experimental data. If we plot &/ against &’ in the
complex plane, points obeying the Debye equation fall

4 I
£n, T Kk + Ky y
on a semicircle with its center at ——— (Fig. 22.4),

as Cole and Cole 4 first pointed out. This becomes evi-
dent when we rewrite Eq. 22.11 in the form

(k* — k') + 7(k* — ko NwTe = k' — £/, (22.22)

The first member on the left side corresponds to a
vector u; the second member, as the factor 7 indicates,
adds perpendicular to it and represents a vector v; the
sum is the diagonal of the circle.

K" K’

u

W =oco 4
Kos Ks'+ Kog Ks

2
Fig. 22.4. Cole-Cole circle diagram of «* in complex plane.

The loss factor «” reaches its maximum at the critical
frequency

wm = 1/7e, (22.23)
that is, at the critical wavelength
A = 2mcCT, (22.24)

at which the dipole polarization has fallen to its half
value. Furthermore
el £ ) (22.25)
Kma.x 2 2 o
The relaxation time and the contribution S of the orien-
tation polarization to the permittivity can be deter-
mined by these relations from the absorption char-
acteristic of a dielectric as long as the Debye equation
is valid.
Finally, from Eq. 22.17 we obtain the linear equa-
tion in «’ versus wx”/, and «’ versus &' /w:

kK = Ky — wrek”,
W’ (22.26)
—_ !
= Ky =
wT,

the first of which may be rewritten
€ = ¢ — a1 (22.27)

Thus the static and optical dielectric constants are
given by the intersection, and 7, by the slope of a

¢ K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
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straight line, as long as the simple relaxation equation
applies.

The theory has confronted us with two extreme
cases: the classical resonance absorption ° in a quan-
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Fig. 22.5. Assumed pressure broadening of resonance into
relaxation spectrum (collision frequency very much smaller,
equal, or much larger than the rotation frequency).

5 The classical dispersion equations were first derived by Ket-
teler and Helmholz [see E. Ketteler, Wied. Ann. 49, 382 (1893)]
and developed into an electron theory of dispersion by Lorentz
(see H. A. Lorentz, Proceedings Amsterdam Academy, 1897-
1898).

tum-mechanical reinterpretation and the Debye re-
laxation absorption. It is tempting to link the two
cases graphically by postulating that pressure broaden-
ing gradually converts a resonance into a relaxation
spectrum (Fig. 22.5). Also mathematically the sem-
blance of a unified theory can be achieved, as the
interesting attempt of Van Vleck and Weisskopf ¢ shows
(extended by Van Vleck and Margenau?). However,
it seems questionable how far it makes physical sense
to force a marriage between two concepts based on en-
tirely different assumptions. The original resonance
picture deals with oscillators that are effectively un-
coupled and suffer only now and then disturbing im-
pacts. The force of the applied field induces moments,
and the frequency of the field changes these moments
in amplitude and phase. The relaxation picture deals
with rotators in a state of perpetual impact. The field
produces a torque on permanent moments, and the
orientation of these moments begins to lag as the fre-
quency increases. There is no classical resonance ab-
sorption for the rotator, and the replacing of induced
moments by permanent moments in the resonance
equation does not change the original meaning of the
frequency dependence, which is not compatible with
that of the relaxation equation. We should expect that
the pressure broadening of rotation spectra does not
lead to a unique result as Fig. 22.5 implies, but to a
diversity of situations in keeping with the great variety
of surroundings which the solid and liquid state can
offer. The Debye case is one simple prototype of the
behavior of polar molecules in condensed phases; we
shall encounter others in the subsequent sections.

¢J. H. Van Vleck and V. F. Weisskopf, Revs. Mod. Phys. 17,
227 (1945).

7J. H. Van Vleck and H. Margenau, Phys. Rev. 76, 1211
(1949).

23 - The Mosotti Catastrophe and the Local Field

The assumption of a simple relaxation spectrum fits
satisfactorily the frequency response of a number of
dielectrics, especially of dilute solutions of polar mate-
rials in nonpolar solvents, when the shape of the dipole
molecules is approximately spherical. This fact, how-
ever, should not be construed as a confirmation of the
special Debye equation (Eq. 22.11), which is based on
the Mosotti field (Eq. 2.9). By specifying this type of
local field we have implicitly resigned ourselves to
catastrophic consequences.

This becomes apparent when we return to the de-
fining equation for the polarization (Eq. 1.5)

P = (¢ — 1)¢E = NoE'. (23.1)
By introducing for the local field E’ the Mosotti field

E' =E +£:
3eo

(23.2)

we obtain for the polarization and the electric suscep-
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tibility the expressions

NoE
P= )
Na
360
(23.3)
, P Na/e
X = k' — 1 = = .
eE Na
360

Hence, when the polarizability term of the denomina-
tor Na/3¢ approaches 1, the polarization and suscep-
tibility must approach infinity.

Obviously, this catastrophe must occur for any polar
material when the dipole molecules contribute an orien-
tation polarizability

ag = p2/3kT. (23.4)

As the temperature falls, a critical temperature T, is
reached where

Na_N( 4ot p.z) i
360_360 % = 3ch Tt

This condition determines the critical temperature as

_ Np? 1

9wk Nlat o)
3¢

(23.5)

(23.6)

c

If we can forget about the deformation polarization
(ae + @y K ag), Eqs. 23.3 may be rewritten, by intro-
ducing T, as

3T
P = GQE,
T-—-T,
(23.7)
i 8T
XTr_ T,

Analogous expressions appear in the theory of ferro-
magnetism (see Sec. 29) for the magnetization and
magnetic susceptibility caused by the orientation of
magnetic dipoles. The linear dependence of 1/x on
T — T.is known as the Curie-Wezss law ! and T, as the
Curie temperature.

Let us explain in words the gist of the situation.
The statistical theory with its Langevin characteristic
(Fig. 16.2) showed that nearly unattainable external
fields are required to enforce more than a slight orienta-
tion of the individual dipoles against the randomizing
action of the Brownian movement. However, if the
dipoles interact by a local field of the Mosotti type, a
situation arises of the sort experienced by Munchausen’s

1P. Weiss, J. physique 6, 667 (1907).

soldier who lifted himself out of the swamp by his own
boot straps. The local field increases the polarization,
and the polarization, in turn, increases the local field.
Above the Curie temperature the counteraction of ther-
mal agitation is able to maintain a highly disordered
state. At T, the randomizing effect of the temperature
is overcome, spotaneous polarization sets in, and the
dipoles line up in parallel arrays due to their long-range
forces of interaction. Any polar substance, according
to this simple theory, should, at some critical tempera-
ture, become a ferroeleciric materzal.

This would be a real catastrophe, as the example of
water may illustrate. We calculate its critical tem-
perature according to Eq. 23.6 by determining first the
molar deformation polarization of water vapor from
Fig. 16.4; extrapolation of the straight line to 1/T = 0
gives I, 1, ~5 X 107% [m®]. We assume that in the
liquid phase the molecules contribute about the same
deformation polarization. Since the number N of mole-
cules per cubic meter of liquid water is ca. 14 X 10%°
and Avogadro’s number Ny = 6.023 X 10?3, we find
(see Eq. 2.14)

N (ae + aa) _

IT il 0.28 [m3]
= s m-].
360 e+aN0

(23.8)

The dipole moment of the water molecule is p >~ 1.8
debye = 1.8 X 3.33 X 1073° [coul m], and the gas con-
stant per molecule k& = 1.38 X 10~2% [joule deg™!];

thus
Npl?
9¢k 1 — 0.28

Hence water should solidify by spontaneous polariza-
tion at high temperature, making life impossible on
this earth!

Ferroelectrics seem to be rare, and the Mosotti catas-
trophe usually does not take place. We are spared be-
cause the local field E’ is, in general, not the simple
field assumed in Eq. 2.9. Permanent dipoles tend to
lose their individual freedom of orientation in condensed
phases through association and steric hindrance. Their
interaction with their surroundings has to be taken
into account; the near field E3 of Eq. 2.1 cannot be
neglected.

To save face, the theory can try to construct a
plausible model that does not lead to a disappearing
denominator. Onsager 2 was the first to evade the diffi-
culty by replacing the mathematical cavity of Fig. 2.1
and the Mosotti field in its center with a real cavity of
molecular size and a dipole in its center (Fig. 23.1).
By assuming that the molecule occupies a sphere of
radius R, that its polarizability is isotropic, and that

2 L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).

~ 1520°K.

T.= (23.9)
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its interaction with the surroundings can be described
by the polarizing action of its dipole field, he arrived
at a simple electrostatic model that avoids the Mosotti
catastrophe.

In I, Sec. 10, we have already calculated the electric
field arising in the interior of a sphere of the permit-
tivity e’, when embedded in a medium ¢,’, and sub-
jected to a homogeneous field Ey (see I, Eq. 10.13).
For an empty cavity (es'/e; = 1) this field is

3K1’

= ——F, 23.10
2 £ 10 (23.10)

[

In addition to this cavity field due to external sources
there acts on the dipole molecule inside the Onsager

il

Clausius — Mosotti

Fig. 23.1. The Clausius-Mosotti and the Onsager cavity. (After
van Vleck.3)

Onsager

cavity a reaction field E, due to the polarization caused
by the moment p of the molecule in the surrounding
medium. This field can be calculated from the solution
of the Laplace equation (I, Eq. 10.7) with the boundary
conditions of Eq. 10.8 when we replace the additional
boundary conditions, Egs. 10.9 and 10.10, with the
assumptions: (a) Eo = 0 for r — o, that is, no ex-
ternal field is applied; and (b) C/r? = —(| u|/epdnr®)
for r — 0, that is, a point dipole is placed in the center
of the sphere. The coefficient D in Eq. 10.7 represents
now the reaction field and becomes

M K1’—1 [I‘ZK]_’—].
T 4nR? 24 + 1

E, (23.11)

V32 +1
where p is the dipole moment of the molecule and V
the volume of the molecular cavity.

The difference between the old Mosotti or Lorentz
model and the Onsager model is apparent from Fig.
23.1. The cavity in the Lorentz model is a mathe-

matical fiction, and the field lines in consequence are
undeflected. In the Onsager model a real cavity is
assumed; therefore the lines of force have cognizance
of its existence and are bent by it. The Lorentz sphere
contains a large number of molecules while in the
Onsager approach it has shrunk to the volume of a

single dipole molecule. The center of the Lorents
cavity is marked by a mathematical point and that of
the Onsager cavity by a point dipole which polarizes
the surrounding medium. This polarization, acting
back on the dipole in the cavity, creates the reaction
field. When the dipole in the sphere stands parallel
to the applied field, the external field lines in the
Onsager model, resulting from the superposition of the
applied field and the dipole field, must straighten out
to those of the Lorentz model. This is true only when
the volume of the Onsager cavity is chosen equal to
the molecular volume V = 1/N, where N is the num-
ber of molecules per unit volume.

The reaction field must be always parallel to the ele-
mentary dipole, hence can have no effect in orienting it.
Only the cavity field E, exercises a torque on the dipole.
Here, according to Onsager, the Mosotti-Lorentz theory
has made its mistake by introducing the Mosotti field of
Eq. 23.2 as the locally acting field. This field is, in
essence, the sum of the cavity field and of the mean
value of the reaction field. It is therefore too large and
causes, by including a part of the reaction field, the
dipole molecule to orient itself by its own boot straps.?

By introducing the cavity field E; instead of the
Mosotti field in Eq. 23.1, the feedback interaction be-
tween E’ and P, and with it the catastrophe, disap-
pears. The Mosotti field rises in media of high permit-
tivity proportional to «’ (see Eq. 2.9), the cavity field
of Eq. 23.10 approaches the constant value 34E.
Hence, the Onsager treatment returns us approxi-
mately to the situation of Eq. 22.7, where the local
field is identified with the applied field and the relaxa-
tion time is again 7 instead of 7.. The actual. expres-
sions derived by Onsager become more involved due to
the deformation polarization which bestows on the
cavity an internal index of refraction n (an optical
dielectric constant k' = n?) different from that of vac-
uum. In fact, this optical dielectric constant is iden-
tical with that of the Mosotti-Lorentz model as given
in Eq. 22.10, because the induced moments stand paral-
lel to the applied field (see also Appendix A, II, Sec. 7).

The Onsager calculation of the local field has the
merit of avoiding the Mosotti catastrophe by consider-
ing the long-range dipolar interaction between a polar
molecule and its isotropic surroundings. This approach
gives relatively good results as long as the surroundings
of the dipole act like a smeared-out isotropic medium.
Figure 23.2 makes this strikingly clear in a plot of the
static dielectric constant of polar liquids versus Np2/kT.
This representation, due to R. H. Cole,* is based on the

38ee J. H. Van Vleck, Ann. N. Y. Acad. Sci. 40, 289 (1940).
4 The author is indebted to Professor R. H. Cole for this as
yet unpublished information.
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following consideration: Debye’s theory of the static
dielectric constant (Eq. 22.10) leads to the expression
for the dipole moment of a polar molecule

_ 9eokT  3(ks’ — kx')
N &'+ 2)(x' +2)

Onsager’s theory, which is a theory for static fields
only, gives the modified equation °

» ek T (2Ks’ + Koo,) (Ks’ =¥ Kao’)
N k' (k! + 2)7

Rearranged, it leads to the expression for the static
dielectric constant
| NW? (e + 2

Ks =

kT 1860

2

(23.12)

2

(23.13)

e (1 + Ki’,) (23.14)
Ks

that is, in a first approximation to a straight-line rela-
tion between x,” and Np2/kT. This relation is quite
well fulfilled for nonassociated polar liquids, as Fig.
23.2 shows. However, for liquids in which the hydro-
gen atoms form bonds between the molecules and there-
fore produce a short-range order, the equation fails.
The Debye as well as the Onsager model, based on the
macroscopic concept of a dielectric continuum, have to
be replaced for ordered substances by local field calcu-

5 An extensive treatment of the local field equations and their
applications for dipole moment determinations is given in C. J. F.
Bottcher's Theory of Electric Polarization, Elsevier Publishing
Co., New York, 1952.
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Fig. 23.2. Confirmation of the Onsager theory for nonassociated
polar liquids. (After R. H. Cole.4)

lations based on some structure analysis of the in-
dividual dielectric. This arduous task was started suc-
cessfully by Kirkwood and his co-workers ¢ (see Sec. 25).

8 J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

24 - Formation and Structure of Liquids and Solids

Atoms form because stable positive nuclei and nega-
tive electrons exist and the Coulomb field of the nuclei
traps electrons, until the nuclear charge is neutralized.
The electron clouds of atoms assume distinet structures,
because, in addition to electrostatic and magnetic inter-
action, the wave nature of the electrons restricts their
whereabouts. The probable charge distribution of each
electron must correspond to a standing-wave pattern in
accord with the Schrodinger equation, and these in-
dividual wave patterns must differ in their set of quan-
tum numbers, as the Pauli principle postulates.

When atoms combine to molecules, three limiting
cases may be distinguished (see Sec. 13):

(1) The atoms keep their identity but their electron
clouds perturb each other and establish mutual phase
relations; attraction by mutual polarization results and
leads to van der Waals’ binding.

(2) The atoms lose their identity by merging elec-
trons in a joint electronic system; the new molecules
formed by covalent bonding are the basic entities in
further molecular processes.

(3) The atoms may alter their identity by the ex-
change of electrons, in order to form electronic systems
of higher overall stability; positive and negative ions
result, acting on each other with the ionic bonds of
Coulomb attraction.

Actual molecules, as the concept of quantum-mechan-
ical resonance implies, represent, in general, mixtures of
these three basic types. Since the bonds formed by
mechanisms 2 and 3 are appreciably stronger than
those resulting from a van der Waals type of attrac-
tion, they are called primary in contrast to the weaker
secondary bonds. This distinction is useful, but fre-
quently we observe intermediate cases.
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An intermediate bond type of special importance for
the intra- as well as the intermolecular bonding of
numerous inorganic and organic compounds is the hy-
drogen bond (cf. Fig. 23.2). Here a hydrogen atom
bridges between two, in general identical, electronega-
tive neighbors, for example, F—H...F, O—H....O,
N—H...N. In this sequence the bond strength of the
bridge decreases from ca. 7 to ca. 2 kecal. The bond
type should probably be visualized as resulting from
the strongly ionic character of the covalent molecules
involved (see Figs. 17.6 and 17.11) and the close ap-
proach to the small hydrogen atom. Thus the hydro-
gen bridge is akin to a dipole bond. It determines, for

H H H
| | |
C——C =>» e lC
| | |
H H H
Ethylene monomer
H H
| |
cC——=¢ — -=-=-C
| | |
H H H

Styrene monomer

Fig. 24.1.

example, not only the short-range order in water (Fig.
25.4) and the structure of ice, but plays, as Pauling
especially pointed out, an important role in the struc-
ture of complex biological molecules such as the pro-
teins. Since the bond can be broken easily at elevated
temperatures, its influence explains the sensitivity and
variability of such molecules. The minimum bond
distance ! changes from 2.5 A for O—H....O, to 2.60 A
in N—H..-O, 294 A in N—H..-N, and 3.01 A in
N—H....ClL

The general existence of van der Waals’ attraction
causes any gas to condense at absolute zero. How far
the agglomeration proceeds at higher temperatures is a
question of competition between the binding energy of
the partners and the disrupting action of thermal agi-
tation. At sufficiently high temperatures and low pres-
sures all interatomic bonds will be broken and the sta-
tistical equilibrium shifted completely towards the side
of atoms. As the temperature decreases, the atoms will
commence to associate. Where this condensation stops
depends on the type of bond that forms.

If electrons are shared in covalent pair bonds, the
capacity of the partners for the formation of additional
primary bonds diminishes and becomes exhausted when
their valence is saturated. Thus characteristic mole-

1 J. Donahue, J. Am. Chem. Soc. 56, 502 (1952).

cules emerge with little tendency for adding further
atoms. The temperature must be lowered drastically
before a condensation to liquids or solids by secondary
bonds occurs.

When ionic molecules are formed no such saturation
of valency takes place. The far-reaching Coulomb
forces can attract partners without limit until the ran-
dom structure of glasses or the organized structure of
ionic erystals results. Similarly, the atoms of metals
can conglomerate indefinitely by an overall sharing of
electrons, thus forming liquids and solids without dis-
tinct molecular groupings. The metallic bond is a pri-
mary bond of a mixed covalent-ionic character.

H H H H
| | | |

c (¢ c C----
I | | |
H H H H

Polyethylene

e A
| |

¢ c c gE==s
| | | 1
H H H H

Polystyrene

Formation of polyethylene and polystyrene (schematic).

A condensation phenomenon leading to intermediate
stages between small molecules and limitless aggregates
is the polymerization of molecules. Here a chemical
reaction is triggered off by heat, light, or some other
catalyzing agent and proceeds to build individual
macromolecules, frequently with explosive speed, by
the formation of primary covalent bonds. The process
terminates when a false step in the chain reaction fails
to regenerate the required activation energy or adds a
foreign building stone which cannot propagate the re-
action.

The formation of such macromolecules can proceed
by polyaddition or polycondensation. In the former
case the compound is formed by the repeated addition
of a monomer (M), as indicated symbolically by the
formula

nM — (M),. (24.1)
Polyethylene and polystyrene are composed of linear
chain molecules of this type (Fig. 24.1), where n may
exceed the value 10% and the molecular weight (as
compared to hydrogen) may range in the order of
millions. Polycondensation products are formed by
the repeated reaction (condensation) of small mole-
cules; water molecules or other side products are elim-
inated during the process. The reaction between phe-
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nol and formaldehyde (Fig. 24.2),2 by which Baeke-
land 8 produced the first synthetic resin of practical
importance (‘“bakelite’’), is a famous example in kind.
The formation of polysilicones, at present in the fore-
front for engineering applications at high temperatures,
is an example of another class of polycondensation
products.

The various polymers may be classified from a dif-
ferent point of view. Polymerization may proceed
from one or several reactive spots of a molecule and

sional lattice of diamond (Fig. 24.3). In the saturated

linear paraffins (aliphatic hydrocarbons), each carbon

is linked to two neighboring carbon atoms by single
H

bonds; the methylene radical —C— represents the

H;
basic chain unit. The graphite sheets can be visualized
as developing by the polymerization of benzene rings,

OH OH OH
- CH CH OHp—=
+ CHy0 —> b $ £
-H,0 OH

e
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Fig. 24.2. Formation of phenol-formaldehyde polymer.

thus lead to linear chains, two-dimensional networks,
or three-dimensional lattice structures. Referring to
these end products instead of to the chemical reaction
forming them, we may distinguish between thermoplas-
tic and thermosetting compounds. The thermoplastic
polymers consist of macromolecules constructed with
primary bonds but adhering to each other with weaker
secondary bonds. Heating or solvent action will break
these secondary bonds preferentially, the material melts
or dissolves, while the macromolecules themselves stay
intact and can be reassembled; the plastic can be re-
molded. In the thermosetting materials (like bakelite)
the whole structure is knit together by cross-linking
primary bonds. Heating will therefore not melt the
polymer but destroy it by decomposition when a crit-
ical temperature range is reached; the plastic cannot be
remolded.

Typical prototypes of one-, two-, and three-dimen-
sional polymers are the linear paraffin chain, the two-
dimensional network of graphite, and the three-dimen-

2 J. J. P. Staudinger, British Plastics 25, 160 (1952).
3L. H. Baekeland, Ind. Eng. Chem. 1, 149 (1909).

(After Staudinger.?)

the mother substance of the aromatic hydrocarbons;
each carbon atom is linked to three carbon neighbors
by primary bonds. Finally, the diamond structure,
where carbon is linked to carbon by four equal bonds,
may be visualized as arising from the polymerization
of cage-like molecules. Such molecules were first dis-
covered in Galician petroleum and are now becoming
of increasing importance in polymer chemistry.4

A typical example of the diversity of condensation
stages a material may traverse upon cooling is offered
by the element sulfur.’ The sulfur atom, with an elec-
tronic constellation 3s?3p* beyond the neon core (see
Sec. 8), has two half-filled p orbitals available for co-
valent bonding. As the atomic gas begins to condense
at high temperature, first diatomic S—S molecules form,
as can be seen clearly in the sequence of vibration
maxima of the optical absorption spectrum. More
energy, however, can be gained by the formation of

4See V. Prelog and R. Seiwerth, Ber. 74, 1644, 1769 (1941);
W. Nowacki and K. W. Hedberg, J. Am. Chem. Soc. 70, 1497
(1948).

5 See A. von Hippel, J. Chem. Phys. 16, 372 (1948).
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two single bonds in place of one double bond, hence a
tendency exists for the formation of chain molecules
—8—8—8—S8..; and indeed, such molecules appear as
the temperature decreases. A sequence of eight sulfur
atoms in a chain can close into an Sg-ring molecule of

Sg rings. As the temperature is raised, the viscosity
suddenly increases from about 10 centipoises to over 900
poises in a temperature interval of only 20°C (Fig.
24.5). The ring molecules are breaking open and poly-
merize into long chains which impede the flow of the

Paraffin chain

Graphite lattice

f-2.52 a—+

Diamond lattice

Fig. 24.3. One-, two-, and three-dimensional carbon networks.

greater stability (Fig. 24.4). Thus, in addition to chain
segments of statistical length, these ring molecules be-
gin to make their appearance.

The next stage of condensation occurs when the tem-
perature is low enough to allow the secondary bonds of
the van der Waals type to act. Now liquid sulfur is

D &

Diatomic Ring

X

Chain
Fig. 24.4. Various types of sulfur molecules.

formed which may consist of ring molecules, chain
molecules, or mixtures thereof. A viscosity experi-
ment ¢ indicates that sulfur not far above its melting
point consists of a liquid of low viscosity, composed of

S R. F. Bacon and R. Fanelli, J. Am. Chem. Soc. 65, 639 (1943).

liquid. Further temperature rise reduces the average
chain length; hence the viscosity decreases again.
Rapid quenching of the liquid sulfur from its high
viscosity range produces the disorganized chain struc-
ture of plastic sulfur, a true thermoplastic polymer.
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Fig. 24.5. Viscosity characteristic of sulfur, indicating breaking
of ring molecules and polymerization. (After Bacon and Fanelli.s

o4

Slow cooling leads first to a monoclinic and finally to
a rhombic crystal structure. The rhombic 7 and prob-
ably also the monoclinic modification is built of Sg-ring

"B. E. Warren and J. T. Burwell, J. Chem. Phys. 3, 6 (1935);
J. T. Burwell, Z. Krist. 97, 123 (1937).
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molecules; the plastic variety reconverts to rhombic
sulfur upon standing,.

The example, sulfur, drives home forcefully three
facts of general validity:

(a) The state of condensation of a material at any
given temperature should be described as a statistical
equilibrium.

(b) Materials of identical chemical composition may
exist at the same temperature in different modifications
(polymorphism).

(¢) The prehistory of a sample may be an essential
factor in determining its state of condensation and thus
its properties; for example, high-temperature equi-
libria, may be frozen-in by quenching.

In the preceding discussion we emphasized the pa-
rameter temperature as the main physical variable be-
cause significant temperature changes can be made
easily. Of equal importance, as thermodynamics and
statistics show, is the parameter pressure. That pres-
sure as well as temperature decides the state of aggre-
gation of molecules, becomes immediately apparent in
the pressure-density characteristics of real gases. COq,
for example, liquefies at room temperature at about 60
atmospheres of pressure, whereas an ideal gas would
require more than a thousand atmospheres to reach the
same packing density. We have to be aware that we
deal here with association phenomena in which the size
of the aggregates may fluctuate within wide limits.
These fluctuations in particle size become especially
large near the critical point of a gas and cause pro-
nounced light scattering, known as critical opalescence.

That nuclei of condensation or crystallization are in
a state of metastable equilibrium is to be expected. A
cluster of N primary particles has 3N — 6 degrees of
vibrational and internal rotational freedom (see Sec.
18). These allow the aggregate to assume various geo-
metrical configurations and to assemble statistically
enough energy in any one bond to break it. It is there-
fore a question of competition between the lifetime of
a crystallization nucleus before it loses particles by
dissociation and the time interval between the arrival
of new partners from the outside that decides whether
the nucleus shrinks or grows. Temperature and pres-
sure are thus decisive. Since each partner contributes
its share to the overall attraction of the nucleus, larger
nuclei, as is well known, prove more stable than smaller
ones. Macroscopically speaking, the smaller ones have
a higher surface tension.

Once liquids or solids have formed, their structure
and packing density must be ruled by the shape and
size of the individual partners and the various modes
in which they can be arranged. In a first approxima-

tion, the individual atoms can be characterized as
spheres which, according to the type of bonding, act
with different radii (van der Waals’, covalent, ionic, or
metallic) (see Sec. 13). The problem of structure, if
this approximation suffices, can be discussed in terms
of the closest packing of spheres.

Equivalent spheres, as Barlow first discovered,® can
be arranged in two types of closest packing (Fig. 24.6).
In a single layer, each sphere is always in contact with
six others; a second layer B can be superposed on the

OO0,
€0 3
N

Third layer starts at
position b for
hexagonal close-packing

Layer A

Layer B

Third layer starts at
position a for
cubic close-packing

C L ")

Fig. 24.6. Closest packing of spheres.

first layer A by having each sphere of layer A in con-
tact with three spheres of the adjacent layer B. A
third layer can be added in either one of two possible
positions: (1) repeating the first layer A or (2) placed
over the holes of the first layer not occupied by the
second layer, producing layer C. In the first position
we arrive at the closest packing of hexagonal symmetry
and of the sequence ABABAB...; in the second posi-
tion the closest-packed cubic structure of the sequence
ABCABC. .. results.

In each of these closest-packed structures every
sphere is in contact with twelve others, with a hexagon
of six in its own plane and a triangle of three in the
two adjacent planes. The sphere is said to have the
co-ordination number 12, In the hexagonal packing the
triangles have identical orientation; in the cubic ar-
rangement the upper is rotated against the lower by
60°.

Metal atoms and the atoms of the noble gases ap-
proach nearest the concept of spherical particles, and
these elements are therefore found to crystallize in
such closest-packed arrangements. In ionic crystals of

8 W. Barlow and W. J. Pope, J. Chem. Soc. 89, 1675 (1906); 91,
1150 (1907).
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nonequivalent spheres, this simple situation can be real-
ized only when one ion type is of a much larger size
than the others and can form by itself a closest-packed
structure which accommodates the smaller ions in its
interstices. This situation is frequently realized in
silicate minerals, as Bragg and his co-workers found,®
when the oxygen ions dominate in size. Also numerous
halides crystallize in structures characterized by dens-
est-packed halogen-ion arrangements.

In building crystals from nonequivalent spheres, the
radius ratio enters as a decisive parameter. Gold-
schmidt 1 was the first to study and emphasize the
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Fig. 24.7. Symmetry axes of NaCl structure.

importance of this factor in erystal chemistry. A sim-
ple example is offered by the alkali halides. The great
majority crystallize in the sodium chloride structure,
where each ion is surrounded by six oppositely charged
ions in an octahedral arrangement. However, cesium
chloride, bromide, and iodide form the body-centered
cesium chloride structure (see Fig. 17.4), where each
cesium in the center of the cube is surrounded by eight
ions of the opposite kind. It is reasonable to assume
that each ion will surround itself with the greatest pos-
sible number of oppositely charged partners. That the
co-ordination number six is formed for most of the
alkali halides, but eight for the cesium salts is obviously
due to the large size of the Cs™ ion which accommo-
dates eight halogen neighbors.

By studying the radius-ratio limits inside which typ-
ical co-ordination arrangements are geometrically pos-
sible, we find in a first approximation the results given

® W. L. Bragg, Atomic Structure of Minerals, Cornell Univer-
sity Press, Ithaca, N. Y., 1937, p. 30.

10V, M. Goldschmidt, Geochemische Verteilungsgesetze der Ele-
mente, Oslo. Akad. Wiss. Vol. 8 (1927); see also the rules given by
L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).

in Table 24.1 Near the stability limits of the various
co-ordinations, peculiarities in the crystal properties
will occur; for example, CsCl assumes the sodium
chloride structure at elevated temperature, LiCl is
very deliquescent, etc.

Table 24.1. Relation between co-ordination groups
and radius ratio
(After Goldschmidt 1)

Co-ordination Group  Co-ordination Radius Ratio

of Nearest Neighbors Number Limits
Triangular 3 0.155 <> 0.225
Tetrahedral 4 0.225 <> 0.414
Octahedral 6 0.414 & 0.732
Cubic (body-centered) 8 0.732 <> 1.000
Closest-packed cubic

(cubo-octahedral) 12 1.000 —» >1

The validity of the radius ratio concept, just as that
of the radii themselves (see Sec. 13), should not be
taken too seriously. These are useful first approxima-
tions which lost much of their stringency after it be-
came obvious that mixed-bond types are frequently
encountered.

Additional complications enter when structural units
are not individual atoms or ions but composed of
groups of atoms. Highly symmetrical composite build-
ing stones like NH,* and SO,~ may still be approxi-
mated by spheres as far as their spatial requirements
go. However, the potential variety of compounds that
may form becomes apparent only when the actual
shape of such group molecules is taken into account.
Many silicates and titanates, for instance, can be vis-
ualized as frameworks of SiO4 tetrahedra or TiOg octa-
hedra, respectively, with cations interspersed as elec-
trostatic binder. These nonspherical building stones
may share corners, edges, or faces and thus produce a
tremendous variety of inorganic compounds.

For less symmetrical building stones like the Sg rings
of Fig. 24.4 or for organic structures, where the direc-
tive properties of the covalent bonds dominate, the
tendency for close packing may be submerged com-
pletely. The structures assume more and more in-
dividuality, and each new analysis becomes a scientific
achievement.

An ideal crystal is composed of a periodic sequence
of building stones that can be repeated indefinitely in
space without leaving holes. Crystals possess, there-

fore, particular kinds of macroscopic symmetry ele-
ments (axes, planes, and centers of symmetry) con-
sistent with the repetition pattern of the atoms or
molecules. The actual faces a crystalline material de-
velops, its crystal habit, depend on the conditions of
crystal growth, but the symmetry elements remain the
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same. Sodium chloride, for example, may be grown as
cube or octahedron, but in both cases we count three
axes of fourfold, four axes of threefold, and six axes of
twofold symmetry (Fig. 24.7). The possible combina-
tions of symmetry elements lead to 32 crystal classes
grouped according to the reference co-ordinates, the
crystallographic axes, in seven crystal systemst (Fig.
24.8).1

Triclinic Monoclinic Orthorhombic Rhombohedral
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c
a
o a
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a=b #c a=b=c
a=8 =7=90° a= B =7=90°

Fig. 24.8. Reference co-ordinates of the seven crystal systems.
(After Barrett.1)

A real crystal has molecular holes and other flaws
which may alter its physical properties decisively, as
Smekal * first stressed forcefully. Defects of special
importance are: missing lattice points (Schottky de-
Jects ¥); atoms displaced to interstitial positions (Fren-

t For a further discussion of crystal symmetry, see Sec. 26.

11 See, for example, C. G. Barrett, Structure of Metals, McGraw-
Hill Book Co., New York, 1952.

2 A. Smekal, Handbuch der Physik, Vol. 24, Pt. 2, Chap. 5.

13 C. Wagner and W. Schottky, Z. physik. Chem. 11, 163
(1930).

kel defects 1%); and dislocations,® where a whole row (or
plane) of atoms may terminate in a dead end (Fig.
24.9). The lattice point defects are of great importance
in conduction phenomena, but dislocations seem to
play a decisive role for crystal growth and mechanical
strength.

With increasing temperature the crystal defects be-
come more numerous, until the crystal structure col-
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Fig. 24.9. Crystal defects.

lapses at the melting point. The long-range order of
the periodic structure is destroyed by melting, but a
short-range order persists in liquids. Each Na™ ion of
a sodium chloride melt, for example, is still preferen-
tially surrounded by Cl™ ions, and vice versa, because
of the ordering influence of the Coulomb attraction.
Glasses show short-range order and behave akin to
supercooled liquids.
14 J. Frenkel, Z. Physik 35, 652 (1926).

15 See, for example, Imperfections in Nearly Perfect Crystals,
W. Shockley, Editor, John Wiley and Sons, New York, 1952.

25 * Various Models for the Discussion of Orientation Polarization

in Liquids and Solids

When matter aggregates from atoms to small mol-
ecules, macromolecules, and, finally, to the condensed
phases of liquids and solids, a bewildering variety of
structures may arise (see Sec. 24). Accurate expres-
sions for e* and u*, for the response of a specific mate-
rial to electric and magnetic fields, must, therefore, be
based on a detailed structure analysis of the material
in question. Theory, while acknowledging this need

for individual analysis, has to construct more general-
ized models which represent characteristics common to
groups of materials and which contain parameters ad-
justable to the individual case.

The theory of polarization in its simplest form was
based on the concept of the Mosotti cavity and led to
the Clausius-Mosotti-Lorentz-Lorenz equation (see
Sec. 2). It introduced the reference molecule as a
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mathematical point around which is scooped out an
empty sphere of such a large radius that the molecules
beyond it blend into a continuum. The electric field
in this continuum is not supposed to notice the exist-
ence of the sphere. Tais picture has been incorporated
without difficulty into the classical theory of resonance
or relaxation spectra (Secs. 4 and 22) but led, when
applied to polar molecules, to the Mosotti catastrophe
of spontaneous polarization (see Sec. 23).
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Fig. 25.1. Various shapes of relaxation characteristics for

ellipsoids of revolution. (After Oncley.?)

For a discussion of the polarization arising from the
orientation of permanent moments, the reference mole-
cule obviously should not be a mathematical point but
a dipole carrier. In the refinement of the model by
Onsager (see Sec. 23), the cavity is therefore visualized
as a molecular sphere in which a mathematical dipole is
centered. The sphere is thought to be filled with a
medium possessing the deformation polarization of the
dielectric, and is assumed to distort the field in the sur-
rounding continuum like a real spherical inclusion.

This spherical model of a dipole molecule, reacting
back upon its surroundings, avoids the Mosotti catas-
trophe. It provides a reasonable first-order model for
the discussion of a dilute solution of spherical polar
molecules in a nonpolar solvent and of nonassociated
polar liquids (Fig. 23.2). Calculations based upon it
have been carried through for static fields only, but we

may assume that in alternating fields the dipole in On-
sager’s cavity behaves like Debye’s spherical molecules
in a viscous medium, that is, that a simple relaxation
spectrum results.

We can add one more refinement to the continuum
theory by replacing the spherical molecule with an
ellipsoid possessing three principal moments of inertia
(see Sec. 18). Whereas a spherical top rotating in a
viscous liquid shows a relaxation spectrum with one
time constant only (see Eq. 22.16), the asymmetric top
has six main time constants which correspond to the
various orientations of one principal axis pointing in
the field direction and the other two parallel or per-
pendicular to the direction of motion. If the ellipsoid
points obliquely to the field, for instance, because its
dipole moment is not lined up with one of the principal
axes, any intermediate time constant may be realized.
Thus it is possible that even one single type of ellip-
tical dipole molecule, by assuming a statistical distribu-
tion of orientations in the field, may cause a complex
relaxation spectrum with a broad distribution of re-
laxation times.

The inherent possibility of deducing from relaxation
spectra some information on the size and shape of polar
molecules and on the orientation of the momentum axis
has been exploited for the macromolecules of biology,
especially by Oncley and his co-workers.! The perhaps
dangerously simple assumption is that deviations of the
dispersion and absorption characteristic from a Debye
curve with one relaxation time can be interpreted as
indicating that the molecule in question is not a sphere
characterized by one time constant = but an ellipsoid
of revolution of an axial ratio a/b in which the electric
momentum axis deviates by a dipole angle 8 from the
major axis a. Perrin,? and Budé, Fischer, and Miya-
moto 3 have calculated the orientation polarization of
such ellipsoidal particles in viscous media. By match-
ing the measured dispersion characteristic with curves
thus computed (Fig. 25.1), approximate values for a/b,
8, and 7 may be obtained.

The hypothetical time constant 7 of a spherical
molecule rotating in the solvent of the viscosity n gives,
according to Eq. 22.16, an idea what the size of the
molecule and its molecular weight might be. This in-
formation can be checked against information obtained
from diffusion, ultracentrifuge, viscosity measurements,
and from light scattering.* Finally a dipole moment

1J. L. Oncley, J. Am. Chem. Soc. 60, 1115 (1938); J. D. Ferry
and J. L. Oncley, ibid. 60, 1123 (1938); 63, 272 (1941); J. L.
Oncley, Chem. Rev. 30, 433 (1942).

2 F. Perrin, J. phys. radium 5, 497 (1934).

3 A. Budé6, E. Fischer, and S. Miyamoto, Physik. Z. 40, 337
(1939).

4+ P. Debye, J. Appl. Phys. 15, 338 (1944).
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can be determined from the difference between static
and optical dielectric constant by assuming some kind
of a local field. The Mosotti field leads to dipole mo-
ments which are much too small for solvents of high
dielectric constant, as Wyman 5 and others have shown.
The actual moments, calculated on the basis of Onsa-
ger’s model, range for protein molecules in the order of
102 to 103 debyes. They are so large, not because the
dipole charge is higher than in normal molecules, but
because the dipole length is great, since the molecular
weight of these molecules lies in the range of 100,000.
Figure 25.2 shows the shapes of some macromolecules
as inferred from dielectric and other methods.

