
Basic Maple Commands

Command Description

1. General Commands and Conventions

f(a) evaluating a function f at a; e.g. sin(Pi)

; command end/result displayed

: ” ” /result not displayed

% (previously: ”) output of previous line

cursor on name, click on help help for name

settime := time(); expression;
time()− settime;

to get elapsed time for computing an expression

a := expression; assignment

aˆn; n-th power of a

sqrt(a); the (exact) square root of a

evalf(expression, n); numerical value of expression to n-digit accuracy

evalb(a = b); logical comparison (gives true or false)

a[n]; n-th element of list a

plot(expression, x = a..b); 2-dim plot of expression for x between a and b

plot3d(expr, x = a..b, y = c..d); 3-dim plot of expr for x between a and b and y be-
tween c and d

f := x−> expr definition of a one-variable function f(x)

f := [x, y, . . .]−> expr definition of multi-variable function f(x, y, . . .)

a := proc(x, y) local z, w; ...; end; definition of subroutine a

2. Elementary Number Theory

iquo(a, b); or floor(a/b); integral part of the quotient a/b

irem(a, b); or modp(a, b); remainder of division of a by b

frac(x); the fractional part of x

igcd(a, b); the gcd of a and b

igcdex(a, b,′ x′,′ y′); the extended gcd

x; y; to extract the values of the above extended gcd

ithprime(n); the n-th prime number

isprime(n); test whether or not n is prime (gives true or false)

ifactor(n); factor n into its prime factors

a&∧nmodm; or Power(a, n)modm; compute an mod m efficiently

mpl–1

Command Description

3. Sets and Lists: Basic Structure

s := {1, 2, 3, 4, 5}; defines a set s: an unordered sequence of elements

a := [1, 2, 3, 4, 5]; defines a list a: an ordered sequence of elements

s := {seq(f, i = 1..5)}; create the set s consisting of the elements f(1),. . . ,
f(5); here f is an expression (depending on i)

a := [seq(f, i = 1..5)]; create the list a consisting of the elements f(1), . . . ,
f(5); here f is an expression (depending on i)

nops(a); the number of elements in list a

a[i] the ith element of the list a

[a[i..j]] or [op(i..j, a)] the list consisting of elements i through j (inclusive)

select(k−> k < mor k > n, a); list a with elements m through n dropped

member(e, a); test whether e occurs in list a (true or false)

member(e, a,′ p′); p; the position(s) at which e occurs in a

type(s, set); check whether s is a set (has type “set”); gives true
or false

type(a, list); check whether s is a list (has type “list”); gives true
or false

4. Operations on Sets and Lists

s := convert(a, set); convert a list to a set

a := convert(s, list); convert a set to a list

s union t; or ‘union‘(s, t, . . .) combine sets s, t, . . . , removing repeated elements

s intersect t; intersection of sets s and t

s minus t the set of elements which are in s but not in t

[op(a), op(b), . . .] concatenate (join) the lists a, b, . . .

a := [e, op(a)]; add element e at the beginning of list a

a := [op(a), e]; add element e at the end of list a

a := subsop(i = e, a); replace the ith element of the list a by e

a := subsop(i = NULL, a); delete ith element from list a

[a[1..n− 1], e, a[n..nops(a)]; insert e at position n in list a

sort(a); sort the elements of list a (into a standard order)

[select(bool, a)]; list consisting of the elements of a for which the
boolean-valued function bool is true

map(f, a); apply the function f to each element of the list a

mpl–2

Command Description

5. Character Strings

str := ”This is a string”; defining a character string

length(str); the number of characters in a string

substring(str,m..n); extract a substring from string str starting with the
mth and ending with the nth character

[seq(substring(str, k..k), k = 1..
length(str)]

give the list of characters in a string

searchtext(st, str) find the place where st occurs in string str

s1.s2. . . . or cat(s1, s2, . . .) join the strings s1, s2, . . . together

convert(expr, string); convert an expression to a string (textual form)

type(str, string) check whether str is a string (true or false)

6. Boolean expressions

b := true; b := false; assigning true/false to the variable b

=, <>, <, <=, >, >= relation operators (equal, not equal, less than, etc.);
can be used to form boolean expressions

and, or, not logical operators (→ boolean expressions)

evalb(bool) evaluate the boolean expression bool (gives true or
false)

type(b, boolean) check whether b is a boolean expression (true or
false)

7. Looping control

for i to m do; expr; od; evaluate expr repeatedly with i varying from 1 to m
in steps of 1

for i from n to m by s do; expr; od; evaluate expr repeatedly with i varying from n to m
in steps of s

while test do; expr; od; evaluate expr until test becomes false

for i from n to m by s while test
do; expr; od;

evaluate expr repeatedly with i varying from n to m
in steps of s as long as test is true

RETURN (expr) (explicit) return from a subroutine, assigning the
value expr to the subroutine

8. Conditionals

if test then statmt fi; execute the statement (sequence) statmt only if test
is true

if test then statmt1 else statmt2 fi; execute the statement (sequence) statmt1 if test is
true, otherwise execute statmt2

mpl–3

Command Description

9. Complex Numbers

z := x+ y ∗ I; defining a complex number

abs(expr); the absolute value of expr

argument(expr) the argument of expr

Re(expr); Im(expr); the real and imaginary part of expr

conjugate(expr); the complex conjugate of expr

evalc(expr) evaluating an expression (as a complex number)

convert(expr, polar) convert expr to its polar form

type(expr, complex) check that expr has type “complex”

10. Polynomials

f := x∧n+ a1 ∗ x∧(n− 1) + . . . ; defining a polynomial f = f(x) (assuming that x has
no value)

type(f, polynom(integer, x)) check that f is an integer polynomial in x

degree(f, x) degree of f in x

coeff(f, x, n) extract the coefficient of xn in f

coeffs(f, x) list of coefficients of f(x)

lcoeff(f, x) the leading (highest) coefficient of f(x)

tcoeff(f, x) the constant (trailing) coefficient of f(x)

collect(f, x) collect all coefficients of f which have the same pow-
ers in x

expand(expr) distribute products over sums

sort(f) sort into decreasing order

subs(x = a, f) evaluate f(x) at x = a

Eval(f, x = a) mod p; evaluate f(x) (mod p) at x = a

f mod n; reduce the coefficients of f modulo n

quo(f, g, x); rem(f, g, x); the quotient and remainder of division of f by g
(viewed as polynomials in x)

gcd(f, g, x) the greatest common divisor of f(x) and g(x)

gcd(f, g, x,′ s′,′ t′) the extended Euclidean algorithm of f(x) and g(x);
i.e. s, t satisfy f ∗ s+ g ∗ t = g := gcd(f, g)

factor(f) factor f into its irreducible factors

Factor(f)mod p factor f modulo p

roots(f) find the rational roots of f

interp(x, y, t) The Lagrange Interpolation polynomial

mpl–4

