

Assessment of toxic effects

Ludek Blaha et al.

Outline

- Why
- Who
- When
- Where
- What
- How

toxicity assessment

wants the assessment

the assessment is needed

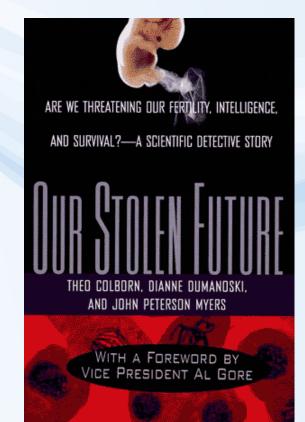
to assess for toxicity

to assess toxicity

What if not

do we need tests? alternatives

1996 - Chemicals in the environment


Do you believe that chemicals in products sold to consumers have been proven safe?

Think again

most chemicals in modern use have simply not been tested for their impacts on

human, even very basic effects.

... what about the effects in nature, then ?

How we stand 20 years later?

Published online: 21 October 2005; | doi:10.1038/news051017-16

Pollution makes for more girls

The stress of dirty air skews sex ratios in Sao Paulo.

Erika Check

Toxic fumes favour the fairer sex, a group of researchers in Brazil has found.

World news

theguardian

Man-made chemicals blamed as many more girls than boys are born in Arctic

 High levels can change sex of child during pregnancy Survey of Greenland and east Russia puts ratio at 2:1

Paul Brown in Nuuk, Greenland

Wednesday 12 September 2007 03.00 BST

C This article is 8 years old

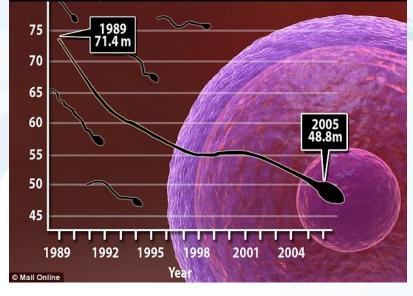
< Shares

79

Ante

An Inuit child in a traditional parka. Photograph: Joel Sartore/Getty/National Geographic

🥩 Print this page



more likely to be girls.

WHO/PCS/EDC/02.2

Sperm concentration

In millions of spermatazoa per millilitre

Global Assessment

> ent to State-of-the-Science of

Endocrine Disruptors

> Edited by Terri Damstra Sue Barlow Aake Bergman Robert Kavlock

Glen Van Der Kraak

IPCS

Impacts on biota \rightarrow global effects

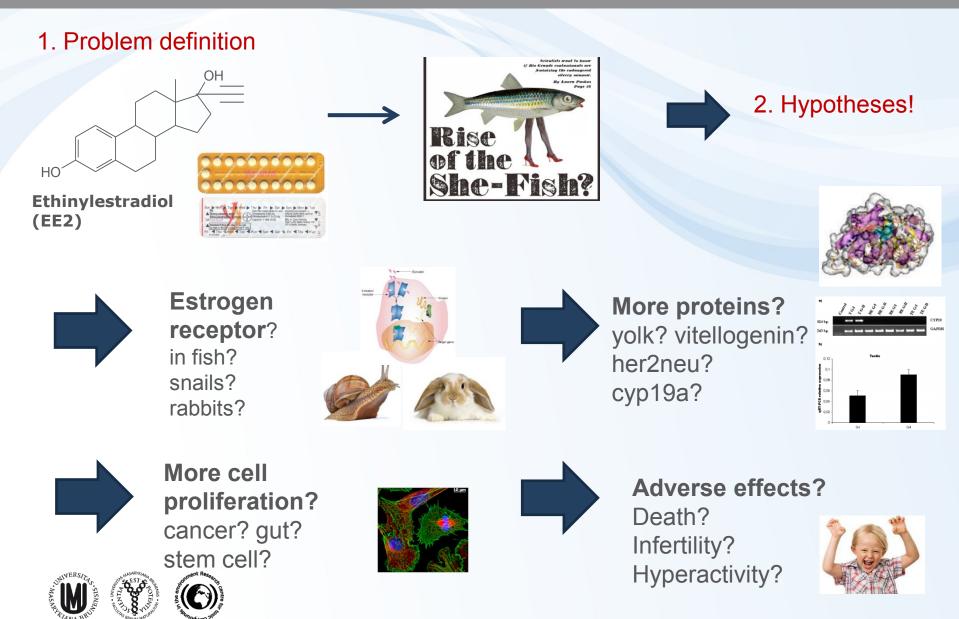
Mixing oceans

→ cooling the atmosphere [Nature 447, p.522, May 31, 2007]

Marine life supplies up to 50% of the mechanical energy required worldwide to mix waters from the surface to deeper cool layers [Dewar, Marine Res 64:541 (2006)] [Katija a Dabiri, Nature 460:624 (2009)]

wants the assessment

	Researcher	Government
Goal	To understand with joy!	To survive (law or jail? \$\$ or hunger?)