Albumin Hermoglobin B,-Globulin
L] = -
B,-Lipoprotein
a,-Lipoprotein 7 -Globulin
L -
Fibrinogen
B e
Scale
—_—
100 A

Fig. 25.2. Postulated shapes of some protein molecules in blood
serum. (After Oncley.l)

To treat the immediate neighborhood of a dipole as
a continuum in which the molecule can rotate accord-
ing to Stokes’s law, with a friction factor given by the
macroscopic viscosity of the solvent, may be an ap-
propriate picture for these giant molecules of biology,{
but is, in general, an unsatisfactory concept. Figure
25.3 makes this convincingly clear with the example of
methyl palmitate dissolved in benzene, paraffin oil,
polyisobutylene, and polyethylene.® The macroscopic
viscosity of the solution varies in this sequence from
fractions of a centipoise to near infinity, but the relaxa-
tion time of the polar molecule, as indicated by a specific
absorption near 10'° cycles, remains practically un-
altered.

We saw in Sec. 24 that spherical particles tend to
assume regular geometrical arrangements—structures
of densest packing consistent with their radius ratio.
When a crystalline state cannot be realized, a short-
range order still exists which betrays itself by diffuse
diffraction rings in the X-ray patterns of liquids and

5J. Wyman, Jr., J. Am. Chem. Soc. 68, 1482 (1936).

t That the situation can be much more complex has been
shown, for example, by R. M. Fuoss and others in recent studies
on polyelectrolytes.

8 S. S. Srivastava, Thesis, University of Lucknow, India,
1951.

glasses.” An improved model for the discussion of
orientation polarization in polar media will therefore
result if the dipole molecule with its first layer of neigh-
bors is treated as a dynamic structural unit—a molecu-
lar island floating in a dielectric continuum in which
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Fig. 25.3. Relaxation spectrum of methyl palmitate in various
solvents. (After Srivastava.®)

bonds are broken and reformed statistically. Kirk-
wood & has developed the molecular theory in this direc-
tion and found for water, for example, by considering
the first shell of neighbors in tetrahedral co-ordination
(Fig. 25.4), a static dielectric constant between 55 and

—---Hydrogen bond

Fig. 25.4. Short-range order in water.

82, depending on the bond angle, whereas the unmodi-
fied Onsager model gives the value 31. Still better re-
sults are obtained if the molecular island is extended to

7 See, for example, W. H. Zachariasen, J. Am. Chem. Soc. 64,
3841 (1932); B. E. Warren, H. Krutter, and O. Morningstar,
J. Am. Ceram. Soc. 19, 202 (1936).

3J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939); G. Oster and
J. G. Kirkwood, 4bid. 11, 175 (1943). See also H. Frohlich,
Theory of Dielectrics, pp. 49 ff, 137 ff (1949).
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include the second nearest neighbors, but the mathe-
matical problem becomes increasingly formidable.

As soon as molecular structure is introduced in the
surroundings of a dipole molecule, we have to realize
that the dipole moment itself represents a structural
element, likely to be anchored in its environment.
Hence, an activation energy U will be required to dis-
lodge it, and unimpeded rotation becomes feasible only
at sufficiently high temperature (U < kT). In gen-
eral, a polar molecule in solids assumes prescribed posi-
tions and switches orientation in discontinuous jumps.

Debye, already at an early date, became aware of
this situation and tried to improve his model of a sphere
immersed in a homogeneous liquid of stream-lined mo-
tion by adding the concept of hindered rotation.® The
quasi-crystalline surroundings are thought to superpose
an angular energy dependence — U sin ¢ on the posi-
tion of the dipole, in addition to the dependence arising
from the external field. Such phenomena of steric hin-
drance are well known for the intramolecular rotation
of gas molecules. A simple case in kind is the ethane
molecule (Fig. 25.5), where the methyl radicals are not
rotating freely around the C-C axis as the single bond
might imply, but have to surmount an activation en-
ergy of about 3 kcal between consecutive staggered
positions.

1 1 | 1 )i S0 |

180 240 300 360
Ol

60 120

Fig. 25.5. Steric hindrance of ethane molecule.

The ethane molecule does not carry a dipole moment.
Its potential barrier can therefore not be deduced di-
rectly from dielectric measurements, but heat capacity
data, Raman effect, and vibration-rotation spectra give
relatively conclusive quantitative evidence.® More in-
teresting from our standpoint is the hindered rotation

® P. Debye, Physik. Z. 36, 100, 193 (1935); P. Debye and
W. Ramm, Ann. Physik 28, 28 (1937).

10 For a critical discussion of rotation in ethane and halogenated
ethane, see G. Glockler, Revs. Mod. Phys. 15, 145 (1943).

in the halogenated ethanes, especially a case such as
symmetrical dichloroethane, where the mutual inter-
action of two dipole moments increases the complica-
tions. The two equivalent moments p are set a dis-
tance d apart and inclined against the C-C axis by an
angle 0 (Fig. 25.6); 1112 the angle ¢ designates the rela-
tive angular orientation of the two individual moments.

L S 4 i
H W<V
104
M et H
H ci H
cis TRANS

1 1 1 1 1
60 120 180 240 300 360
Angle ¢ - degrees

ol

Fig. 25.6. Orientations of the ethylene dichloride molecule.

(Adapted from Palmer ! and Le Févre.!?)

The resultant moment p.’ for any given position can be
derived by vector addition as

1 = 2p sin 6 cos % (25.1)
The average moment per CHyCl-CH;Cl molecule, j,
follows from the mean square moment,

1 2m ¢ 2
pl = — (2|J. sin 6 cos —) d = 2u%sin?6, (25.2)
21!' 0 2

as

B =+2psind (25.3)

if free rotation is realized.

Actually, the rotation is restricted by two kinds of
interaction: (a) steric hindrance, as in the case of the
ethane molecule, produces three potential minima,
probably favoring the staggered positions (60°, 180°,
300°); (b) the electrostatic coupling between the two
dipole moments makes the trans configuration (Cep)
more favorable than the cis configuration (Cs,), that
is, it produces a potential curve with an energy mini-
mum in the 180° position. Both effects together create
a potential curve with 3 minima, one deep well at 180°
stabilizing the trans configuration, and two equal, flat-
ter minima producing a metastable orientation near
60° and 300°, respectively.

The symmetrical dichloroethane molecule exists
therefore in the region of hindered rotation as two

1'W. G. Palmer, Valency, Cambridge University Press, 1945.

2 See R. J. W. Le Févre, Dipole Moments, Methuen and Co.,
Ltd., London, 1938, p. 82.
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tsomers. At low temperature the trans configuration
dominates, and, since its dipole moment is zero, the
average moment k. tends towards zero as the tempera-
ture decreases (Fig. 25.7). For higher temperatures
the metastable configuration begins to compete, and
finally the moment should increase asymptotically to the
value of about 2.5 debyes predicted for free rotation.i

At normal temperature, the molecule will linger in
the potential trough of each isomeric form, executing
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Fig. 25.7. Variation of the dipole moment of ethylene dichloride
with temperature in the gaseous state. (After Le Févre.12)

torsional oscillations until, after a statistical waiting
period 7, it receives sufficient energy by thermal fluc-
tuations to traverse the potential barrier U. The re-
laxation time r, or its inverse, the jump rate ko (reac-
tion rate), is given by Boltzmann statistics as

1

7= = 7,6U/T (25.4)

The factor 7y represents the time of a single oscillation
in the potential well. Since we deal in the dichloro-
ethane molecule with two different wells and three
modes of jumping, three different relaxation times
should be distinguished. If we consider that the depth
of the potential troughs will vary with the total vibra-
tion state of the molecule, we can foresee that, espe-
cially in the condensed states of solids and liquids,
hindered rotation will also lead to complex relaxation
spectra with more or less broad distributions of relax-
ation times.

Actually, the relaxation spectra of solids and liquids
are, in general, broader and flatter than the simple
Debye characteristic of Fig. 22.3 predicts. The char-
acteristic of vuleanized rubber is a typical example in
kind # (Fig. 25.8); plotted in a Cole-Cole diagram
(see Fig. 22.4), the points fall on g semicircle which,
in this case, has its center below the abscissa. Math-
ematically speaking, the complex permittivity of Eq.
22.11 has been replaced by the more general expression 4

Ke' — Ky

1+ (jor) ==’

8 W. Kauzmann, Revs. Mod. Phys. 14, 12 (1942).
4K. 8. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).

¥ = 4

(25.5)

™
where a-2- is the angle between the abscissa and the

radius drawn from the point of intersection. The em-
pirical constant «, which may vary between 0 and 1,
describes the broadening of the relaxation region; for
a = 0 we return to the case of a single relaxation time,
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Fig. 25.8. Relaxation spectrum and Cole-Cole diagram of
vulcanized rubber. (After Kauzmann.13)

The circuit equivalent of Debye’s dipole molecule
rotating in a medium of dominating friction was an
RC circuit shunted by a capacitance (see Fig. 22.1).
The Cole-Cole expression of Eq. 25.5 corresponds to
the more general network of Fig. 25.9, in which the re-
sistance is replaced by a complex impedance. In the
Debye case we dealt with only one time constant r,,
which could be derived simply from the critical wave-
length at which the loss factor reaches its maximum as

. 222
(see Eq. 22.24) 25.6)

In the case of the depressed circular-arc locus this
equation remains valid, but 7, becomes a mean time
constant around which
other time constants are
spread in a symmetrical dis-
tribution when plotted on a
log /7. scale. The spread-
ing factor @ can be deter-
mined from the plot of Fig,

Am = 2mCT,.

a
25.9, for example, as tan ZMEJTT
ar/2, or calculated from
the ratio

;

v/t = (wr)'™%  (25.7)

g 0 Fig. 25.9. Equivalent circuit
;lsntée 7o 1 known from Eq. of dipole relaxation spectrum

r E with distribution of relaxation
The circular are locus in

times.
the complex plane, well
known to the electrical engineer as the Argand dia-
gram and used, for example, in admittance and imped-
ance representations (see I, Fig. 24.3), is valid when
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k* is prescribed by a single relaxation time or by special
distribution functions of relaxation times grouped sym-
metrically around a center frequency.’® The factor «
is relatively insensitive for the actual shape of the func-
tion, and the circular arc locus is an empirical assump-
tion without basic molecular foundation. But the
Cole-Cole plot gives a useful check on the reliability of
experimental data and is a guide for a tentative extra-
polation of «* into frequency regions which are hard to
reach by direct measurements. It provides in addition
a valuable method for resolving a complicated relaxa-
tion spectrum into its principal constituents, as R. H.
Cole has shown recently for some hydrogen-bonded
liquids '* (Fig. 25.10).
0.5 ke

n-propanol at -151°C

K"

Fig. 25.10. Interpretation of relaxation spectrum of n-propanol
by Cole-Cole plot of two circles. (After Davidson and Cole.16)

By considering the structure of dielectrics, whether
the shape of the dipole molecule itself or the fixation of
the polar molecule in its surroundings, we arrived at a
distribution of relaxation times. If activation energies
hinder the orientation of the dipoles, the relaxation
times are the inverse of reaction rate constants (see
Eq. 25.4). Hence the theory of chemical reaction rates,
as developed by Eyring 7 and his co-workers, can be
applied with advantage to the treatment of dielectric
relaxation phenomena, as Kauzmann ® first showed in
detail. Several other causes may produce broad re-
laxation spectra, as we shall see later. An unbiased

15W. A. Yager, Physics 7, 434 (1936); R. M. Fuoss and J. G.
Kirkwood, J. Am. Chem. Soc. 63, 385 (1941); W. Kauzmann,
Revs. Mod. Phys. 14, 12 (1942).

18P, W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484
(1952).

1 H. Eyring, J. Chem. Phys. 4, 283 (1936).

analysis of all pertinent physical and chemical informa-
tion is required before we decide in favor of a special
model.

Models, as shown above, can frequently be based on
the concept of short-range order, where only a very
small section of the true structure need be considered
and the rest of the dielectric may be lumped in a con-
tinuum. However, in other cases we may find that
long-range interaction effects are decisive and that
quite different approximations have to be made. An
example in kind is the potential energy binding an Na*t
or Cl™ ion in the lattice of the rock-salt crystal. The
Coulomb-force interaction with the neighbors falls with
the distance r as 1/72, but simultaneously the number
of partners coupled to our reference ion increases pro-
portional to r2. Hence the interaction terms have no
tendency to converge as the distance gets greater though
they alternate in sign. The problem cannot be solved
by lumping the more remote ions in a neutral con-
tinuum but only lumping lattice points into groups that
provide rapidly converging series.’®* This procedure
leads to the expression

(ze)”

r2

U=—-A

(25.8)

for the Coulomb energy binding one ion of the charge
ze to all its neighbors in an ionic crystal. The Mad-
elung factor A, named after the physicist who first com-
puted some of the structures, has the value 1.742 for
the sodium-chloride lattice 1 (see also Appendix A, II,
Sec. 9).

Other types of long-range interaction arise. Just as
the motion of a snake cannot be predicted by observing
only one of its vertebrae, the squirming and coiling of
long-chain molecules cannot be handled statistically by
focusing attention on only the immediate surroundings
of a polar group. Kirkwood and Fuoss 2 have treated
such squirming motions of long-chain polymers and
their effect on the distribution of relaxation times.
This is only one illustration of a more general situation,
where the mechanical coupling of a whole system in-
fluences decisively its electrical reaction.

18 For a discussion of the forces in crystals, see M. Born and
M. Géppert-Mayer, “Dynamische Gittertheorie der Kristalle,”
Handbuch der Physik, Vol. 24, Pt. 2, Springer, Berlin, 1933.

1 E. Madelung, Phystk. Z. 19, 524 (1918); P. P. Ewald, Ann.
Phystk 4, 253 (1921).

2 See the summary ‘“Physical Chemistry of Polymers,” by
R. M. Fuoss, Am. Scientist 36, 258 (1948).
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26 - Piezoelectricity

One of the most striking manifestations of the freez-
ing-in of permanent dipole moments as structural ele-
ments and of their compulsory coupling to the mechan-
ical distortions of a macroscopic system is provided by
the piezoelectric effect, discovered in 1880 by the brothers
Pierre and Jacques Curie.! They found that certain
types of asymmetrical crystals, like quartz, tourmaline,
and rochelle salt, when compressed in specific diree-
tions, develop a potential difference. The effect was
called piezoelectricity (pressure-electricity) from the
Greek word mwefew, to press. Obviously, when this
direct effect exists (mechanical distortion creates a volt-
age), the converse piezoelectric effect must exist also
(the application of an electric voltage creates a me-
chanical distortion). This was predicted by Lippmann
in 1881 on thermodynamic grounds,? and verified by
the Curies.?

Until now we have tended to restrict our discussion
to isotropic materials. A piezoelectric effect can exist
only in special anisotropic dielectrics. The application
of an electric field E creates in anisotropic materials a
polarization P that points, in general, not parallel to E.
Thus the simple vector relations between the field
strength E, the polarization P, and the electric dis-
placement D (see I, Egs. 2.6 and 2.7),

P = xe¢E

D = ¢E,

(26.1)
and
(26.2)

have to be replaced by the more general expressions

P1 = x1160E1 4+ x1260E2 + x13€0E3,

P, = x2160E1 + x2260Ez + x23€0Es,  (26.3)
P; = x3160E1 4+ x3260E2 + x33€0Es3,
and
D; = e11E; + €2E2 + €3Es,
Dy = e E; + e32Es + €33E3, (26.4)

D; = e E; + e33E3 + e33Es3.

The subscripts 1, 2, 3 refer to orthogonal directions
x, Yy, 2. The relationship between the vectors is still
assumed to be a linear one, but each component of

1J. and P. Curie, Compi. rend. 91, 294 (1880).

2 M. G. Lippmann, Ann. chim. 24, 145 (1881).
3]J. and P. Curie, Compt. rend. 93, 1137 (1881).

P or D has now become a linear function of the three
components of E. The set of linear equations for P
or D is designated as a linear transformation. Their
coefficients (the susceptibilities x or permittivities ¢)
characterize the transformation and may be written in
the rectangular array

X11 X122 X138

X21 X22 Xo3 (26.5)
X31 X32 X33
and
€11 €12 €3
€21 €2 €23 (26.6)

€31 €32 €33

called the matriz of the transformation. The suscepti-
bilities and permittivities are interrelated according to
Eq.I, 2.8 as

€11
x1uu=——1=x1—1,
€

(26.7)

and so on.

Turning to the mechanical deformation of our di-
electric, we specify that we will operate within the
limits of Hooke’s law, that is, the application of a
mechanical stress results in a strain proportional to
this stress. A mechanical stress, designated by the
symbol T, operates when equal and opposite forces

put a material under tension, compression, or shear.
The dimension of T is therefore that of a pressure,
<«

[T] = [stress] = [pressure]
= [force per unit area]

= [newton/m?], (26.8)

but T is not a vector like D, E, or P pointing in one

direction; it is a physical quantity, for which a direc-
tion and its opposite are equivalent. Voigt ¢ was the
first to investigate such quantities systematically in
his classical studies on crystals and to introduce for
them the name fensor. A compressional stress normal
to some surface can be distinguished from an exten-
sional one by giving the tensor a positive or a negative

4See W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig
and Berlin, 1910.
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sign. Graphically, it may be represented by an arrow
with heads on both ends pointing in opposite direc-
tions, inwards for compressional and outwards for ex-
tensional stress. These types of stress are polar tensors
acting parallel to an axis, in distinction from shear

b
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Fig. 26.1.

_'|'3 X
Compressional stress
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Polar and axial stresses.

stresses, which are axial tensors and result from the
balancing action of torque and countertorque around
an axis (Fig. 26.1).

Stress applied to an elastic body produces a defor-
mation. Its general description is that two points,
originally located at P (0, 0, 0) and Q (z, y, 2), have
been shifted to P’ (£1, n1, 1) and Q' (x + &, y + 72,
2z + o) (Fig. 26.2). The displacement must be a con-

Q' (x+€,,y+m,,2+8,)
Q(x,y,2)

P(0,0,0)
PE TR, )

Fig. 26.2. General description of deformation.

tinuous function of the co-ordinates z, y, and z; hence

9¢ 0¢ o0&
52—51+£$+a—yy+£2,

an dn an
B S o 4 26.9
72 n1+6$x+ayy+azz, (26.9)

lilg ac a¢
;2_ﬁ+£z+6—yy+azz’

if higher derivatives are neglected.
An elongation per unit length in the z-, y-, and z-di-
rections is defined as the linear strain in these directions

y

and designated by the polar-tensor components

23

S ==

4-)1 or
0

8 =2, (26.10)
a¢

S =2

93 9z

In addition, shearing strains around the z, y, and z
axes occur, as represented by thegthree axial-tensor
components

d ad
S4 = — -—7’1
- dy 0z
ot o¢
Sg=—+ — 26.11
(-»5 a9z + oz ( )
d 0
oo, %
e T ay

Strain tensors, according to this definition, have no
dimension ([m/m]). We will designate linear strains
as positive for extension and shears as positive when
clockwise.

According to Hooke’s law, the stresses are propor-
tional to the strains, that is,

T; = > c;S; fors,j=1t06, (26.12)
> J' >
8; = 2 8;iTs. (26.13)
o 1 -

The factors s;; of the linear transformation, which in-
dicates the strain produced by the application of stress,
are called elastic compliance coefficients or simply com-
pliances. Since Eq. 26.13 is the mechanical analogue
of Eq. 26.3, the coefficients are also sometimes called
elastic susceptibilities. Owing to the existence of the
axial shear components in addition to the polar linear
components, we have thirty-six instead of nine of these
coefficients, which may be written in matrix form as

S11 812 813 S14 815 S16
S21 S22 S23 S24 S25 Sg2¢
831 S32 833 S34 835 S36
(26.14)
S41 S42 843 S44 845 46
851 852 853 S54 855 Ss6
S61 Se2 Se3 Sea S5 Se6

Similarly, we have thirty-six elastic constants c;; or
stiffness coefficients forming a matrix that is the inverse
of Eq. 26.14. Fortunately, only twenty-one of the co-




Piezoelectricity

195

efficients are independent since it can be shown that
the matrices are symmeirical, that is,

Sij = Sj;
and (26.15)
Cij = Gy

Also the matrices of the susceptibilities and permittivi-
ties (Eqgs. 26.5 and 26.6, respectively) are symmetrical,
Xii = Xii,

e (26.16)

€5 = €5,

thus the possible maximum number of independent
electrical coefficients is reduced from nine to six.

The existence of the piezoelectric effect in certain
crystals implies a coupling between the mechanical and
the electrical parameters. The application of a me-
chanical stress T produces not only a mechanical

strain S (Eq. 26.13) but also an electrical polarization
P (direct effect),
P;=>.d;T, (=123;5=1,...6). (26.17)
j «>

Similarly, the application of an electrical stress E
causes not only a polarization P (Eq. 26.3) but also a
mechanical strain S (converse effect),

S;=2.diE; ((=1,23;j=1,...6). (26.18)

A material exhibiting piezoelectricity is therefore to be
described not only in its mechanical behavior by a
matrix of elastic coefficients and in its electric behavior
by a matrix of electrical coefficients, but, in addition,
by a matrix of electromechanical coupling coefficients,
the piezoelectric coefficients d;; 1

diy di2 diz dis dis die

do1 daa daz das das dag (26.19)
d31 d3s dsz dzs dss dsg
This matrix is again symmetrical,
d,'j = dji, (2620)

hence of its eighteen coefficients only fifteen can be
independent.

How many coefficients actually exist and are inde-
pendent of each other depends on the macroscopic crys-
tal symmetry. This symmetry may be dessribed in
terms of three types of symmeiry elements: (a) a center

t Instead of the coefficients di; we can use the piezoelectric
constants e;;, introduced by the defining equation P; = Y e;; S;.
F] >

of symmetry, which requires that all erystal faces occur
in parallel pairs on opposite sides of the crystal; (b) a
plane of symmetry, which makes a crystal bilaterally
symmetrical; (¢) an n-fold axis of symmeiry around
which a erystal may be rotated by 360°/n to arrive in
a congruent position; n may assume the values 1, 2, 3, 4,
and 6, that is, there can be diad, triad, tetrad, and hexad
axes.®

According to the symmetries of their external forms,
crystals may be grouped into seven crystal systems
(Fig. 24.9), which may be characterized in terms of
axes of symmetry. Each of these systems is subdivided
into a number of crystal classes. All classes of a system
have in common the characteristic symmetry of the
system, but may have additional symmetry elements in
various combinations (see Fig. 24.8). There are thirty-
two crystal classes in all, as mentioned previously (see
Sec. 24).

The introduction of any symmetry element reflects
in the matrices of the elastic, electric, and piezoelectric
coefficients by reducing the number of independent
coefficients and making some of the constants equal to
zero. All piezoelectric coefficients disappear when a
crystal has a center of symmetry. This eliminates
eleven crystal classes; in addition, the coefficients be-
come zero in class 29 because of holoaxial symmetry
(432). Thus as Voigt * first showed, of the total thirty-
two crystal classes only twenty piezoeleciric classes re-
main. Whether or not a crystal belonging to one of
these classes is actually piezoelectric has to be estab-
lished by experiment, for instance, by the Giebe and
Scheibe click method.®

After a piezoelectric crystal has been found, charac-
teristic cuts of slabs or bars can be made in specific
orientations to the crystal axes, as shown in Fig. 26.3
for quartz,” to adapt the material to special electrome-
chanical transducer purposes. For example, various
mechanical vibrational modes can be excited, such as
lengthwise, thickness, flexure, and shear (Fig. 26.4).7
If a frequency standard of extreme accuracy is desired,
like the famous quartz clock first realized by Giebe and

8§ In place of the elementary symmetry elements a and b, we
usually use today a compound symmetry element, axes of rotary
inversion (inversion azes), symbolized in terms of their degree as
tion through 360°/n with an inversion through the center of the
crystal. Thus, as we can easily verify, 1 is equivalent to a center
of symmetry, 2 to a plane of symmetry, and 6 to a simple three-
fold axis (triad) perpendicular to a plane of symmetry (see, for
example, F. C. Phillips, An Introduction to Crystallography,
Longmans, Green and Co., London, New York, 1949).

¢ E. Giebe and A. Scheibe, Z. Physik 33, 760 (1925).

7W. G. Cady, “Crystals and Electricity,” Scientific American,
December, 1949, p. 46.
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Scheibe,® cuts are made in an orientation that assures
a minimum temperature dependence of the vibrational
modes. All transducer properties may be evaluated by
measuring the mechanical, electric, and piezoelectric
coefficients as function of temperature with due refer-
ence to the mechanical freedom of the material (free or
clamped) and to its electrical status (short-circuited or
open-circuited).

By the macroscopic theory certain crystal classes
can be singled out as permitting piezoelectricity, and

Fig. 26.3. Some characteristic cuts of quartz crystal. (After

Cady.”)

coefficients and methods of measurement can be pre-
scribed which determine the behavior of a crystal trans-
ducer.® But which crystals are actually piezoelectric, a
macroscopic theory cannot predict. Thus the hunt is
on for better piezoelectrics as well as for a copious sup-
ply, because piezoelectric devices have become of out-
standing technical importance. Especially well known
are the applications of piezoelectrics as transducers in

8 B. Giebe and A. Scheibe, Elekt. Nachr.-Technik 5, 65 (1928);
A. Scheibe, Piezoelekirizitdt des Quarzes, Theodor Steinkopf,
Dresden and Leipzig, 1938.

9 For detailed discussion of the macroscopic aspects of piezo-
electricity and of the applications of piezoelectric materials, see
the books of W. G. Cady, Piezoelectricity, McGraw-Hill Book
Co., New York, 1946, p. 287, and W. P. Mason, Piezoelectric
Crystals and Their Applications to Ultrasonics, D. Van Nostrand,
New York, 1950.

the sound and ultrasonic field initiated by Langevin
with his sonar experiments in World War I, and as fre-
quency-control elements introduced by Cady ™ shortly
afterwards.

The empirical search for piezoelectric erystals might
be much more effective if guided by a molecular theory
of piezoelectricity. In the preceding discussion we
have confined ourselves to the external geometry of
crystals. The thirty-two crystal classes resulted from
symmetry operations which referred to the origin of
the crystallographic axes. The center of symmetry
was located in this origin, and the planes and axes of
symmetry passed through this point. The thirty-two

Some vibrational modes of piezoelectric crystals

S e
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Fig. 26.4. Typical mechanical vibration modes. (After Cady.”)

groups of macroscopic crystal symmetry are therefore
also designated as point groups. For the formulation
of a molecular theory we have to shift from this exter-
nal contemplation of the habit of crystals to a con-
sideration of their internal constitution.
Crystallography began this molecular approach in
1784 with the work of the abbé Haiiy,? who formulated
the idea that a crystal is an orderly assemblage ob-
tained by the regular repetition of some unit of pattern.
Haiiy visualized this unit as a solid geometrical build-
ing block, for example, a parallelepiped. If, on the
other hand, the unit is represented quite unspecifically
by a point, its center of gravity, space lattices may be
constructed by the parallel translation of such point in
the z, y, and 2z directions over repetitive periodic dis-
tances. Thus a skeleton is formed of the internal
10 P. Langevin, French Patent 505,703 (appl. Sept. 17, 1918).

1 W. G. Cady, U. S. Patent 1,450,246 (appl. Jan. 28, 1920).
12 R. J. Hatiy, Traité de minéralogie, Paris (1801).
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structure of a crystal like the steel skeleton of a sky-
scraper. The condition is that each point finds itself
in an identical environment. Bravais® found that
fourteen different space lattices can be constructed on
the basis of this requirement; Fig. 26.5 shows the unit
cells of these Bravais lattices.*

These fourteen space lattices designate crystals of the
highest possible symmetry (holosymmetry) in their re-
spective crystal systems because the lattice points are

Simple Simple Base centered
triclinic monoclinic
Simple Base centered Body centered Face centered
orthorhombic
Rhombohedral Hexagonal Simple Body centered
(trigonal) tetragonal
- @
Simple Body centered Face centered
cubic
Fig. 26.5. The fourteen Bravais lattices. (After Barrett.!4)

visualized without any structure of their own. Bravais
already realized that the lower symmetry exhibited by
many crystals must result from the constitution of the
molecular groups signified by the lattice points. The
actual structure of such groups can be of a bewildering
variety. However, for the construetion of crystal lat-
tices the symmetry of the arrangement of these molecu-
lar building stones around a lattice point counts and
not the structural details.

Sohncke ' realized that the axes of rotation intro-
duced by morphological crystallography might repre-
sent, from the standpoint of molecular composition, a
simple axis or a screw axts that combines with the rota-

18 A. Bravais, J. Math. 14, 141 (1849).

1 C. G. Barrett, Structure of Metals, McGraw-Hill Book Co.,
1952.

15 L., Sohncke, Entwicklung einer Theorie der Kristallstruktur,
Teubner, Leipzig, 1879.

tion a translation of the molecular unit parallel to the
axis (Fig. 26.6). He arrived thus at 65 point systems
which satisfied the requirement of identical environ-
ment for each lattice point if screw axes are admitted.

- A * ?’
| e
[ g
o— | -——
]
il -,
=
’—".
fes e
| / ~
2-fold 2-fold 3-fold 3-fold 3-fold
axis screw axis axis left hand right hand

screw axis screw axis

Fig. 26.6. Axes and screw axes. (Adapted from Phillips.5)

Fedorow,'® Schoenflies,” and Barlow,'® by independent
discovery, completed the theory of molecular crystal
symmetry. They conceived that the symmetry planes
of the macroscopic crystal geometry might signify,
from the molecular standpoint, either a simple mirror
reflection or a reflection combined with a translation
of the building stones parallel to the mirror plane
(Fig. 26.7). This introduction of glide reflection planes

Qoo 0 R
I
7

Glide reflection

7

Mirror reflection

Fig. 26.7. Reflection and glide reflection planes.

in addition to screw axes expanded the possible number
of point systems to 230.

The 230 different combinations of symmetry elements
from which the space structure of crystals can be con-
structed, are called the space groups of crystallography.
Von Laue’s discovery of X-ray diffraction in 1912 1

16 B, v. Fedorow, Z. Krist. 38, 321 (1904).

17 A. M. Schoenflies, Kristallsyteme und Kristallstruktur, Teub-
ner, Leipzig, 1891.

18°W. Barlow, Mineral. Mag. 11, 119 (1895).

19 M. von Laue, W. Friedrich, and P. Knipping, Minchener
Sitzungsberichie, 1912, p. 303; Ann. Physik 41, 971 (1913).
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opened the way for an experimental allocation of crys-
tals to space groups by the analysis of their diffraction
patterns.

The molecular theory of crystal symmetry, based on
the arrangement of point masses, cannot provide a
direct answer to our question: Which crystals are piezo-

electric? What is required is a molecular re-interpre-
tation of crystal symmetry on the basis of point charges
and an analysis of the charge arrangements, which may
lead to piezoelectricity. As a final step these charge
patterns have to be identified with actual molecular
groups occurring in crystal chemistry.

27 - Dipole Moments, Piezoelectricity and Crystal Structure!

An electric field polarizes a material by inducing new
dipole moments or by changing the magnitude and ori-
entation of pre-existing permanent moments. Both
effects alter the mechanical dimensions of a solid by
moving electrons and nuclei to new equilibrium posi-
tions. Mechanical stress changes also the dimensions
of a material, but it acts on the mass points without
discerning their charges. Therefore no dipole moments
can be induced from the neutral state by such stress,
nor will a dipole polarization arise by the mechanical
distortion of a centrosymmetrical array of permanent
moments. An electric field removes a center of charge
symmetry by creating a polar axis; stress creates a bi-
polar axis. Hence; whereas polarization in such cases
produces mechanical distortion, mechanical distortion
produces no dipole polarization. This electromechani-
cal effect, which has no inverse and is always present
in dielectrics, is called electrostriction.

Prezoelectricity, in contrast, is characterized by a
one-to-one correspondence of direct and inverse effect
(see Sec. 26). Hence, it must be caused by pre-existing
permanent dipole moments arranged without a center
of symmetry. The absence of a center of charge sym-
metry does not imply that piezoelectric crystals must
have a polar axis. An axis will exist only when the
individual momentum vectors in the unit cell, instead
of mutually canceling, add up to a permanent resultant
moment. Since the magnitude of such resultant mo-
ment depends on the separation distance of the parti-
cles, that is, on the lattice dimensions, uniform heating
or cooling of a permanently polarized crystal will change
its inherent polarization. An outside observer, in con-
sequence, will notice that a temperature change pro-
duees a voltage across the crystal, opposite in sign for
heating and cooling. This effect is known as pyroelec-
tricity (from the Greek wupés = fire). Crystals that
have a polar axis are pyroelectric in addition to being
piezoelectrie.

Macroscopic crystal symmetry prescribes that a polar

1 See A. von Hippel, Z. Physik 133, 158 (1952).

axis can develop only in an acentric crystal that has
neither a reflection plane nor a twofold axis perpendicu-
lar to the prospective direction. This restriction im-
parts to only 10 of the 20 piezoelectric classes the po-
tentiality for pyroelectricity, as Voigt? pointed out.
To arrive at more detailed conclusions we have to
investigate the role played by permanent electric di-
pole moments in the formation of erystal structures.
In Sec. 26 we applied molecular symmetry considera-
tions to the geometrical arrangement of the mass points
in a unit cell; by admitting screw axes and glide reflec-
tion planes, 230 possible space groups resulted. This
breaking down of the 32 classes of macroscopic sym-
metry (point groups) into 230 space groups does not
help offhand to pin-point piezoelectric crystals more
accurately. The molecular interpretation of crystal
symmetry is concerned with the constellations of point
masses without discerning their charges. By identify-
ing the mass points as positive and negative ions,
Born,? in his famous dynamics of crystal lattices, ar-
rived at an electrical structure of crystals and could for-
mulate the piezoelectric response in terms of the dis-
placement of the individual ions under the action of me-
chanical stress and electric fields.* For the diatomic
ionic lattice of the regular system, characterized by
three elastic (¢11, 12, c44), one piezoelectric (e14), and
one dielectric constant (e), an interrelating equation

resulted
€ — € Ciq
2
€14 = (c12 — Ca4) —-
47 Ci2

(27.1)

Checked on the sphalerite structure of ZnS, this pre-
diction of the piezoelectric coefficient from elastic and
dielectric constants proved a disappointment; the theo-

2'W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig and
Berlin, 1910.

3See M. Born and M. Géppert-Mayer, “Dynamische- Gitter-
theorie der Kristalle,” Handbuch der Physik, J. Springer, Berlin,
Vol. 24, Part 2, 1933.

4+ M. Born, Physik. Z. 19, 539 (1918); M. Born and E. Bor-
mann, Ann. Physik 62, 218 (1920).
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retical value was about ten times the measured one.
Born suspected correctly that zinc blende was not com-
pletely ionic. Heckmann ® repeated the calculation
with inclusion of the polarizability of the ions, but the
numerical agreement did not improve. The discrep-
ancy obviously can be removed by postulating for ZnS
a proper mixture of covalent and ionic binding, but
this procedure is not very illuminating from the stand-
point of obtaining a deeper insight as to why certain
crystals are piezoelectric. The ionic point-lattice
theory suffers quite generally from the fact that it
arrives at its results by a cumbersome summation of
the interactions of individual displacements and that
a graphical picture of any concerted action of lattice
points is lost by this pulverizing process.

True piezoelectricity, as stated above, is based on the
existence of permanent dipole moments. A feasible
alternative procedure is therefore to picture piezoelec-
tric erystals as networks of permanent moments and to
investigate the possible arrangements and reactions of
such moments. Obviously, the constellations have to
be compatible with crystal symmetry; hence, as a first
step, we consider the dipole configurations resulting
from elementary symmetry operations (Fig. 27.1).

. y 4
\ / : <
LY

Center of symmetry Plane of symmetry Triad axis Tetrad axis

Fig. 27.1. Dipole configurations resulting from elementary

symmetry operations.

Dipole moments facing a center of symmetry are
converted into antiparallel pairs; components normal
to a plane of symmetry or to a diad, tetrad, or hexad
axis become also antiparallel pairs. The condition that
piezoelectric crystals cannot have a center of symme-
try, may be generalized into the statement that anti-
parallel pairs do not contribute to the first-order effects
of piezoelectricity. Dipole components parallel to a
symmetry plane become parallel pairs; components
parallel to an n-fold axis of rotation are converted into
parallel groups of n dipoles. Such components are
piezoelectrically active and may produce a polar axis.
A unique role is played by the triad axis due to the
property of converting a normal component, not into
antiparallel pairs, but into three dipole moments ori-

5 G. Heckmann, Z. Physik 23, 47 (1924); 33, 646 (1925).

ented at 120°. This constellation leads to piezoelec-
tricity because pressure parallel to one moment of such
star pattern will spread the angle between the other
two moments and thus unbalance the arrangement.

Following up this approach, we can characterize the
20 piezoelectric classes by dipole configurations accord-
ing to their symmetry elements (Fig. 27.2). These con-
figurations do not represent the actual arrangements of
the moments in the unit cell but their net constellation
required by crystal symmetry. It becomes graphically
clear how a polar axis arises either by a one-sided ar-
rangement of dipole moments or the unbalance between
geometrically similar but electrically unlike sets of mo-
ments. The arrow direction of the polar axis in piezo-
electric crystals is prescribed by the asymmetry in the
grouping of the moments and cannot be reversed.

The dipole symbols of Fig. 27.2 allow us to derive the
matrices of the piezoelectric coefficients by visual in-
spection. The general matrix

din dizg diz dis dis dis
doy doz doz dos das dos
d31 dso dss dss dss dse

(27.2)

symbolizes the electric polarization P produced in the
three orthogonal directions 1, 2, 3, by the application
of a mechanical stress T, that is,

P; = 2 dyT;
j -

Considering, for example, the monoclinic crystal class
IIT with its two equal dipole moments oriented sym-
metrically to the diad axis 3 upwards from the 1,2-plane
(Fig. 27.3), we observe that the 1,2-plane projection
contains an antiparallel pair which cannot contribute;
hence d;; = di2 = do1 = dsz = 0. However, applica-
tion of a stress T'; or T stretches the circle in the 1,2-
plane into an ellipse, the momentum vectors tip sym-
metrically to the polar axis; hence the components par-
allel to this axis and thus the moment in direction 3
changes (d3; and dzp % 0). A stress T'; parallel to the
polar axis changes also the angle of the vector sym-
metrically, hence alters this moment (dszz # 0); but
the components in the 1,2-plane remain an antiparallel
pair (d;3 = dgs = 0). A shearing stress around the
axes 1 or 2 (T4 or Ts) tips both vectors towards the
1 and 2 axis in the same direction; hence dy4, d;5, dog,
dss # 0. This tilting shortens the one and lengthens
the other vector in the direction of the polar axis by
equal amounts; hence dz4 = dzgs = 0. Finally, a shear
around the polar axis 3 tips the two vectors in opposite
directions; hence again the antiparallel components
balance (dig = dg26 = 0), while the parallel components

(i=1,23j=1,...,6). (27.3)
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lengthen or shorten (dsg = 0). Thus we arrive at the
matrix of class II1:
0 0 O dyg dis O
0 0 O doy dos O
d31 d32 d33 0 0 dgﬁ

(27.4)

The actual planar or spatial arrangement of dipoles
can be discussed in simple terms only when the ions
are represented as spheres that assume neutralizing
configurations of densest packing compatible with
their radius ratio. Since only diad, triad, tetrad, and
hexad axes of symmetry exist, an ion can be surrounded
in a plane by 2, 3, 4, or 6 counterions, or in space by
3, 4, 6, 8, or 12 nearest neighbors of opposite polarity,
as the co-ordination number indicates (see Table 24.1).

2
T

Shear tensor
T, and T3 Te

Polar stress tensors

Fig. 27.3. Derivation of the piezoelectric matrix for class III.

Of these ionic groups of perfect geometrical regularity,
only those with a triad axis produce dipole moments in
an oblique mutual orientation. They correspond to a
tetrahedral arrangement of the ions in space. Hence
we may expect that tetrahedra are decisive piezoelec-
tric building stones in crystals constructed of regular
polyhedra. The tetrahedron is the only regular poly-
hedron involving nearest neighbors that has no center
of symmetry. Hence, we would have come to the same
conclusion by demanding that a piezoelectric crystal
must not only be acentric in its macroscopic structure
but also in the molecular structure of the groups re-
sponsible for piezoelectricity.

Let us illustrate the situation on Born’s classical
example of zinc sulfide. The material exists in two
polymorphic forms as cubic zinec blende (sphalerite)
and hexagonal wurtzite. Compared in their usual ref-
erence systems, the diamond structure of sphalerite
looks very different from the crystal structure of wurt-
zite,’ but by orienting the space diagonal of the former
parallel to the c-axis of the latter, the correlation be-
tween the two arrangements becomes evident (Fig.
27.4). Both structures can be built up from zinc and

8 A. F. Wells, Structural Inorganic Chemistry, Oxford Univer-
sity Press, 1945, p. 83.

sulfur atoms bonding mutually with tetrahedral s,p-
hybrid bonds of partly ionic character. Thus each
atom type can be characterized by a tetrahedral con-
figuration of dipole moments (Fig. 27.5). In joining an

Fig. 27.4. Crystal structure of sphalerite (a), of wurtzite (b)
(after Wells ¢), and of sphalerite (¢) with [111] direction vertical.

atom of zinc and sulfur we face the same choice as in
the formation of an ethane molecule from two methane
radicals; we may arrange the dipole moments of the two
partners in either an eclipsed or a staggered configura-
tion. Thus the two structures of ZnS result, formed by
diatomic ZnS molecules, orientated with their axis par-
allel to che c-direction and polymerized either in the
staggered (sphalerite) or eclipsed (wurtzite) orientation
of their moments.

It can be easily seen that both configurations will be
piezoelectric. Pressure in the c-direction compresses

.Zn

Q*T@ £
?@%@

ZnS Tetrahedral
arrangements

Eclipsed Staggered

Fig. 27.5. Possible orientations of ZnS in tetrahedral bonding.

the originating diatomic ZnS molecules in their valence
direction while applying to the other three bonds a
bending stress which flattens their angle with the c-axis.
This reduces the parallel components of these bonds
which balanced the 8 — Zn moment in the c-direction;
thus a net polarization in this direction appears.
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Although both forms are piezoelectric, only wurtzite
is pyroelectric. This again is understandable on the
basis of Figs. 27.4 and 27.5; the eclipsed orientation of
the dipole moments in wurtzite places the zinc and
sulfur atoms of the side groups above each other in the
c-direction. The resulting electrostatic attraction acts
like a compression, and a permanent polar c-axis is
created.

Additional evidence for the usefulness of the dipole
moment approach to the analysis of these structures
can be found in the sequence of zinc compounds: ZnO
— ZnS — ZnSe — ZnTe. X-ray analysis shows
that ZnO forms only the wurtzite structure, ZnS and
ZnSe are known in both modifications, whereas ZnTe
occurs only in the sphalerite structure. This trend is
easily understandable if we return once more to the di-
atomic ZnX molecule of Fig. 27.5 and its tetrahedral

array of dipole moments. We know from organic chem-
istry that for ethane and similar molecules the stag-
gered position is the stable one because the CHg groups
in the eclipsed position are in steric contact and thus
repel each other. In our case the contending groups
are ZnX3 and XZns of opposite polarity; thus electro-
static attraction favors the eclipsed, and steric hin-
drance favors the staggered position. The polarity de-
creases and the size increases from oxygen to tellurium.
Hence ZnO, the most polar of these compounds, as-
sumes the eclipsed position and forms the wurtzite
structure only; the attraction between the opposing
groups is strong enough even to shorten the Zn-O
distance in the c-direction by about 5 percent. In
ZnTe, at the other extreme, the steric hindrance domi-
nates so completely that only the staggered configura-
tion of the sphalerite structure can be realized.

28 - Ferroelectricity

Permanent electric dipole moments, as the preceding
discussion showed, are constructional elements in the
formation of crystal structures and are therefore, in
general, firmly anchored in place. There may exist
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Fig. 28.1. Thermal hysteresis in first-order transition of thallous
iodide (determined by dielectric constant measurement).

several possible arrangements, as discussed for ZnS;
and depending on pressure and temperature, the one or
the other proves to be the more stable one. If the trans-
formation can take place by some change in parameters
without a fundamental rebuilding of the structure from
crystal nuclei, we observe at some critical temperature

or pressure a sudden phase transition of the first kind
(also called of first order) in which energy, volume, and
crystal structure change discontinuously.

Actually, as dielectric analysis testifies, these transi-
tions are frequently not as sudden as thermodynamics
leads us to expect. Figure 28.1, for example, shows the
transition of TII from cubic to rhombic near 150°C, as
observed by Smakula and Westphal of the Laboratory
for Insulation Research. Approached from the cubic
phase, the transition takes place at a lower tempera-
ture than from the rhombic phase. Similar cases of
thermal hysteresis have been observed by Smyth and
co-workers for organic and inorganic materials contain-
ing permanent dipoles.! Such hysteresis arises when
the transition between the two states is delayed by
high activation energies; in consequence, a sharp transi-
tion temperature will be observed only when the tem-
perature is lowered at an excessively slow rate.

In contrast to first-order transformations, in which
permanent dipoles may assume new orientations as in
the sphalerite-wurtzite transition but stay “frozen in,”
the Debye theory of polar molecules based on Mosotti’s
local field foresees the occurrence of phase transitions
by the spontaneous alignment of “free’” electric dipoles
at a critical Curie temperature (Mosotti catastrophe,
Sec. 23). In this case, energy, volume, and structure
might change more or less continuously, but the tem-

1 See, for example, R. W. Crowe and C. P. Smyth, J. Am.
Chem. Soc. 72, 1098 (1950).
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perature derivatives of these quantities would have sin-
gularities. Such continuous phase transitions have been
named by Ehrenfest 2 transttions of the second kind.
Since at the Curie temperature the first derivative of
the energy, the specific heat, jumps and describes a
typical A-shaped characteristic, this transition is of the
second order, and the Curie point is also called a A-point.

Ferroelectricity, the spontaneous alignment of elec-
tric dipoles by mutual interaction, was not observed
until recently, and few materials are, as yet, known to
be true ferroelectrics. Their outstanding representa-
tives are rochelle salt, the tetrahydrate of potassium-
sodium tartrate, recognized as a ferroelectric by Val-
asek 3 in 1921; potassium dihydrogen phosphate and
arsenate by Busch and Scherrer ¢ in 1935; and barium
titanate, noticed for its unusual dielectric properties by
Wainer and Salomon ® in 1942-1943 and established as
a new ferroelectric material ® at the Massachusetts In-
stitute of Technology in 1943-1944.7

Additional ferroelectrics, related to the titanates,
have been found recently by Matthias.® They are
NaCb0O3z, KCbO3, NaTaO; and KTaO; of the perov-
skite structure; WO3, in which the WOg octohedra cor-
respond in their arrangement to the TiOg octohedra;
and LiTaOs; and LiCbOj3 of the ilmenite structure.

The crystals of the first and second group are of rela-
tively complicated structure; the ferroelectric range of
rochelle salt is very narrow and that of the phosphates
and arsenates limited to low temperatures (Fig. 28.2).
The materials of both groups are piezoelectric above
their Curie points and develop ferroelectricity in one
axis direction only. Barium titanate, in contrast,
crystallizes in the simple cubic perovskite structure

2 P. Ehrenfest, Comm. Phys. Lab. Leiden Univ. Suppl. 75b,
1933; see also L. Tisza, in Phase Transformations in Solids, John
Wiley and Sons, New York, 1951, pp. 1-37.

3 J. Valasek, Phys. Rev. 17, 475 (1921).

4 G. Busch and P. Scherrer, Naturwiss. 23, 737 (1935).

8 E. Wainer and A. N. Salomon, Titanium Alloy Manufactur-
ing Co. Elec. Rep. 8 (1942); 9 and 10 (1943).

¢ A, von Hippel and co-workers, N.D.R.C. Reps. 300 (August,
1944) and 540 (October, 1945); A. von Hippel, R. G. Brecken-
ridge, F. G. Chesley, and L. Tisza, Ind. Eng. Chem. 38, 1097
(1946).

7The existence of ferroelectricity in BaTiO3 was initially
denied by B. M. Vul and I. M. Goldman [Compt. rend. acad. sci.
U.R.S8.S. 46, 1939 (1945)] and then confirmed in the U.S.S.R.
[B. M. Vul and F. L. Vereschagen, Compt. rend. acad. sci.
U.R.8.8. /8, 634 (1946); B. M. Vul, J. Phys. U.S.8.R. 10, 95
(1946)] and in England, Holland, and Switzerland. For a more
general literature survey see, for example, W. Jackson, Proc.
Inst. Elec. Engrs. (London) Pt. 3, 97, 285 (1950), and E. T.
Jaynes, Ferroelectricity, Princeton University Press, 1953.

8 B. T. Matthias, Phys. Rev. 75, 1771 (1949); 76, 175, 430,
1886 (1949); J. K. Hulm, B. T. Matthias, and E. A. Long, Phys.
Rev. 79, 885 (1950).

(Fig. 28.3), hence has a center of symmetry and is not
piezoelectric above its Curie point, at ea. 120°C. It
may be employed as a single crystal or as a rugged
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Fig. 28.2. Ferroelectric range and crystal symmetry of rochelle
salt and potassium dihydrogen phosphate (initial dielectric
constant and spontaneous polarization).

ceramic material that can be formed in any shape de-
sired. Thus this substance and its derivatives lend
themselves much better to fundamental investigations
and a variety of applications. Since also most of our
own studies on ferroelectrics were concerned with

Fig. 28.3. Ideal perovskite structure.

BaTiO3,° we shall illustrate the pertinent phenomena
on this material, and then draw some general conclu-
sions.

Barium titanate ceramics

When a multicrystalline sample of BaTiOs; cools
down through the Curie region, a number of properties
undergo rapid changes. The dielectric constant and
loss tangent traverse a sharp maximum and minimum,

? See A. von Hippel, Revs. Mod. Phys. 22, 221 (1950); Z. Physik
133, 158 (1952).
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respectively, the slope of the thermal expansion char-
acteristic alters, and ferroelectric hysteresis loops ap-
pear (Fig. 28.4).% The X-ray diagram of the cubic

tan @ == (k-1 €,

%%% 4. /fy 4J/

-175°C -65°C 30°c 90°C 120°C
Fig. 28.4. Ferroe]ectrlc hysteresis loops.?

structure simultaneously becomes transformed pro-
gressively into that of a pseudo-cubic arrangement,
expressed clearly in the multiplicity of the CuK, doub-
let of the back-reflection lines.® Accurate measure-
ments of Megaw ° established this new phase as tetrag-
onal (Fig. 28.5).
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Fig. 28.5. Variation of all dimensions of barium titanate with
temperature. (After Megaw.1)

The loss curve and the thermal expansion character-
istic make it apparent that some additional phase tran-
sition occurs near 0°C. When the initial permittivity
derived from the hysteresis loops is plotted against
temperature, two lower transition points, located near
0° and —70°C become clearly visible ¢ (Fig. 28.6).
They become more pronounced as the voltage increases,
but the material remains ferroelectric throughout as
the existence of the hysteresis loops indicates.

A successive replacement of barium by strontium ions
lowers the Curie point systematically as Wainer and

1 H, D. Megaw, Trans. Faraday Soc. 42A, 224 (1946); Proc.
Roy. Soc. (London) A189, 261 (1947); see also R. G. Rhodes, Acta
Cryst. 4, 105 (1951).

Salomon 5 already observed. Jackson and Reddish
followed this shifting down to —190°C, and Rushman
and Strivens 12 established a linear dependence of the
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Fig. 28.6. Dielectric constant of barium titanate ceramic as
function of temperature. (Measurements of W. B. Westphal,
Laboratory for Insulation Research.)

Curie temperature on the lattice constant of the bar-
ium-strontium titanate mixed crystals.

If we observe the temperature dependence of the
electric susceptibility above the Curie point, we find
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Fig. 28.7. Confirmation of Curie-Weiss law on barium-strontium
titanate ceramic. (After Roberts.13)

at low field strength the Curie-Weiss law fulfilled
(Fig. 28.7), but at higher fields a strong dependence of
x on the applied field 1 (Fig. 28.8). The useful range

11 W. Jackson and W. Reddish, Nature 156, 717 (1945).

2D, F. Rushman and M. A. Strivens, Trans. Faraday Soc.
42A, 231 (1946).

13 5. Roberts, Phys. Rev. 71, 890 (1947).

14 A consequence of this pulling-up of the Curie point by exter-
nal fields is the “‘partial” hysteresis loops observed recently by
W. J. Merz [Phys. Rev. 90, 375 (1953)].
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of this nonlinearity of the polarization in high fields
extends to about 40°C above the thermal Curie point
and promises to be of special technical importance
since the accompanying losses are much smaller than
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Fig. 28.8. TField-strength dependence of dielectric constant for
barium-strontium titanate ceramic (above Curie point). (After
Roberts.1s)

below the Curie point (Fig. 28.9). The reason for this
lower loss is that in polarizing above the Curie point we
do not have to overcome a pre-existing domain pattern
(see below). The constant in the Curie-Weiss law is not

i
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Fig. 28.9. Temperature dependence of dielectric constant and
loss tangent of barium titanate ceramic. (Measurements of
W. B. Westphal, Laboratory for Insulation Research.)

3T, as the simple theory predicts (see Eq. 23.7) but
much larger; for the Ba-SrTiO3 sample of Fig. 28.7
with 7, = 281°K, a value of 88,000 was obtained.
Since the field-strength dependence of the dielectric
constant makes the ceramics useful as nonlinear di-
electrics for a number of applications such as dielectric
amplifiers, modulators, and memory devices, and for
the tuning of circuits, their behavior under the action

of a biasing field was investigated in the Laboratory
for Insulation Research by Roberts ® in more detail.
As the measuring frequency approached the megacycle
range, strong resonance effects occurred t (Fig. 28.10).
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Fig. 28.10. Resonance spectrum of BaTiOz disk.
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(After |

These resonances persisted after the biasing d-c voltage
was disconnected, but could be wiped out by a bias of
the opposite sign. When this resonance absorption of
a disk was measured and then a piece of the sample
broken off, the spectrum shifted to higher frequencies.
The biasing field transformed the ceramic disk into a
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Fig. 28.11. Relaxation spectrum of the ferroelectric state in

barium titanate ceramic at room temperature. (Measurements
of W. B. Westphal, Laboratory for Insulation Research.)

piezoelectric resonator, and its piezoelectric response
persisted also without this field because of the rema-
nence of the polarization.

t We expected in 1944 that BaTiO3; might be piezoelectric
below the Curie point, but the experiments with the Giebe-
Scheibe click tester on powdered material, except in one experi-
ment, gave a negative result. This was caused by the domain
structure, as we realized later.
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Systematic frequency response measurements have
been in progress in our laboratory for some time; 15 the
high dielectric constant and absorption make it very
difficult to obtain accurate temperature characteristics
in the microwave range. The essential phenomenon is
a relaxation spectrum, as also Powles and Jackson !
found, commencing at about 10® cycles and reducing
the dielectric constant at about 3 X 10'® cycles to a

120 160 200
Temperature °C

40 80 120 160 200
Temperature®C

Fig. 28.12. Effect of temperature and frequency on the initial

dielectric constant and the loss of barium titanate ceramiec.

(Measurements of W. B. Westphal, Laboratory for Insulation
Research.)

value of ca. 150 (Fig. 28.11). Conforming with this
tapering off of the ferroelectric response, the loss in-
creases, and the absolute effect of a biasing voltage de-
clines towards the microwave region.” Figure 28.12
surveys the effect of temperature and frequency on the
initial dielectric constant and the loss of BaTiOj
ceramic. The temperature dependence can be changed
within wide limits by addition agents.

15 A. von Hippel and W. B. Westphal, National Research
Council Conference on Electrical Insulation, October, 1948.

18J, G. Powles and W. Jackson, Proc. Inst. Elec. Engrs. (Lon-
don) Pt. 3, 96, 383 (1949).

17 Possible explanations for this frequency dependence are dis-
cussed by C. Kittel, Phys. Rev. 83, 458 (1951), and A. von Hippel,
Z. Physik 133, 171 (1952); more experimental information is
required.

Single crystals

We cannot expect to arrive at a real understanding
of solid-state phenomena without a study of single
crystals. BaTiOjz crystals of hexagonal and of cubic
symmetry were obtained in Switzerland by Blattner,
Matthias, Merz, and Scherrer ¥ from ternary melts,
and this method was further improved by Matthias in
our laboratory.

A microscopic inspection of the pseudo-cubic type
revealed that the crystals, cooled to room temperature,
contained a variety of shaded areas ' (Fig. 28.13). In
an electric field these areas were seen to grow or con-
tract, sections of new shading appeared suddenly, and
disconnecting of the voltage left a remanent state
which required a countervoltage for its removal. Ob-
served in an alternating field with stroboscopic illumi-
nation, the whole crystal appeared to be in violent agi-
tation, and viewed in polarized light flickering bire-
fringence colors appeared. The domain structure of
the material, only indirectly deducible for the opaque
ferromagnetics, was visible in all details in the trans-
parent ferroelectrics.®? Since that time, domain pat-
terns have also been found in the other groups of ferro-
electrics.?

A careful analysis of the patterns revealed their laws
of formation in various ramifications.*® As the cubic
crystal cools through the Curie temperature, a polar
axis develops and forces the crystal into tetragonal
symmetry, with the axis forming the c-direction (Fig.
28.14). Since any one of the cube edges may develop
into the polar axis, a twinning in the (110) planes tends
to take place and laminae form, with the c-axis alter-
nating its direction by 90°. Seen from the front these
laminae produce a diagonal striation whereas in the
top and side views striae parallel to the cube edges re-
sult. Since the optical index of refraction is smaller
parallel to the polar axis than perpendicular to it (n,
— ng = —0.055 for sodium light at room tempera-
ture), the orientation of the axis and the thickness of
the lamellae can be measured by the birefringence
colors in polarized light. A strong electric field may
wipe out the domain pattern more or less completely;
the crystallographer has thus to accept the unusual
situation that the c-axis of the BaTiOs crystal can be
turned around at will by the application of an electrie
field. :

18 /. Blattner, B. Matthias, W. Merz, and P. Scherrer, Experi-
eniia 3, 148 (1947).

1 B. Matthias and A. von Hippel, Phys. Rev. 73, 1378 (1948);
see also H. Blattner, W. Kinzig, W. J. Merz, and H. Sutter,
Helv. Phys. Acta 21, 207 (1948).

20 P, W. Forsbergh, Jr., Phys. Rev. 76, 1187 (1949).

2 See, for example, the study of T. Mitsui and J. Furuichi on
rochelle salt [Phys. Rev. 90, 193 (1953)].




Ferroelectricity 207

No field applied +2000 volts/cm

Field removed —2000 volts/cm
Fig. 28.13. Domain areas in BaTiO; crystal and effect of electric field.1®

Fig. 28.14. Twinning of BaTiO3 crystal.’®
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The build-up of the domains as Forsbergh 2 estab-
lished in accurate detail begins with the formation of
wedge-shaped laminae (Fig. 28.15). Mechanical pres-
sure or electric fields can drive these wedges through

Fig. 28.15. Wedge-shaped laminar domains in BaTiO3 crystal.
(After Forsbergh.20)

the crystal or squeeze them out again. The final do-
main structure is therefore dependent on the strains
originally contained in the material and on their modi-
fication by the domain of the ferroelectric state. If the
first set of wedges is crossed by a second one at right
angles, a system of intersecting laminae can be devel-

oped which leads finally to the beautiful square-net
pattern of Fig. 28.16. Its building blocks have been
identified in successive stages by birefringence meas-
urements.

Fig. 28.16. Square-net domain pattern. (After Forsbergh?).

Above the Curie point the cubic crystal appears dark
between crossed nicols; as it cools through the Curie
region, the domain patterns develop as described.
Further cooling through the transition regions near
0° and —70°C, produces sudden changes in the do-
main structure. Optical analysis established the fact
that the polar axis, originally formed in the cube-edge
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Fig. 28.17. Phase transitions of barium titanate.
bergh.20)

(After Fors-

direction, jumps abruptly, first in the face diagonal,
and near —70°C into the space diagonal position (Fig.
28.17). The cubic BaTiOs3, changing at the Curie point
into a tetragonal erystal, transforms by these two sub-
sequent first-order transitions into an orthorhombic
and finally a trigonal modification.? Electrical analy-
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sis by Merz ? in the Laboratory for Insulation Re-
search and a careful X-ray study carried through in
England by Kay and Vousden 2 have led to the same
conclusion.

A decisive factor in the formation of ferromagnetic
domains is the demagnetizing field which originates

Fig. 28.18. Square hysteresis loop of barium titanate single-
domain crystal. (After Merz.22)

from the free ends of dipole chains at the boundaries
of the material. By breaking up a single macroscopic
block of parallel dipoles into a compensating array of
micro-blocks, this field can be practically eliminated.
In ferroelectrics the free surface charge of terminating
dipoles may be compensated for by the attraction of
countercharges through conduction. We were there-
fore not completely surprised to find crystals which
give the optical appearance of a single domain. Since,
for the theory of ferroelectricity, the properties of a
single domain are decisive, these crystals were inves-
tigated in detail.?

Application of an alternating field produces initially
distorted hysteresis loops, but the disturbances disap-
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Fig. 28.19. Spontaneous polarization P; of barium titanate
crystal as function of temperature. (After Merz.2?)

pear after the crystal has been taken through several
heating cycles with systematically increased field
strength.

It seems, therefore, that the single domain crystals

2 W. J. Merz, Phys. Rev. 76, 1221 (1949).
2 H. F. Kay and P. Vousden, Phil. Mag. (7] 40, 1019 (1949).

consist initially of antiparallel domains; this has been
confirmed optically in a study by Merz.2* The final
loops of these crystals are rectangular like those of
properly oriented ferromagnetic crystals (Fig. 28.18).
Any switching of domains is accompanied by electric
pulses in analogy to the Barkhausen noise of ferromag-
netics. Noise and a temperature hysteresis accompany
the two lower transitions, where the reorientation of the
polar axis creates new domain patterns. Figure 28.19
shows this hysteresis in the temperature characteristic
of the spontaneous polarization.?

Origin of the ferroelectric state

The titanium ions of BaTiO; are surrounded by six
oxygen ions in an octahedral configuration. This co-
ordination is to be expected from the radius ratio of
the partners when visualized as ionic spheres (see
Tables 13.1 and 24.1); alternatively, the TiOg groups
may be explained as resulting from covalent binding
by octahedral s,p,d-hybrid bonds (see Sec. 17). Actu-
ally, a compromise between these two points of view is
in order. The TiOg constellation leads to a high di-
electric constant in all erystals containing it and reaches
its high value through the dispersion stemming from
the infrared vibrations. The temperature coefficient of
the dielectric constant outside the ferroelectric range is
strongly negative. We find ourselves, therefore, in a
transition region between polar and nonpolar binding,
where slight changes in internuclear separation produce
large changes in the electric dipole moments.

The regular TiOg octahedron has a center of sym-
metry; its permanent moments cancel in antiparallel
pairs. A mechanical distortion per se does not impair
this mutual cancellation, as discussed above, and there-
fore leads neither to piezo- nor to ferroelectricity. This

Rutile

Brookite

Anatase

Fig. 28.20. The three modifications of TiOs.?

is exemplified in the distortions of the octahedra occur-
ring in the three TiO; modifications: rutile, brookite,
and anatase (Fig. 28.20). A net permanent moment of
the octahedron can result only by a unilateral displace-
ment of the positive titanium ion against its negative

#'W. J. Merz, Phys. Rev. 88, 421 (1952).
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oxygen surroundings; ferroelectricity, in addition, de-
mands the proper coupling of such moments.

In rutile, brookite, and anatase, the octahedra are
grouped in various compensating arrays by sharing
two, three, and four edges, respectively, with their
neighbors. These constellations are demanded by the
composition formula TiO,: each oxygen ion has to be
coupled to three titanium ions if each titanium is sur-
rounded by six oxygens. In BaTiOjz each oxygen has
to be coupled to only two titanium ions; the octahedra
can be placed therefore in identical orientation, joined
at their corners, and fixed in position by barium ions.
Thus the stage is set in the perovskite structure for an
effective additive coupling of the net moments.

Above the Curie point BaTiO; is isotropic, the tita-
nium ions have their equilibrium position in the center
of the octahedra, and the permanent dipole moments
cancel mutually in antiparallel pairs. However, strong
fluctuations of the net moments around the zero value
occur by thermal agitation. An external field upsets, in
addition, the average moment balance by displacing the
titanium ions unilaterally. The octahedra and their
moments are coupled by common oxygen ions, and any
displacement of one titanium ion towards a specific oxy-
gen ion unbalances strongly two of the neighboring tita-
nium ions and more weakly the four remaining ones,
tending to push all the titanium ions in the same direc-
tion. Tigure 28.21 explains this situation.

Dipole

moment Polar

Ti-0
distance

Fig. 28.21. Feedback coupling and displacement of ions in

barium titanate.?

The dipole moment of a completely ionic compound,
plotted as function of the separation distance of the
partners, is represented by an ascending straight line;
a nonpolar compound without dipole moment follows
the abscissa. Compounds of mixed bonding, but sep-
arating into atoms, follow a characteristic traversing a

maximum and then falling asymptotically to the zero
line 25 (see Fig. 19.4). BaTiO; seems to correspond to
this latter type and to have its equilibrium distance,
according to the strongly negative temperature coeffi-
cient of the dielectric constant, on the far side of the
maximum. If the titanium ion A moves towards the
oxygen ion Of, the dipole moment Oy — A becomes
stronger, and the moment Oy — A weaker. Ience
Or moves towards A and Oy away from it, with the
result that the titanium ions B and C follow the mo-
tion of the titanium ion A. The side titanium ions D,
E, and their counterparts in front and back of the fig-
ure plane tend to follow suit because the coupling oxy-
gen ions Or, Orv, ete., tend to move downwards, re-
pelled by Or. The whole action is akin to that of a
Mosotti field. An applied field or thermal motion
creates a net dipole moment in an octahedron by dis-
placing the titanium ion against its oxygen surround-
ings; this displacement, in turn, produces. through the
oxygen coupling an increase of the displacement, that
is, of the locally acting field, until at a critical tempera-
ture the thermal agitation can be overcome and the
Mosotti catastrophe occurs.

The postulated displacement directions of the tita-
nium and oxygen ions can be checked in part by X-ray
analysis. Evans ¢ measured at room temperature the
diffraction intensities from small single crystals with re-
fined methods and obtained two possible structures
which fit the intensity patterns about equally well.
The titanium ion A has moved up and the oxygen ions
Or and Og; down in the reference frame of the barium
ions, as expected. Their thermal amplitudes around
these new equilibrium positions are appreciably smaller
in the vertical than in the horizontal direction. The
coupling oxygen ions Orr1, ete., either have moved down
or their vertical thermal amplitudes have become very
large.?”

Thus far, the barium ions have been treated as inert
spacers that permit the proper joining of the TiOg octa-
hedra. Actually, the role of these divalent ions is much
more important, as their influence on the Curie point
indicates. By substituting strontium for barium, the

% See J. G. Kirkwood, Physik. Z. 33, 259 (1932); A. E :cken
and A. Biichner, Z. physik. Chem. B27, 321 (1934).

2 . T. Evans, Jr., Tech. Rep. 58, ONR Contract N50ri-07801,
Laboratory for Insulation Research, Massachusetts Institute of
Technology, January, 1953.

21 The structure, in which Oyyr is not displaced, corresponds
about to the results obtained by W. Kinzig, Helv. phys. Acta 24,
175 (1951). X-ray analysis fails to give an unambiguous final
answer because the temperature motion of the oxygen ions is
anisotropic and interferes with an accurate determination of the
structure parameters. Neutron diffraction experiments are
planned to overcome this difficulty.
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Curie point can be lowered systematically from 120°C
to a theoretical temperature beyond the absolute zero
point. A replacement of Ba?* by Pb%™, on the other
hand, raises the Curie point, until, for pure PbTiO3, it
reaches about 490°C.?* This dependence is not ex-
plainable on the basis of ionic radii since Pb2*+ at 1.21 A
lies between Ba2t (1.35) and Sr?* (1.13); it becomes
understandable when we draw the dipole moments
from the oxygen ions to their four divalent metal-ion
neighbors (Fig. 28.21). Obviously, this set of moments
tends to hold the oxygen in place against the action of
the titanium ions. Hence the divalent ions reduce the
feedback effect that leads to the Mosotti catastrophe,
the more so the higher their bond strength to oxygen.
The bond distance Ba—O in barium titanate is practi-
cally that of barium oxide; the melting points of the
oxides may therefore be considered as a measure of the
bond strength of the divalent ions to oxygen. The
melting points increase from PbO (888°C) to BaO
(1933°C) and SrO (2430°C); hence the feedback action
and Curie points decrease in this order. Also three-
dimensional pressure reduces the displacement of the
ions and with it the feedback effect and Curie tem-
perature ® (Fig. 28.22) just as clamping diminishes the
piezoelectric response of a crystal. ‘
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Fig. 28.22. Dependence of Curie temperature on hydrostatic
pressure for barium titanate single crystal. (After Merz.?)

In this consideration of the effect of dipole moments
and ion replacement and displacement on the Curie
temperature we have tacitly assumed that the cubic
perovskite structure of Fig. 28.3 remains unaffected.
This is not necessarily true, as the X-ray structure of
CaTiO3 shows, in which the neighboring TiOg groups
are slightly tilted against each other (Fig. 28.23).%
This may be the reason why the influence of Ca%* in
replacing Ba?t appears to be small as far as the Curie
point is concerned, while strongly affecting the lower

28 G. Shirane, S. Hoshino, and K. Suzuki, Phys. Rev. 80, 1105
(1950).

®W. J. Merz, Phys. Rev. 78, 52 (1950).

® St. v. Ndray-Szab6, Naturwiss. 31, 202 (1943).

transition point, as has been found recently.®® Com-
plicated effects of distortion, also of the octahedra
themselves, may arise by substitution and have to be
investigated in detail.

The preceding interpretation of the onset of spon-
taneous polarization and its dependence on structure
parameters clarifies qualitatively the prerequisites for
the formation of a ferroelectric state.? The old idea

Fig. 28.23. Distorted perovskite structure of CaTiOs.
Néray-Szabd.%)

(After

that the rotation of permanent moments leads to a
Mosotti catastrophe has to be discarded; such moments
are built in and not available for free rotation. Ferro-
electricity arises, not from rotation, but from vibration
states; the displacement of certain ions from their equi-
librium position strongly unbalances the equilibrium of
the permanent moments. By a proper structural ar-
rangement this upset induces a motion of the neighbor-
ing ions in a supporting sense; this increases the original
displacement by feedback. The tendency to bring the
vibrations of neighboring ions into ordered phase rela-
tions prevails at the Curie point against the random
agitation, and the equilibrium position of the critical
ions shifts to one side since the whole effect was made
possible only by the displacement of these ions. The
old balance of the permanent moments is destroyed and
a polar axis created by the transformation of induced
moments into additional permanent moments.

Since the ferroelectric state arises as a deviation from
a previous equilibrium condition, the polar axis can de-
velop in any one of the equivalent crystallographic di-
rections; in BaTiO; it may point in any one of the six
cube-edge directions. Thus, akin to crystallization,
nuclei of the ferroeleciric state may form and grow at
random, as the Curie temperature is approached, until
they divide the crystal into an array of domains deter-
mined by prehistory and energy balance. Cooling

aD. A. Berlincourt and F. Kulcsar, J. Acoust. Soc. Am. 24,
709 (1952).
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through the Curie point in an electric field would make
one of the possible directions the preferred one; in anal-
ogy to the growing of single erystals, a single domain
crystal might result.

Actually, there is an electric memory effect when we
cool barium titanate through its Curie region in an elec-
tric field, but it may be overshadowed by the strain
pattern that has been frozen in at high temperature
during crystallization. In the extreme case of a very
regular strain distribution by spherical warping of a
crystal, the spectacular square-net domain pattern of
Fig. 28.16 results.?

Even in the absence of pre-existing strain, and by
starting with a single ferroelectric nucleus, we may
still end up with a multi-domain configuration. In fer-
romagnetics, domains form in order to minimize the
closing field originating from the free ends of dipole
chains since no magnetic monopoles exist that could
neutralize the free magnetism. In ferroelectrics, the
free dipole ends can be neutralized by electric counter-
charges, but whether or not this happens fast enough
to obviate domain formation depends on the competi-
tion between the growth of the ferroelectric phase and
the availability of mobile charge carriers. A careful
investigation of the dynamics of domain formation, of
the various types of domain walls, their development
and motion, is now in progress in this laboratory.

If Fig. 28.21 gives a qualitatively true picture of the
situation, the onset of ferroelectricity is obviously a
very precarious phenomenon. A change in the size of
the octahedra may move the equilibrium point in the
dipole moment characteristic to the left of the maxi-
mum and destroy the feedback action. A distortion of
the oxygen lattice from its regular pattern may cause
the coupling oxygen ions Orrr and Ory to move upward
when O; and Ojr move downward. This would lead
to antiparallel rows of dipole moments and thus to
antiferroelectricity. The existence of antiferroelectricity
has been demonstrated for PbZrO; by Shirane and co-
workers 3 and peculiar transitions have been observed
between ferro- and antiferroelectricity in solid solu-
tions of Pb—BaZr03.3

A quantitative molecular theory of the ferroelec-
tricity in the titanate group requires obviously that the
polar charges and relative motions of the titanium,
oxygen, and barium ions are known in detail and in-
corporated into a local field expression. We can cal-
culate the dipole moment p per elementary cube of
the BaTiO;z; crystal from the saturation moment P, ~
16 X 1072 [coul/m?] measured for single domain crys-

# G. Shirane, E. Sawaguchi, and Y. Takagi, Phys. Rev. 84, 476

(1951).
3 (. Shirane, Phys. Rev. 86, 219 (1952).

Since the volume of such a cube is
1

64751030y
1.6 X 10?8 [m™?] are contained in the unit volume, this
dipole moment is

tals (Fig. 28.19).
about (4 X 107193 [m3], that is, N =

P,
p= F'z 1072% [coul m] ~3 [debyes]. (28.1)
If this moment is caused by the displacement of the

Ti** from the center of the octahedra, a displacement of

dats SORL-A,

- (28.2)

would be expected. The shortening of the distance be-
tween the titanium and the nearest oxygen ion is about
of this magnitude,® but, instead of assigning formal
charges, we have to measure the dipole moment distance
characteristic and the feedback coupling schematized in
Fig. 28.21. High-pressure experiments for this purpose
are contemplated.

Useful information, on the other hand, can be ob-
tained by the thermodynamic approach, which corre-
lates the various macroscopic parameters by energy
considerations. This latter type of treatment was
first carried through for rochelle salt by Mueller # in
his inferaction theory, undertaken for BaTiO3 by Devon-
shire,® and extended by Slater * by including the elec-
tronic polarization.

Whereas in BaTiOj3 the ferroelectricity seems to arise
from a feedback coupling between the titanium and oxy-
gen sublattices, in the other two groups hydrogen bonds
may play an important part as suggested by Slater for
KH,P0,4.37 If the bonding hydrogen atoms have a
choice between various positions, as is well known for
many crystal structures, the Curie point may corre-
spond to an order-disorder transition at which a polar
axis is created. However, it must be kept in mind that
such axis need not by necessity lie in the direction of
the hydrogen bonds; the ordering of the hydrogen
bonds with parallel, antiparallel, or even oblique mo-
ments may create the ferroelectric acting moments, for
example, by forcing the phosphorous cations into an
eccentric-ordered position in their oxygen tetrahedra.

The preceding discussion of the formation of the fer-
roelectric state has clarified by implication the relation
between ferro- and piezoelectricity. A piezoelectric

s H. Mueller, Phys. Rev. 47, 175 (1935); 67, 829, 842 (1940);
58, 565, 805 (1940); Ann. N. Y. Acad. Sci. 40, 321 (1940).

% A. F. Devonshire, Phil. Mag. 40, 1040 (1940); 42, 1065
(1951).

% J. C. Slater, Phys. Rev. 78, 748 (1950).

], C. Slater, J. Chem. Phys. 9, 16 (1941).
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crystal, when pyroelectric, has a polar axis like a ferro-
electric crystal, but the arrow direction of its axis is
prescribed by the arrangement of the ions and cannot
be reversed; this is clearly apparent in the wurtzite
structure of Fig. 27.4. For the ferroelectric crystal, in
contrast, the possibility of reversal is inherent because
the axis evolves at the Curie point from a state of higher
symmetry. Only in ferroelectric crystals, therefore,
can domain structure appear and the moment be re-
versed by a sufficiently strong opposing field. How-
ever, the response to pressure and voltage of a ferro-
electric crystal is a truly piezoelectric one, involving the
change of permanent moments and therefore, in a first

approximation, a linear dependence of polarization and
expansion on the applied field strength.’®

Superposed on this linear effect are changes caused
by alterations of the domain pattern. For example,
compression in the c-direction will tend to turn the
polar axis by 90°; or two-dimensional pressure on the
crystal edges will orientate the c-axis perpendicular to
the free crystal surface. This mechanical production
of a preferential c-axis direction by two-dimensional
pressure raises the Curie point.?8

3 P, W. Forsbergh, Jr., Tech. Rep. 74, ONR Contract N5ori-

07801, Laboratory for Insulation Research, Massachusetts In-
stitute of Technology, October, 1953.

29 - Paramagnetism and Ferromagnetism

Permanent electric moments, with the exception of
the electron cloud moments appearing in the linear
Stark effect (see Sec. 9), are caused by ionic bonds
between atoms. Such moments produce optically active
resonance states, visible in the rotation spectra of
gases (see Sec. 18); in liquids and solids these states are
quenched by pressure broadening and hindered rota-
tion, and only unquantized relaxation spectra remain.
Permanent magnetic moments, in contrast, are located
in atoms or molecules and originate from the circling
of the electrons around the nuclei (orbital moments) and
from the spin of the electrons themselves (spin moments)
(see Sec. 10). These magnetic moments are causally
related and proportional to angular mechanical mo-
menta; the laws of quantum mechanics require that
the angular momenta be quantized as integral or half-
integral multiples of h. Hence, whereas the torque of
an external field on an electric or magnetic dipole can
be treated classically in an identical manner, we have
to expect deeper-lying differences in the actual be-
havior of electric and magnetic systems because the
latter are always coupled to quantized gyroscopes.

The classical calculation of the average static mo-
ment R, which a gas molecule of the permanent elec-
tric dipole moment p contributes to the polarization P
under the counteracting influences of electric torque
and thermal agitation, has been given in Sec. 16. De-
rived by Debye,! in analogy to Langevin’s calculation
for paramagnetic gases,? it leads, when the field energy is

1 P. Debye, Physik. Z. 13, 97 (1912).

2 M. P. Langevin, J. physique 4, 678 (1905); Ann. chim. phys.
5, 70 (1905).

small in comparison to the thermal energy (p-E < kT),

to the expression (Eq. 16.9)
N 2
P=Ni=-—E

29.1
3T (29.1)

For the paramagnetic gas, since the torque is produced
by the magnetic induction B = u’'H and not by the
magnetic field H (see I, Eq. 2.16), the corresponding
magnetization becomes

Nm?