Researcher	Government
To understand with joy!	To survive (law or jail? \$\$ or hunger?)
Why rules?	Strict and tough rules
	To understand with joy!

	Researcher	Government
Goal	To understand with joy!	To survive (law or jail? \$\$ or hunger?)
Approach	Why rules?	Strict and tough rules
Stakeholders	Any? (other scientists?)	 Many! Businesses providing jobs People wanting jobs but also health

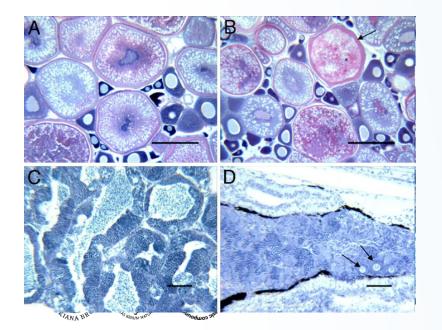
Scientific approach – EE2 (part 1/2)

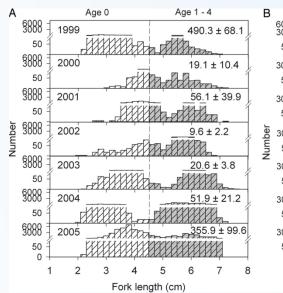
Scientific approach – EE2 (part 2/2)

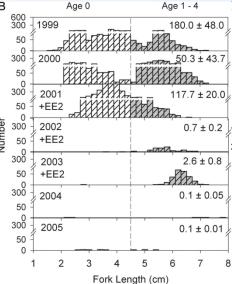
Kidd, K.A. et al. 2007. Collapse of a fish population following exposure to a synthetic estrogen. *Proceedings of the National Academy of Sciences* 104(21):8897-8901