M = Nm = I
3kT

'H. (29.2)

The static susceptibilities of the paraelectric and the
paramagnetic gas are consequently

Xe= o == (29.3)

and

(29.4)

The fact that the susceptibility is inversely propor-
tional to the absolute temperature was first discovered
by P. Curie ? in his studies on oxygen gas and is there-
fore known as Curie’s law. Langevin’s theory provides
its theoretical foundation and leads to a first inter-
pretation of the Curie constant C in Eq. 29.4. For
oxygen, referring to the susceptibility per gram, Curie
measured

33700 X 10~°

T

3 P. Curie, Ann. chim. phys. 5, 289 (1895).

X (29.5)
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Calculating the magnetic moment m per oxygen mole-
cule from this value in mks units, we find

m~"7.7 X 107?* [joule/weber m™2]. (29.6)

This is about 0.83 Bohr magnetons (see Eq. 10.7);
hence the simple Langevin approximation gives a rea-
sonable order of magnitude for the magnetic moment.
Deviations from Curie’s law are expected by the clas-
sical theory as soon as the magnetic energy | m | | B |
is not very small in comparison to the thermal energy
ET. In this case we have to return to the Langevin
characteristic itself (see Fig. 16.2 and Eq. 16.8),

m 1
— = cothz — — = L(z)
m x

with z =

|m] |B]
kT

(29.7)

and expect saturation for sufficiently low temperatures
or high field strength. Kammerlingh Onnes * was able
to show that this situation is actually realized in gado-

10
Curie law
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Fig. 29.1. Paramagnetic saturation characteristic of gadolinium
sulfate. (After Woltjer and Kammerlingh Onnes.4)

linium sulfate [Gd2(SO4)3, 8H0] (Fig. 29.1). The
large magnetic moment of the gadolinium ion (m ca. 8
Bohr magnetons) makes the onset of saturation pos-
sible at relatively small values of | B |/T, whereas the
interaction of the moments, not considered in Lange-
vin’s theory, is held down by the diluting effect of the
crystal water. Thus, at 1.31°K and 22,000 gausses,
the average moment m reaches 84 percent of the actual
moment m.

If the moments are not diluted, for example, in

4+ H. R. Woltjer and H. Kammerlingh Onnes, Comm. Phys. Lab.
Univ. Leiden, Vol. 15, No. 167°; Verslag. Amst. Acad. 32, 772
(1923).

gadolinium metal,® we find frequently the simple Curie
law of Eq. 29.4 replaced by the Curie-Weiss law ¢ (see
Eq. 23.7): o

=T_Tc.

Xm (298)

The mutual interaction of the magnetic moments in-
creases the locally acting field, until, at a critical Curie
temperature 7', a spontaneous magnetization occurs;
the material becomes ferromagnetic.

Weiss based his derivation of Eq. 29.8 on the as-
sumption of a molecular field wM which adds its action
to that of the applied magnetic field H to create a
local field

H = H + wM, (29.9)

just as the polarization P produces the local Mosott:
field of Eq. 2.9, p

E=E+4 —:

360

(29.10)

By assuming further that the magnetization M can be
represented by the first term of the Langevin equation
(see Eq. 29.2) he arrived at his susceptibility law. The
derivation of the corresponding polarization law for
ferroelectrics, given in Sec. 23, is patterned after his
calculation. Weiss furthermore accounted for the ab-
sence of any appreciable permanent magnetization in
pure iron and other soft ferromagnetics by the postu-
late that the material subdivides into microregions of
compensating domains (Fig. 29.2). Such domains can
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Fig. 29.2. Reduction of permanent magnetization by domain
formation.

actually be seen in the transparent ferroelectrics, as
we have shown in Sec. 28.

Ferromagnetic materials are characterized by a non-
linear magnetization characteristic (Fig. 29.3). A sam-
ple of soft iron, for example, exposed for the first time
to a slowly increasing magnetic field H, follows in its
magnetization the virgin curve A — B, reaching a
saturation induction B, of ca. 21,000 gausses for a
saturation field H, of ca. 500 [Oe] at room temperature.

8 G. Urbain, P. Weiss and F. Trombe, Compt. rend. 200, 2132
(1935).

8 P. Weiss, J. phys. et radium 6, 661 (1907); Physik. Z. 9, 358
(1908).




Paramagnetism and Ferromagnetism

215

Reducing the field again to zero and then reversing it,
we traverse a curve B —» C — D — E, and a return
trace £ — F — G — B, that is, a hysteresis loop,
characterized by a remanent induction (remanence)
B, (A —» C) (for H =0) and a coercitive field H,

f
B (gauss)|
15000 |-

1 L |
15 30 45
H (oersted) —=

Fig. 29.3. Initial magnetization curve and hysteresis loops of
soft iron.

(A — D), required for the wiping out of this rema-
nence. H, for soft iron at room temperature varies
from ca. 1.5 [Oe] for the commercial product to 0.01 [Oe]
for the purest material;? for hard steel alloys, on the
other hand, it may be raised to several thousand
oersteds.

The hysteresis characteristic is caused by domain ef-
fects and can therefore be changed within wide limits
by the composition and pretreatment of the ferromag-
netic. The saturation magnetization or spontaneous
magnetization M,, on the other hand, is a characteriz-
ing constant of the material. As Weiss visualized: be-
low the Curie temperature the elementary magnetic
moments orient themselves parallel by mutual inter-
action; in each domain saturation magnetization pre-
vails under the action of the molecular field; the exter-
nal field H, serves only for the alignment of the domains
in the field direction. At the absolute zero point, the
orientation of the elementary magnets is complete and
absolute saturation achieved (M,); with increasing
temperature, the parallel orientation becomes disturbed
by thermal agitation and finally destroyed at the Curie
temperature 7',. If we plot the relative spontaneous
magnetization My/M,, as a function of the normalized
temperature T/T,, Fig. 29.4 is obtained.

This characteristic, according to the Weiss theory, is
a universal one for all ferromagnetics and can be de-
rived as follows. The saturation magnetization M, is

7See R. M. Bozorth, Ferromagnetism, D. Van Nostrand, New
York, 1951, p. 54.

the magnetic moment per unit volume produced by
the average magnetic moments m (see Eq. 29.2),
whereas the absolute saturation magnetization M, cor-
responds to the additive action of the true moments,

M., = Nm. (29.11)

The relative spontaneous magnetization is therefore
given by the Langevin function (see Eq. 29.7)

8

= L(). (29.12)

Below the Curie point, the Weiss molecular field dom-
inates (wM, >> H), hence the local field of Eq. 29.9 can
be approximated as

H' ~ uM,. (29.13)

This local field enters into the parameter x of the
Langevin function, the ratio of magnetic torque to
thermal agitation, which may be written

. | m |uoH’ | m [uow| M. |
kT kT

Dividing both sides by the absolute saturation mag-
netization and rearranging, we obtain a second equa-
tion for the relative spontaneous magnetization

M, kT
—— g,
M. o m |u| M, |

Thus Ms/M,, as f(x) can be determined graphically as

(29.14)

(29.15)

Points are experimental

e |ron
o Nickel

Curves are theoretical

0 1 1 1 1
(] 0.2 04 T 0.6 08 1.0

Te
Fig. 29.4. Relative spontaneous magnetization as function of a
normalized temperature (S = =, classical characteristic; S = 14,

characteristic based on spatial quantization). Experimental
data: Nickel, P. Weiss and R. Forrer; 8 Iron, H. H. Potter.?

the intersection of the Langevin curve L(z) with the
straight line represented by Eq. 29.15 (Fig. 29.5).
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At the Curie temperature T, the spontaneous mag-
netization disappears (M; = 0), that is, the straight
line becomes tangent to the Langevin curve with a
slope 1/3, since

3

2t Iy
Lix) =———+4--- forx<<1. (29.16
(x) Ty + ( )
Hence

kT, 1
pomwM, 3

or (29.17)
T, = I‘Omwa_

3k

With this expression for the Curie temperature, the
parameter z of Eq. 29.14 is dependent only on the nor-
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Fig. 29.5. Graphical derivation of the spontaneous magnetiza-
tion charaeteristic.

malized temperature and relative spontaneous polariza-

tion,
3T, M,

x_ -
T M,

(29.18)

Hence the Langevin equation (29.12) becomes a univer-
sal equation for the relative magnetization when refer-
ring to the normalized temperature

M, o (3Tc M8>
M, \TM,
This universal saturation characteristic of the Lange-
vin-Weiss theory is compared in Fig. 29.4 with the ex-
perimental characteristies for nickel ® and iron.® The
experimental curves approximately coincide as ex-
pected,’® but rise much steeper than the classical

theory predicts. Furthermore, if we calculate from
the observed Curie temperatures of these metals

(29.19)

8 P. Weiss and R. Forrer, Ann. phys. 5, 153 (1926).

9 H. H. Potter, Proc. Roy. Soc. (London), A146, 362 (1934).

10 See, however, the deviation recently found for Cu-Ni alloy
(27.5 percent Cu) by W. Sucksmith, C. A. Clark, D. J. Oliver
and J. E. Thompson, Revs. Mod. Phys. 25, 34 (1953).

(Toni >~ 630°K, T pe >~ 1060°K), the molecular field
wM,, on the basis of Eq. 29.17, with m equal to one
Bohr magneton, we obtain 2.5 X 107 and 4.2 X 107
oersteds, respectively. That such tremendous magnetic
fields of the order of 10 million oersteds actually exist
in ferromagnetics appears impossible. The mutual
interaction of the magnetic dipole moments leads to
much smaller values (see Eq. 11.1), and the magnetic
moments of atoms can be uncoupled by fields of the
order of 10* [Oe], as the Paschen-Back effect indicates
(see Sec. 10). It is obvious that the Langevin-Weiss
theory gives a valuable first approximation but re-
quires modification and reinterpretation by quantum
mechanics.

Beginning with Curie’s law for paramagnetic gases,
where the interaction between the magnetic moments
can still be neglected (Eq. 29.4), we have obviously to
modify Langevin’s derivation since it allows any orien-
tation on the basis of Boltzmann statistics. The Zee-
man effect shows that the magnetic moments cannot
assume an indefinite number of positions in respect to
the field axis but only certain quantized orientations
(see Sec. 10). A direct experimental confirmation of
this spatial quantization was first furnished by the
famous Stern-Gerlach experiment ! on the deflection of
an atomic silver beam in a nonhomogeneous magnetic
field (Fig. 29.6). The silver atom carries one Bohr
magneton; the beam splits into two discrete beams
deflected upward and downward, respectively, instead
of broadening in a continuous fashion according to
classical statistics. Hence the magnetic moment of
the atoms can assume only a parallel and an antiparal-
lel orientation (cf. Fig. 8.9). Rabi’s introduction of
electrical resonance techniques!? has made molecular

Oven Stits Magnet producing

j inhomogeneous field
i = Glass plate
A
e
Vo

LY
Beam of atoms

Fig. 29.6. Stern-Gerlach experiment.

beam experiments in nonhomogeneous fields a precision
tool for the determination of elementary magnetic
moments.

Contrary to the expectation of the old quantum
theory, spatial quantization does not affect the para-
magnetic (and electric) susceptibility, as Van Vleck has

1 W. Gerlach and O. Stern, Z. Physik 9, 349 (1922).
121, I. Rabi, J. R. Zacharias, S. Millman, and P. Xusch, Phys.
Rev. 53, 318 (1938); 55, 526 (1939).
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shown (principle of spectroscopic stability).’* A summa-
tion over the various quantized orientations leads to
the same results as a classical integration over a ran-
dom orientation of moments; the square of the direction
cosine has the mean value 1/3. The only change in the
formulation of Curie’s law is a more detailed inter-
pretation of the permanent magnetic moment m. The
magnetic moment of an atom follows from its total
angular momentum, characterized by the inner quan-
tum number J (see Sec. 10) and quantized as

p =VJWJ + Dh (29.20)

By introducing the Bohr magneton mp and the ¢
factor (see Egs. 10.4 to 10.8), we obtain the magnetic
moment as

m = gmpVJ({J + 1); (29.21)
hence, in place of Eq. 29.4,

2 9
gmp<J(J + 1)
T o o

29.22
3kT ( )

Xm =

This formulation of the Curie law holds not only for
monatomic paramagnetic gases but represents well the
susceptibility of salts of the rare earths. The trivalent
rare-earth ions have, in addition to the completed rare-
gas shells of the xenon core, an incomplete 4f shell far
within the atom (see Table 8.1). These well-shielded
electrons produce paramagnetism as in the correspond-
ing free gaseous ions. That the terms of the 4f electrons
are little perturbed by the surroundings, whether the
ions are bound in crystals or placed in solution, is evi-
denced by their sharp spectral lines, comparable in
width to those of gases.

Concluding by analogy we might expect that the
paramagnetic salts of the iron group would obey Eq.
29.22 since these ions contain an incomplete 3d shell.
However, here the situation is different: the 3d elec-
trons are not well shielded and their orbits are greatly
perturbed by neighboring ions. A measurement of the
gyromagnetic ratio gives g factors of about 2; that is, in
essence only the spins of the electrons are free to orient
in relation to the magnetic field axis, while the orbitals
are tied down in the lattice (orbital quenching). The
strong interaction of the 3d electrons substitutes for
the Curie law the Curie-Weiss law and makes the ele-
ments and compounds of the iron groups preferential
candidates for ferromagnetism and antiferromagnetism.

Substances that obey Curie’s law are said to exhibit
normal paramagnetism. Deviations from this law must
occur not only when we approach saturation (see Fig.

13 J. H. Van Vleck, Eleciric and Magnetic Susceptibilities, Oxford
University Press, 1932, pp. 111 ff. and 152.

29.1) or when coupling effects between the magnetic
moments enter, but also when we deal with several
energy states of different magnetic properties so closely
spaced that the thermal energy suffices for electronic
transitions. In this case, realized especially in mole-
cules, the population density of the various states has
to be calculated, as discussed for the thermal occupa-
tion of rotation levels (Sec. 19). We deal with a mix-
ture of magnetic moments that changes its composi-
tion with temperature, and should not be surprised to
find paramagnetic characteristics completely at vari-
ance with Curie’s law.

Paramagnetism originates from the orbital and spin
moments of electrons in incomplete shells. Filled shells
or subshells do not contribute because their moments
cancel to zero (see Sec. 8). Covalent bonds, in addi-
tion, make the contribution of the binding electrons
vanish because their spins orientate antiparallel and
their orbital moments generally neutralize. Paramag-
netic substances obey a Curie or Curie-Weiss law, that
is, the susceptibility varies inversely proportional to the
temperature, because the first term of the Langevin
function (Eq. 29.16) is a sufficiently good approxima-
tion. Spatial quantization does not alter this term, as
shown above. However, since spatial quantization of
the moments leads to a different function from Lange-
vin's, it will affect the magnetization characteristics
when we approach saturation.

This can be shown in a simple way by prescribing
2J + 1 possible orientations; the possible components
of a moment m parallel to the field axis then vary as
Jitep m— il

—m, ——
J J
tions occur with Boltzmann probabilities, we would ob-
serve an average moment

, ---, ——=m. If these various orienta-

4 = 4 TiRE eU—Dal 4 ... _ Jl ozl
e 7 7
L L1 eIo t W@ —Dall | ... _ gJall
(29.23)

When only the parallel and antiparallel orientations are
allowed, as suggested for the iron group by the g factor
of 2, the formula reduces to

m/m = tanh z = Le(z), (29.24)

a relation first proposed by Lenz.'* An accurate calcu-
lation by Brillouin % leads for the case of orbital

14 W, Lenz, Physik. Z. 21, 613 (1920).

15 L. Brillouin, J. phys. 8, 74 (1927); see also F. Seitz, The
Modern Theory of Solids, McGraw-Hill Book Co., New York,
1940, p. 581.
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quenching to the more complicated expression
(28 + 1)| mp |wH
kT

| mg ]I‘OH],

m = mg [(2S + 1) coth

— coth (29.25)
where S is the total spin and mpg the Bohr magneton.
This Brillouin function should obviously be used for
the construction of saturation characteristics in place
of the Langevin function (see Fig. 29.4), as also the
recent magnetization studies of Henry '* on the para-
magnetic ions Cr®t, Fe3t, and Gd®* in strong fields
at low temperatures testify (Fig. 29.7).
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Fe3*
5.0
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+ 2.00 °K
4300 °K
1.0 e 4.2l °K
Brillouin function
0 1 | 1
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H/T %10 gauss/deg

Fig. 29.7. Paramagnetic saturation magnetization of Cr3*, Fe3+,
and Gd®*. (After Henry.16)

The discussion of the magnetization and its satura-
tion on the basis of a Langevin-type characteristic,
with inclusion of spatial quantization, suffices when
the moments are of one type only and spaced suffi-
ciently far apart, as in gases, aqueous solutions, or
solids containing large amounts of crystal water as
diluents. In metals and concentrated salts, the ques-
tion of spatial quantization cannot be treated separately
from the problem of mutual coupling.

The discussion of the interaction of magnetic mo-
ments in atoms (Sec. 11) and the formation of covalent
bonds between atoms according to the Heitler-London
approach (Sec. 14) led to the conclusion that the main
contribution of the magnetic moments to the energy of
stationary states is an indirect one. The electron spins
codetermine, because of the Pauli exclusion principle,
the standing-wave modes that may form. Parallel

1'W, E. Henry, Phys. Rev. 85, 487 (1952); 88, 559 (1952).

versus antiparallel spin orientation may therefore cor-
respond to wave functions for which the electrostatic
energy difference is several orders of magnitude larger
than the difference in magnetic interaction energy.
Quantum mechanics expresses this nonclassical inter-
action of two electrons according to spin orientation
by their exchange energy. The exchange energy is
consequently that part of the total energy of a system
which depends on the relative spin orientations; it is
calculated by exchange integrals (see Sec. 14). In the
case of covalent binding the exchange energy causes
the formation of electron pair bonds with antiparallel
spins, that is, the exchange integral is negative. Heisen-
berg 7 suggested that in ferromagnetics the exchange
integral between the 3d electrons of neighboring atoms
is positive, hence that the molecular Weiss field of the
order of 107 oerstedts is not a magnetic field at all, but
expresses the exchange energy stabilizing the parallel
spin orientation. This hypothesis of Heisenberg, that
the exchange energies decide about the formation of
the ferromagnetic state, has become the starting point
of all subsequent theories of ferromagnetism.

That twenty-five years later we still have no uni-
versally accepted theory of ferromagnetism illustrates
strikingly the dilemma of quantum mechanics. It can
solve its problems only by approximations (see Sec. 7)
and has therefore great difficulty in finding which ex-
change energies are decisive. Heisenberg assumed posi-
tive exchange integrals between an atom and its nearest
neighbors in the lattice, but left unexplained why only
a few of the transition elements are ferromagnetic.
Slater 8 solved this dilemma by postulating that the
ratio of internuclear distance to radius of the 3d shell
is the important quantity which determines the sign
of the exchange integral. With increasing nuclear
charge the 3d shell shrinks, its overlap with neighbor-
ing atoms decreases, and the sign of the integral changes
from negative to positive. Zener ! recently proposed
that this exchange integral is always negative, that is,
that the coupling between the 3d electrons of neighbor-
ing atoms is antiferromagnetic, whereas the exchange
between the 3d electrons and the conducting electrons
leads to a ferromagnetic alignment. Bloch 2 tried to
make the conducting electrons responsible for ferro-
magnetism by introducing exchange energy terms into
Sommerfeld’s deseription of a free electron gas (spin-
wave theory); Slater 2! reconsidered the exchange en-
ergy between the 3d electrons on the basis of the elec-

17 W. Heisenberg, Z. Physik 49, 619 (1928).

18 J, C. Slater, Phys. Rev. 36, 57 (1930).

19 C. Zener, Phys. Rev. 81, 440 (1951); 83, 299 (1951).

» F. Bloch, Z. Physik 57, 545 (1929); 61, 206 (1930).

21 J, C. Slater, Phys. Rev. 49, 537, 931 (1936); 52, 198 (1937).
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tron-band structure of solids; and Stoner 2 similarly
based ferromagnetism on the holes in the 3d band of
the metal (collective electron ferromagnetism). There
is hope that the situation will clarify in the next few
years, from the theoretical side by the extensive use of

2 E. C. Stoner, Proc. Roy. Soc. (London), A165, 372 (1938);
169, 339 (1939).

modern computing machines, and from the experi-
mental side by more knowledge about exchange inter-
actions through neutron diffraction experiments and
work on ferromagnetic semiconductors.”

2 For the present status of the situation see the reports of the
Washington Conference on Magnetism, Revs. Mod. Phys. 25,
1 (1953).

30 - Ferromagnetic Metals and Semiconductors

To understand in more detail what kind of informa-
tion is available or can be provided, let us return to
the elements of the iron group and follow their behavior
in various states of bonding.

The designation #ron group properly applies to the
nine elements of the periodic system following Ca(20)
(see Table 8.1). The argon core (3s*3p®) has been
completed, two 4s electrons (4s?) have been added, and
now, starting with Sc(21), a competition sets in be-
tween the 3d and 4s shells. The elements become
multivalent because not only the 4s but the 3d elec-
trons may act as valence electrons; the solutions of
the salts become colored, because empty energy states
are close enough above the filled ones to allow electron
transfer by the absorption of visible light; the atoms
become paramagnetic as long as the 3d shell is not
complete.

As discussed in Sec. 8, the 3d shell can be subdivided
into five 3d orbitals, each able to accommodate two
electrons with antiparallel spins. The lowest energy
state, according to Hund’s theory of spectral terms,!
will be the one that leads to the maximum number of
multiplets, that is, the state with the largest inner
quantum number J (see Eq. 11.5). We expect there-
fore that only after each 3d orbital has accepted one
electron will the formation of electron pairs begin. The
filling of the 3d shell terminates with the element
Cu(29), but here the 4s orbital has been depleted by
one electron (4s'). In consequence, whereas cuprous
salts are colorless and diamagnetic because the 3d shell
of Cu™ is still intact, the cupric salts are colored and
paramagnetic, since the divalent Cu®?* has lost one 3d
electron. Only with the next element, Zn(30), is the
full stability of the 3d shell assured.

Table 30.1 compares? the measured magnetic mo-

1 F. Hund, Linienspectren und periodisches System der Elemente,
Springer, Berlin, 1927, Chap. 5.

2 Based on data in P. W. Selwood, Magnetochemisiry, Intersci-
ence Publishers, Inc., New York, 1943, p. 99, and E. C. Stoner,
Magnetism and Matter, Methuen and Co., London, 1934, p. 25.

ments of the paramagnetic ions with the values com-
puted from Eq. 29.21 under the assumption that either
the total angular momentum, represented by the inner
quantum number J, is decisive or that only the spin
quantum number S enters owing to orbital quenching.
In the latter case with the gyromagnetic ratio ¢ = 2,
Eq. 29.21 simplifies to

m = mpV48(S + 1). (30.1)

Obviously, the second assumption leads to a much
better agreement with the experimental data. Hence
the electron spins make the essential contribution and
the magnetic moment reaches its maximum for five 3d
electrons distributed over the the five orbitals in paral-
lel alignment, as Hund’s rule foresees.

A comparison of the magnetic moments of Cr®* and
Fe?* in Table 30.1 with those of Fig. 29.10 shows that
the tabulated values are appreciably larger than the
saturation moments. This is not an experimental mis-
take but, on the contrary, can be interpreted as an
impressive confirmation of spatial quantization. The
tabulated values are derived from low field-strength
measurements, where the first term of the Brillouin
function (Eq. 29.25) applies. Here the total angular

momentum p’ = V 8(S + 1) h comes into play, whereas
mppuol
> 1) the mo-

in the saturation measurements <

mentum in field direction is being measured as p,” = Sh
(cf. Fig. 8.9).

Turning to the monatomic metals of the iron group,
we find a change-over from paramagnetism (vanadium)
to antiferromagnetism (chromium and manganese) to
ferromagnetism (iron, cobalt, and nickel), and then an
abrupt falling back to diamagnetism (copper) (Table
30.2). The approximately symmetrical rise and fall of
the magnetic moments of the ions in Table 30.1 does
not predict such a lopsided behavior. That ferromag-
netism occurs only in the last three transition elements
must therefore be explained by some special trend in
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Table 30.1. Magnetic moments of the ions of the iron group elements?

Magnetic Moment m
in Bohr Magnetons
Term
Nq Number of
3d Electrons TonHlipe Symbahof J 8 Calculated
Free Ion
Observed
J S
K+
Ca?t
0 Se3+ 13, 0 0 0 0 0
Ti4+
o+
Se2+
1 {Tia"' 2Dy, 3/2 1/2 1.77-1.79 1.55 1.73
Vit
2 {Ti” oF 2 1 e 1.63 | 2.83
AR i 2.76-2.85 ) 7
Vit 3.81-3.86
3 Cri+ F, 3/2 3/2 3.68-3.86 0.77 3.87
Mn+ 4.00
Cr2+ k 4.80
4 %Mn“‘ Do 0 2 {5_0 0 4.90
Mn?t 5.2-5.96
5 b oS4 52 | 5/2 {5_4_6.() 5.92 | 5.92
Fer+ : 5.0-5.5
6 fots D, s | 2 {(2.5) 6.70 | 4.90
7 Co?t “Fyq 9/2 3/2 4.4-5.2 6.64 3.87
8 Niz+ 3F, 4 i 2.9-3.4 5.59 2.83
9 Cu?t 2Dy, 5/2 1/2 1.8-2.2 3.55 1.73
10 {C“+ 18 0 0 {0 0 0
Zn%t 2 0

the interaction between the atoms. Bethe 2 and Slater ¢
emphasize the overlap of the 3d electrons of neighbor-
ing atoms. According to Slater, if the 3d-wave func-
tions overlap much, it becomes more favorable ener-
getically to have the electrons participate in conduc-
tion as a Fermi gas with antiparallel spins. With in-
creasing order number the nuclear charge increases, the
3d orbitals shrink, and the exchange energy between
the 3d electrons of the individual atom begins to en-
force parallel spins (see Sec. 29). A measure of the
overlap is the ratio of the interatomic distance R to the
diameter of the 3d orbital 2r. This ratio, tabulated in
Table 30.3, is in fact greatest for the ferromagnetic
metals. The localized magnetic moment per atom in
the ferromagnetic metals (Fig. 30.1) is appreciably
smaller than in the paramagnetic salts (see Tables 30.1
and 30.2), as we would expect when 3d electrons are

3 H. Bethe, Handbuch der Physik 24, Pt. I, 504 (1933).
*J. C. Slater, Phys. Rev. 36, 57 (1930).

Table 30.2. Saturation moments and magnetic state
of metals of the iron group

Saturation Curie
Moments Magnetic Temper-
UB State ature
Vanadium 5 <0.1 para-
Chromium & 0.4 antiferro- ca. 473°K
Manganese 0.5 antiferro ca. 100°
Iron ferro-
paramagnetic 3.18 1093°
ferromagnetic 2.21 1043°
Cobalt ferro-
paramagnetic 3.13 1423°
ferromagnetic 1.72 1393°
Nickel ferro-
paramagnetic 1.60 650°
ferromagnetic 0.60 631°
Copper dia-
diamagnetic 0

8 C. G. Shull and M. K. Wilkinson, Revs. Mod. Phys. 25, 100
(1953).
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Table 30.3. Ratio of interatomic distance to sum of
radii of elements of the iron group

Interatomic Sum of

Distance Radii Ratio
Ti 2.93 A 1.10A 2.65
v 2.63 0.98 2.69
Cr 2.51 0.90 2.79
Mn 2.52 0.84 3.00
Fe 2.50 0.78 3.20
Co 2851 0.72 3.50
Ni 2.50 0.68 3.69

lost as conducting electrons by antiparallel pair forma-

tion.

In Table 30.2 two Curie temperatures have been

given for the ferromagnetics. This is due to the fact
that the straight line of 1/x versus T predicted by the

o Data from magnetic measurements

= 3 ® Data from neutron diffraction
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Fig. 30.1. Localized magnetic moment per atom of iron-group

metals.

(After Shull.s)

is supported by the fact that paramagnetic salts con-
taining the magnetic ions in S states, such as Mn?*
and Fe®t (see Table 30.1), are magnetically isotropic,
whereas large anisotropies are found for salts contain-
ing Fe?2t, Co?%, etc., where the spectroscopic states
have orbital angular momenta.’

x|~ —

Fig. 30.2. Para- and ferromagnetic Curie temperature.

In ferromagnetics, the direction of minimum free en-
ergy for the orientation of the magnetic moments may
be found by measuring the saturation characteristic of
single crystals in various orientations (Fig. 30.3).8 For
the ferromagnetic monatomic metals at room tempera-
ture we find ® that in iron the cube edge [100] is the

Curie-Weiss law ends actually appreciably above the
Curie point; near the Curie temperature the slope de-
creases (Fig. 30.2). Extrapolation of the straight line
section leads to the paramagnetic Curie temperature T'¢p,
extrapolation of the actually measured curve to the
lower ferromagnetic Curie temperature T¢z.®
Measurements on single crystals show that the mag-
netic moments tend to align themselves in preferential
crystallographic orientations, that is, crystals are, in
general, magnetically anisotropic. This is no great sur-
prise when we recall that the orbital magnetic moments
arise from eccentric electron cloud configurations which
tend to produce bonds in special orientations (see Secs.
8 and 17). The supposition that the crystalline field
anisotropy is primarily caused by the orbital moments,

¢ A similar uncertainty in the Curie point is observed when
approached from the ferromagnetic side. With the magnetic
balance one obtains a deviation of the spontaneous magnetiza-
tion curve towards higher temperature, whereas by the magneto-
caloric method a lower Curie temperature results [see W. Suck-
smith, C. A. Clark, D. J. Oliver, and J. E. Thompson, Revs. Mod.
Phys. 25, 34 (1953)].
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Fig. 30.3. Magnetic anisotropy in single crystal of silicon-iron.
(After Williams.?)

direction of easiest magnetization, whereas for nickel
the space diagonal [111], and for cobalt the hexagonal
axis [0001] are preferred. Since essentially only the
electron spins orient in the various field directions
(g >~ 2), while the orbitals appear fixed in the crystal

7 For the extensive literature on magnetic anisotropy see R.
Becker and W. Déring, Ferromagnetismus, Springer, Berlin,
1939, and R. M. Bozorth, Ferromagnetism, D. Van Nostrand Co.,
New York, 1951.

8 H. J. Williams, Phys. Rev. 62, 747 (1937).

9 K. Honda and S. Kaya, Science Rep. T6hoku Imp. Univ. 15,
721 (1926); S. Kaya, ibid. 17, 639, 1157 (1928).
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lattice, we must assume ! that the interaction between
spin and orbital moment creates the directional varia-
tion of the free energy, the so-called crystal or aniso-
tropy energy.

It is obvious that this anisotropy must lead to me-
chanical effects; the formation of a magnetic axis is
accompanied by the development of a crystallographic
axis, and any turning of this axis or changes in the mag-
netic moments must produce a mechanical distortion of
the material. The situation is analogous to the piezo-
electric response of ferroelectrics (see Sec. 28), but this
analogy has not been recognized clearly. This becomes
apparent in the unhappy choice of the name for the
mechanical distortion accompanying magnetization
changes as magnetostriction. The designation implies
that the effect is akin to electrostriction, where we deal
with induced moments (see Sec. 27), while actually we
operate with permanent moments as in piezoelectrics.

The crystal energy U, in its dependence on the direc-
tion of magnetization is obviously determined by the

Fig. 30.4. Direction cosines of the magnetization for cubic

crystals.

macroscopic crystal symmetry. For a cubic crystal, for
example, the energy is given by the direction cosines
oy, ag and a3 referring to axes in the cube-edge direc-
tions (Fig. 30.4), as

U= K1(0¢120¢22 e 01220132 e 01320112)
+ Ka(ar®azas®) +--+;

K, and K, are the firsi- and second-order anisotropy
constants.!!

In addition to this true crystal anisotropy we find, as
in ferroelectrics, that external stress or residual strains
in the material cause a stress anisotropy. How the
magnetic moments orient in relation to such stress de-
pends on the sign of the magnetostriction constant \.
The constant designates the relative change in length

A= Al/l (30.3)

occurring in the direction of an applied magnetic field

(30.2)

10 J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).
1 See, for example, R. Becker and W. Doring, Ferromagnetis-
mus, Springer, Berlin, 1939, pp. 112 ff.

under the influence of this field. It is negative in
nickel, that is, a nickel bar shortens in field direction,
whereas permalloy shows positive magnetostriction and
iron, with its strong crystal anisotropy, gives A values
varying for different orientations, even in sign. Posi-
tive magnetostriction obviously leads to a positive
stress anisotropy, that is, the moments line up preferen-
tially sn the direction of the stress on tension and per-
pendicular on compression.

A third anisotropy effect occurs in ferroelectrics as
well as in ferromagnetics when nonspherical samples
are used—a shape anisotropy. The free ends of the
dipole chains produce a demagnetizing (closing) field;
hence the material tends to magnetize in the direction
in which this field is a minimum, that is, in the direc-
tion of its largest dimension. The effect can be cal-
culated for rotational ellipsoids (see I, Sec. 10 and
Appendix A, I, Sec. 2).

The phenomena discussed thus far dominate the be-
havior of a ferromagnetic near saturation when the
moments are all lined up in the same direction. In
the demagnetized state, the material is divided into
Weiss domains (see Sec. 29), each of them magnetized
to saturation and these microregions orientated in pat-
terns that tend to minimize the closing field. Across
the domain boundaries, called Bloch walls since Bloch *?
first treated their energy content and dimensions, the
spin vectors gradually change their orientation from
the one direction to the other over a distance of several
hundred angstroms (Fig. 30.5). In cubic crystals the

Fig. 30.5. Schematic representation of spin orientation across a
180° domain wall (Bloch wall).

domains are frequently mutually oriented at 90° or
180°; in consequence 90° walls and 180° walls play an
important role in magnetization processes.

The intersection of the walls with the surface of the
opaque ferromagnetics can be made visible by the
deposition of a ferromagnetic powder, which is at-
tracted by the strong local closing fields. By using
colloidal Fe3O, particles instead of coarse powders,

12 F. Bloch, Z. Physik 74, 295 (1932).
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Bitter ¥ could develop these surface domain patterns
in beautiful detail. This method of the Bitter stripes
has been used recently by scientists of the Bell Tele-
phone Laboratories #'* and by Bates and his co-
workers 1 with spectacular success for static and dy-
namic studies of the domain behavior.

The conventional method of mechanical polishing
produces surface strains and powder patterns that can-
not be used for the interpretation of the internal do-
main structure. Electrolytic polishing removes these
disturbances " and leads, with properly oriented single
crystals, to definite conclusions about the stable ar-
rangement of domains and the motion of the Bloch
walls under the influence of external fields. The mini-
mum energy constellations, predicted for single crystals
of various shapes and orientations by Néel,'* could be
verified, and the decisive influence of nonmagnetic in-

B
T Br T . . .
B Spin orientation
~Slope = £ mqx /.—\—‘7-'"
~Slope =  Bs Barkhausen
= discontinuities
jh‘c H—>

"T~.rreversible wall
displacement
(o) Typical hysteresis loop for o
ferromagnetic material

<
“Reversible wall
displacement

(b) Interpretation of magnetization
curve

Fig. 30.6. B-H characteristic and its possible interpretation
(180°).

clusions or cavities on the wall motion and coercitive
force, indirectly established especially by Kersten’s
work,!® could be photographed in convincing detail.
Let us visualize from the molecular standpoint the
magnetization process, measured as a B-H curve and
characterized by ¢nitial permeability u;, maximum per-
meabtlity pmax, coercitive field H,, and saturation induc-
tion B, (Fig. 30.6). In the region of the initial perme-
ability u; reversible displacements of the Bloch walls
take place. Domains orientated favorably towards the

13 F, Bitter, Phys. Rev. 38, 1903 (1932); the same method was
developed independently by L. von Hamos and P. A. Thiessen,
Z. Physik 71, 442 (1931).

4 H. J. Williams, R. M. Bozorth, and W. Shockley, Phys. Rev.
75, 155 (1949); H. J. Williams and W. Shockley, ibid. 75, 178
(1949); C. Kittel, Revs. Mod. Phys. 21, 541 (1949).

5 J. K. Galt, J. Andrus, and H. G. Hopper, Revs. Mod. Phys.
25, 93 (1953).

16 See the summarizing report by L. F. Bates, Proc. Phys. Soc.
(London) A165, 577 (1952).

17 C. Elmore, Phys. Rev. 61, 982 (1937); 53, 757 (1938).

181, Néel, J. phys. et radium [8] 5, 241 (1944).

19 M. Kersten, Grundlagen einer Theorie der ferromagnetischen
Hysterese und der Koerzitivkraft, Hirzel, Leipzig, 1943.

field direction grow at the expense of domains of oppo-
site orientation. This motion of 180° walls under the
influence of a slightly unbalancing external field has
been made visible by Williams and Shockley * on a
single crystal of silicon iron, cut in a hollow rectangle
with edges and surfaces accurately parallel to the direc-
tion of easy magnetization [100]. The domain pattern
in the demagnetized state consists of eight domains,
four forming an inner rectangle magnetized in one
direction, while the other four compose an outer rec-
tangle of opposite magnetization (Fig. 30.7). The sep-

<— Direction of wall
motion

I
1
1
m Domain
|
1
I

Inclusion

Domain

(0) Domain structure of

(b) Effect of i i
hollow parallelogram ):Efftt gifintlusion

Fig. 30.7. (a) Domain wall (180°) in single crystal core of silicon-
iron. (b) Wall motion hindered by inclusion. (After Williams
and Shockley.14)

arating Bloch wall, lined out by a deposit of colloidal
iron, halves the crystal as a white line. Changes of
magnetization correspond to the growth of one set of
domains at the expense of the other, that is, the line
moves. When saturation is reached, the Bloch wall has
moved completely to one side, leaving each leg of the
rectangle one single domain. It should be noted that
these 180° Bloch walls move perpendicularly to the
external field. This strange behavior becomes under-
standable, when we recall that the magnetic moments
are coupled to mechanical spins, hence act like gyro-
scopes producing by their precession a force component
normal to the external force.?

In an ideal single crystal the slightest unbalance
should suffice to roll the Bloch wall to one side and
thus to achieve immediate saturation in the direction
of easiest magnetization. Actually, this does not hap-
pen because the wall entangles itself at inclusions and
crystal imperfections. It becomes entrapped by sec-
ondary domain patterns forming around the irregulari-
ties; these patterns elongate into restraining spikes

2 See, for example, R. Becker, J. phys. et radium 12, 332 (1951).
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when the domain wall is being forced ahead by an ex- -

ternal field (see Fig. 30.7). Finally, the holding spikes
break and the wall rolls on, until caught again by new
irregularities. This advancing of the domain walls in
jerks produces the Barkhausen noise, that is, the
jumps in magnetization heard over the loudspeaker or
registered on indicating instruments.

The region of the Barkhausen effect corresponds to
irreversible wall displacements, that is, to the hysteresis
loop part of the magnetization characteristic (Fig. 30.6).
When the magnetization cannot increase further by
such wall displacements, it may still be enhanced by
turning the magnetization of the individual domains

"_:" . Octahedral interstice
Q :-‘0(32 per unit cell)
- 1

Cation in octahedral site.

Tetrahedral interstice
(64 per unit cell)

Cation in tetrahedral site.

Fig. 30.8. The spinel structure.

from the direction of easiest magnetization into the
field direction. By this rotation of spins, characteriz-
ing the upper part of the magnetization curve, even a
multicrystalline material reaches finally the status of a
single domain.?

In addition to paramagnetic salts and ferromagnetic
metals, the elements of the iron group form ferromag-
netic nonmetals, especially oxides. The mother sub-
stance of these materials is magnetite (Fe30,4), noticed
as natural lodestone by the ancient Greeks for its power
to attract small pieces of iron.?* Magnetite and its de-
rivatives, the ferrites or ferrospinels, have quite re-
cently moved into the center of attention. This delay
time of more than 2500 years may be considered some-
what extensive, but there is a good technological rea-
son: the plastic metals are easier to handle than the
brittle ceramics and have appreciably higher magnetic
saturation. Hence, only as the high-frequency proper-
ties of the ferromagnetics became of importance, the

2 H. Barkhausen, Physik. Z. 20, 401 (1919).

22 The detailed analysis of magnetization curves poses special
problems for each individual material. See, for example, E. C.
Stoner, Revs. Mod. Phys. 25, 2 (1953).

23 The Latin name magnes is supposedly derived from the dis-
trict of Magnesia, Asia Minor, where the ore is found in quantity
(see Titus Lucretius Carus, De Rerum Natura—about 60 B.c.).

low conductivity of the ceramics proved an advantage
outweighing their shortcomings.?

The mineral spinel (MgOAl,03) and the cubic ferrites
(MeOFey03) crystallize in a structure characterized by
a cubic, close-packed array of O~ spheres (see Sec. 24)
with the divalent and trivalent cations distributed in
the interstices. There are two kinds of interstitial
positions in the oxygen lattice, tetrahedral sites enclosed
by four oxygen ions and octahedral sites formed by six
oxygen ions (Fig. 30.8). In the spinel structure twice
as many octahedral as tetrahedral sites are occupied.
The unit cell, formed by 32 cubic close-packed oxygens
(see Fig. 24.6), has 96 interstices, 64 of tetrahedral and
32 of octahedral configuration; hence, since it contains
eight MeOFeoO3 groups, 24 cations have to be dis-
tributed. From the standpoint of charge compensa-
tion we might foresee that the divalent metal Me?t
ions will occupy the tetrahedral sites and the trivalent
Fe®T ions the octahedral sites. However, this normal
spinel structure has been found thus far only for the
zinc and cadmium ferrites; the other simple ferrites of
only one kind of divalent metal ion are inverted.?® The
8 divalent Me? T ions occupy entirely (or preferentially)
octahedral sites, whereas the 16 trivalent Fe3* ions are
placed half in tetrahedral and half in octahedral posi-
tions.

Magnetite (FeOFe;03), with only one cation ele-
ment, is the most interesting starting material for
fundamental studies; it has been grown as single crys-
tals in the Laboratory for Insulation Research 2¢ and is
under intensive investigation.?” The equal number of
ferrous and ferric ions in octahedral lattice sites allows
a simple electron exchange between Fe?t and Fe?™, as
first pointed out by Verwey and his co-workers.?® In
consequence, magnetite has the highest conductivity of
all the ferrites (ca. 10* [ohm™ m™!] at room tempera-
ture or about 10~ times the conductivity of copper)
and is therefore at present of minor technical im-
portance.

The magnetic properties of magnetite near room tem-

2¢ Much pioneering work on the ferromagnetic nonmetals has
been done at the Philip’s Research Laboratories, for example, by
E. J. W. Verwey and by J. L. Snoek and his co-workers; see
J. L. Snoek, New Developments in Ferromagnetic Materials,
Elsevier Publishing Co., New York and Amsterdam, 1947.

% T, F. W. Barth and E. Posnjak, Z. Krist. 82, 325 (1932);
E. J. W. Verwey and E. L. Heilman, J. Chem. Phys. 15, 174
(1947).

26 J. Smiltens, J. Chem. Phys. 20, 990 (1952).

2 See L. R. Bickford, Jr., Phys. Rev. 78, 449 (1950); C. A.
Domenicali, Phys. Rev. 78, 458 (1950); B. A. Calhoun, Tech. Rep.
68, ONR Contract N50ri-07801, Laboratory for Insulation Re-
search, Massachusetts Institute of Technology, July, 1953.

#E, J. W. Verwey, P. W. Haayman, and F. C. Romeijn,
J. Chem. Phys. 15, 181 (1947).
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perature are similar to those of nickel. Its saturation
magnetization M, ~ 4.75 X 10° [amp/m] is about the
same and its direction of easy magnetization the body
diagonal [111]; the Curie temperature (ca. 585°C) lies
ca. 200°C above that of nickel. The value of the
saturation magnetization corresponds to 4 Bohr mag-
netons per FezO4 group. If the cations in magnetite
can be represented as Fe?* and Fe®™ ions with their
four and five unpaired 3d electrons respectively co-
operating in parallel orientation, we should expect
4 4+ 2 X 5 = 14 Bohr magnetons. This discrepancy
was explained by Néel # as indicating that an antiferro-
magnetic coupling exists between the ferric ions in the
tetrahedral and the ferric and ferrous ions at the octa-
hedral sites, thus leaving only the ferromagnetic con-
tribution of the Fe?' magnetons. The existence of
antiferromagnetism has been confirmed by Shull and
co-workers ¥ through neutron-scattering experiments.

To treat this more complicated situation, Néel ex-
panded the Weiss concept of the molecular field (Eq.
29.9) by subdividing the crystal into ferromagnetic
sublattices and deriving the local field by a superposi-
tion of their action. If the sublattices A and B (Fig.
30.9), for example, signify the Fe?* ions in the tetra-
hedral and octahedral positions, the magnetizations
My and M3z of these two groups of magnetic moments
create two local fields, one acting on the A, the other
on the B position:

Hy = H+ wa/My + wya'Mp
and (30.4)
HB' =H + 'wB'MB -I- ’LUB"MA.

The primed coefficients refer to the action of the mag-
netizations on their own sites, the double primed fac-
tors, wa’ and wg”, to the interactions of sublattice B
on site A and A on site B.

Above the Curie point the magnetization, just as the
corresponding polarization of Eq. 23.1, may be written
as

C
M = No,,H' ~—H’ (30.5)
T
if the first term of the Langevin function (Eq. 29.16)
suffices. Hence the two magnetizations of the sublat-
tices become

Cy
My =—Hy,’
)
and (30.6)
el T
5 = - Hs

9, Néel, Ann. phys. [12] 3, 137 (1948); the first concepts of
antiferromagnetism were developed by Néel in 1936, Ann. phys.
5, 232 (1936), see also L. Néel, Revs. Mod. Phys. 25, 58 (1953).

% C. G. Shull, E. O. Wollan, and W. C. Kochler, Phys. Rev. 84,
912 (1951).

By assuming that H, M4 and Mg are collinear, we find
for the magnetic susceptibility above the Curie tem-
perature (see I, Eq. 2.18)

M4+ Mp
H
C4 = Cp,

wAI — wB’y

Xm (307)

When
(30.8)

and since for reasons of symmetry

2 "
= wg"’,

W4
the susceptibility becomes simply
2C
= 25 Tc.
where the paramagnetic Curie temperature is

T, = Clwa’ + wa”).

Xm (30.9)

(30.10)

Since antiferromagnetic coupling is assumed between
the A and B sites, w,”’ is negative.

Fig. 30.9. Sublattices A and B, creating two local fields. (After
Néel.?)

In general, the simplifications of Eq. 30.8 will not
apply; furthermore the ions may be distributed in dif-
ferent numbers over the A and B sites, additional sites
C may enter, and the situation then becomes extremely
complex. Néel has considered a number of cases and
predicted various types of magnetization character-
istics. Some of these curves have already been verified
by experiment, and Néel’s concepts have proved ex-
tremely valuable in clarifying the basic behavior of the
ferrites. A summarizing treatment of the theory of
antiferromagnetism has been given by Van Vleck.®

a J, H. Van Vleck, J. phys. et radium 12, 262 (1951).
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Ferrites of a wide variety of electric and magnetic
properties have been derived by replacing the Fe?™
ions of magnetite with divalent ions of magnesium,
manganese, cobalt, nickel, copper, zinc, or cadmium.
The technically important materials are in general mix-
tures of two or more of these single ferrites. The mixed
zinc-ferrites offer an especially interesting case because
zinc occupies only tetrahedral sites, and ZnFe,Qy itself
is nonferromagnetic. Thus, if 2 denotes the fraction of
Zn** replacing Fe®*, the distribution may be repre-
sented symbolically, as Gorter has investigated in de-
tail,® by the formula

2 3 3
(an+Fe1 i_z)tetr. (Fefi—zFe1¢z)oct.O4-

As long as the zine content is small, the ferric ions at
the tetrahedral sites, antiparallel to the spins at the
octahedral sites, are still able to enforce parallel
orientation of the ferric and ferrous ion on the octa-
hedral sites antiparallel to the spins at the tetrahedral
sites. Since the number of antiparallel spins has de-
creased and zinc does not contribute, the saturation
magnetization rises (Fig. 30.10). For high zinc con-

10

9+

8

Bohr magnetons per molecule

o 1 1 1

1
o] 0.2 04 0.6 [oX 1.0
x> Zn? Me'I ; Fe;b4
Fig. 30.10. Saturation magnetization of zinc ferrite as function
of composition. (After Gorter.3)

centrations, the enforcing action from the tetrahedral
sites begins to vanish and the iron ions at the octa-
hedral sites tend to go into antiparallel or random orien-
tation. The saturation moment decreases again and
falls towards zero. A similar trend has been observed
for the nickel-zinc and manganese-zinc ferrites.
Obviously, ferromagnetic research has assumed a new
breadth by this extension to semiconductors. Not only
can new types of magnetic coupling effects be realized
in wide variations, but the screening effect of the con-
ducting electrons has been lifted, and the specific par-
ticipation of the conducting electrons in magnetization

2 B, W. Gorter, Nature 165, 798 (1950).

and polarization may be observed. An example in
kind is the transition of magnetite near —160°C. The
A-shaped specific heat anomaly ¥ suggests a second-
order transition. When a single crystal is cooled
through the critical region, the conductivity drops by
about two orders of magnitude; the magnetization in
weak fields decreases sharply; and if a strong magnetic
field is applied during cooling and then the crystal de-
magnetized below the transition, a most unusual effect
is observed: a magnetic axis has been frozen in, oriented
in the [100] direction closest to the external magnetiza-
tion. In this direction the crystal can be remagnetized
easily; in all other directions much larger fields are re-
quired; and this magnetic axis can be turned by a strong
external magnetic field into other [100] directions 3¢ just
as the polar axis in BaTiO; can be turned by an external
electric field (see Sec. 28). Furthermore, the con-
ductivity becomes anisotropic and dependent on the
magnetic axis direction.

This surprising state of affairs becomes understand-
able if the transition, as first suggested by Verwey,?® is
interpreted as an electronic order-disorder transition.
As mentioned previously, an equal number of Fe?* and
Fe3*t ions is distributed over the octahedral lattice
sites. At room temperature, these ions exchange elec-
trons freely and no distinction can be made between
them; the lattice parameters are adjusted to an inter-
mediate average charge distribution. With decreasing
temperature the speed of the electron exchange slows
down like any other process requiring activation en-
ergy. Near —160°C the transfer has become so slow
that the lattice vibrations can react to the momentary
charge of the individual iron ions. The structure dis-
torts selectively around the ferrous and ferric sites and
freezes them into place. Since the ions are the carriers
of ferro- and antiferromagnetism, the electronic order-
ing, when influenced by a strong magnetic field, causes
also the fixation of a magnetic structure pattern.

Some other aspects should be mentioned. It was
well established for metals that ferromagnetism van-
ishes in the microwave region; 3 shielding of the metal
interior by eddy currents was blamed for this phe-
nomenon. For the low-conducting ferrites, ranging in
resistivity to 10'° [ohm m], this shielding by skin effect
is eliminated, but still the ferromagnetism disappears
as before. Closer inspection reveals wide variations in
the onset and shape of the dispersion characteristics

#R. W. Millar, J. Am. Chem. Soc. 61, 215 (1929).

% 8ee L. R. Bickford, Ref. 27, and B. A. Calhoun, Ref. 27.

% B. J. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem.
Phys. 15, 181 (1947).

% See the collected data in R. M. Bozorth, Ferromagnetism,
D. Van Nostrand Co., New York, 1951, p. 800.
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for the various ferrites (Fig. 30.11). The curves
frequently resemble not so much relaxation spectra
but characteristics integrating over various resonance
states.

Several mechanisms have been proposed to account
for the ferromagnetic dispersion,® and each of them
may have its range of application. One resonance phe-
nomenon, not recognized by some early observers, is
avoidable by selecting proper sample dimensions; the
high permeability and permittivity of ferrites may

to an internal magnetic field that causes a Larmor pre-
cession of the magnetic spins and leads to a ferromag-
netic resonance when an external frequency field ap-
proaches this Larmor frequency.®* Quantum-mechan-
ically expressed, a transition is induced between two
Zeeman levels at this frequency.

This last effect is the most interesting one and be-
longs to the group of nuclear, para- and ferromagnetic
resonance phenomena,*** which have become one of the
most important tools for the study of solids and liquids
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Fig. 30.11. Dispersion characteristics of two ferrites. (Samples from General Ceramics and Steatite Corp.; measurements by W. B.
Westphal, Laboratory for Insulation Research.)

make them act as cavity resonators at unexpectedly
low frequencies.® Furthermore, in ferroelectric as well
as in ferromagnetic ceramics, the individual grains, act-
ing as electromechanical and magnetomechanical trans-
ducers, respectively, may operate at cross purposes and
produce a dispersion and absorption as observed.®

A more intricate phenomenon is that domain walls
are quasi-elastically bound to their equilibrium posi-
tions and, when moving, possess an apparent inertial
mass due to the gyromagnetic spin precession; in con-
sequence, domain wall resonances may appear.® Fi-
nally, the magnetic crystal anisotropy acts equivalent

¥ See, for example, G. T. Rado, Advances in Electronics, Aca-
demic Press, Inc., New York, 1950, Vol. 2, pp. 251 ff.; Revs. Mod.
Phys. 25, 81 (1953).

# F. G. Brockman, P. H. Dowling, and W. G. Steneck, Phys.
Rev. 77, 85 (1950).

® A. von Hippel, Z. Physik 133, 158 (1952).

# W. Doring, Z. Naturforsch. 3a, 373 (1948); C. Kittel, Phys.
Rev. 80, 918 (1950); R. Becker, J. phys. et radium 12, 332 (1951);
G. T. Rado, R. W. Wright, and W. H. Emerson, Phys. Rev. 80,
273 (1950); G. T. Rado, Phys. Rev. 83, 821 (1951).

since the famous nuclear resonance experiments by
Bloch # and Purcell and co-workers.#
A phenomenon closely related to magnetic resonance

41, Laudan and E. Lifshitz, Phys. Z. Sovjetunion 8, 153
(1935); J. L. Snoek, Philips Tech. Rev. 8, 353 (1946); Physica 14,
207 (1948); D. Polder and J. Smit, Revs. Mod. Phys. 25, 89
(1953).

# See, for example, the surveys by K. K. Darrow, “Magnetic
Resonance,” Bell System Tech. J. 32, 74, 384 (1953), and G. E.
Pake, “Fundamentals of Nuclear Magnetic Resonance Absorp-
tion,” Am. J. Phys. 18, 438, 473 (1950).

4 Ferromagnetic resonance was first observed by Griffiths
{J. H. E. Griffiths, Naiure 158, 670 (1946)] in iron and the preces-
sion theory for ferromagnetic substances formulated by Kittel
[C. Kittel, Phys. Rev. 73, 155 (1948); J. phys. et radium 12, 291
(1951)]. Resonance experiments on magnetic single crystalsin
the Laboratory for Insulation Research by Bickford 2 demon-
strated the value of this new tool for the determination of g fac-
tors and crystal anisotropy in ferromagnetics.

4 T, Bloch, Phys. Rev. 70, 460 (1946); F. Bloch, W. W. Hansen,
and M. Packard, Phys. Rev. 70, 474 (1946).

4 E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69,
37 (1946).
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is the Faraday effect ¢ (see Appendix AIL, 5). If a
magnetic axis is established in a material around which

Tapered ferrite rod

\Solenoid producing axial

\Waveguide magnetic field

Launching
antenna

Fig. 30.12. Gyrator operating by ferromagnetic Faraday effect.

electron spins can precess, this axis acts on an electro-
magnetic wave like a dynamic serew axis. A linearly

4% M. Faraday, Phil. Trans. 1 (1846); Pogg. Ann. 68, 105
(1846).

polarized wave propagated parallel to the axis can be
thought of as composed of a right- and a left-hand cir-
cular component (see I, Sec. 12) which encounter differ-
ent permeabilities, hence travel with different velocities.
In consequence, a rotation of the plane of polarization
results. In addition, when the frequency of the wave
corresponds to the precession frequency of the electrons,
the circular component rotating in the precession di-
rection is strongly absorbed and thus highly attenuated.
The ferromagnetic Faraday effect in the ferrites has
become recently of technical importance, especially
through the work of Hogan,? for the development of
new types of switching components in the microwave
range, called gyrators (Fig. 30.12). These components
do not obey the reciprocity law; the plane of polariza-
tion of a reflected wave is rotated in the same direction
as that of the incident wave.

4 C, L. Hogan, Bell System Tech. J. 31, 1 (1952); Revs. Mod.
Phys. 25, 253 (1953).

31 - Interfacial and Space-Charge Polarization

At the outset of the molecular discussion (Sec. 1),
four mechanisms of polarization were introduced, but
only three have been discussed thus far: the electronic,
the atomic, and the dipole orientation polarization.
These three effects have in common that they are
caused by the displacement or orientation of bound
charge carriers. The remaining process, the space-
charge or interfacial polarization, is produced by travel-
ing charge carriers and confronts us with a completely
different situation. Previously, the atoms and mole-
cules found themselves under the influence of a local
field consisting essentially of the applied field, modu-
lated by the polarization of the surroundings. Now,
large-scale field distortions enter, caused by the piling
up of space charges in the volume or of surface charges
at the interfaces of dielectrics.

The classical example of interfacial polarization is
the Maxwell-Wagner two-layer condenser ! (Fig. 31.1).
The dielectric consists of two parallel sheets of mate-
rials (1) and (2), characterized by their dielectric con-
stant, conductivity, and thickness (e;’, o1, di) and
(e5!, 02, dg), respectively. When a d-c field is suddenly

1], C. Maxwell, Electricity and Magnetism, Clarendon Press,
Oxford, Vol. 1, 452 (1892); K. W. Wagner, Die Isolierstoffe der
Elektrotechnik, edited by H. Schering, Berlin, Springer, 1924,
pp. 1 ff.

applied, the initial field distribution corresponds to the
electrostatic requirement of constant flux density

Dl S D2
or (31.1)
E/E; = &'/¢/,

whereas the final distribution follows from the condi-
tion of current continuity

or (31.2)
EI/E2 = 02/‘71~

kR
:*—-d
J

|

Maxwell-Wagner two-layer condenser.

Fig. 31.1.

The transient which links the initial and final state
may be derived from the equivalent circuit of Fig. 31.2
with




Interfacial and Space-Charge Polarization

229

V=1 + Vg
‘ (31.3)
dU, D1 dUg Vs
I = C _— —_— = —_ —_—
! L= i
C, = C 4 1
T = ’ € 2 = ds €2
(31.4)
d d
Rl i '—1— R2 = —i!
Aoy Ads

Fig. 31.2. Equivalent circuit of two-layer condenser.

Solving Eqgs. 31.3 for U; and V., we obtain

R CeR
Uy =v—‘{1—(1 'y 2)6“’"},
R1+R2 T

(31.5)
T T k)
Vo=V —7—11—[1— ]
1 Rl + R2 T 4
where the relaxation time
R{Ry(C C ‘d, d
P 1R2(Cy + 2)=é1 s+ e i 31.6)

R, + R, o1ds + o2d;

The field changes exponentially from initial to final
distribution.

The steady-state solution, when an a-c voltage U =
Voe™* is applied, can be derived from the admittance
of the circuit

I Y.\Y,
Y=—"=—"— 31.7)
VvV Y1+ 7,
where
1 1 + jory
P 00 Syl o, el
1 e + jwCy R,
(31.8)
1 1+ jors
o vt it bptle. i e i,
P s + jwCs R,

The time constant r of Eq. 31.6, expressed in terms of
71 and 75 of the two individual RC circuits, is

Ry + R
= ATz T A2n ; (31.9)
Ry + R,
hence the admittance may be rewritten
1 143 1+ j
(A + jor)) (A + jors) (31.10)

=R1+R2 l-l-jwr

According to I, Eq. 1.10, the admittance determines
the complex permittivity of the capacitor as

Y= ij*C(),
where (31.11)
AG()
Co=7’ d=d1+d2.

Hence the two-layer condenser appears to the outside
observer as a dielectric of the dielectric constant

1+ 12 — 7+ WPryTe

ki= : (31.12)
Co(Ry + Ry)(1 + o?r?)
which changes from its static value (w = 0)
P | Ly (31.13)
Co(By + Ry)
to its optical value (w — ®)
1 i}
BN el SN (3Tl
Co(Ry + Ry)r  Cy ( i & 1)
C; G

as the frequency w increases. Introducing «," and «,’

into Eq. 31.12, we obtain

K = Ky {1 s m} (31.15)

where

k

(Tl + T2 — T)T — TiT2 lc,l — Ky

(31.16)

T172 Koo

The dissipation factor of the two-layer dielectric be-

comes
, ( T 2 kowr )
Keo .
writs 1+ o’

A comparison of these expressions with Eq. 22.17
shows that the two-layer condenser gives a relaxation-
spectrum indistinguishable from the simple orientation
polarization of the Debye theory as far as «’ is con-

K =

(31.17)
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cerned (Fig. 31.3). The «”/ characteristic contains, in
addition, the ohmic conductivity term

Keo'T 1
o=—=—— (31.18)
itz Co(R1 + Ry)
caused by the series resistor (R; + R;). The complex
permittivity may thus be written
Ks, = "oo,
1 + jor
From the molecular point of view, the optical dielec-
tric constant of the two-layer condenser (Eq. 31.14)

craseailte
® dy dz)
(el' - €2I

is determined by the real permittivities of the two
media, composed of the static contributions of the elec-

T = (31.19)
(6]

(31.20)

log wt —»

Conductivity term

~.
~

-
———

log wt —

Fig. 31.3. Relaxation spectrum of the two-layer condenser.

tronic, atomic, and orientation polarizations. The
static dielectric constant (see Eq. 31.13)

2
1 61' 1 62'
o1 Ve o2 Ne'
dy ds

4+_

o1 o2

k' = ko' 11 4 dids

(31.21)

is larger than the optical one because media (1) and
(2) contain mobile charge carriers of the densities Ny
and N, [m™3], transporting charges e; and e, with the
mobilities b; and b,. Because of these conductivities

TLI= N1€1b1,
(31.22)
o2 = Ngesbs,

charges pile up at the interface between media (1) and

(2) until constant current transfer is established and
the static conductivity results (see Eq. 31.18),

d/éo

2
g1 o2

As the frequency increases, the interfacial polarization
begins to lag. The dielectric constant «’ decreases to
the midpoint between the static and optical value
when w = 1/7; the relaxation time 7 (Eq. 31.6) may be
written in analogy to the preceding equations

dy ds
’d + ’d 51’62’ "_’+ 7
€ € € (3
P e o — . (31.29)
61d2 + 0'2d1 (dl d2>
0102 =

(31.23)

o1 02
By measuring «.’, k', o, and 7 we can calculate the
dielectric parameters €', €', o1, and oy of the two
layers if the thickness ratio d;/ds is given.

Since the polarization P of the two-layer condenser
is proportional to the applied field, it is possible to
define a space charge polarizability «, of the overall
dielectric in analogy to Eq. 1.5 by writing

P = No,E = (x* — k) ek; (31.25)
hence from Eq. 31.19
Tak o ul
oy = (K"_i“'i_ = JZ) 2. (31.26)
1+ jwr w/ N

The only merit of this expression is that it allows a
discussion of the total polarization as the sum of the
four terms indicated in Eq. 1.6.

By dividing the layers (1) and (2) into n; and ng
equal sublayers of the thicknesses A; and A, obviously
nothing is changed; we replace in our equations

a1 = mb, (31.27)
d2 = ’ﬂzAg.
Next we might stack the sublayers (1) and (2) alter-
nately or in any other sequence (Fig. 31.4); since the

Fig. 31.4. Electrical identity of two-layer and multi-layer con-
denser (relative amount and shape of the two media maintained).

total impedance is not altered, the dielectric response
still remains unchanged. By subdividing to molecular
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thicknesses, we could actually make a continuous tran-
sition from interfacial to atomic polarization if the
latter would correspond to a relaxation and not to a
resonance phenomenon. As long as the geometrical
shape and orientation in the field remains the same

/. Conducting sheet @ @ @ D| conducting
_ Insulating sheet D © @ @ | spheres
|
a b
I 2 R
©@2 20| Conducting Z Conducting
2002000 ellipsoids R cylinders
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Fig. 31.5. Dependence of dielectric response on shape and orien-
tation of particles of medium 2. (After Sillars.?)

(layers stacked in series) and the relative amount of
medium (1) to (2) unaltered (expressed by the ratio of
the total thicknesses, d;/ds), the complex permittivity
of the composite dielectric remains unaffected.

We might change the geometry of medium (2), while
preserving its mass, and disperse it in medium (1) in
the shape of spheres? or ellipsoids or rods ® so diluted
that the interaction between the particles can be neg-
lected. Since the field distortion caused by a polarized
particle depends on its shape and orientation relative
to the applied field, «* will now vary with the shape
and orientation of the medium (2) particles, as Figs.
31.5 and 25.1 indicate. Thus, for example, a distribu-
tion of relaxation times may be produced by varying
the orientation of ellipsoidal particles. The absolute
particle size, just as above the absolute thickness of
the layers, does not enter into the calculations but
only the mass ratio of the two media.

Medium (2), distributed in base medium (1), highly
diluted and in prescribed shape and orientation, gives a
simple relaxation spectrum of only one relaxation time.
When 7 media are dispersed in medium (1), n relaxa-
tion times occur; correspondingly, a capacitor of (n + 1)
different dielectric layers has n relaxation times. Hence,

2 K. W. Wagner, Arch. Elekirotech. 2, 371 (1914).
3R. W. Sillars, J. Inst. Elec. Engrs. (London) 80, 378 (1937).

broad-band absorbers may be realized, for example, by
stacks of properly selected dielectric disks.

When the concentration ¢ of material (2) in the base
medium (1) is increased, the distorted field areas
around each particle begin to overlap and affect each
other. Obviously, the dielectric characteristics, plotted
as f(c), must start with the properties of medium (1)
and terminate with those of medium (2). The shape
of the characteristics between these two end points has
been a problem for discussion for many years,* and fre-
quently a logarithmic mixing rule given by Lichtenec-
ker ® is used to determine the permittivity x,’ of a mix-
ture from &y, k' and the volume ratios 8, 6, of the
components:

log kn’ = 61 log k1’ + 65 log ko'. (31.28)

This rule has been well-confirmed by Biichner ¢ for
mixed dielectrics containing TiO, (rutile) as the one of
their two phases (Fig. 31.6). However, the validity of
any rule is obviously limited, because the shape, size,
and distribution of the particles are empirical param-
eters affecting the polarization.

Interfacial polarization results when abutting dielec-
trics differ in conductivity and therefore require differ-
ent voltage gradients to transconduct a current of
constant density. The migration of the charge carriers

1 L

1 1 1
0 20 40 60 80 100
% volume of rutile

Fig. 31.6. The logarithmic mixing rule applied to TiO2 com-
positions. (After Biichner.$ )

through each individual dielectric and their transfer to
the electrodes is thought to be unimpeded. This tacit
assumption is actually very stringent and not at all
fulfilled for most materials, as anyone knows who has

4 8ee K. Lichtenecker, Physik. Z. 27, 115 (1926); 37, 906 (1936);
D. A. G. Bruggeman, Ann. Phystk [5] 24, 636 (1935).

§ K. Lichtenecker, Physik. Z. 10, 1005 (1909).

¢ A. Biichner, Wiss. Veraffentl. Siemens-Werken 18, 84 (1939).
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been shocked by the dielectric after-effect of a homo-
geneous capacitor dielectric. The phenomenon, as de-
scribed by many investigators, is as follows: a constant
voltage U applied at ¢ = 0 to a uniform material (for
example, a crystal plate) causes, after the initial surge
of charge (CU) has passed, a small charging current I,
that decays over minutes, hours, days, or even months.
Shorting of the electrodes after a time 7' produces an
opposite discharging current —I; that decreases ac-
cording to the identical law. The discharge current
—I; may be represented at any time ¢; > T as the dif-
ference of a current —I,, starting at ¢t = T, and the
primary positive current +1,, extrapolated to ¢ = ¢;.
This law of superposition (Fig. 31.7),

—Id(tl) = —Ic(tl = T) + Ic(tl);

expresses, in a somewhat involved fashion, the simple
statement that the total residual charge stored by the
dielectric is redelivered in the discharge process.

(31.29)

i

Fig. 31.7. The law of superposition.

This dielectric after-effect is, in general, the sign of
space-charge build-up in the dielectric material. The
charge carriers are required to migrate through the
volume, to discharge freely at the one electrode, and to
be replaced spontaneously at the other electrode, if
field distortion is to be avoided. This is a most unlikely
combination of circumstances in nonmetals. Thus
space-charge polarization plays a most important and
frequently not clearly recognized role in electric polari-
zation phenomena and is, for example, the working
principle of most electrets. Depending on the relative
mobility of cations and anions and the electrode sit-
uation, a variety of field distribution characteristics
can be realized; some typical curves, obtained by Joffé
and his co-workers in their early work,” are shown in
Fig. 31.8.

7See A. F. Jofté, The Physics of Crystals, McGraw-Hill Book
Co., New York, 1928.

A very clear-cut case has been investigated recently: 8
the space-charge build-up by photoeffect in additively
colored alkali halide crystals. Here exists, in a first
approximation, the ideal situation of an electron cloud
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Fig. 31.8. Polarization in quartz and calcite. (After Joffé.7)

of uniform density, frozen into a compensating positive
matrix. By heating the erystal in alkali vapor, we can
replace a number of the halogen ions by electrons at-
tached to the anion vacancies, and the F-center ab-
sorption results (Fig. 31.9). These electrons can be
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Fig. 31.9. F-center absorption in KBr.

mobilized by light absorption in the F band, in number
equal to the quanta absorbed times the quantum yield,
and will then drift towards the anode until they are
discharged or retrapped by anion vacancies. This mo-
tion of the electron cloud towards the anode leaves a
bleached region of positive space charge in front of the
cathode, as long as no electrons can re-enter the crys-
tal. If the initial concentration of color centers is suffi-

8 A. von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, Phys.
Rev. 91, 568 (1953).
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ciently small and the applied voltage sufficiently high,
the final state will be a completely bleached crystal.
For higher concentrations or lower voltages, the crystal
will consist of two distinct sections: a completely
bleached region I in front of the cathode taking the
total voltage, and a field-free unbleached region II
with the original color-center concentration (Fig. 31.10).
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Fig. 31.10. Space charge, field strength, and voltage distribution
in colored alkali halide erystal after charging.

The progress of the shock front (xz = d(f)) separating
regions I and II can be*calculated as it advances from
the cathode and, slowing down, comes to a final stand-
still at the distance # = d,. The plunger-like motion
of the shock front pushing the electron cloud out is re-
flected in the external circuit by a current decreasing
as a function of time.

We find that this current is represented by the some-
what complicated expression

deo
) -+ @+ )

= —t/T g
I(t) = I(0)e e

(31.30)

where the relaxation time 7, given by the positive space-
charge density po, the mobility of the electrons b, the
dielectric constant of the crystal ¢, the length of the
crystal [, and the applied voltage Uy, is

6112 14
e ( )
2pnb2‘00

In case the final cathode fall d, is very much smaller

(31.31)

than the crystal length (d,/l K1), Eq. 31.30 simpli-
fies to

1(0)
I(t) ~ _t (31.32)
cosh? <~)
27
(see Fig. 31.11).
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Fig. 31.11. Time dependence of photocurrent through colored

alkali halide erystal (theoretical).

The initial deviation of the current from a simple ex-
ponential drop is caused by the charge transconducted
to the anode. Once the final state is established, dis-
charging and recharging at the same voltage simply

Region

I1
SUPS

Region
I o m-‘

X=

?/I/ i
1 - x

Fig. 31.12. Space charge, field strength and voltage distribution
in shorted crystal (theoretical).
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pushes the electron cloud forward and back without
further loss of electrons. The field distortion after dis-
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charging is shown in Fig. 31.12. Recharging is accom-
panied by a simple exponential current drop

I(t) = I1(0) (1 - d—l”) e,

For this latter case, the law of superposition (Eq. 31.29)
holds, while it will not strictly apply to the initial tran-
sient because electrons are removed from the crystal
(Eq. 31.30). The initial polarization created in a di-
electric cannot be wiped out completely by a subse-
quent discharge as long as the charge carriers trans-
ferred to the electrodes cannot be replaced.

The cathode fall built up in this experiment has the

length
2¢Vo\ %
dao = [m]y
PO

and produces directly in front of the cathode the
maximum field strength

(31.33)

(31.34)

Po 2Vppo

R VR

€

1%

- ) [vm™]. (31.35)
€

The field strength at the cathode can thus be built up
to extreme magnitudes by the simple device of using a
highly colored crystal. The number of F centers per
unit volume, N,, determines, together with the ele-
mentary charge e, the space-charge density as

g e (31.36)

For Ny = 10?* [m~3], a coloration achieved without
great difficulty, the application of 10 v should produce
a cathode fall

de~8 X 1078 [m],

E,~25 X 108

This field strength exceeds the breakdown strength of
most alkali halide erystals.? Before it is reached, field
emission sets in and stabilizes a lower gradient. In

9 See A. von Hippel, J. Appl. Phys. 8, 815 (1937).

=i (31.37)

this way we have successfully produced field emission
into alkali halide crystals with voltages < 1 volt.

In these experiments the mobility of the charge car-
riers and the space-charge build-up can be controlled
from the outside by the wavelength and intensity I of
the illumination. This extreme case illustrates well
that the existence of a mobility and the validity of
Ohm’s law does not presuppose a simple model of free-
charge transfer through a medium of high friction. On
the contrary, the photoelectrons in the alkali halides
travel only a very short distance after their release, as
Pohl and his co-workers established.® Ohm’s law is
valid because the drift distance @ in the field direction
increases proportionally to the driving field strength.
Let Wy designate the average drift distance per unit
field, and ¢, and ¢, the average time intervals, respec-
tively, during which an electron is bound or travels
freely. The drift velocity may then be written

5 =bE = —>F.
to + &
Obviously, the time an electron stays bound varies in
our experiments inversely proportionately to the in-
tensity of the releasing light,

. 1

p = —-
Blo

When this time is long compared with that of free

travel (&, > t;), the mobility

(31.38)

(31.39)

wWo 5%
b~ — ~ qBl,
173

(31.40)

is proportional to the intensity of illumination.

The controlled build-up of space charges is obviously
a powerful tool for learning more about the motion of
charge carriers and about their release at the electrodes
under the influence of very intense fields.

10W. Flechsig, Physik. Z. 32, 843 (1931); K. Hecht, Z. Physik
77, 235 (1932).

32 « Conduction and Breakdown

The preceding discussion of interfacial and space-
charge polarization has introduced certain aspects of
conduction phenomena. The existence of an ohmic
conductivity in dielectrics was considered and a simple
molecular interpretation of such conductivity given as

o = Neb (32.1)

by visualizing mobile charge carriers of the density N

carrying individual charges ¢ and drifting with a mo-
bility b in the field direction. Next, it was shown by
the example of the colored alkali halide crystals that
the actual molecular situation may be much more com-
plex; the charge carriers may be trapped in general and
released only at statistical intervals. This raises the
general question why polar charge carriers can exist in
dielectrics without being neutralized, what their laws
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of motion are in various surroundings, and how their
behavior changes as a function of temperature and field
strength. We will try to give answers by proceeding,
as previously in the treatment of polarization, from
gases to liquids and solids. In this way one starts with
elementary, well-isolated phenomena and acquires some
guiding principles for the handling of the complex
situations encountered in the condensed phases.

Gases

If our plate capacitor of I, Sec. 1, is filled with a gas
of low pressure and connected, not to an alternating
voltage of increasing frequency as previously, but to a
d-¢ voltage of increasing magnitude, a very sensitive
current recorder traces a characteristic, as shown in
Fig. 32.1. This type of curve, first analyzed by Town-

i .

v ) vmax

Fig. 32.1. Current-voltage characteristic at low gas pressure

(schematic).

send,! contains two main items of information: (1) After
an initial rise, the characteristic levels off to a satura-
tion current, indicating that charge carriers are gen-
erated in the gas at a constant rate. (2) Increase of
the voltage beyond this region leads to a second rapid
current rise, until, at a critical breakdown voltage Viax,
the gas is transformed suddenly from a relatively good
insulator into an extremely good conductor.

To explain this rapid increase of charge carriers,
Townsend introduced the avalanche concept, the proto-
type of the neutron avalanches in atomic bomb explo-
sions. An electron, falling in field direction a distance
dz, liberates a new electron by impact ionization with a
probability « dz; hence n electrons at x increase to
n + dn, where

dn = nadz. (32.2)

1J. 8. Townsend, Electricity in Gases, Oxford University Press,
Oxford, 1914.

Thus ng electrons starting at the cathode (z = 0) have
augmented to

N = ngeo? t (32.3)

when arriving at the anode (z = d); that is, each
starting electron produces an electron avalanche, and, in
consequence, leaves behind a positive ion avalanche of
the height

H = ¢ —1. (32.4)

Each positive ion, migrating in the opposite direction,
may liberate an electron with the probability v at the
cathode. Hence, when the ion avalanche grows so
large that the regeneration of a starting electron be-
comes certainty,

v(e*? — 1) = 1, (32.5)

the discharge becomes self-supporting and breakdown
must oceur.

This breakdown condition of Townsend has as its
molecular parameters an tonization probability « repre-
senting the number of ionizing impacts per electron
and unit distance and a regeneration probability v; both
have to be interpreted in detail. In addition, we have
to investigate how the layer thickness d of the gas
dielectric actually affects the breakdown strength; fi-
nally, the origin of the starting electrons ny has to be
established.

The probability that an electron ionizes by impact
depends obviously on the kinetic energy of such elec-
tron, on its trajectory, and on the electronic structure
of the atom or molecule with which it collides. Since
the electron cloud configurations of atoms and mole-
cules have many excited states (see Secs. 11 and 14), a
strong probability exists that the kinetic energy, ac-
cumulated by the striking electron in the external field,
is squandered prematurely in electronic excitation lead-
ing to light emission or other secondary processes. The
electron is thus slowed down suddenly and has to start
all over again, as graphically illustrated in the current-
voltage characteristic of the famous Franck-Hertz ex-
periment. (Fig. 6.4). Furthermore, in electronegative
gases the electrons may be trapped while slow (Fig.
32.2) and thus inactivated as negative ions.? Ions are
not effective as ionizers by impact, until they reach
much higher kinetic energies than electrons. To pre-
dict the build-up of an electron avalanche requires

t More accurately, the exponential tegm in this and the con-

secutive equations should be written e/? 5 dz, since the field may
be distorted by space charges as discussed below.

2 See H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena, Clarendon Press, Oxford, 1952; the measure-
ments shown in Fig. 32.2 are by N. E. Bradbury, Phys. Rev. 44,
883 (1933), and H. L. Brose, Phil. Mag. 50, 536 (1925).