5 ng/L (!) 7 years

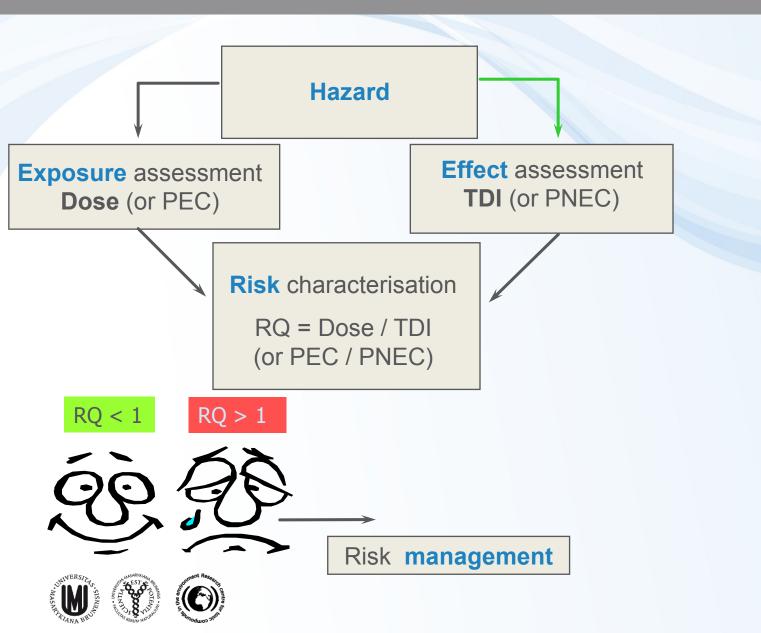
OH

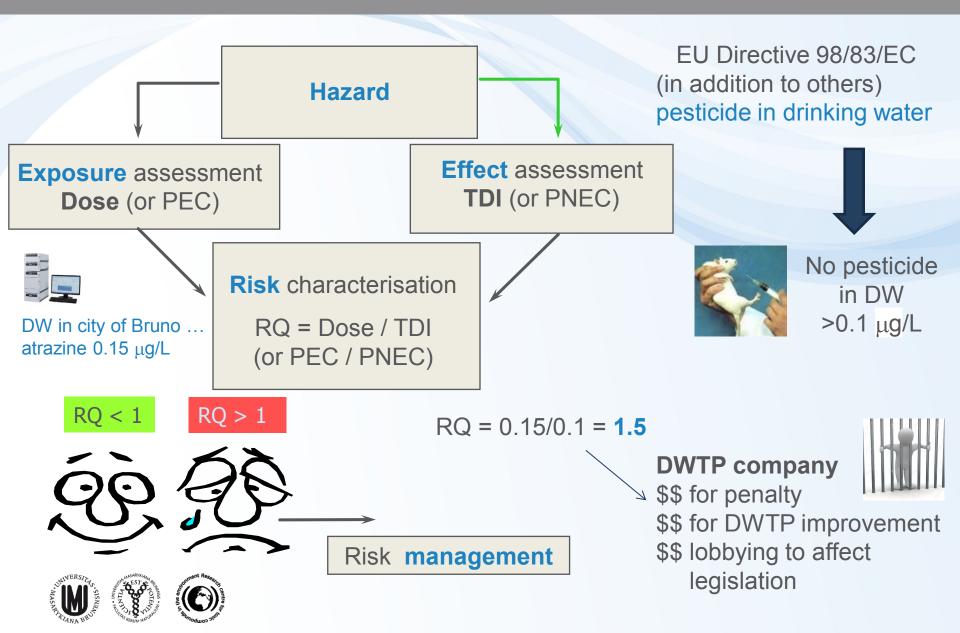





Controls

HC


+Ethinylestradiol

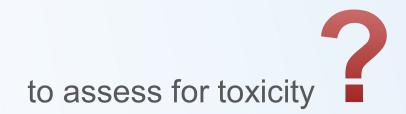


Regulatory approach: risk assessment and management

Regulatory approach: risk assessment and management

Summary on Who?

- Toxicity assessment depends on goal
 - approaches, standardization, demands on quality etc
- Science vs Regulatory/business reality
 are different worlds with specific requirements
- (Eco)Toxicological research is exciting and important:
 - if relevant (and if accepted by the society / polititans) the results continuously improve quality of life
- Risk assessment concept integrates is central to decision making
 - Integrates eco/toxicity testing (= "effect" assessment or dose-response assessment)



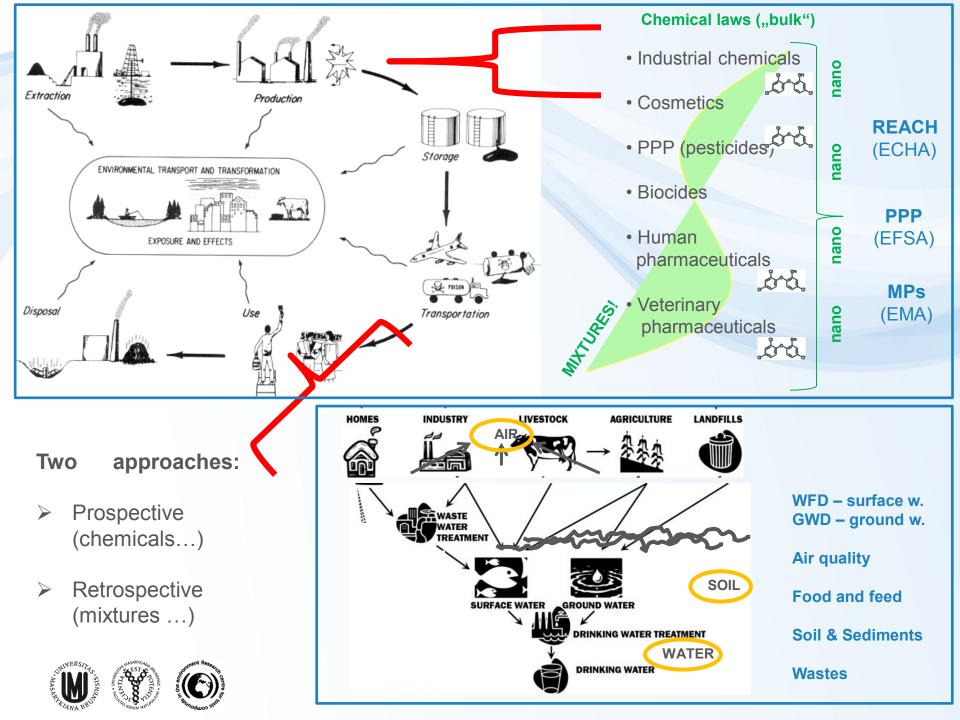
When Where

the assessment of toxicity is needed

When & where the toxicity assessment is needed?

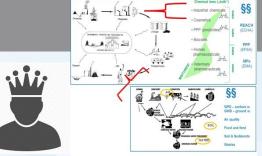
Anytime!

... depending on researcher's budget

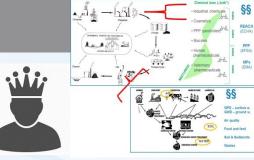

As the law says!