Vojensky§ technicky tistav ochrany
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therefore a detailed discussion of the motion of an elec-
tron as a function of its velocity. Ohm’s law is obvi-
ously not valid when the electrons become accelerated
by the external field. It has to be replaced by a statis-
tical calculation of the probability with which electrons

3x10741-

2x107%}

1x10°41

Trapping probability per collision

1 il 1 1 ]
0 0.4 0.8 1.2 1.6 2.0 24
Average electron energy (electron-volts)

Fig. 32.2. Probability of electron trapping in Oz as a function of
the average electron energy. [(a) Bradbury,® electron-filter
method; (b) Brose,? diffusion method.]

of various kinetic energies may penetrate the frictzon
barrier of electronic excitation states. As found experi-
mentally, the ionization probability characteristics trav-
erse relatively flat maxima for electron velocities in the
range of 10% ev (Fig. 32.3).2 Townsend’s ionization
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Fig. 32.3. Tonization cross sections of mercury for different de-
grees of ionization as a function of the electron velocity. (After
Bleakney and Smith; ¢ fine structure after Lawrence.?)

probability « is an experimental term integrating over
a wide and ill-defined velocity range of these character-
isties.

3 See Massey and Burhop;? the measurements shown in Fig.
32.3 in mercury are due to W. Bleakney and L. G. Smith, Phys.
Rev. 49, 402 (1936), and E. O. Lawrence, Phys. Rev. 28, 947
(1926).

A similarly complex situation faces us in the evalua-
tion of the regeneration probability v.* The probability
that a positive ion liberates an electron at the cathode
is a function of the ion type, its kinetic energy, and of
the metal and its surface treatment. Furthermore, a
new starting electron may be liberated at the cathode,
not only by ion impact, but also by photoeffect, or
thermal or field emission. Finally, electrons may orig-
inate in the gas instead of at the cathode, whether by
photoeffect or through the ionization by excited atoms
or molecules (collisions of the second kind®). These
effects frequently may enter in succession while the
breakdown develops.

The thickness d of the gas dielectric enters exponen-
tially into the height of the Townsend avalanche (see
Eq. 32.4); hence H reaches its decisive magnitude dur-
ing the last ionizing impacts in front of the anode. A
slight increase in the gap distance d should cause a
very large increase in H and a drastic lowering of the
breakdown voltage. This is observed in the low-pres-
sure range, where the number of impacts of an electron
traversing the gap is small. The number of impacts
across the gap is proportional to the product (pd) be-
cause the gas pressure p (or, more accurately, the gas
density p) is inversely proportional to the free path A
of an electron. Paschen ® found that the breakdown
voltage of a given gas is a function of only this prod-
uct, that is, that pressure can be traded for distance
since only the number of collisions matters. This state-
ment represents a typical similarity law: cutting the
thickness of the dielectric by some factor, while in-
creasing the gas density by the same factor, leaves the
decisive parameter, the voltage drop per free path,
unaltered.

In measuring Paschen curves (Fig. 32.4),” we observe
that the trend reverses for higher pressures or longer
gap distances: the breakdown voltage rises again. The
minimum of the Paschen curve indicates that here the
number of collisions is so adjusted that the kinetic en-
ergy of the electrons accumulates most efficiently for
ionization. To the left of the minimum, the number of
collisions is too small to build up the required height
H of the avalanche across the gap with the previous
voltage, whereas at the right too many collisions take
place and an excessive amount of energy is squandered

¢ See, for example, F. Llewellyn Jones, “Electrical Discharges,”’
Physical Society of London, Reports on Progress in Physics 16,
216 (1953).

5 0. Klein and S. Rosseland, Z. Physik 4, 46 (1921); J. Franck,
ibid., 9, 259 (1922).

¢ . Paschen, Ann. Physik 37, 69 (1889).

TH. Fricke, Z. Physik 86, 464 (1933); B. Frey, Ann. Physik 85,
381 (1928); F. Ehrenkranz, Phys. Rev. 65, 219 (1939); A. A.
Kruithof, Physica 7, 519 (1940).
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in excitation processes. The Paschen curve itself may
be visualized as equilibrium line (1 — 1) separating a
lower region in which the avalanche remains too small
for regenerating one electron per starting electron
(1 — <1), from an upper region in which more than 1
electron is reliberated at the cathode (1 — >1) (Fig.
32.5).

The picture thus far seems to imply that the develop-
ment of the breakdown process requires at least the
time interval needed for the positive ions to traverse
the gap from anode to cathode. The first cathode-ray
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Fig. 32.4. Paschen curves for various gases. Oz by Fricke?’

(Fe-cathode); Ng by Frey 7 (brass-cathode); Hy by Ehrenkranz ’

(Na-cathode) and (broken line) by Fricke 7 (Fe-cathode); Ne by
Kruithof 7 (Cu-cathode).

oscillograms of voltage-time characteristics, in conse-
quence, were taken in the pioneering work of Rogowski
and his co-workers® with the expectation of finding
breakdown times in the order of 10~ second at atmos-
pheric pressure, but times of 107 to 10~7 second were
actually observed. This outcome appeared to endanger
the whole basis of the Townsend theory until it was
recognized that one essential aspect was missing in the
theory: the influence of space charge on the original
field distribution. When the electrons disappear into
the anode, the space charge of the positive ion ava-
lanche remains behind. The space charge of a few
successive avalanches may suffice to contract the field,
without any motion of the ions, into a steep cathode
fall.® The positive ions have, therefore, only to cross a

8 W. Rogowski, Arch. Elekirotech. 16, 496 (1926); Der elekirische
Durchschlag, Probleme der modernen Physik, S. Hirzel, Leipzig,
1928, pp. 189 ff.

9 A. von Hippel and J. Franck, Z. Physik 57, 696 (1929). That
field distortion by space charge might be able to save Townsend’s
theory was already suspected by L. B. Loeb, J. Franklin Inst.
205, 305 (1928), who suggested in 1929 a step-breakdown mech-

diminutive gap in front of the cathode, aided by very
intense fields, to produce a final breakdown. This may
be accomplished in the times observed.

The underlying concept, that the electrons ionize and
the velocity difference between these fast electrons and
the slow, positive ions polarizes the dielectric, has many
useful applications. For example, returning to the
Paschen curve and its interpretation as a boundary
line characterized by a regeneration ratio 1:1, we ob-
serve that breakdown initiated at the right of the mini-
mum must lead to instability 1 (see Fig. 32.5). When

Cathode Anode
1
Cathode f
fall ' g
1‘ |—>d Positive
column
v 1= >

— 1

d—

Fig. 32.5. Contraction into a glow discharge after breakdown
voltage is reached at 4.

breakdown starts at a point A, the positive space
charge left in front of the anode acts like a gap-short-
ener. The field towards the cathode increases, and the
virtual operating point moves towards the left into a
higher yield region.t The regeneration ratio, and with
it the field contraction, increases at an accelerated pace,
but slows down again when the left branch of the curve
is approached. Final stabilization takes place near B
if the voltage across the gap has been kept constant;
the current has increased by many orders of magnitude.

The main field is now concentrated in a narrow
cathode fall, the dark space of a glow discharge, through
which the ions speed towards the cathode for electron
regeneration. The remaining length of the discharge

anism [Science 69, 509 (1929)]. See also L. B. Loeb, Fundamen-
tal Processes of Electrical Discharge in Gases, Wiley, New York,
1939, for cases where the breakdown is so fast that an electron
can cross only a fraction of the gap distance.

10 M. Steenbeck, Z. Physik 53, 192 (1929); W. Rogowski, Arch.
Elektrotech. 25, 551 (1931); 26, 643 (1932); 27, 743 (1933); A. von
Hippel, Z. Physik 97, 455 (1935).

t This field contraction by space charge may not set in im-
mediately at point 4, but only after the applied voltage has risen
into the instability region, as Llewellyn Jones* has shown in
recent experiments. 5
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space is bridged by the positive column, a well-conduct-
ing mixture of electrons and positive ions, that requires
only a small voltage gradient to maintain the current
flow. At its new operating point near B, the discharge

are slow and dissipate the major part of their energy
in electronic excitation processes.

Since electrons and ions play such different roles in
breakdown and the consecutive build-up of gas dis-

Fig. 32.6. Positive and negative Lichtenberg figures (negative figures taken in a strong magnetic field).

has longitudinal stability, since a contraction of the
cathode fall by a statistical increase of the ionization
leads to a lower ionization yield and therefore to ex-
pansion, and vice versa. The positive column is the
light source of a glow discharge, since here the electrons

charges (the electrons causing excitation and ioniza-
tion; the ions, space-charge formation and regenera-
tion), the breakdown in inhomogeneous fields becomes
typically polarity dependent.'* Positive and negative

1 See A. von Hippel, Z. Physik 80, 19 (1933); 97, 455 (1935).
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discharge patterns form and are of importance for a
variety of phenomena from the operation of Geiger
counters and Wilson cloud chambers!? to the inter-
pretation of lightning flashes.’* These polarity effects
are revealed in most beautiful detail in Lichtenberg
figures,'* where the developing discharge photographs
itself in consecutive stages.!®

Near a positive point, electrons are accelerated in-
wards into the steep field gradient of the anode. The
disappearing electron avalanches leave positive space-
charge branches behind, which reach out as auxiliary
electrodes. They branch further by drawing in elec-
tron avalanches from the surroundings, and the brush-
like positive Lichtenberg figure results (Fig. 32.6). The

and the space-charge pattern broadens into the well-
known sector type of the negative Lichienberg figure.
Both figures reach their final expansion when the field
intensity at the outer edge of the positive space charge
falls below the limit of effective ionization. The radius
of the figures indicates therefore the peak voltage of a
transient, their structure reveals the polarity. These
tell-tale properties of the primary Lichtenberg figures
have been exploited in the Klydonograph for the re-
cording of lightning strokes.'®

When overvoltage, field or thermionic emission, or a
long duration of the discharge provides an extremely
copious electron supply, the broad space-charge pat-
terns of the primary figures tend to contract into a

(a)

®)

Fig. 32.7. Positive (a) and negative (b) spark from point electrode continuing as gliding sparks on soapstone plate backed by metal
electrode.!t

negative point, in contrast, ejects electrons into regions
of diminishing field strength. As the impact ionization
proceeds, the avalanches reduce their own driving field
further by leaving their positive space charge behind
and thus steepening the field directly in front of the
cathode. This screening of the radial field in the rear
of the avalanche produces tangential field components,

12 See the work of H. Raether, Z. Physik 107, 91 (1937) and
Ergeb. exakt. Naturw. 22, 73 (1949), in which the pre-breakdown
stages of discharges are clarified with the help of cloud-chamber
photographs.

13 See A. von Hippel, Naturwiss. 22, 701 (1934); J. E. McDon-
ald, Sci. American 188, April, 32 (1953).

1 G. C. Lichtenberg, Novi. Comment. Géttingen 8, 168 (1777).

15 Pioneering work on the macroscopic laws of the develop-
ment of sparks and Lichtenberg figures was done by Max Toepler
from 1897 to 1939, and by P. O. Pedersen, Kgl. Danske Videnskab.
Selskab. 1919, 1922, and 1929. Compare the survey of K.
Przibram, Handb. Physik 14, 391 (1927). The first extensive
attempt at a molecular interpretation of the figures was made
by F. H. Merrill and A. von Hippel, J. Appl. Phys. 10, 873
(1939).

narrow path, filled with a nearly metallic-conducting
mixture of electrons and ions, the plasma of a spark.
Such sparks still disclose in their wavering or smooth
design their descent from a positive or negative pri-
mary discharge (Fig. 32.7). When a spark reaches the
counterelectrode, the breakdown of the gas dielectric
completes itself in a short circuit. It may continue as
an arc if backed up by a powerful current source, with
its electron supply for the gas discharge assured by
thermionic or field emission.

This complex sequence of events was set in motion
by a few starting electrons ng (Eq. 32.3). It remains to
ascertain how these are provided, if spontaneous emis-
sion from the cathode is excluded. If we inquire quite
generally as to how charge carriers can be created in
gases, it might seem possible, at first glance, that col-
lisions between electropositive and electronegative
partners could produce at least ions by electron trans-

16 J, F. Peters, Electrical World 83, 769 (1924).
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fer. However, the energy required for such process,

& = ionization energy U; — electron affinity E
2

-+ electrostatic separation energy » (32.6)

€T

is prohibitive at normal temperatures. Even in a most
favorable case such as the collision between a cesium
and a fluorine atom, where E exceeds U; by about
1/3 ev, the energy gain is much too small for a separa-
tion of the charged partners; they are bound together
by about 4.7 ev of Coulomb attraction.

Detailed studies of the initial current in gases estab-
lished about fifty years ago that extraneous ionizing
agents are responsible. Spurious radioactive matter in
the earth, the air, and the walls of the gas capacitor
were originally held the only culprits; and it was, in
consequence, expected that this ionization would dimin-
ish when a sealed capacitor was carried to greater
heights above the earth. Balloon ascents by Hess
(1911), Kohlhoerster (1913), and others, however, gave
the surprising result that after an initial decrease an
increase occurred, a fact leading Hess 7 to postulate an
ionizing radiation coming from above; thus cosmic rays
were discovered.

Systematic investigation of the recombination proc-
ess 18 established that the free electrons produced by
this primary ionization are trapped, in general, after
an extremely short time to form small negative ions of
molecular size. The small positive and negative ions
in turn may be captured by dust particles, pollen, etc.,
to form large fons. Finally, the positive and negative
charge carriers disappear again by recombination.

An external electric field can interfere with this se-
quence of events, as the Townsend characteristic of
Fig. 32.1 certifies. First, recombination can be pre-
vented and the ions formed drawn off as a saturation
current. As the field increases further, the electrons
can be kept free and made available for impaet ioniza-
tion, as discussed. The number ny of starting elec-
trons is thus a statistical factor, depending on the
ionizing conditions, the gas, and the applied field. It
expresses itself in a scatter of the breakdown strength
values; a gap in impulse tests may reach appreciable
overvoltage before breaking down if no starting elec-
trons are available at the decisive moment.'® This
factor is customarily brought under control by provid-

1V, F. Hess, Physik. Z. 13, 1084 (1912); Wien. Ber. 121, 2001
(1912).

18 See L. B. Loeb (ref. 9); B. Ginger, Der elekirische Durch-
schlag von Gasen, Springer, Berlin, 1953, pp. 60 ff.

19 See, for example, R. Strigel, Elekirische Stossfestigkeit,
Springer, Berlin, 1939.

ing a copious supply of photoelectrons by strong ultra-
violet illumination of the cathode.?

Summarizing, the discussion thus far has estab-
lished that conduction and breakdown in gases at d-c
voltages may develop in the following sequence of
events: ionization by external sources; electron trap-
ping and ion recombination; prevention of these two
processes by external fields; acceleration of electrons;
slowdown by the friction barrier of electronic excita-
tions; impact ionization and avalanche formation; re-
generation of electrons at the cathode by ion impact,
photoeffect, ete. (possibly also in the gas by photo-
effect and collisions of the second kind); field distortion
by positive (sometimes, also negative) space charge;
contraction of the field in a cathode fall; formation of
a space-charge-dominated glow discharge; transforma-
tion into a plasma-dominated spark; and completion of
the breakdown by an arc, extracting its electrons from
the cathode by thermionic or field emission.?

From gases to liquids and solids

The breakdown strength of air at atmospheric pres-
sure in a homogeneous field is about 30 kv per cm or
3 [Mv/m]. If Paschen’s similarity law could be extra-
polated to the densities of solids and liquids, that is,
for an ideal gas to about 1000 atm, a breakdown
strength between 10® and 10* [Mv/m] should be ob-
served for the condensed phases. The actually meas-
ured strength of most insulators is about ten to one
hundred times smaller than this extrapolated value.

One reason for this discrepancy becomes apparent
when we observe the scatter of the breakdown values
as a function of the gas density while illuminating the
cathode with ultraviolet light (Fig. 32.8). Initially, as
shown for CO; by Young,” the scatter without illum-
ination is very large; it decreases, however, rapidly for
high pressures and becomes independent of illumina-
tion when the gas density reaches about one-tenth of
the density of liquid COs. Simultaneously, a marked
dependence of the breakdown strength on the cathode
material sets in, whereas at lower pressures the nature
of the metal makes no essential difference (Fig. 32.9).
This has also been found by Trump and his co-workers 2

20 Explanations for the remaining formative lag in the mech-
anism of spark breakdown have been given, for example, by
L. B. Loeb and J. M. Meek, The Mechanism of the Electric Spark,
Stanford University Press, 1941; H. Raether, Elektrotech. Z. 63,
301 (1942); and R. C. Fletcher, Phys. Rev. 76, 1501 (1949).

2 High-frequency discharges may develop quite differently;
see, for example, W. P. Allis and S. C. Brown, Phys. Rev. 87, 419
(1952) and F. Llewellyn Jones (ref. 4).

2 D. R. Young, J. Appl. Phys. 21, 222 (1950).

2 J. G. Trump, R. W. Cloud, J. G. Mann, and E. P. Hanson,
Elect. Eng. 69, 961 (1950).
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for much higher voltages and corresponding larger gap
distances. Obviously, the voltage gradient before
breakdown has become so steep that the ensuing dis-
charge provides its own starting electrons by field
emission. This is in agreement with our observations
on the alkali halides,* where field emission sets in at
comparable field strengths.

In Fig. 32.1 the current increase beyond saturation
images the growth of the individual avalanches by elec-
tron impact ionization under the influence of a rising
field. Since the initial starting electrons are produced
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Fig. 32.8. Effect of illumination on the scatter of the breakdown
values in COgq as function of gas density. (After Young.2?)

by, extraneous ionization, the number of avalanches no
more than doubles until the breakdown voltage is
reached according to the Townsend condition, Eq. 32.5.
Onset of field emission alters this situation radically.
Townsend’s breakdown condition and the interpretation
of the Paschen characteristic as a yield curve for the
regeneration of starting electrons loses its validity, since
the necessity for regeneration has disappeared.

Field emission from a metal point into vacuum has
been shown to follow the law

J = aE2e V%, (32.7)

This equation was first derived by Fowler and Nord-
heim %5 on the assumption that, as the field gradient E,
at the cathode steepens, electrons in rapidly increasing
quantity escape from the Fermi lake of metal electrons
by tunnel effect (see Sec. 14) through the potential bar-
rier represented by the work function of the metal. The
current density J is independent of temperature as

# A. von Hippel and R. 8. Alger, Phys. Rev. 76, 127 (1949);
A. von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, Phys.
Rev. 91, 568 (1953).

% R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London)
A119, 173 (1928).

long as the thermal energy kT is small in comparison
to the energy required to traverse this barrier.

The field-strength dependence of the pre-breakdown
current now observed should therefore reflect the in-
crease of the field emission current as well as its multi-
plication by impact ionization. If no additional effects
enter, we expect a current density

J = aB2e"bEeed, (32.8)

Young’s measurements 22 on CO; at high pressures con-
firmed an exponential dependence on d and 1/E when
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Fig. 32.9. Effect of cathode material on breakdown strength of
COq gas. (After Young.?)

the gap is not too small (d > 0.01 in.); for narrower
gaps the current density proved larger than predicted.
The current density, furthermore, increased about ex-
ponentially with the density of the gas, an effect traced
to a density dependence of the factor a. Equation 32.8
obviously contains some of the truth, but oversimpli-
fies the situation. This becomes apparent when we
return from the problem of pre-breakdown currents to
that of breakdown itself.

Impact ionization, as discussed above, produces a
positive space charge, hence an increase of the field
gradient at the cathode. The field emission rises, this
rise in turn increases the ionization, and thus, by a
positive feedback effect, the initially homogeneous field
must rapidly contract into a cathode fall; and the dis-
charge transforms into a ‘“field arc’’ whenever field emis-
sion and impact ionization co-operate unrestrictedly.
Equation 32.8, therefore, corresponds to an unstable
state, until the final contraction into the arc stage is
reached (see Fig. 32.5). We must conclude that, in
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the presence of impact ionization, the onset of field
emission causes breakdown; and, vice versa, in the
presence of field emission the onset of impact ioniza-
tion leads to breakdown, if no stabilizing phenomenon
is introduced.

In searching for a stabilizing mechanism operative
in the volume of the gas, we may not invoke the mo-
tion of the positive ions. The breakdown times in d-c
fields at high pressures are so short that the ions stay
practically fixed in place. The current is essentially
an electron current, and, to achieve its stabilization,
we have, macroscopically speaking, to increase the re-

@
N

may have a stable existence because of the higher rela-
tive dielectric constant « of their surroundings. The
electrostatic field energy of a charged particle is reduced
to 1/« of its vacuum value. By transferring, for exam-
ple, a mole of spherical particles of the radius » and
charge Ze from vacuum into an aqueous solution, the
hydration energy is released:

Z2e2 1
Wi = N°e081rr(1 -l P)’

provided we may neglect the influence of the molecular
structure of the solution. Since for water «’ ~ 80, the

O O

(32.9)
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ONONOXNO)

Fig. 32.10. From dipole cloud to ionic atmosphere to crystallization (schematic).

sistance of the anodic part of the gap until no more
voltage can be transferred to the cathodic region. This
increase in resistance might be produced by cutting
down the density of the free electrons by recombina-
tion and trapping. Furthermore, the mobility of the
electrons may decrease as the field strength is lowered.
How far these effects exist and suffice for a stabiliza-
tion of the pre-breakdown current, when field emission
and ionization are present simultaneously, must be
investigated. This presupposes some general knowl-
edge of the existence and behavior of charge carriers in
liquids and solids.

Charge carriers in liquids and solids

In gases, charge carriers have to be created by exter-
nal means, and electric fields are required to prevent
their recombination. In liquids and solids such carriers

electrostatic field is neutralized almost completely and
the interdiction of Eq. 32.6 against the separation of
oppositely charged partners loses its validity.

Seen from the molecular point of view, the polariza-
tion energy in very dilute aqueous solutions is provided
by the clustering of water dipoles around the individual
ions, as indicated schematically in Fig. 32.10. As the
concentration of ions increases, a competition for water
molecules sets in and the electrostatic field of the ions
remains partly unshielded. In consequence, each ion
tends to attract ions of the opposite polarity. With
increasing ion concentration the dipole clouds give way
to Zonic clouds that surround each ion with a halo of
countercharges. These ‘onic atmospheres, introduced
by Debye into the theory of electrolytes,? decrease the
mobility of the ions in an electric field. In sufficiently

2 See P. Debye and E. Hiickel, Physik. Z. 24, 185 (1923).
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intense fields they can be partly stripped, and the con-
ductivity increases, as M. Wien first showed in his im-
pulse experiments (Wien effect).??

Each ion has a tendency to surround itself with the
maximum number of counterions (see Sec. 24). In di-
lute solutions, where the binding energy for the halo is
of the order kT, the ions of the atmosphere drift in and
out statistically. With increasing concentration, the
approach distance shortens and the binding energy in-
creases, until, at a critical temperature and concentra-
tion, the cloud becomes transformed into a regular
array of counterions. The solubility limit of the solu-
tion has been reached: ionic crystals form. Initially
stabilized by water dipoles and mobile, because elec-
trically shielded, the ions find themselves now locally
bound in the giant molecule of a periodic ionic crystal
structure.

To move ions in liquids or solids requires the exist-
ence of holes into which the ions may jump when the
activation energy becomes available. Liquids, in gen-
eral, are full of holes, and also in solids the problem is
minor if the ions fit into interstices of the lattice struc-
ture. Since Frenkel 2 first invoked the transfer of ions
to such lattice sites to make the mechanism of ionic
conduction in solids understandable, the holes created
by this kind of disorder in the lattice array are called
Frenkel defects (Fig. 24.9). Alternatively, the required
vacant lattice sites may be created by an activation
process in which ion pairs are moved from the volume
to the crystal surface (Schottky defects).?

If Ny is the number of ions per unit volume of a given
type and U the activation energy required for its mo-
bilization, the density of potentially mobile charge
carriers, according to Boltzmann statistics, is Noe ™V /2T
and their contribution to the ionic conduction, accord-
ing to Ohm’s law,

J = ¢E = Noe V/?ThE. (32.10)

If the drift distance in the field direction per unit field
strength, the mobility b, is temperature independent, the
conductivity increases exponentially with temperature
as long as the majority of the ions are trapped in their
surroundings.

Obviously, since ions can be stabilized in the con-
densed phases by the polarization of the surrounding
medium, it will be possible in favorable cases to ionize
atoms without anchoring the removed electrons firmly
in counterions. Thus meials and semiconductors re-

7 M. Wien, Ann. Physik 83, 327 (1927); 85, 795 (1928); 11, 429
(1931).

% J. Frenkel, Z. Phystk 35, 652 (1926).

% C. Wagner and W. Schottky, Z. physik. Chem. B11, 163
(1930).

sult. The classical prerequisite is that the electron
affinity of any prospective negative ion is negligible for
metals and small enough in semiconductors to allow
thermal dissociation. However, here classical physics
ends, since the wavelength of the electrons in the con-
densed phases is comparable to the separation distance
of the particles. Hence, the stationary states as well
as the motion of electrons have to be described by quan-
tum mechanics.

Electrons in periodic lattices

An electron in free space has the energy and mo-
mentum

1 2
geemp o B,
2 2m
(32.11)
98kin
= = mv.
R v v

According to de Broglie’s conditions (Eq. 7.6), the
total energy determines the frequency, and the mo-
mentum the wavelength of a particle as

& = hy,
h

|p|=;-

(32.12)

To bring out the vector property of p, it proves con-
venient to introduce a wave vector k of the magnitude

2

=— 32.13

[ k| =~ (32.13)
that points in the direction of propagation; hence

p = hk. (32.14)

Plotted as f(k), the energy of the free electron is a pa-
rabola (Fig. 32.11),

& = 5— K2, (32.15)
m
T
£
:—ﬁ =hv
k —

Fig. 32.11. Energy parabola for free electrons.
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The tangent at any point
8 h’k

—=—=+h

32.16
ok m ( )

determines the velocity of the electron. This particle

velocity, given by

&
— = h dv 9,
k
is, according to I, Eq. 11.17, the group velocity v, of the
wave phenomenon. Its phase velocity is, according to
definition,
& hk
WN=—=—)

= (32.17)

that is, for the free electron, equal to half the group
velocity. The curvature of the energy characteristic
% h?

e (32.18)
determines the mass of the particle.

‘We have encountered the concept of the wave vector
previously, while discussing the propagation of electro-
magnetic waves through boundaries (see I, Sec. 14).
An electric plane wave in space, traveling in the +z-di-
rection without attenuation, was described at a given
moment ¢ as (cf. I, Eq. 9.5)

. 2%
E@) = Eie 2" (32.19)

To free ourselves from the fixed co-ordinate system, we
introduced a unit vector k° pointing in the direction of
propagation and a position vector r drawn from some
origin O to a point P in space (I, Fig. 14.3). The dis-
tance of a plane of constant phase from the origin is
then given as k°-r, and Eq. 32.19 in this more general

formulation becomes
2

E = ElejT

0.
¥, (32.20)
The wave vector is obviously connected to the unit
vector k° as

(32.21)

hence the wave function of a plane electron wave in
free space may be written as

Y= A*T, (32.22)

How will an electron plane wave fare in traversing
an ideal periodic crystal structure? Obviously inter-
ference phenomena will occur as in the electromagnetic
case (see I, Sec. 18), for which ratio of wavelength to
periodicity distance is the decisive parameter.

Wayve interference in space lattices was first encoun-
tered in X-ray diffraction. The elementary problem is
the reflection of a parallel X-ray beam as a function of
the angle of incidence from a set of parallel planes of
uniform spacing d (Fig. 32.12). The index of refrac-

Fig. 32.12. Bragg’s reflection condition.

tion of matter is taken as unity; hence the angle of in-
cidence and refraction are the same and no phase jump
takes place dt the front or back surface. It is custom-
ary, furthermore, in X-ray diffraction to refer to the
glancing angle 8 instead of the angle ¢ between the nor-
mal and the beam as in optics. Since cos ¢ = cos ¢
= sin §, the equation of interference optics (I, Eq.
18.25) for the phase difference A between two partial
beams simplifies to

4dnd |
A = —sin .
A

(32.23)

When the path between the partial beams differs by a
multiple of the wavelength

A=n2r withn=123, ..., (32.24)

all partial amplitudes add and total reflection occurs.
This statement,

2d sin 6 = n, (32.25)

is Braggs’ famous reflection condition for X-rays3® By
introducing the wave vector k we may rewrite it as
nw

|k|= = forime=m1=423 W 13
d sin 8

(32.26)

This obviously is the answer also for an electron plane
wave traversing a periodic lattice. At the critical k
values prescribed by Eq. 32.26, total reflection will
occur. The energy curve as f(k) will flatten away from
the parabola as these wavelengths are approached and
assume a horizontal tangent, since the group velocity
indicated by this tangent (see Eq. 32.16) becomes zero.
Between the critical regions the parabolic law is re-

% W. H. and W. L. Bragg, Proc. Roy. Soc. (London) A88, 428
(1913).
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sumed; hence the energy characteristic must have dis-
continuities at the critical values ky, ks, ..., as shown
(Fig. 32.13). An energy spectrum of allowed and for-
bidden zones results, corresponding to the transmission

I I
| 1
| |
0 ) K k

| 2

k —>

Fig. 32.13. The energy characteristic for electron plane wavesin a
periodic lattice.

spectrum of a periodically loaded transmission line or
of a wave guide acting as a band-pass filter.

In the reciprocal wavelength space, the k space, the
allowed zones are bounded by surfaces of total reflec-
tion. To traverse these surfaces, electrons have to leap
to the next allowed energy value. These allowed zones

9020 —=+ 120 ——9 220

b 0i0 H1I0 210
- r F
[230] f220] 207 010] _‘L
ﬁl . 100 200
I Origin !
a =5
Real lattice Reciprocal lattice

Fig. 32.14. Miller indices, real and reciprocal lattice.

in k space are called Brillouin zones, because Brillouin
first investigated some of their properties.?® They are
well known to the crystallographer through the concept

81 See L. Brillouin, Wave Propagation in Periodic Structures,
McGraw-Hill Book Co., New York, 1946.

of the reciprocal lattice. In the real crystal lattice the
lattice points indicate particles and the distances their
molecular spacings. To construct the reciprocal lat-
tice, lines are drawn perpendicular to the planes of the
real lattice and points are marked at distances inversely
proportional to the spacings of these planes. Each
point of the reciprocal lattice corresponds thus to a set
of planes of the real lattice and is designated by the
index numbers of this set of planes (Fig. 32.14).1 The
k space, according to the reflection condition Eq. 32.26,
is equivalent to the reciprocal lattice space.

Figure 32.15 illustrates the first three Brillouin zones
of the simple cubic lattice. The first, bounded by re-
flecting surfaces corresponding to the set of (100) planes
of widest lattice spacing (a), is a cube. The next closest

(a) (b)

Fig. 32.15. The first three Brillouin zones of a cubic lattice: (a)
first and second zone; (b) third zone added.

lattice spacing (a/+/2 ) characterizes the face-diagonal
planes (110); the second Brillouin zone, bounded by
these planes, is a dodecahedron enclosing the cube.
The third zone, bounded by the reflections on the (111)
planes of spacing a/4/3, is a polyhedron enclosing the
dodecahedron, and so on.

These Brillouin zones and the geometrical considera-
tions of wave interferences in space lattices are valid
for any kind of plane waves, whether electromagnetic,
acoustic, or electron waves. To understand the situa-
tion for eleetron waves in more detail, we have to re-
turn to Schrodinger’s equation and solve it for plane
waves modulated by a periodic lattice potential. This
was first done by Bloch.?? Assuming that the periodic
potential acts as a small perturbation, he could show
that the correct wave function is a product of the orig-
inal wave function (Eq. 32.22) for free space and of a
periodic function of the lattice period. From these

t These Miller indices characterizing a plane are derived, as
the upper drawing in Fig. 32.14 shows, by designating on the
crystallographic axes unit intercepts a, b, and ¢. The intercepts
made by any other plane can then be expressed as a/h, b/k, c/l,
where h, k, | are simple integers or zero. The set of these num-
bers [hkl] identifies the crystal plane.

2 F. Bloch, Z. Physik 52, 555 (1928).
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Bloch functions, running waves can be built up and
standing waves in analogy to the electromagnetic case
discussed in I, Secs. 17 ff. Again, we arrive at a system
of allowed bands separated by forbidden energy regions
as in the geometrical interference discussion.

This band scheme lends itself to an intriguingly simple
explanation of electronic conduction (Fig. 32.16). If
the allowed bands overlap or are only partially filled,
metals result, because electrons can be speeded up by
external fields. If a lower band is completely filled, but
a higher, unfilled conduction band is accessible by ther-
mal excitation, an inirinsic semiconductor is obtained.

Insulator

1

\ Donor levels

' f

L Acceptor levels
]

p-type n-type Mixed
Impurity semiconductors
Fig. 32.16. Insulators, semiconductors, and metals according to

band scheme.

It may be an n-type semiconductor (n for negative) in
case only the electrons in the excited state contribute
to the conduction; a p-type semiconductor (p for posi-
tive), if the positive holes left in the previously filled
band act as the current carriers; or a mixed semiconduc-
tor, when both electrons and holes participate as mi-
grating charge carriers. If the forbidden zone is too
wide for bridging by thermal excitation, the ideal erys-
tal will be an electronic insulator. However, in real
dielectrics impurities or lattice disturbances are en-
countered, which tend to create intermediate localized
energy levels and may change the prospective insulator
into an tmpurity semiconductor. Electronegative addi-
tion agents, located above the filled band, may act as
electron acceptors and produce hole conduction. Elec-
tropositive impurities may form localized states near
enough below the conduction band to act as donors of
electrons, thus causing n-type conduction. The elec-
tron supply in both cases may be easily exhausted, but
there is also the possibility that the inserted levels act
like the rungs of a ladder and permit an excitation in
steps from the filled to the conduction band.

This treatment of semiconductors, initiated by Wil-

son,® is convincingly simple and has been invoked
somewhat indiscriminately for a first explanation of
rectification, optical absorption, photoeffect, tempera-
ture dependence of conduction currents, phosphores-
cence, and the effect of addition agents. In applying
this band concept, its prerequisites are frequently for-
gotten: the electrons must be fast so that they can be
treated as free and the crystal lattice considered as a
rigid reflector of these electron waves. This is a rea-
sonable first approximation for metals and for some very
good semiconductors in which the conducting electrons
abound.

To clarify this point we have to consider the occupa-
tion density of the various energy levels of a band.3
In classical statistics, the number of electrons occupy-
ing an energy state §; of a degeneracy g; at a tempera-
ture T is (see Eq. 19.4)

N; = g;Ae™5/*T, (32.27)

For electrons we do not have this unrestricted occu-
pancy of quantum states, because the Pauli exclusion
principle prescribes that any orbital can accommodate
two electrons with opposite spins (see Sec. 8). The
band picture implies that each energy level of a band
belongs to the crystal as a whole and is in this sense an
orbital of the crystal.

The statistics embodying the Pauli principle is the
Fermi-Dirac statistics; 3 it prescribes for the electrons
an occupation density

Ny

&i—8&

e kT +]_

(32.28)

The classical factor A and the parameter &’ in electron
statistics are normalizing factors, so adjusted that the
summation over all levels leads to the total number of
electrons in a band.

Obviously, at the absolute zero of temperature all
quantum states below a certain energy level &, must
be filled and those above that energy, empty. &' is
the value of & at 0°K. If we plot this situation for a
metal with the energy & as the ordinate and a distance
parameter z as the abscissa, where £ = 0 corresponds
to the interior of the metal and # — « leads through
the surface into vacuum, a picture of the “Fermi lake”
of metal electrons is obtained. The depth — W, meas-
ures the potential of the bottom of the lake against

% A. H. Wilson, Proc. Roy. Soc. (London) A133, 458 (1931);
A134, 277 (1931).

3 See, for example, F. Seitz, Modern Theory of Solids, McGraw-
Hill Book Co., 1940.

% E. Fermi, Z. Phystk 36, 902 (1926); P. A. M. Dirac, Proc.
Roy. Soc. (London) A112, 661 (1926); see A. Sommerfeld and
H. Bethe, Handbuch der Physik XXI1V, Pt. 2 (1933), pp. 333 ff.
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vacuum, the work function P = e¢ that of the top of
the lake (Fig. 32.17), whereas &' represents its depth.
If we assume & = &’ independent of temperature and

Fig. 32.17. The Fermi lake of metal electrons.

g: = 2, we obtain the Fermi distribution function for
the occupancy of the various energy states (Fig. 32.18).
The energy level &/, where the occupancy for 7' > 0
falls to one half the possible value, that is, to unity in
our case, is called the Ferms level.3

The depth of the Fermi lake depends obviously on
the number and distribution of the stationary states in
a conduction band and on the number of electrons avail-
able for their occupation. If the length of the crystal

\k_k'rso
| W’\

. . : L
=SEC=ql T 3w =20 =] o] 1 2 3 4 5

Zz —

€€y —
Fig. 32.18. The Fermi distribution function.
in the z-direction is L,, stationary states in this direc-

tion can form only if this length corresponds to an in-
tegral number of wavelengths (see Eq. 7.10), that is,

L, = n,\
or (32.29)
L, L,
g = — = — Py.
N h 2

Hence the number of states in a momentum interval
dpy is
L

dn, = == dpz.

" (32.30)

The corresponding equations are valid for the y and 2
components; hence the number of states in a momen-
% For the meaning of the Fermi level in semiconductors see,

for instance, R. A. Hutner, E. S. Rittner, and F. K. Du Pré,
Philips Research Reports 5, 188 (1950).

tum interval dp composed of the three components is

Lo, 14
dn = —“ha—dp,, dp, dp, = Zgl dp|, (32.31)

where V is the volume of the crystal.

To relate the momentum interval dp to the energy
parameter & of the preceding figures, we assume that
the kinetic energy of an electron in a periodic lattice has
the same form as in free space (see Eq. 32.11), but that
the mass m has to be replaced by an effective electron
mass m*. Thus the total energy of an electron in the
interior of a metal, the sum of the potential and kinetic
energy, is

p2

& =—W.+ 2m*'

(32.32)

The energy parameter & of our figures is chosen as zero
at the bottom of the lake, hence corresponds to the

kinetic energy of the electron

p2

8=8 Wa= .
¢+ e

(32.33)

A differential change of this energy, d&, leads to a
momentum change
|dp| = 2n(2m*)%+/¢ ds. (32.34)

The number of states between bottom and top of the
Fermi lake is, therefore,

14 8
n = Zg27r(2m*)%f * Ve de
0

4r V A
2l (2m*) ¥g %, (32.35)
Each state can be occupied by two electrons; hence
2 (32.36)
ng = — E
Ty

designates the number of metal electrons per unit vol-
ume and
hz (3?&0)%
& =—(—
2m* \ 8

the depth of the Fermi lake, that is, the kinetic energy
of the electrons at its top surface. Since in metals ap-
proximately every atom contributes a ‘“free” electron,
the Fermi lake is filled so high that the top electrons
speed along with kinetic energies of several electron
volts.

The stationary states of the Fermi lake correspond
to running waves which traverse the crystal in various
directions, and are, therefore, in principle, able to carry
current. However, because each direction has its coun-

(32.37)
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terpart in the interior of the metal, the current transfer
cancels for all filled states below the top level and only
the uppermost electrons can make a contribution.
These electrons have a high kinetic energy, as just
established, when the upper edge of the band is still
far away. The band edges themselves, as shown above,
correspond to standing waves, that is, here the group
velocity and energy transfer become zero.