... what are the

law(s)?

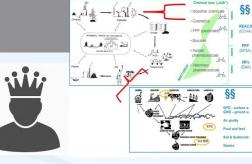


What to assess for toxicity? §§ 1 -h31 will: As required by law **Current research topics** Individual chemicals **Mixtures** Contaminated samples

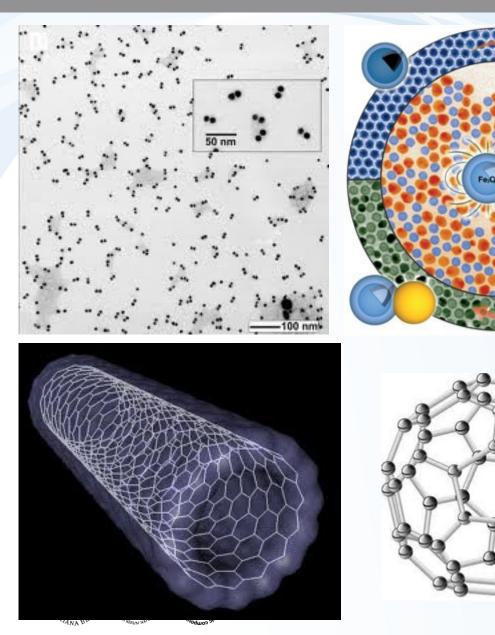

What to assess for toxicity?

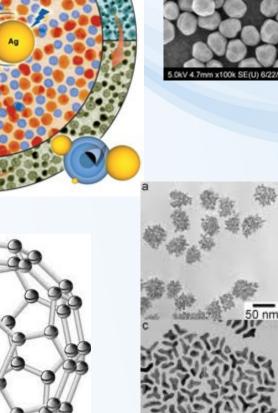
	Current research topics	As required by law	
Individual chemicals	Engineered nanomaterials /particles Ecological effects (e.g. of pharmaceuticals) Endocrine disruption & chronic diseases	Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics	
Mixtures			
Contaminated samples			
AND			

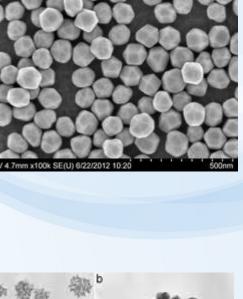
What to assess for toxicity?

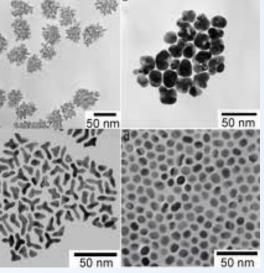


	Current research topics	As required by law	
Individual chemicals	Engineered nanomaterials /particles Ecological effects (e.g. of pharmaceuticals) Endocrine disruption & chronic diseases	Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics	
Mixtures	Multistressors +T°C, salinity, pathogens, irradiation, food Exposome	LOADING	
Contaminated samples			
NON THE REST. AND THE REST. AN			

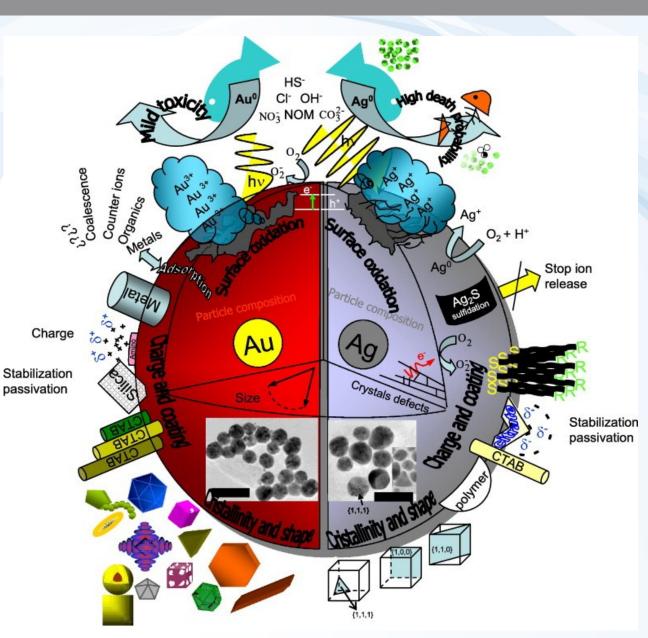

What to assess for toxicity?



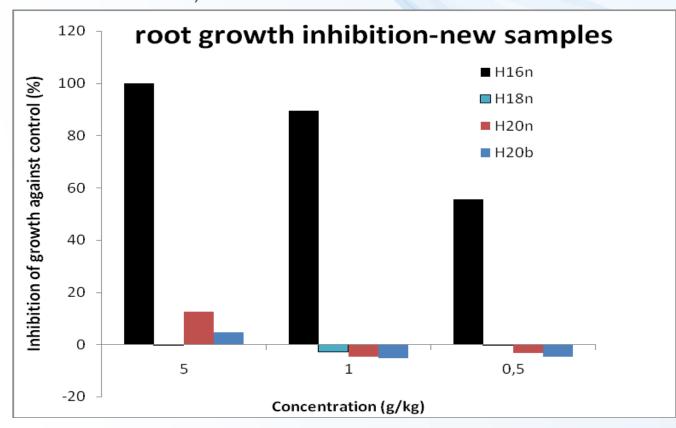



		Current research topics	As required by law	
	Individual chemicals	Engineered nanomaterials /particles Ecological effects (e.g. of pharmaceuticals) Endocrine disruption & chronic diseases	Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics	
	Mixtures	Multistressors +T°C, salinity, pathogens, irradiation, food Exposome	LOADING	
	Contaminated samples	Can analyzed chemicals explain observed effects ?	Chemical analyses & limits Effect testing rare: Remediation, dredged sediments (CZ), effluents (DE)	
	NUTVERSIZION NETVICE SIZION NETVICE		LOADING	

Nanoparticles - examples



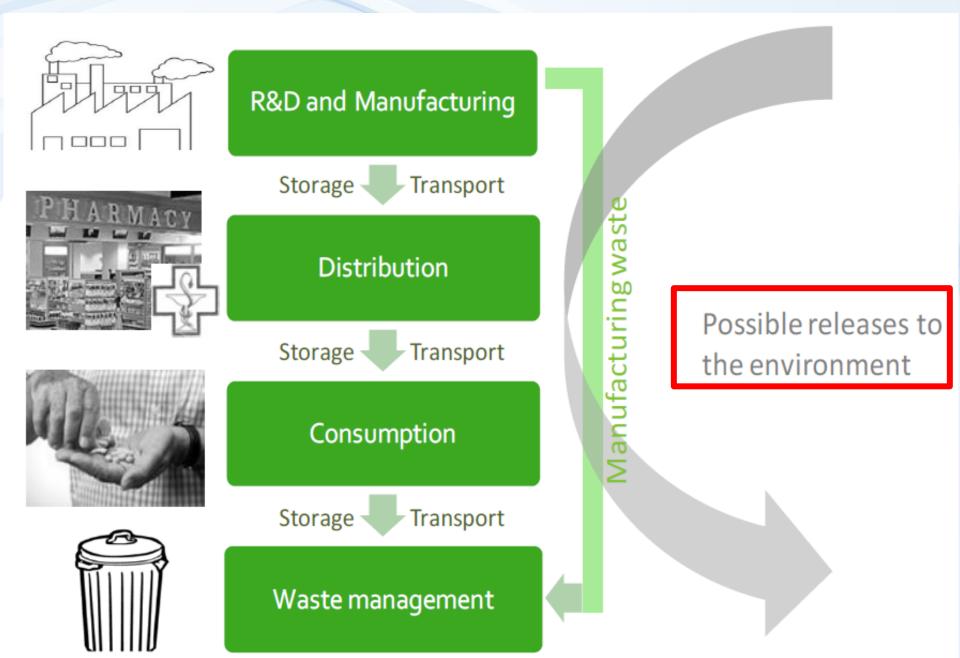
Toxicity of nanoparticles ...


(Mostly unknown) Parameters may Affect ecotoxicity

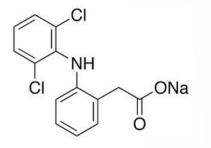
Composition (chemical) Surface (size, area) Charge Reactivity Interactions with ions, other chemicals...

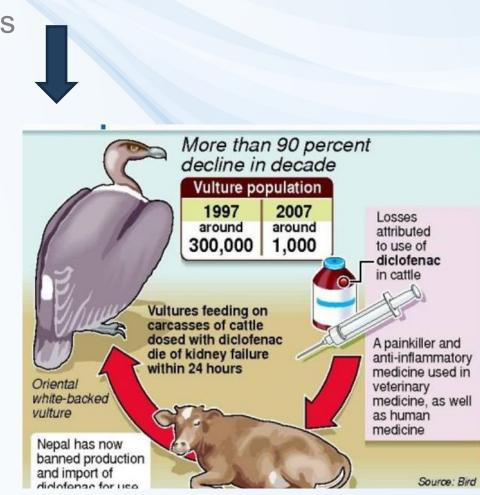
Effects on environmental Fate and toxicity