The “free-electron theory’” of quantum mechanics is
a good first approximation for metals, because the con-
ducting electrons are fast and their electrostatic field
well shielded by the high dielectric constant of the sur-
roundings. The lattice acts like a rigid reflector be-
cause the time of local interaction is short and the cou-
pling weak. For most semiconductors these prerequi-
sites are not true; there are relatively few electrons in
the conduction band and holes in the filled band, and
these electronic charge carriers move in a medium of
much lower dielectric constant. Hence the interaction
between electrons and lattice, previously idealized as a
periodic modulation of free waves, assumes new aspects.
The electrons are so slow that they excite, with great
probability, lattice vibrations (phonons); the friction
barrier of these vibrations becomes the essential obstacle
for the acceleration of electrons when external fields are
applied.’” Simultaneously the electrons are not well
shielded and act as space-charge centers distorting the
surroundings; this polarizing effect depends on the
speed of the electrons as well as on the polar character
of the crystal lattice.

Graphically speaking, an electron acting as a space
charge surrounds itself in liquids and solids with a halo
of countercharges. When the electron moves so fast
that the nuclei cannot respond by displacement, this
halo consists of electronic polarization only. For an
electron at rest, electronic, atomic, and dipole polariza-
tion contribute fully. Thus the extent and composi-
tion of the halo changes with the speed of the electron.
Simultaneously, it varies with distance, especially in
ionic materials; for far-away lattice points the field
pull exerted by the electron may alter direction so
slowly that they still can respond, whereas neighboring
ions may not be able to follow.

These concepts, introduced by the author,33 are in
a way a logical extension of the theory of electrolytes.??
For ions, we deal, in general, with halos corresponding
to the local static dielectric constant, with the finally
formed dipole and ion clouds. Only the Wien effects

3 A. von Hippel, Z. Physik 75, 145 (1932); Z. Elektrochem. 39,
506 (1933).

3% A. von Hippel, Ergeb. exakt. Naturw. 14, 79 (1935); Z. Physik
101, 680 (1936).

% A. von Hippel, J. Chem. Phys. 8, 605 (1940).

introduce aspects of formation of these clouds. For
electrons, we run the full gamut of halo formation and
phonon exchange from the full development of the halo
in the trapped state to its complete disappearance for
free electrons in the Bloch band theory.

An electron in the intermediate state between free
and bound is frequently designated as a polaron. The
drag exercised by the halo can be expressed as an in-
crease in the effective mass. Numerous calculations
have been attempted concerning the magnitude of this
effect and its dependence on the electron velocity, with
quite contradictory results.® The theoretical difficulty
is that the interaction between electron and lattice
should not be handled as a simple perturbation prob-
lem, but ways must be found to calculate it reliably as
a first-order effect.

Breakdown in liquids and solids

The diverse origin of the charge carriers in the con-
densed phases and the variety of their interactions
with the surrounding medium makes us suspect that
there will not be only one type of breakdown but a
number of mechanisms may come into play, depending
on circumstances. Electric breakdown, as the name
implies, is initiated by some action of electrons or ions
and terminates in the formation of a highly conductive
path through the dielectric. A post-mortem examina-
tion of a solid may reveal some characteristic damage
to its texture: a channel of molten material; 4 a jagged
hole, as if a stone had been thrown through a window;
a tree-like decomposition pattern of carbonized or me-
tallic matter (Fig. 32.19). Such a visible evidence may
be a significant clue or characterize only a subsequent
phase of destruction after the actual demise.

Obviously, clear-cut mechanisms can be named that
would cause breakdown, if nothing else happens. Ear-
liest recognized was the thermal breakdown, based by
Wagner #* on the simple macroscopic coneept of a com-
petition between the Joule heat @; generated by elec-
tric conduction and the heat loss @ produced by ther-
mal conduction (Fig. 32.20). As long as Q; rises more
slowly than @, with increasing temperature, stabiliza-
tion at some point A occurs. When the heat begins to
develop faster than it can be removed (point B or C),
breakdown by melting or decomposition is imminent.
Characteristic for this type of breakdown is its rela-
tively slow development, and dependence on the cool-
ing conditions, but these are not unique criteria.

© See E. P. Gross, “Behavior of Slow Electrons in Polar Crys
tals,” Technical Report 55, Laboratory for Insulation Research,
Massachusetts Institute of Technology, December, 1952.

4 L. Inge and A. Walther, Z. Phystk 34, 15 (1925).

2 K. W. Wagner, Elec. Eng. 41, 1034 (1922).




(c)

Fig. 32.19. Various types of breakdown: (a) breakdown channels produced by melting (after Inge and Walther 4) ; (b) jagged hole; (¢)
metal dendrites bridging electrodes.
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Seen from the molecular point of view, a thermal
breakdown may be caused by electrons or ions requiring
activation energy for their mobilization (see Eqs. 32.10
and 32.28). With increasing temperature, the number
of charge carriers increases rapidly, and, if their supply
is not exhausted or their mobility drastically reduced
by thermal agitation, only a ballast resistor or the
rapid increase in heat dissipation by radiation (see
Eq. 5.22) may stabilize the situation. In this sense, a
“Nernst glower” represents a semiconductor in an
arrested state of thermal breakdown. Obviously, ther-
mal breakdown may also take place in electrolytes with
their abundant supply of ions, or becomes possible

T, T, Temperature —»

Fig. 32.20. Thermal breakdown. (After Wagner.?) (The
straight lines represent heat conduction for two different electrode
temperatures, T2 and T'.)

when field emission provides electron currents that
rapidly increase with field strength (see Eq. 32.7).

In these last-mentioned cases, various other destruc-
tive effects may accompany the flow of current and
compete with the thermal mechanism as the primary
cause of breakdown. Gas bubbles may form at the
electrodes in the liquid because the electric field over-
comes the surface tension or ions are discharged; thus
a gas breakdown may trigger the liquid breakdown.
Metal ions, discharged in the form of dendrites, may
bridge the gap between the electrodes by metallic
paths. Outstanding examples are the dendrites sprout-
ing from the cathode in lead acetate solution or grow-
ing through ecrystals of the alkali # and silver halides
(Fig. 32.21). A closer observation of these dendrites
in crystals shows that they do not represent a simple
electrolytic deposition but are coupled with electronic
phenomena. The dendrites in the silver halides seem
to grow only along interfaces and with a speed incom-
patible with purely ionic conduction. In the alkali
halides the dendrites grow through the volume itself
in preformed crystallographic directions which change

# A. von Hippel, Z. Physik 98, 580 (1936).

# C. Tuband, Handb. exper. Physik XII, 1, Akademische
Verlagsgesellschaft, Leipzig (1932).

with temperature. It seems likely that the alkali ions
are discharged mainly by field emission and not so much
by cathodic deposition in forming the alkali-metal trees.

In the case of dendrites, the current deposits highly
conducting decomposition products which ruin the in-
sulation. Similar in appearance, but of different origin,

Fig. 32.21.

Dendrite in NaCl#

are the carbonized paths which often initiate the break-
down of cables. These are the result of discharges that
originate in voids and correspond to a fixation of Lich-
tenberg figures by the chemical decomposition of the
material: that is, electronic excitation and impact ioni-
zation in the gas phase along internal surfaces are re-
sponsible, with all their complicating consequences.

Although in these cases electrons act as a powerful
chemical in producing conducting material, they may
ruin a dielectric by a much more innocuous process.
In recombining with ions they may produce atoms that
are t0o big for the structure in question. Thus the in-
sulator may be shattered by the build-up of mechanical
strain (Fig. 32.22).45

% A, von Hippel, J. Appl. Phys. 8, 815 (1937).
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We can mention here only the chemical action of
discharge products, which may cause breakdown of
capacitors if not suppressed by inhibitors; the action
of impurities in liquids that may be pulled by the elec-
tric field into the gap and cause premature breakdown;
the self-healing of dielectrics during breakdown by the
formation of an insulating phase, as in electrolytic ca-
pacitors, selenium rectifiers, or layer capacitors employ-
ing evaporated zinc electrodes.®® Unfortunately, no

Fig. 32.22. Cracking of glass after electron emission.®

space remains in this short survey for more than a quick
glance at the counterpart of thermal breakdown, the
intrinsic electric breakdown by tmpact tonization.

We saw that, in gases at high pressures, the occur-
rence of field emission invalidates Townsend’s break-
down condition based on the regeneration of charge
carriers. Since the field at the cathode increases when
positive space charge develops, we had to conclude that
now even the onset of impact ionization should lead to
breakdown if no new stabilizing mechanism can be in-
voked. In contrast to the situation in gases, where the
electronic ‘excitation of atoms and molecules saps the
energy of the electrons before they reach ionizing veloc-
ities, in solids and liquids the excitation of vibrations
seems to form the main friction barrier, preventing
cumulative ionization until the breakdown strength is

% Some information on these subjects will be found in the com-
panion volume, Dielectric Materials and Applications.

reached.¥ The stopping action of this barrier may be
amplified by the polaron state of the electron; in many
materials slow electrons will probably be trapped below
a critical field strength.

N
b

Fig. 32.23. Direction breakdown in NaCl at room temperature.

(Breakdown direction is the face diagonal [110]; near cathode

the direction may change to [111] and characteristic pyramids
form by cracking of the crystal between the [111] edges.)

We discussed the fact that electrons, because of their
wave nature, are subject, in periodic lattices, to inter-
ference effects which lead to the electronic band struc-
ture of crystals. We may expect that the breakdown
of crystals reveals peculiarities connected with this
quantum-mechanical feature. Such effects apparently
have been found by the author and his co-workers in
the direction breakdown of crystals 4 (Fig. 32.23) t and

Quartz glass

5  Quartz crystal

Million volts /cm

1 1 1 1 1 1

= i

| 1 1
-lI00 -80 -60 -40 -20 O 20 40 60 80 100
Temperature ° C

Fig. 32.24. Temperature dependence of the breakdown strength
of quartz glass versus quartz crystal.’

in the temperature dependence of the breakdown strength
of crystals versus glasses ¥ (Fig. 32.24). There may be
others, like the breakdown mechanism suggested by

4 A, von Hippel, Z. Physik 67, 707 (1931); 68, 309 (1931); 88,
358 (1934); J. W. Davisson, Phys. Rev. 70, 685 (1946).

t+In all breakdown discussions, as we again emphasize in
Fig. 32.23, we have to keep in mind that the original field becomes
distorted by space charges and destruction paths as the break-
down develops. This dynamic field, in contrast to the applied
field, determines the further course of events.

# A, von Hippel and R. J. Maurer, Phys. Rev. 59, 820 (1941).
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Zener,* but here we reach the boundary of present-day
research. Many interesting observations have been
made and ingenious theoretical explanations proposed,®®

49 C. Zener, Proc. Roy. Soc. (London) A145, 523 (1934).

% See H. Frohlich and J. H. Simpson, Intrinsic Dielectric Break-
down 1n Solids, Advances in Electronics, Vol. 2, Academic Press,
1950; S. Whitehead, Dieleciric Breakdown in Solids, Clarendon
Press, Oxford, 1951; W. Franz, ‘“Theorie des reinen elektrischen
Durchschlags fester Isolatoren,” Ergeb. erxakt. Naturw. 27, 1
(1953).

but the situation is still in doubt. The breakdown-
strength measurements made until now scatter too
widely; they indicate that in the repetition of the ex-
periments some vital parameters, for example, field
emission, are not under control.?* Only in facing the
challenging complexity of the situation with improved
experimental and theoretical methods will we produce
the better dielectrics of tomorrow.




APPENDIX

A - Problems and Illustrative Examples

This supplementary part parallels the sections of the
main text with the objective of amplifying important

concepts and imparting some facility in the handling
of dielectric problems.

I - Macroscopic Approach

1 - Interrelation between the Real and the
Imaginary Part of the Complex
Permittivity or Permeability

The parameters ¢* and u* allow a simple description
of a dielectric if they are independent of field strength.
In this case, the contributions of various frequency
components superpose linearly and if either the disper-
sion phenomenon (¢’ and u’) or the absorption phe-
nomenon (&'’ and p’*) is known over the entire frequency
scale (w = 0 to w = «), the accompanying absorption
or dispersion characteristic is completely defined. This
is evident to the physicist, because dispersion and ab-
sorption are two different aspects of the same phenom-
enon (see II, Fig. 19.1). The fact is obvious to the elec-
trical engineer from his circuit analogues: the frequency
behavior of the real part of an input impedance function
determines the frequency dependence of the imaginary
part of the function. The statement can be proved
mathematically by Fourier analysis, as we shall show
for the dipole relaxation spectrum (see I, Eq. 26.14, and

IT, Sec. 22). Here
* gt 8 ;
1+ jer
that is,
@ e
K (w Ky = PR E
") = Swr
Ty
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According to Fourier analysis,

, 2 ® wr' (w) dw
i L0
™ 0 W —w
2 ® wk'(w) dw
(w1) = — "Pf it
™ 0 W — wy

Hence the dispersion or the absorption at some fre-
quency w; is given by the frequency spectrum of the
complementary component as indicated; P designates
the principal value of the Fourier integral.! Inserting
the expression for «”/(w) into the first Fourier integral,

1) , 2Pf°° w Swr
e Koo_ﬂ' 0w2—w121

+ w21_2
we note that the integral is even in w. Integration from
— w0 to 4+« therefore doubles the value of the integral or

1 2 St
K (w1) — ke = —Pf
T —x

W — w21+ w??
The integration may be carried through in the complex
frequency plane (Fig. 1.1). The integral has poles at
—w; and w; on the real-frequency axis, where it becomes
infinite; similarly, on the imaginary-frequency axis,

dw,

w2

dw.

18ee E. A. Guillemin, The Mathematics of Circuit Analysts,
Wiley, New York, 1949, p. 335; J. H. Van Vleck, Propagation of
Short Radio Waves, Massachusetts Institute of Technology
Radiation Laboratory Series, No. 13, D. E. Kerr, Ed., McGraw-
Hill, New York, 1951.
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poles lie at w = j/7 and —j/r. To evaluate the princi-
pal part, we examine the integral over the closed con-
tour of Fig. 1.1. By Cauchy’s theorem this integral is
2wj times the residue at j/r or 1/(1 4+ w,?r%). The
principal part may be expressed as

™
1 4 w%? B {j(:’1+»/;'2+j(‘73}‘

The integral along C3 vanishes; the integrals along C,
and C, cancel. We find
S

1+ w?r?

K,(w) — K =

The ohmie conductivity of a conductor is an excep-
tion to the preceding consideration when represented

Imaginary axis

Real axis

—» + 00

Fig. 1.1. Integration in the complex frequency plane.

by a resistance only, because no storage phenomenon
accompanies the energy dissipation. Actually, how-
ever, the ohmic conductivity has a dispersion in the
infrared or optical frequency range and should be rep-
resented in the Fourier integration by an RL circuit
(see Appendix A, II, Sec. 2). Show that with this proviso
the exception disappears and the conductivity causes a
negative contribution to the dielectric constant.

2 - Depolarization and Demagnetization

In I, Fig. 2.1, we assumed that the free ends of the
dipole chains, produced by the polarization of the di-
electric, are neutralized by bound countercharges at
the electrodes. In this case the macroscopic electric
field inside the dielectric is identical with the field E
measured at the outside. If, however, there are no elec-
trodes on the dielectric surface, this neutralization of
the free terminal charges cannot take place and a de-
polarizing closing field extends from the positive to the
negative ends of the dipole chains. Now we have to
distinguish between the external field E, and an in-

t References to figures and equations preceded by I or II refer
to the main text.

ternal field E; that is smaller than E, by an amount
increasing proportionally to the polarization P:

w
E;=E, — —P.
€0
Identical considerations hold for the magnetization and
are here of even greater import, because no magnetic
monopoles exist to neutralize the free ends of magnetic
dipole chains. Since in the magnetic field theory H
and M have the same dimensions, the equation becomes

H,,; = He — wM.

The factor w is determined by the geometry of the
polarized or magnetized body. It can be calculated
for spheres, cylinders, and ellipsoids because the field
is homogeneous inside such bodies. A sample calcu-
lation for a polarized sphere is given in I, Sec. 10 (see
also Appendix A, II, Sec. 7). The values of w for vari-
ous shapes ! are shown in Table 2.1. Confirm the value
of w for the case of an infinite cylinder, when the field is
orientated perpendicularly to the axis.

1 See, for example, E. C. Stoner, Phil. Mag. (7] 36, 803 (1945),

and J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New
York, 1941, pp. 207 ff.

3 - Image Dipole, Image Force, and
Electron Emission

An electric charge +@ at a distance x from a conduct-
ing plane produces an electric field terminating perpen-
dicularly on this equipotential surface. The plane can
be replaced by an image charge —@ at a distance —z

Fig. 3.1.

Image dipole.

behind the plane in so far as this field is concerned
(Fig. 3.1).t The charge and its mirror image form an
image dipole, the special property of which is that a

t The solution of our electrostatic problem has to satisfy the
boundary condition and Laplace’s equation (see I, Eq. 4.13).
The field of a point charge fulfills implicitly Laplace’s equation,
and the image dipole constellation satisfies the boundary condi-
tion.
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Table 2.1. Depolarization or demagnetization factors !

Shape w
Sphere 1/3
Ellvpsoid of revolution
(Oblate spheroid)
(a) Field || ¢ a=b>c¢ PR LS
” v 2 b—zcx g { el —t.au‘l——azu Cz}
c=aVl1l—¢ 2 (@ — D% ¢ e
2
E W o 1 1— ¢ A
5 a =e—2——es—arcsme,
/’—N (e = numerical =1forc > 0;ie,e > 1
\-y eccentricity;
see II, Fig. 6.2)
(Prolate spheroid)
(b) Field || a
E b=c<ea
1—e2{i1 1+e_1}_
a € 12 1—¢ *
= = (0fore — 1;ie,a > »
General ellipsoid abc
) A
b#c#a
Field || @ A = an elliptic integral to be tabulated
Long cylindrical rod &
E || to axis
Short cylindrical rod 1
E || to axis
Long cylindrical rod
h 1/2
E 1 to axis

displacement of Q normal to the plane produces a dis-
placement of the image charge —@Q by an equal amount
in the opposite direction.

The image force between the two charges is, accord-
ing to Coulomb’s law (I, Eq. 3.8),

Q2
€4 (2r)? -
To remove the charge Q from r to infinity against this

1

force requires the work

=f F,'d1§=

The work would become infinite for z = 0, which makes
no physical sense. We know that only the finite energy
of the work function has to be overcome (see II, Fig.
32.17). The image-force law therefore holds only to a
critical molecular approach distance x,. That the image

é4r 4z ;
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force actually plays a role in pulling electrons back to
the cathode is established by the fact that the satura-
tion current of a thermionic emitter increases with the
applied field (Schottky effect).!

Metal boundary at X =0

X=0 c

) S

Image force

e a2 I

<«— Force

Fig. 3.2. Image force and atomic force curves.?

Calculate the external field sirength required to produce
Jield emzssion by assuming that the electron is held back

s TRATOSPHER,

of about —130 volts per meter is observed near the
earth’s surface. Wilson ! proposed that the negative
charge of the earth is maintained by thunderstorms,
and that the fair-weather field of the earth produces bi-
polar thunderclouds according to the following mechan-
ism (Fig. 4.1): Raindrops are weakly polarized with
their positive poles pointing downwards. The falling
drops, therefore, catch preferentially negative ions from
the atmosphere, because these are attracted towards
the approaching drop whereas the positive ions, be-
cause of the initial repulsion, have less chance to reach
the upper negative part of the raindrop as it passes.
Thus a negative space charge is carried downward and
increases the fair-weather field gradient in the cloud
while reversing the field gradient near the earth. By
this self-excitation process, the dipole charge in the
cloud and the field between cloud and ground increase
until lightning occurs.

The thundercloud represents a space-charge dipole
above the conducting surface of the earth. How can di-

Fig. 4.1. Formation of bipolar thundercloud (raindrops polarized in the fair-weather field of the earth trap preferentially negative
charges).

by the image force beyond z. and, fromz = O toz = .,
by an atomic force given by the tangent of the image-
force curve at x = z, (Fig. 3.2).2

1 W. Schottky, Z. Physik 14, 63 (1923).

2F. Ollendorff, Potentialfelder der Elekirotechnik, Springer,
Berlin, 1932.

4 - Wilson’s Bipolar Thundercloud

The earth is negatively charged with respect to the
surrounding atmosphere; in fair weather a field gradient

rection of this dipole, its charge and its height above ground
be determined by electrostatic measurements on the earth?

1C. T. R. Wilson, J. Franklin Inst. 208, 1 (1929).

5 : Cyclotron and Betatron

The cyclotron, invented by Lawrence and developed
with Livingston,' makes use of the fact that a charged

1E. O. Lawrence and M. S. Livingston, Phys. Rev. 45, 608
(1934).
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particle in a uniform magnetic field of the induction B
revolves with an angular velocity

independently of the speed of the particle and the
radius of the circle. Hence, such particles can be ac-
celerated by an oscillator operating with this cyelotron
frequency (Fig. 5.1).

Fig. 5.1. Cyclotron principle.

Faraday’s induction law suggests that if free charged
particles could circle a varying magnetic flux, forming
in effect the secondary winding of a transformer, they
might acquire extremely high energies in the induced
electric field. Kerst 2 was the first to realize a practical
particle accelerator on this basis, the betatron (Fig.
5.2). To keep an electron on a circle of a fixed radius

Energizing
coil

Evacuated
chamber

Iron core

Stable orbit

Plan view of evacuated
chamber

Fig. 5.2. Betatron principle.

79 in the betatron, one has, in addition to the cyclotron
condition to fulfill Wiederoe’s condition,® that the total

D, W. Kerst, Phys. Rev. 60, 47 (1941); Am. Scientist 35, 57
(1947).
3R. Widerde, Arch. Elektrotech. 21, 387 (1928).

flux & through this orbit must be equal to twice the
orbit area times the magnetic induction B at the orbit,

P = 2%’?023.

Derive both conditions by assuming that an electron
moves tn a circular path in the x~y plane under the influ-
ence of a changing magnetic flux ®(r,t) orientated in the
z-direction. The changing flux produces, according to
I, Egs. 5.30 and 5.31, a tangential voltage

fE¢(r,t) -dl = —fB(r,t) ‘ndA.

In addition to the electric field Ey(r,t), the magnetic
induction B acts on the electron, according to I, Eq.
10.21. The electric field and the angular component
of the magnetic induction cause a change in the angular
momentum of the electron, and the centripetal force
and the radial component of the induction affect the
radial momentum. By setting up these torque and
force equations, the result is readily obtained.

6 - Maxwell’s Equations and the
Conservation of Charge

Maxwell’s theory is based on the two field equations
(I, Egs. 6.6 and 6.10) and the two scalar relations (I,
Eqgs. 5.3 and 5.4) defining the true electric charge den-
sity and postulating the nonexistence of true magnetic
monopoles:

aD
V<H =J+ —
ot

B
VxE = -_——

ot
V.D =p
V-B =0.

The divergence of a curl is zero; hence by forming the
divergence of the first equation we find

]
V- (VxH)=0=V-] +3t(V~D)

or f
p
v-J] 2
This is the equation of current continuity or charge con-
servation, which states that a divergence of the conduc-
tion current is causally connected to a change in the
true charge density. Without introducing the displace-
ment current, Maxwell’s theory would have violated
this law.
Show, by assuming that Ohm’s law (I, Eq. 6.7) is valid,
that a space charge in a conducting medium decays expo-
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nentially to zero. Calculate the time constants for copper,
sea water, and fused quartz and demonstrate that the charge
will flow to the surface of a conductor (Faraday’s pail
experiment).

7 - Shrinkage of the Wavelength of an
Electromagnetic Wave in a Semi-
conductor

The wavelength of an electromagnetic wave depends
not only on the dielectric constant and permeability
but also on the conductivity of a dielectric medium
(see I, Egs. 7.15 and 9.23). Assuming a dielectric con-
stant «" of 10 for selenium, how large would its conduc-
tivity have to be in order to reduce to 5 ecm a wavelength of
10 cm n the lossfree material?

8 - Dimensional Analysis

Frequently the accurate form of physical relations
can be derived, or at least surmised, by equalizing the
dimensions of the two sides of an equation. Let us
illustrate this procedure by deriving the time constant
of an RC and of an LRC circuit.

According to the transient equation of an RC circuit

RdQ+1Q—O
a ¢°

its time constant 7 can only depend on R and C, hence
[7] = [RI"[CP.

To determine the exponents « and 8 in this dimensional
equation, we introduce for [R] and [C] the dimensions
given in I, Table 8.1, and rewrite

[sec] = [kg* m?*/sec® coul®®][sec?® coul??/kg? m?7].

With o = 8, the equation balances, if 8 = 1; hence
7~ RC. 7 = RC is the result of the standard calcu-
lation (see I, Eq. 26.7).
If we follow the same procedure for the LRC circuit
by writing
[7] = [LIR]*[CY,
that is,
[sec] = [kg® m?¢/coul®][kg® m?*/sec® coul?*]
X [sec? coul?® /kg? m??|
= [kg* m?¢/coul?q
X [kg® P m2@ B /ooul?@ R sec* 26,

we eliminate all dimensions, besides the time depend-
ence, for ¢ = 8 — @ and balance the equation with
28 —a=1. For ¢ = 0 we return to the solution of

the RC circuit. With ¢ = 1 the equation balances,

L
when 8 =0, a = —1, ie,, 7>~—. According to II,

L
Eq. 4.14, and I, Eq. 26.23, the result is 7 = B How-

ever, here the limitations of dimensional analysis be-
come apparent. If we would choose ¢ = 2 the equa -
tion would balance with 8 = —1 and @ = —3, and the

L\L
time constant would become 7 ~ (—) —. To derive

RC?/ R’
the general case, we eliminate e by substitution and

e ey BT .
find r >~ — —, i.e., dimensional analysis leaves
RC? R

the existence of a factor f (R—Cz) in the realm of pos-
sibility.

Use dimensional analysis to derive the energy radiated
per second from a dipole. This radiation loss of a dipole
antenna will obviously depend on the frequency of the
dipole, the dipole moment, and the phase velocity of
the electromagnetic wave, i.e., on the dielectric con-
stant and permeability of free space. For the actual
radiation law see I, Eq. 13.18.

Dimensional analysis is obviously much simplified
by the use of four dimensions (m, kg, sec, coul), because
the exponents must be integers.

9 . Macroscopic Analysis of the Frequency-
Response Characteristic of a Ferrite

Figure 9.1 shows the dielectric frequency-response
characteristic of a ferromagnetic semiconductor (see
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Fig. 9.1. Frequency-response characteristic of a ferrite.
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II, Sec. 30) as represented by the real part of the per-
mittivity and permeability and the electric and mag-
netic loss tangent (dissipation factor). Answer the fol-
lowing questions by using the conversion formulas and
charts of I, Sec. 9: (1) At what frequency is the magnitude
of the intrinsic vmpedance most nearly that of free space?

Fig. 9.2. Ferrite toroid.

(2) Is the material suitable for a 20-db attenuator section
in a coaxial line at 3000 Mec, if the length is not to exceed
2 cm? (3) What would the reflection coefficient of such
an attenuator be if inserted without maiching section (cf.
for this determination I, Secs. 17 and 18)?

Since a ferromagnetic dielectric allows the storage of
electric and magnetic energy, the material itself can
play the role of an LRC circuit or a space resonator.
If you make a torotd of this material with a cross section
of 2 by 2 em?® (Fig. 9.2), at which frequency will it tend
to resonate regardless of the coil wound on this ferromag-
netic core (cf. I, Sec. 22)?

10 - Electric and Magnetic Balances

By measuring the force of attraction between the
plates of a capacitor, for example, in a balance arrange-
ment ! (Fig. 10.1), either the voltage between the

Liquid
dielectric

Fig. 10.1.

Kirchhoff’s balance.

plates or the dielectric constant of the filling medium
can be determined. Derive the operating equation by
differentiation of the electrostatic energy (cf. I, Eq.
3.25 and Sec. 11). Is the true or free charge decisive for

! For a description of this arrangement due to Kirchhoff, see

F. Kottler, Handbuch der Physik, Springer, Berlin, 1927, Vol. 16,
p. 225, and Vol. 12, pp. 349 ff,

the force action? How well will such a balance operate at
alternating current?

The dielectric constant of liquids can be measured by
employing a U tube with one branch of narrow, the
other of wide, bore (Fig. 10.2). The narrow branch is

/—Gus

Fig. 10.2. Quincke’s method.

placed in a constant electrostatic field, and the rise of
the meniscus determines the difference in dielectric con-
stant between liquid and gas. This method of Quincke 2
can also serve for the measurement of magnetic sus-
ceptibilities if the electrostatic field is replaced by a
magnetic field. Derive the eleciric and magnetic sus-
ceptibility expressions and calculate the rise of the menss-
cus for water in a field of 5000 v/cm or 5000 gausses,
respectively.

The dielectric constant or permeability of a solid may
be measured by suspending a uniform cylinder of the
material with one end in a homogeneous field and com-
pensating the force, for example, by weights on the
other balance arm (Fig. 10.3). This method of Gouy 3

Sample

N

I —1

Fig. 10.3. Gouy balance.

is most commonly used for magnetic measurements. It
can be applied also to liquids and gases enclosed in a
cylindrical container. Compare the merits and short-
comings of the three methods.

2 G. Quincke, Ann. Physik 24, 347 (1885); see also E. C. Stoner,
Magnetism and Matter, Methuen, London, 1934, pp. 81 ff; and
R. M. Bozorth, Ferromagnetism, Van Nostrand, New York, 1951,
pp. 859 ff.

3L. G. Gouy, Compt. rend. 109, 935 (1889); see also E. C.
Stoner, Ref. 2.
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11 - Mass Spectrographs

The classical mass spectrographs analyze ions by the
combined action of electric and magnetic fields which
separates the ions according to their ratio of charge to
mass (¢/m determinations).

The first method of this type was developed by J. J.
Thomson ! (Fig. 11.1), who passed the positive rays

lon source

e

Fig. 11.1.

Thomson’s parabola method.

emerging from a long narrow channel in the cathode of
a discharge tube (canral rays) through parallel and over-
lapping electric and magnetic fields. After traversing
a field-free space of a length b >> a, where a is the length
of the field space, the ions strike a photographic plate.
Show with the help of I, Eq. 10.21, that the tons of the same
e/m for all velocities are focused on a parabola.

The next great advance was the mass spectrograph
of Aston,? who arranged the electric and magnetic fields
in tandem and perpendicular to each other (Fig. 11.2).

ton source

Magnetic field

Fig. 11.2. Aston’s mass spectrograph (magnetic field normal to
plane of paper).

Show that in this case tons of a velocity range limited by
aperture S3, instead of being spread out along a para-
bola for the same e¢/m, are focused in a single point.
Ions of constant velocity emitted, for example, from
a hot filament F (impregnated with a salt) and accel-
erated in an electric field, can be investigated in a mass
spectrograph of the Dempster type * (Fig. 11.3). Here
the particles describe a semicircle in the magnetic field,

1J. J. Thomson, Phil. Mag: 13, 561 (1907); Rays of Positive
Electricity, Longmans Green, London, 1921.

2F. W. Aston, Phil. Mag. 38, 707 (1919); Isotopes, Arnold,
London, 1924.

8 A. J. Dempster, Phys. Rev. 11, 316 (1918); 21, 209 (1923).

and it can be shown that ions of the same ¢/m entering
the slit S; under various angles are brought to a focus
at the exit slit S3 by the proper adjustment of the accel-
erating field U or the magnetic field H. Derive the ex-
presston for the resolving power dm/m of this spectrograph.

Detector

Z_{ 1S3
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| ,’;r,r?
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Fig. 11.3. Dempster’s focusing method.

12 - The Electromagnetic Field Energy and Its
Flow According to Maxwell’s Equations

Starting with the set of equations of See. 6,

oD
VeH = J+—,
ot
oB
VXE = —_——
at
V-D = p,
VB =0,

we form the scalar product of the first equation with
E and of the second with H. Subtracting, applying the
vector identity

V-(ExH) = H-(V<E) — E-(VxH),

and integrating over the volume V, we obtain the
change of the electromagnetic energy stored in this vol-
ume. Show that the result is the Poyniing theorem, I,
Eq. 11.13.

13 - Boundary Condition for the Electric and
Magnetic Flux Densities

In I, Sec. 14, we obtained the refraction law for the
static electric and magnetic field by introducing, in
addition to the continuity of the tangential component
of E or H, the continuity of the normal component of
D or B. In deriving the reflection and refraction laws
for the electromagnetic field we used as boundary con-
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ditions the continuity of the tangential components of
E and H (see I, Eq. 14.9) without any reference to the
normal components of D and B. Show that also tn the
electromagnetic case the normal components of D and B
are continuous, but that this additional boundary condi-
tion does mot lead to any further information due to the
coupling of the field vectors by Maxwell’s equations.

14 - Interference Filters

The dielectric layer of I, Fig. 18.3, shows maxima of
transmission or ‘‘passbands’” at those wavelengths at
which its optical thickness corresponds to a multiple of
A/2. Such a layer can therefore serve as a filter for the
transmission of a prescribed wavelength region. The
properties of interest are: peak transmission; ratio of
maximum to minimum transmission; bandwidth (see
I, Fig. 24.7); wavelength separation between pass-
bands; and the angular field of view. This last quantity
is defined as the angle through which the filter must be
tilted from normal incidence to shift the wavelength
of peak transmission by a distance equal to the band-
width.

Figure 14.1 shows three types of interference filter:

A
(a) a single layer of ZnS of the thickness n—; with
n=1,2 3, ...; (b) the same layer of ZnS backed on

Glass cover

A 3

‘-% NaF layer

(a) Single layer filter N
<=3 ZnS layer

D-zl ZnS loyer —=

VA 4

(c) Muttilayer Fabry-Perot filter

(b) Solid Fabry-Perot filter

Fig. 14.1. Three types of interference filters.

both sides by a highly reflecting (92 percent) layer of
semitransparent silver (solid Fabry-Perot filter'); and
(¢) a multi-layer Fabry-Perot filter,? in which the silver
reflector in front and back of the half-wavelength plate
is replaced by a dielectric reflector consisting of seven
A/4 layers each of alternating high and low dielectric
constant. The purpose of this last construction is to
avoid the absorption loss in the silver layer. All three
filters are assumed to be adjusted with their peak trans-
mission to the wavelength of the green mercury line.

10. Struve, Sky and Telescope, January, 1951.
2 H. D. Polster, J. Opt. Soc. Am. 39, 1054A (1949); see also
B. H. Billings, Photographic Engineering 2, 45 (1951).

The indices of reflection of ZnS and NaF are n~2.3
and ~ 1.3, respectively; the silver layers reduce the
transmitted energy at the peak to about 35 percent.

Derive, by using the impedance concepts, the general
equation for the transmission coefficient ¢t and the energy
coefficient of transmission T (I, Eqs. 15.17 and 15.22)
for oblique incidence (cf. I, Sec. 18). Compare the
properties of the three filters.

15 - Microwave Optics

Light optics operates with lenses, mirrors, and plates,
that is, it uses the dielectric properties of materials and
the shapes of their reflecting and refracting boundaries.
Microwave optics has an additional degree of freedom
because the beam width is of the order of magnitude of
the wavelength. Thus it can use the lateral boundaries
to produce optical effects since wave guides behave like
highly dispersive dielectrics (see I, Fig. 22.3).

A TEM wave traveling in the z-direction can be
polarized by giving its field components E, and E, a
phase shift § against each other (see I, Eq. 12.1). De-
pending on the magnitude and direction of this tem-
poral phase shift, various types of polarized radiation
result (I, Fig. 12.4). A simple optical polarizer consists

Fig. 15.1.

Microwave polarizer.

of a layer of an anisotropic material (mono-axial crys-
tal, stretched plastic), orientated with its axis, for exam-
ple, in the y-direction. The index of refraction, and
with it the propagation velocity, differs for the y and 2
component, and desired phase shifts § are obtained by
adjusting the magnitude of the anisotropy and the
thickness of the layer.

In microwave optics the same purpose can be
achieved by placing in the way of the TEM wave an
array of parallel-plate wave guides, orientated with its
plate surfaces, for example, parallel to the x,y-plane
(Fig. 15.1). If we assume that the plates have zero
thickness and infinite conductivity, and that fringing
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effects can be neglected, we can treat this plate polarizer
very simply. The E.-component of our TEM wave
passes through the array completely undisturbed, since
the electric field stands normal to the boundaries and
cannot create any current. The E,-component, on the
other hand, traverses each wave guide section asa TE
wave (cf. I, Sec. 22) with a phase velocity larger than
that of free space (cf. I, Egs. 21.13 and 22.23). Nor-
mally, the plate spacing is maintained as A > b > A\ /2,
so that only the dominant TE;o mode will propagate.
Thus the microwave plate polarizer acts like an artificial

dielectric, an anisotropic parallel plate of the refractive
index 1 in the z-direction and a refractive index n < 1
in the y-direction.

Calculate on the basis of this analogue the action of a
parallel-plate array (b = 833 cm, d = 15¢cm) on a
10-cm wave entering at normal incidence and linearly
polarized at 45°. What is the state of polarization of the
emerging wave? In solving this problem, higher-order
modes can be disregarded, but standing waves in the
artificial dielectric have to be taken into account
(ef. I, Sec. 18).

II - Molecular Approach

1 - The Compton Effect

The particle nature of radiation is most directly
observed in the scattering of a monochromatic X-ray
beam by some light element. As Compton! first
showed, there appears, in addition to the primary beam,
a scattered secondary beam of longer wavelength, de-
flected by an angle ¢ (see II, Fig. 7.1). The phenom-
enon can be explained quantitatively by assuming that
an incident photon hv of the mass hv/c? (see 11, Eq. 7.4)
collides elastically with an electron and transfers some
energy according to the conservation laws of energy
and momentum. In consequence, the scattered quan-
tum has the smaller energy hv’ and the electron recoils
with a velocity » at an angle 6.

The simple calculation assumes that the electron
is originally free and at rest. Its velocity afterwards
is high enough to require a relativistic mass correc-
tion (see II, Egs. 7.1 and 7.2). If the rest mass of
the electron is myg, its kinetic energy is accordingly

1

02

me? — moc® = mgc? — 1\ and its momen-

mov
tum my = 2.
T ==
2

Confirm the general equation for the wavelength shift
h
AA=XN —A=—(1—cos¢)
moC

observed in the Complon effect and calculate the kinetic
energy and angle 0 of the recoil electron. Give numerical

1 A. H. Compton, Phys. Rev. 21, 207, 483 (1923).

results, assuming that the incident radiation is molyb-
denum Ka radiation (A = 0.71 A).

2 - Plasma Resonance and Dispersion of an
Electron Gas

Assume a plasma of electrons and ions, overall neu-
tral and suspended in free space as a spherical space-
charge cloud. The positive ions are assumed to be
smeared out into a stationary continuum. We wish to
determine the polarization and permittivity of the
cloud when an external homogeneous field Eqe’*, ap-
plied in the z-direction, displaces the electrons in rela-
tion to their background.

Fach electron moves obviously under the influence
of three driving forces: the positive space-charge field,
the Coulomb interaction with the other electrons, and
the external field. (The friction force of radiation
damping [see II, Sec. 4] may be neglected at present.)

If the cloud contains S electrons and ions, respec-
tively, the potential ¢,;(r) of the positive space-charge
sphere of radius ry is (see I, Eq. 4.20)

Se(3ro2 — r?)

¢oi(r) = —— forr <r

( ) €081I'T03 >

hence the space-charge force in the z-direction for jth
Se?z;

electron at a distance z; from the center is — ]3 }
€4ar 0

The Coulomb interaction is given by the x derivative of
the Coulomb potential as

3 e
3%j kg | ¥ — T |

and the applied-field amplitude E, is modified to a
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cavity field (I, Eq. 10.13)
3

E = Eo.
K + 2
Thus the equation of motion of the jth electron becomes
Se? d e K +2

mi = — +e Ee'“t,
3

T — —
37
eodmrg OT; ki l 7§ — N |

The total dipole moment of the space-charge sphere
is found by the summation over the contribution of all
s

electrons, Y ex;, Summing over j in the equation of

j=1
motion, we find that the Coulomb interaction vanishes
because each force term is balanced by a counter-force
term. Hence collisions between the electrons of the
plasma gas do not affect the result.
From the overall force equation

S Se S I+2
'mEfIfj=
Jj=1

E z; + Se
we find, by introducing the number of electrons per

Jwt
Ee’*t)
6041I'7'0 j=1
unit volume,

38
N = ]

41!'7‘03

the polarization P (the dipole moment per unit volume)
as

S
3e > x; (N2/m)( + 2)Ee't
P = =1 _ '

41!'?‘03 w,,2 e 3(.02

and the plasma resonance frequency as

Neé?
wp = .
€gm

Since the polarization by definition (I, Eq. 2.7)
Bi= (K’ = l)eoE’ej“",

we obtain the equation for the determination of the
dielectric constant of this plasma

¥ —1 wp?
= 1)
K +2  w?— 3w’
or 5
’ @p
Kyt 1 - —2
)

Our electron gas behaves like a system of undamped
electron oscillators (cf. II, Sec. 4) on account of the
restoring force introduced by the positive ions. It
makes a negative contribution to the dielectric con-
stant because, somewhat unjustifiably, the static cavity

field has been invoked. In plasmas extending without
definite boundaries, the restoring force is missing, if no
longitudinal, compressing and expanding waves are in-
troduced. Examples are the Heaviside layers in the
highest atmosphere and the electron gas in metals,
which normally are treated equivalent to RL circuits.
Calculate the behavior of an electron gas that suffers fric-
tion by collisions and radiation but has no restoring force.

Plasma oscillations have become recently of new
interest for investigations of the stratosphere as well
as for the generation of microwaves.

3 - Wave Functions of the Harmonie
Oscillator in an Electric Field

The classical behavior of a harmonic oscillator and
its quantum-mechanical counterpart has been dis-
cussed in II, Sec. 18. If the oscillator vibrates in the
z-direction, its total energy & may be written, accord-
ing to II, Eqs. 18.7 and 18.17,

2
P 1
& = — + — mawe?a?.

2m 2 °
We obtain the wave equation of the oscillator by intro-
ducing the total and the potential energy into Schré-

dinger’s equation (II, Eq. 7.18) as

Specifying the solution
X
¥ = de ’

we find that the parameter « is given by the equation

: 2 1 2.2
—%(—20{)(1 —2ax)+§mw0x = &.

In quantum physics, the energy of the oscillator does
not depend on the amplitude x but only on the fre-
quency (see II, Eq. 18.27); hence the two terms of the
equation depending on 2? must cancel,
h2
2a)? — = — mwy?.
(20) Bt dez il

This determines « as

Mwo
o =r 8=y

2h
and with it the energy as
hwo

This is the zero-point energy of the oscillator, since our
solution represents the ground state (see II, Fig. 18.2).



Appendix

264

The factor A serves to normalize the wave function
+o0

according to II, Eq. 7.20; from Y dz = 1 we ob-

—00

mwg A
tain A ={—) .
7h

Application of an electric field E in the +z-direction
adds to the potential energy imw,?z® a dipole energy
term —eExz. Show that the wave function becomes now

g gl

eE \?
bl=8+( 2 )
Mg

and that the matriz element of the dipole moment (see 11,
Eq. 12.14) s

the energy

2

oo eE
f YYer dz = 3

Mmwg

in agreement with the static polarization contribution of
the classical oscillator (see 11, Eq. 19.2). This result
confirms the contention made in II, Sec. 19, that the
static dielectric constant can be obtained from the opti-
cal spectrum.

4 - The Kerr Effect

Kerr observed that glass ! or liquids ? become doubly
refracting in an electrical field, that is, they behave opti-
cally anisotropic like a mono-axial crystal, orientated
with its axis in the field direction. With more sensitive
methods this electro-optical Kerr effect has later also
been found in gases.® If n, and n, designate the indices
of refraction for light of the wavelength X, oscillating
with its electric vector parallel or perpendicular to the
electric field, the phase shift between the two compo-
nents is ;

A = i‘ (np — 7).

Here [ designates the length of the dielectric exposed to
the field and A, the shift measured in units of wave-
length. Kerr found that

A\ = BIE?,

where E is the field strength and B the Kerr constant.
Depending on whether 7, is greater or smaller than n,,
the material is called positive or negative doubly
refracting.

The effect can obviously stem from several causes.
(a) Molecules, originally isotropic, may become aniso-

1]J. Kerr, Phil. Mag. [4] 50, 337, 446 (1875).

2 J. Kerr, Phil. Mag. [5] 8, 85, 229 (1879).

3 R. Leiser, Physik. Z. 12,955 (1911); G. Szivessy, Z. Physik 26,
323 (1924).

tropic in their polarizability owing to pre-polarization
by the electric field. This would be an action stemming
from the anharmonicity of the oscillators responsible
for the electronic and atomic polarization. The effect
obviously will be small and temperature insensitive.
() The molecules are a priori anisotropic in their polar-
izabilities, but carry no dipole moment. (c¢) The mole-
cules are anisotropic and carry dipole moments. In
cases b and ¢, the electric field E causes orientation
polarization; hence the Langevin function with its
large temperature dependence applies (II, Sec. 16).
The effect ¢, produced by the orientation of permanent
dipoles, will be the strongest one.

To derive an expression for the anisotropy (n, — n,)
and the Kerr constant caused by the orientation of per-
manent dipoles, we assume the following simple model.
The permanent field Ey produces a preferential orien-
tation of the dipoles in its direction according to Boltz-
mann statistics (cf. IT, Eq. 16.2). The probability of
finding a dipole pointing at a space angle inclined be-
tween 0 and 8 + df against the field axis is

w(6) df = Cell»! Bl s O/KT i g g gg,
Let the dipoles be polarizable by the electric field of
the light wave only along their polar axis. If the polar-
izability is @ and the electric field vector E of the light

Static field

: T
AE,

Fig. 4.1. Model for calculation of the Kerr effect caused by

orientation of permanent dipoles.

wave makes an angle ¢ with the dipole axis, the com-
ponent E cos ¢ parallel to the axis induces a moment
aF cos ¢ along the axis or a component aF cos? ¢ in
the E-field direction (Fig. 4.1). Hence the polarization
induced by the light wave in the E-direction is

P = NaE cos? ¢,
where cos? ¢ describes the average statistical distribu-

tion of the dipole axes in relation to the E vector of
the light wave.
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The average statistical distribution of the dipole
axes in relation to the applied static field Ey is given as

f f w(6) cos® 6 do dp
[fuwwas

For the parallel (p) component of the light wave, &
= 0; for the light component perpendicular to the
static field (s component), cos ¢ = cos ¢ sin 6, or, after
averaging over ¢,

cos? 9 = 1(1 — cos? ).

Calculate P, and P, for our stimple model, determine
np, — n, (cf. I, Sec. 12), and show that the Kerr constant

has the value
e ey
A ng 5 \kT

cos“ § =

where ng 1s the isotropic index of refraction without
static field.

If a Kerr cell is placed between crossed Nicols, light
will pass in general through the analyzer when E, is
applied. Can this light be cut off by turning the analyzer?

5 - The Faraday Effect

Faraday ! placed a transparent dielectric (lead glass)
between the poles of a strong electromagnet and sent
linearly polarized light, through a bore in the pole

X

¢ | E

Direction of
propagation

y

Fig. 5.1.

Faraday effect.

pieces, parallel to the field through the material (Fig.
5.1). He observed a rotation of the plane of polariza-
tion by an angle

¢ = RIH,

1 M. Faraday, Experimental Researches in Electricity, Quaritch,
London, 1839.

where [ is the length of the dielectric, H the magnetic
field strength, and R the so-called Verdet? constant,
which depends on the dielectric, its temperature, and
on the frequency of the light.

That a rotation of the plane of polarization will oceur
can be derived with the simple model of electronic har-
monic oscillators used for the discussion of anomalous
dispersion and resonance absorption in II, Sec. 4. If
the electrons oscillate in the y-z plane under the influ-
ence of the local electric field £’ and the magnetic
field H, we obtain, in place of II, Eq. 4.20, by referring
to I, Sec. 10,

d1'+2 dr+ 2 e(E,+dpr)
— — = — — :
Ja e AR dt

By introducing the polarization P and the local Mosotti
field (see II, Eqs. 4.22 and 4.23), the differential equa-
tion for the polarization results:
o ) Né? r
P+ 2P + 0P = —E + —
m Nm

(P = H).

Since P is periodic with time (see I, Eq. 4.27), the com-
ponents of the polarization in the y- and z -directions

follow as

2 7
2 ey |12 9 A Ne . B H
Py(wo w® + jo2e) = — E, + jo — P,,
m Nm

2
p(w"2_2 T2 _&_E_"ﬂp
2(wo o’ + jw2a) = :— Jw -
m Nm

Using the relation I, Eq. 2.7, between P and E we sub-
stitute the electric field for the polarization and find

E, = +jE,,
Né2/m

IH '
(wo"2 SR a;‘\;m — w2) + juw2a

The first of these equations states that our linearly
polarized light can be considered as composed of a
right- and left-hand circularly polarized component
(see I, Sec. 12). The second equation shows that the
dielectric constant, that is, the propagation velocity
for these two components differs, the former being re-
tarded, the latter advanced by equal amounts. Investi-
gate this situation in detail and calculate the Verdet con-
stant of atomic hydrogen at atmospheric pressure according
to this stimple model for the light of the green mercury line
(cf. II, Eq. 20.3).

A special application of the Faraday effect in ferrites,
the gyrator, is shown in II, Fig. 30.12.

2 E. Verdet, Ann. chim. phys. 41, 570 (1854).

€ — ¢ =
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6 - The Ionic Atmosphere in the Debye-
Hiuckel Theory of Strong Electrolytes

The ions of one sign in electrolytes have the tendency,
due to their Coulomb fields, to surround themselves
preferentially with ions of the opposite sign. This con-
cept of the ionic atmosphere (see II, Fig. 32.10), first
visualized by Milner,! was used by Debye and his co-
workers (especially Debye and Hiickel 2), to formulate
a theory of strong electrolytes. The extension and po-
tential of such an ion cloud can be calculated by using
Maxwell-Boltzmann statistics in connection with the
Poisson equation (I, Eq. 4.12).

Let us use a negative ion of the charge —e as the
reference ion. Its Coulomb potential at a distance r

(see I, Eq. 3.7),
e

¢=_

4nrr

produces a statistical increase AN, of positive and a
decrease AN _ of negative ions

AN, = Noe*¢/* T,
AN_ = Noete/¥T,

when N, represents the average density of the positive
and negative ions, respectively, in the neutral mixture.
The actual electrostatic potential has to obey Poisson’s

equation

6’

Vi =

At large distances the field energy of the negative ion
is small in comparison with the energy of thermal agi-
tation (e¢/kT << 1). By expanding the exponentials
and limiting ourselves to the first term, the differential
equation simplifies to

262N oo

kT
near the edge of the cloud. Close to the ion, on the
other hand, the potential must approach the Coulomb
potential; hence we have to fulfill the boundary con-
dition

¢
v2é =

for r — 0.

AaRevs
i dnr

Confirm, by checking dimensions (see I, Table 8.1) that

\/ kT
A =
282N0

represents a; length, the “radius” of the ton cloud. Since

18, R. Milner, Phil. Mag. 23, 551 (1912).
2 P. Debye and E. Hiickel, Physik. Z. 24, 185, 305 (1923).

our problem is a purely radial one without angular de-
pendence, the Laplacian in spherical co-ordinates (I,
Eq. 4.16) becomes

14 1¢]
V2¢ = ——(7‘2—¢> = 2

Verify that the solution of this differential equation is

i e—r/)\

i €4nr '
and calculale the radius of the atmosphere for a 1 M NaCl
solutton at 18°C.

7 - Dipole Moments in Polar Liquids
According to Onsager’s Theory

In IT, Sec. 23, we have discussed the essential aspects
of the Onsager model which avoids the Mosotti catas-
trophe. Since Onsager’s theory provides an important
method of evaluating dipole moments of molecules in
polar liquids (see II, Fig. 23.2), we return to these cal-
culations in more detail.

Onsager’s model is a point dipole of the moment p
placed in the center of a sphere of the molecular radius
R. The sphere is thought to be filled with a medium
of the optical dielectric constant (x,’) and surrounded
with a continuum of the static dielectric constant (k,’).
An homogeneous field E, is applied and acts as such at
large distance from the sphere. Near the sphere it is
distorted by the existence of the cavity; hence, instead
of Eg, the cavity field E, exercises its torque on the di-
pole. The dipole in the sphere furthermore polarizes
the continuum. This polarization of the surroundings
in turn creates, by its free charges, a reaction field E,,
parallel to the dipole that exercises a polarizing action
on the dipole itself and the medium in its cavity. This
effect increases the dipole moment in the cavity, but
the reaction field turns with the dipole and cannot con-
tribute to the torque. Thus, while the Mosotti-Lor-
entz-Debye approach introduces one local field E’ (see
II, Eq. 23.2) which both turns and polarizes, the On-
sager theory introduces iwo fields: the cavity field E,
as the directing field, and the vector sum of the cavity
field E,; and the reaction field E,, designated as the in-
ternal field E;, as the field that induces polarization.

(¢) To calculate the cavity field E, we have to solve
the Laplace equation (see I, Eq. 4.13)

V¢ =0

under the following conditions:
(1) At large distances the potential must be that of
the applied field, or ¢ — Egr cos ¢ for r — o,
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(2) In the center of the cavity the potential must be
finite, or ¢ finite for r — 0.

(8) The electrostatic refraction law (I, Eq. 14.4)
prescribes continuity of the normal component of D
and of the tangential component of E at the cavity
wall, or D, and E; continuous at r = R.

Designating the media outside and inside the sphere
as 1 and 2, respectively, we have shown in I, Sec. 10,
that the solution of Laplace’s equation for the potential
¢q outside and ¢; inside the sphere is (I, Eq. 10.12)

e21_ ell R3
¢a= ﬁ?_l E()Z
€2 +2€1 i

3¢’

26 + &'

The same potential ¢, would be created by superposing
on the applied field the field of a dipole, located parallel
to the applied field in the center of the sphere and of
the moment (I, Eq. 10.16),

¢i = Eoz.

The cavity field inside the sphere is homogeneous and
has the value (I, Eq. 10.13)

(b) To calculate the reaction field we consider that a
dipole of the moment p placed in the center of the

cos 6

sphere creates a dipole field of the potential Py
€

(see I, Eq. 3.10). This dipole field polarizes the con-
tinuum (medium 1) outside the sphere. According to
to the preceding calculation, this polarization field of
dipole symmetry creates a homogeneous reaction field
of the field strength R in medium 2 inside the sphere
and this field, as seen from the outside, can be replaced
by a dipole moment in the center of the sphere. Thus
we can immediately formulate the potentials inside
and outside; the former a superposition of the original
dipole field and the homogeneous reaction field,

n

¢z = ——— c0sf — E,.rcosfforr < R;
6241!""

the latter a dipole field produced by the original dipole
and the superposed induced dipole,

!
o1 = |.'L lz cos 0 forr > R.
€'4nr 3¢/
€
The same transformation factor i Nk 15 R which

26’ + &'’

changes the applied field E; in the preceding calculation
to the cavity field E,, relates the actual dipole moment
placed into the cavity to the effective dipole moment
P/, that is,

i 3¢’
L 261’ + €2’ &

Thus the reaction field becomes, since ¢; = ¢ for
r=R,

2’ — &) p
€' (261" + €') 4wR®

Te

(see I, Eq. 23.11).

The inner field E; = E; + E,. induces polarization
(electronic and atomic) whereas the cavity field creates
the orientation polarization according to the Langevin
formula (see II, Sec. 16). Calculate these polarizations
and show that the Onsager model is transformed into the
Clausius-Mosotti model, when the dipole in the cavity
stands parallel to the cavity field and a special value for
the radius R of the cavity is assumed. Calculate from the
dielectric constant of nitrobenzene (k' >~ 35, k,’ ~ 1.5)
its dipole moment according to the Onsager and the Debye

formula and find the magnitude of the reaction field.

The excessive magnitude of this reaction field and
the doubt as to how it responds to changes in dipole
position make the Onsager model suspect like any con-
tinuum model.!

1 See the discussion of F. C. Frank, Trans. Faraday Soc. 424,
19 (1946).

8 - The Franck-Condon Principle

Franck’s basic idea,! later developed in wave-mechan-
ical language by Condon,? was that electron transitions
in molecules take place so rapidly in comparison to the
vibrational motions that the nuclei, immediately after
the jump, have still about the same relative position
and velocity as before the jump. The result is that,
depending on the mutual position of the potential
curves of electronic states, more or less vibrational
energy will be created in electronic transitions for
which the light quantum has to pay (Fig. 8.1). This
principle, later also extended to crystals? proves of
quite general importance for the electronic spectra of
molecules and the condensed phases. We will there-
fore consider the situation more closely.

According to the old quantum theory we would
visualize an electron in its vibration state as moving
most rapidly through the middle position where the
total energy has been converted into kinetic energy

1]J. Franck, Trans. Faraday Soc. 21, 536 (1925).

2 E. U. Condon, Phys. Rev. 32, 858 (1928); 41, 759 (1932).
3 A. von Hippel, Z. Physik 101, 680 (1936).
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and spending most of its time at the intersection points,
the turning points, where only potential energy re-
mains (see II, Sec. 18). Hence, the electron will be
found with greatest probability at the turning points,
and transitions vertically upwards or downwards from
these points should correspond to the most intense
bands spectroscopically observed.

Quantum mechanics formulates this situation more
precisely by taking the probability distribution of the
electron density into account for the two intercom-
municating states. Let us demonstrate the procedure

Potential ) ol Gy

energy
\

=0

r 3 r
r = Internuclear distance

Fig. 8.1. Classical explanation of the Franck-Condon principle: 4
() no change of vibration energy; (b) appreciable excitation of
vibration energy; (c) vibration excitation leading to dissociation.

by considering the transition from the unexcited ground
state (v’ = 0) of a diatomic molecule to some vibration
states of the next higher potential characteristic (Fig.
8.2). In the lowest vibrational state the molecule has
a zero-point energy of one-half a vibrational quantum,
characterized by the wave function (see Appendix A,
11, Sec. 3).
,/,;,=0 = (mw,-/wh)%e‘ Yh(moi/b)z?

In the first two vibrational states of the upper potential
characteristic, the wave functions are

Voo = (meo;/wh)He Yimei/tia?
Yooy = (mw;/xh)%+/ 2 ge~ Yimei/N=

The probability of transition to one of these states is
described by the matrix element of the dipole moment
(11, Eq. 12.14):

wi= [ v av.
all space
This matrix element takes all possible mutual constel-

lations of the electron and of the nuclei in the two states
into account. The dipole moment of these constella-

tions determines the coupling strength to the electro-
magnetic field (dipole radiation). By integrating over
all these moments the matrix element represents the
transition moment which, after squaring, determines
the transition probability (II, Eq. 12.20).

The main contribution to the dipole moment comes
from the electrons. The p;; contain two essential terms:
a nearly constant contribution characterizing the two
interacting electronic states and a contribution deter-
mined by the overlap of the electron functions in the

» =1

Potential energy —»

Internuclear distance —»

Fig. 8.2. Quantum-mechanical explanation of Franck-Condon
principle. (After Herzberg.4)

various vibration states. The former factor determines
the relative intensity of the band in the band system;
the latter, the relative intensity of the lines of a band.
Figure 8.2 shows graphically that, in the example
chosen, the line intensity, determined by the product
of the wave functions, will be small for the transition
v = 0tov” =1, and large for v’ = 0 to v/ = 0.

For large vibrational quantum numbers the wave
functions have maxima (or minima) at the classical
turning points; hence quantum mechanics leads for
these higher transitions to the same result as the old
quantum theory.4

4See, for a more detailed discussion, G. Herzberg, Diatomic
Molecules, Molecular Spectra and Molecular Structure. 1. Spectra
of Diatomic Molecules, Van Nostrand, New York, 1950, pp. 194 ff.

9 - Born’s Lattice Theory and the Compressibility
of Ionic Crystals

Born’s lattice theory,' mentioned in II, Sec. 27, as-
sumes that ionic crystals are held together by the elec-

1 See M. Born, M. Géppert-Mayer, “Dynamische Gittertheorie
der Kristalle,” Handbuch der Physik, Vol. 12, Pt. 2, 1933, p. 708.
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trostatic attraction between the positive and negative
ions and prevented from collapsing by strong, short-
range repulsive forces.

In calculating the potential energy U of the Coulomb
interaction it is not sufficient, as pointed out in II,
Sec. 25, to restrict ourselves to nearer neighbors. Show
that a summation over the potential contributions of any
simple point lattice occupied by equal charges leads to a
divergent series. However, the fact that the unit cell
of a lattice must be electrically neutral as far as its
overall charge is concerned makes it clear that the
assembly of these elementary cells must act like a sys-
tem of multipoles. The interaction of such multipoles,
as we have shown in I, Secs. 3 and 10, decreases much
more rapidly with distance. Thus, by the proper
lumping of lattice points before an overall summation
or integration is attempted, the potential contributions
of all other lattice points at a reference point P (the
self-potential of the lattice at P) can be determined.!
By multiplying this self-potential with the charge con-
tained at P we obtain the Coulomb energy U, which
binds the reference ion to all the other ions of the ionic
crystal. By summing over this Coulomb energy for all
lattice points Ny per mole of the crystal, wice the elec-
trostatic lattice energy per mole is obtained, since every
lattice point has entered twice into the summation
process. The Coulomb energy U, binding one lattice
poin of the charge ze to all the other lattice points +ze
and —ze of the crystal can be expressed (see II, Eq.

25.8) as
(ze)*

U= -4
r

where 7 is the shortest distance to a neighboring ion of
opposite polarity and the Madelung constant A char-
acteristic for the lattice type (4 = 1.7627 for the CsCl
and 1.7476 for the NaCl type). The potential energy
per mole is

UcN 0

2

with N, representing Avogadro’s number.

The repulsive energy of the lattice points on the ref-
erence ions was represented by Born by a term B/r"
and later by Born and Mayer 2 by an exponential func-
tion. The contribution of the repulsive potential en-
ergy per mole can be expressed as

¢ B

—

ol
2"

N

where ¢ represents the number of nearest neighbors, the
2 M. Born and J. E. Mayer, Z. Phystk 75, 1 (1932).

co-ordination number (see II, Table 24.1), which is 6
for the NaCl and 8 for CsCl structure.
Thus the lattice energy per mole of an NaCl crystal
is represented as
A2 3B
U = No (- =+ 22,
2r r
or the force as

F(r) =

au(r) Ae® n3B
=Nl|l—=--=)
dr 2r vt

To eliminate B we make use of the fact that at the ex-

perimentally observed lattice-point distance ro the crys-
tal is in equilibrium, that is, F = 0. Hence for NaCl

n—1 Ae2

B=7'0 on

To determine the exponent of repulsion n, we use in
general the compressibility of the crystal

_16V

= ——

V ap

where V is its volume and p a uniform hydrostatic
pressure acting from all sides.

Calculate the compressibility of NaCl and the lattice
energy by assuming n = 8 and draw the potential energy
characteristic U(r) and the force characteristic F(r).

10 - The Born-Haber Cycle

A cycle process, first introduced by Born! and Ha-
ber,? proves useful in many chemical problems to de-
termine an unknown energy quantity from several
known quantities. For example, the formation of the
ionic sodium chloride crystal could be brought about
by reacting a gram atom of sodium metal [Na] with
one-half mole of chlorine gas 3(Cl;) and obtaining a
mole of sodium chloride erystal [NaCl] under develop-
ment of a heat of reaction Qu.c. Alternatively, we
might evaporate the sodium metal by spending the
heat of sublimation Sy,, and dissociate the chloride
gas into atoms by adding the heat of dissociation
3Dc,. Next we might ionize the sodium atom and
attach the electrons to the chlorine atoms; thus (Na™)
and (CI7) in gaseous form result under loss of the
ionization energy Iy, and gain of the electron affinity
Eg. Finally, we can bring the positive and negative
ions together and form one mole of the NaCl crystal,
thus gaining the lattice energy Un,c (see Appendix AT,
Sec. 9). By producing the crystalline phase in these

! M. Born, Ber. physik. Ges. 21, 679 (1919).
2 F. Haber, Ber. physik. Ges. 21, 750 (1919).
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alternative ways we have established the energy cycle:

— S
[Na] + 3(Cly) ———— (Na) + (C)

—2MC

— Qnaci —Iy.| +Eq

[NaCl] «—— (Na*) + (CID).
NaCl

It gives the lattice energy for zero temperature by the
equation

Unact = Qnac1 + Sna + Ina + 3Da, — B

Use this type of cycle to determine whether, in the reac-
tion between magnesium metal and chlorine gas, the com-
pound [MgCl] or [MgCly] will form.

11 - Electronic and Heat Conduction in Metals
According to the Classical Theory

The classical theory of Drude! and Lorentz ? treats
the conducting electrons in metals as a gas obeying
Maxwell statistics and reaching thermal equilibrium
with the metal by impacts with the stationary atoms.
An electron undergoes these eollisions on the average
every 7 seconds, and each impact wipes out its direc-
tional memory. Thus, if an electric field is applied in
the z-direction, the electron obeys, between collisions,
the normal force law

m— = ek,
dt

Its average velocity in the field direction, the drift

velocity, is
1 ek, eE,
b, = — f tdt = —1,
0 2m

m

or the current density
2
ne
J =oE, =nev, = —E,.
2m

The collision time 7 is given by the ratio of the mean free
path X and the actual average velocity of the electron 7,
T=—

Yo
mean thermal velocity

According to Maxwell’s statistics, 7o is the

2kT

Tm

L P. Drude, Ann. Phys. 1, 566 (1900); 3, 369 (1900); 7, 687
(1902).

2 H. A. Lorentz, The Theory of Electrons, Stechert, New York,
1909.

170=

Hence,

ne*\  |[mm
77 om \2%T

Il @
When a temperature gradient % exists, a thermal

energy current is carried in the z-direction; its den-
sity is
0 aT
= K —
9z
where « designates the heat conductivity of the mate-
rial. Derive the thermal conductivity of the electron gas
and the Wiedemann-Franz law,

kK (k)2
-=—\|-)T.
o 3 \e

How far is the assumption justified that the thermal energy
current 18 carried by electrons only?

12 - Space-Charge-Limited Current Flow

Whenever charge carriers are released in abundance
from the cathode or anode into a dielectric material,
the unidirectional current flow is limited by the space
charge it creates. The potential distribution resulting
must obey Poisson’s equation (I, Eq. 4.12),

vig = — 2,
€
where the charge density p is a function of position.

The equation of current continuity must be fulfilled
(Appendix A, Sec. 6),

ad
V- dv = — ;:dV,

for any volume element dV. Finally, the current den-
sity through any cross-sectional element d4 normal to
the current flow is given by the product of local charge
density and drift velocity,

JdA = pvdA.

A well-known example of space-charge-limited cur-
rent flow is the thermionic current in vacuum tubes.
For plane geometry in the stationary case, the charge
density and drift velocity depend only on the distance
2 between cathode (z = 0) and anode (z = d), on the
voltage U(z), and on the dielectric medium. Poisson’s
equation simplifies to

d%v p

dx2 €
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_ 3k : 2 A /
The continuity equation, since a_t = (), prescribes con-
stant current density; although thus
J = pv = constant,

p and v separately depend on z. Finally, the dielectric
medium (vacuum) can be traversed without energy loss,
if radiation is neglected, that is, the potential energy of
the free-falling electrons is fully converted into kinetic
energy,

3m® = eV (z).

Eliminating p and v, we obtain the differential equation

dE
for the voltage distribution or the field strength =’
X

Multiplying both sides with dU,

dE dv J Im
—dV =—dE = EdE = — _|—V%dV,
dzx dx e V 2e

and integrating, we get

47 [m

E2=— |—% + C;.

€ 2e
We define the cathode potential as zero (V = 0 for
z = 0); furthermore, it is assumed that the emission
from the cathode is so abundant that the current is
independent of it, and that the electrons leave the

cathode with the velocity zero. In this case, (E)z—¢
= 0, hence the constant of integration C; = 0 and

dv 4J ( m\*
E=—=_[—(—) VX
dx e \2¢

Integrating again, we obtain the voltage as function of
the distance in the form

4 -, /4.;’ (m)%’ 4
3 3 €p 2e 7 @

Since V = 0 for z = 0, the constant C; = 0. For z
= d, the potential at the anode is the applied voltage
Vo; hence the current density becomes

4eg 2e Vo ¥

9 m d?

The law of the voltage dependence of the space-
charge-limited current,

J = CVo¥%,

is frequently known as the Cheld-Langmuir law.! Show
that the 3/2 power dependence 1s unaffected by the geom-
etry of the vacuum tube by confirming the law for cylin-
drical and spherical symmetry. How does the law change
if vacuum is replaced by a medium with friction in which
the electrons move with constant mobility?

11. Langmuir, Phys. Rev. 2, 450 (1913); 21, 419 (1923); C. D.
Child, ibid. 82, 492 (1911).

B - Elements of Vector Analysis

Scalar. A quantity specified at any point by a single
number, its magnitude (for example, temperature,
mass, electrostatic potential; see I, Sec. 3).

Vector. A quantity specified at each point by its
magnitude and direction. Geometrical representation:
an arrow pointing in the direction, and representing by
its length the magnitude (examples are velocity, mo-
mentum, force, field strength; see I, Sec. 2). A vector,
completely determined by its three components along
the co-ordinate directions, is specified by three numbers.
Vectors in this treatise are designated by bold-face
type.

Vector equality. Vectors of equal length and direction
are equal independently of their relative position in
space.

Vector addition or subtraction. A geometrical addi-
tion ¢ = a-+ b = b 4 a or geometrical subtraction
(d=a— b= —b+4 a) (Fig. 1).

Fig. 1. Vector addition and subtraction.

Multiplication of vector by scalar; unit vectors. The
magnitude is multiplied by the scalar; the direction re-
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mains unchanged. To designate explicitly a vector A
according to magnitude and direction, we write

A=|Ala%

where the symbol | A ] represents magnitude and a° a
unit vector pointing in the direction of A. In the Car-
tesian (rectangular) co-ordinate system, the unit vec-
tors are normally denoted as i, j, k pointing in the 4z,
+vy, and +z directions, respectively. Hence,

A=A+ Aj+AKk
and

it 2 2 2
z v .
|A| = VA2 + 42+ 4,

For spherical and cylindrical co-ordinates, see I, Fig.
3.3, and I, Table 3.2. Multiplication by —1 means
reversal of direction (see subtraction, Fig. 1).

Multiplication of Vector by Vector

(a) Scalar product. Defined as the product of the
magnitude of two vectors A and B, multiplied by the
cosine of the angle between them, the dot product

A-B=|A||B|cosod =B-A.
For Cartesian co-ordinates, since
ij=jk=ki=0,
iri=jj=kk=1,
A-B=A,B,+ A,B,+ A.B..

The scalar product is a scalar equal to the sum of the
products of the components for any orthogonal co-ordi-
nate system (see I, Table 3.1).

AB+C+D+--)=AB+AC+AD+. -,
AA=|A]P=A2

(b) Vector product. Defined as the product of the
magnitude of two vectors A and B, multiplied by the
sine of the angle between them, the cross product

AxB =|A||B|sing = C.

The magnitude of the vector C is equal to the area of
the parallelogram defined by the two vectors A and B;
the direction of C is normal to this plane and corre-
sponds to the direction of advance of a right-hand
screw when turned from A towards B (see I, Fig. 2.5);
hence

AxB = —(BxA).

For Cartesian co-ordinates, since
ixi =jxj=kxk =0,
ixj = k;jrk =i kxi =,
AxB = (4,B, — A.B)i+ (A.B, — A:B.)j

+ (A:tBy £ AyB:c)ky
or, written in determinant form,

ik
AxB=| A4, A, A, (see I, Eq. 5.9).
Bz +iB, B,
AxB+C+D+---)=AxB4+ AxCH+ A<D+,
AxA =0.

Triple Products

(a) Scalar triple product: A-[B=C] = B-[CxA] =
C-{AxB] is a scalar; geometrically it corresponds to
the volume of the parallelepided of which A, B and C
are coterminous edges.

A:[BxC] = —A-[CxB].
(b) Vector triple product:
AxBxC] = (A-C)B — (A-B)C;
[AxB]<xC = (A-C)B — (B-C)A.

Hence the triple vector product has a unique meaning
only when the order in which the products are to be
formed is prescribed.

Differential Operators

(a) The gradient denotes the maximum increase of
some scalar function f at any point in space. The dif-
ferential operation, by which this gradient is derived
from f is characterized by the differential operator
(Hamiltonian operator) V (del). In Cartesian co-ord-
inates this is

a a i)
V=i—+j—+k—
oz ay a9z
and the gradient of f is
Vf=ig+ja—f+ka—f-
ox ay 0z
(The formulation of the del operator in various co-
ordinate systems is given in I, Eq. 3.18.) The change
of the function f for a differential displacement ds in
space is df = Vf-ds. The gradient characterizes a vec-
tor field derived from a conservative potential field, for
example, the force field of the earth gravitation poten-
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tial or of the electrostatic potential (see I, Sec. 3).
The del operator is handled according to the rules of
vector analysis as a vector.

(b) The divergence characterizes the sources of a po-
tential field (see I, Sec. 4); for example, in hydrody-
namics the sources and sinks of a liquid or, in electro-
statics, the positive and negative charges (I, Figs. 4.1
and 4.2). More generally speaking, the divergence of
a vector field preseribes that the field pattern is con-
sistent with the law of conservation of mass or charge
(see Appendix AI, Sec. 6).

The divergence is the dot product of the del operator
and the field vector in question,

divB = VB,

hence a scalar. It is formulated for the various co-
ordinate systems in I, Eq. 4.9.

(¢) The curl characterizes the turbulence of a vector
field (I, Fig. 5.2) by the cross product of the del opera-
tor and the field vector in question,

curl B = vV =B.

Hence, in accord with the rule of vector products, it is
a vector, orientated normal to the surface element of
the turbulent flow in the direction in which a right-hand
serew, turned by the torque of the turbulence, would
advance. The formulation of the curl in various co-
ordinate systems is given in I, Egs. 5.8 and 5.12.

Some Important Multiplication Operations with
the Del Operator

V(uww) = vwVu + wuVo + wVw,
V-(uv) = vVu + uV-v,
Vx(uv) = Vuxv + uV xv,
V- (Vu) = VZu (see I, Eq. 4.16),
V-V(w) = uV? + vV%u + 2Vu- Vo,
VxVu = 0,
V:-(Vxu) =0,
Vx(Vxv) = V(V-v) — V.

C - Values of Physical Constants

¢ velocity of light

e electronic charge

h Planck’s constant

o Boltzmann'’s constant
molecular gas constant

m mass of electron

m4  mass of proton

mp Bohr magneton

N Loschmidt’s number

Ny Avogadros’s number

R gas constant per mole

R Rydberg constant

Zy intrinsic impedance of vacuum

€ dielectric constant of vacuum

Mo permeability of vacuum

2.9979 X 10® [m sec™!]
1.602 X 107° [coulombs]
6.623 X 1073* [joule sec]
1.380 X 1072 [joule deg™!]
9.107 X 1073! [kg]

1.6725 X 10~  [kg]

9.27 X 10~2* [joule/weber m™?]
2.687 X 10%° [m™3]

6.023 X 102

8.314 [joule mole™! deg™!]
10,967,758 [m™!]

376.6 [ohm]

8.854 X 107!2 [farad m™!]
1.257 X 10~% [henry m™]
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area
Wien’s displacement constant
transition probability
Stefan-Boltzmann constant
major half axis of ellipse
magnetic flux density

minor half axis of ellipse
capacitance

velocity of light

dissipation factor (loss tangent)
electric flux density (displacement)
distance

total energy

electric field strength

electric elementary charge

force

radiation friction force

force constant

conductance

g factor (Landé splitting factor)
energy

magnetic field strength

Planck constant

h/2x

current

light intensity

moment of inertia

charging current

loss current

magnetization current

unit vector in the z-direction
resultant inner quantum number
quantum number of rotation
current density

square root of —1

inner quantum number

unit vector in the y-direction
Boltzmann constant

Bohr’s azimuthal quantum number
index of absorption (a/B)

unit vector in the z-direction
wave vector
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b~

[ oOT T

unit vector in direction of wave propagation

inductance

resultant orbital momentum quantum number

resultant orbital momentum vector

length

azimuthal quantum number

length vector

orbital momentum vector

molecular weight

magnetization (magnetic dipole moment per
unit volume)

resultant magnetic quantum number

mass

mass of electron

rest mass

mass of proton

Bohr magneton

magnetic moment

magnetic quantum number

number of particles per unit volume

Avogadro’s number

Loschmidt number

index of refraction

total or principal quantum number

unit vector perpendicular to surface under con-
sideration

= nq + np, Bohr’s radial quantum number

= n(1 — jk), complex index of refraction

= mg — my, electrical quantum number (linear
Stark effect)

power

work function

polarization (electric dipole moment per unit
volume)

generalized momentum

pressure

magnetic pole strength

momentum

angular momentum vector

electric charge

electric quality factor, Q value

general space co-ordinate
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Rydberg constant
gas constant per mole
energy coefficient of reflection (reflectivity)

equivalent radiation resistance of dipole an-

tenna
reflection coefficient
position vector, measured from origin
unit vector in radial direction
Poynting vector
resultant spin momentum vector
strain tensor

true (total) surface charge density
spin quantum number

spin momentum vector

absolute temperature

energy coefficient of transmission (transmissi-

bility)
stress tensor

potential energy

space co-ordinate

volume

voltage

velocity

phase velocity

vibrational quantum number
group velocity

work

space co-ordinate
electronegativity

admittance

intrinsic impedance

order number of atoms
characteristic impedance
impedance of free space
attenuation factor

friction factor

polarizability

overlap integral

atomic polarizability

dipole (orientation) polarizability
electronic polarizability
magnetizability

space charge (interfacial) polarizability
phase factor

complex propagation factor
gyromagnetic ratio

loss angle

loss tangent (dissipation factor)
numerical eccentricity of ellipse
dielectric constant of free space (vacuum)
dielectric constant

Ve
Vm
Yo

Xm

wo

loss factor

(complex) permittivity
friction factor

viscosity

angle

angle

power factor

thermal conductivity
(relative) dielectric constant
(relative) loss factor

(relative) permeability
(relative) magnetic loss factor
static dielectric constant
optical dielectric constant
complex relative permittivity
complex relative permeability
wavelength

cut-off wavelength

electric dipole moment
induced electric dipole moment
matrix element of the dipole moment
permeability

magnetic loss factor
(complex) permeability
permeability of free space (vacuum)
wave number

frequency

cut-off frequency

Larmor frequency

resonance frequency
polarizability per mole (molar polarizability)
conductivity

dielectric conductivity we”’
time constant

relaxation time

life time

ringing time

magnetic flux

angle

phase angle

electrostatic potential

angle

Schrodinger’s wave function
density

energy density of radiation
space charge density

electric susceptibility
magnetic susceptibility

= 27v

angular velocity

(angular) frequency

(angular) resonance frequency
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