Ecotoxicity of nanoparticles – RECETOX example


Comparison of toxicity - 4 "appeared to be the same" particles (one producer – 4 different lots) (zerovalent iron – $ZVI – Fe^{0}$)

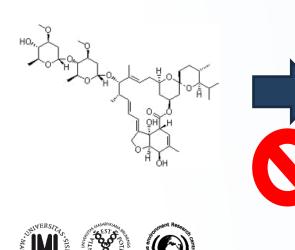
?? Why is H16 so toxic ?? ... despite of detailed investigation never revealed


PHARMACEUTICALS


Example 1 - DICLOFENAC

Unexpected effects at NON-TARGET species

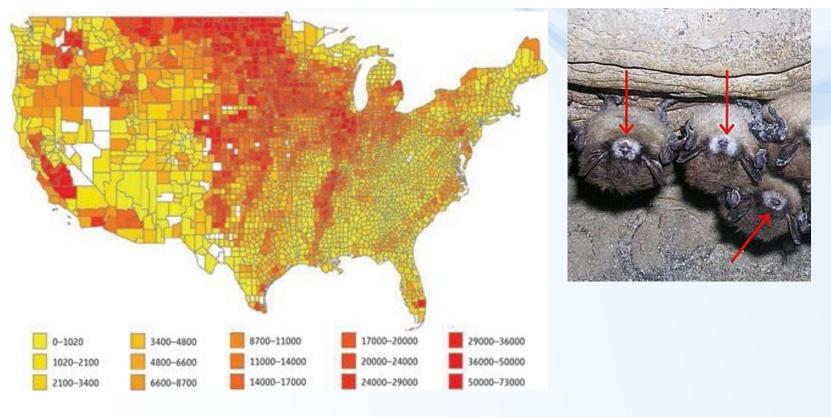
- nephrotoxicity at vultures
- Relevant also in EU (ESP, EL,CY)


Example 2 – AVERMEKTIN-like antiparasitics

Moxidectin – used e.g. in home "spot on" products

Ivermectin – antiparasitics in large herds

- Used 2-times per season per sheep/cow
- Kills 100% parasites in sheep
- Released in dung kills 80-90% larvae of dung flies
- High concentrations in dung (released 2 days post application)
- Persistent in the soil (half-life 30 days)
- Can be washed into adjacent streams (highly toxic to water insects)


CONSERVATION

Economic Importance of Bats in Agriculture

Justin G. Boyles,^{1*} Paul M. Cryan,² Gary F. McCracken,³ Thomas H. Kunz⁴

POLICYFORUM Science

Insectivorous bat populations, adversely impacted by white-nose syndrome and wind turbines, may be worth billions of dollars to North American agriculture.

Boyles et al. (2011) Science 332 (60251) 41-42

biology letters Animal behaviour

Biol. Lett. doi:10.1098/rsbl.2012.0685 Published online

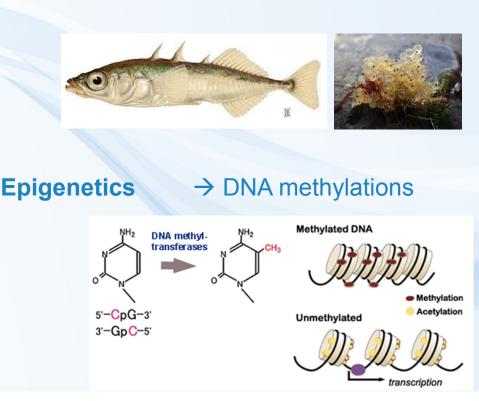
Stress

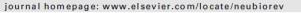
→ multigeneration effects

Maternal predatorexposure has lifelong consequences for offspring learning in threespined sticklebacks

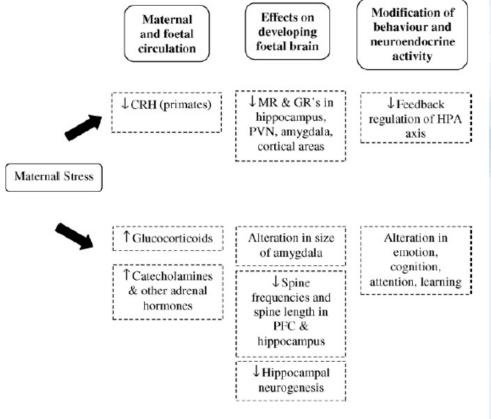
Daniel P. Roche, Katie E. McGhee* and Alison M. Bell

School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA *Author for correspondence (kemcghee@illinois.edu).




Table 1. Behaviours (mean \pm s.e.) of the offspring from the maternal treatments.

	offspring of predator-exposed mothers (s)	offspring of unexposed mothers (s)
initial exploratory behaviour (day 1: 09.00):		
latency to first begin moving	49 ± 30	56 ± 20
latency to enter either chamber for the first time	330 ± 70	326 ± 78
learning the colour association:		
day 1 (09.00): latency to find food reward	426 + 65	427 ± 61
day 3 (09.00): latency to find food reward	533 ± 48 2x difference	304 ± 74
day 5 (09.00): latency to find food reward	$_{337\pm61}$ 2X difference	158 ± 68


Contents lists available at ScienceDirect

Neuroscience and Biobehavioral Reviews

Review

Fig. 2. Routes by which maternal stress hormones may induce changes in the foetal brain in the programming of offspring behaviour. The developing foetal brain is sensitive to the actions of excess amounts of glucocorticoids and other hormones. These may alter the structure and function of the limbic system and HPA axis resulting permanent changes in behaviour and neuroendocrine regulation in the offspring. \uparrow = increase; \downarrow = decrease.

International ring test (2012-13)


Testing comparability of existing and innovative bioassays for water quality assessment

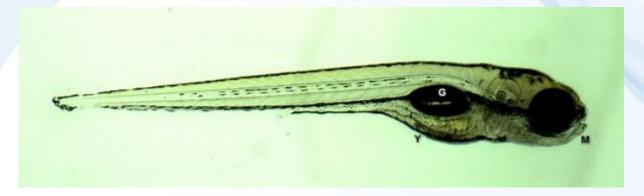
Main questions:

Are current limits (for individual compounds) safe? Relevance of **"Something from Nothing"** phenomenon ?

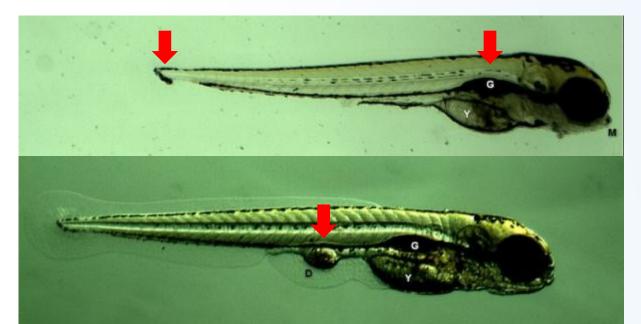
3 samples

- → 12 European laboratories different bioassays
- → ČR RECETOX: 11 bioassays

Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? *Toxicol Sci* 141(1): 218-233


International ring test (2012-13)

Testing comparability of existing and innovative bioassays for water quality assessment


EU WFD		RM 1ª	RM 2ª	RM 3 ª
priority substances	<i>Priority substances</i>	around <u>or</u> >EQS	< EQS	< EQS
Different	Atrazine	6	0.6	0.6
concentrations	BaP	0.0017	0.00017	0.00017
concontratione	Cadmium ^b	0.8	0.08	0.08
EQS	Chlorfenvinphos	1	0.1	0.1
= limit	Chlorpyrifos	0.3	0.03	0.03
(Environmental Quality	DEHP (Bis(2-ethylhexyl)	10	1.2	1.2
Standard)	phthalate)	13	1.3	1.3
	Diclofenac	1	0.1	0.1
	diuron	2	0.2	0.2
	17beta-estradiol	0.004	0.0004	0.0004
	fluoranthene	0.063	0.0063	0.0063
	Isoproturon	3	0.3	0.3
	Ni ^b	40	4	4
	4-Nonylphenol	3	0.3	0.3
	Simazine	10	1	1
	Carbamazepine	-	-	0.5
	Sulfamethoxazole	-	-	0.6
	Triclosan (Irgasan)	-	-	0.02
JUNIVERSITY BUSINESSING	DEET	-	-	41
	Bisphenol A	-	-	1.5

International ring test (2012-13) Testing comparability of existing and innovative bioassays for water quality assessment

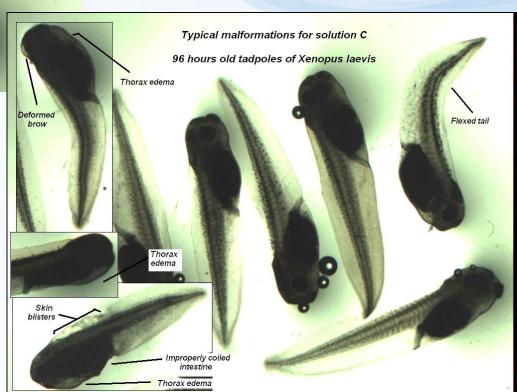
Example: Effects of mixtures on D. rerio fish embryos

Control

Effects of RM 3 (i.e. safe) mixtures

Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? *Toxicol Sci* **141(1): 218-233**

International ring test (2012-13) Testing comparability of existing and innovative bioassays for water quality assessment

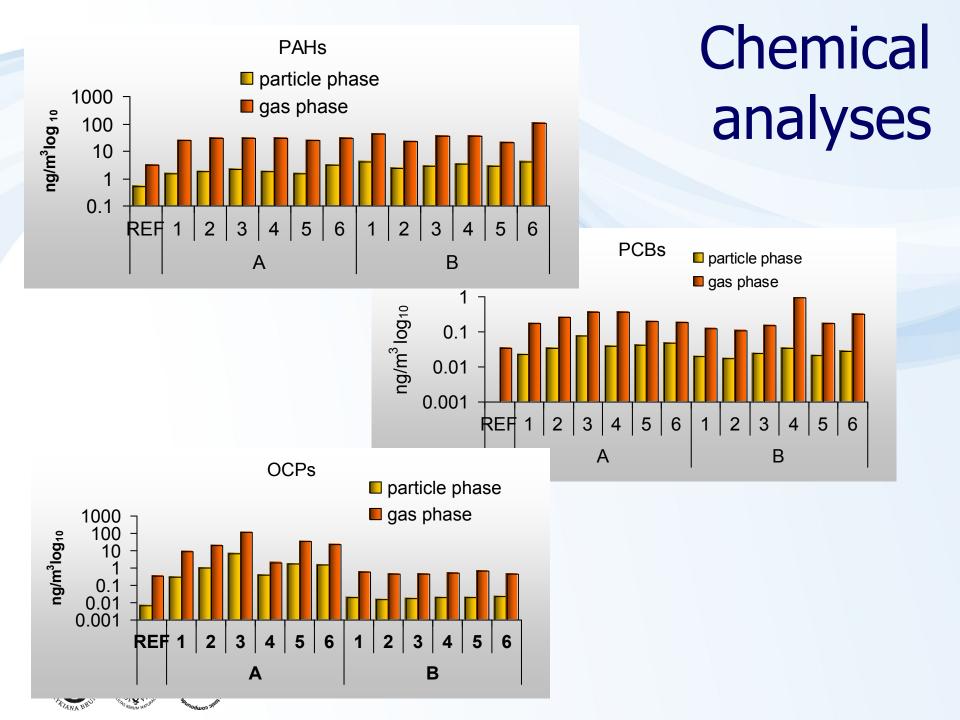

Example: Effects of mixtures on X. laevis frog embryos

Controls

Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? *Toxicol Sci* **141(1): 218-233**

Effects of RM 3 (i.e. safe) mixtures

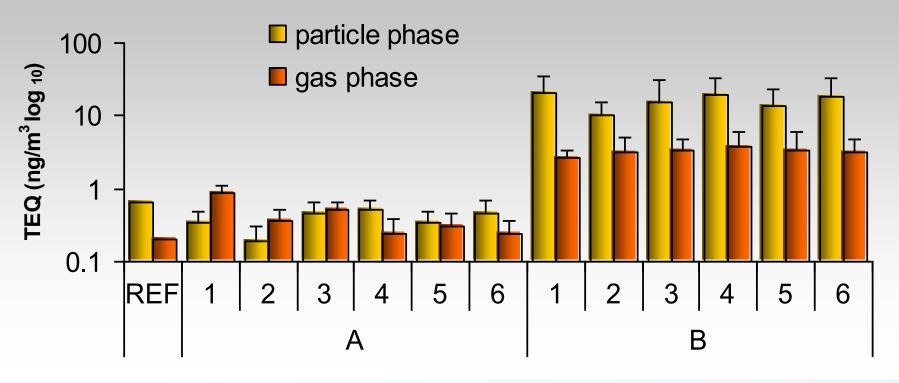
Biotest	Α	В	c
Microtox	26 and 36% stimulation of	18 and 35% stimulation of	22 and 39% stimulation of
	luminescence in 15 and 30 mins of	luminescence in 15 and 30 mins of	luminescence in 15 and 30 mins of
	exposure, respectively	exposure, respectively	exposure, respectively
Algae growth inhibition test 96-h	31% inhibition of growth compared	20% inhibition of growth compared	16% inhibition of growth compared
exposure	to solvent control	to solvent control	to solvent control
Acute immobilization test with	90% immobilization after 48 hours	no effect observed	no effect observed
D. magna	of exposure; 25% immobilization		
	occurred in 50% concentration - not		
	statistically significant		
Reproduction test with D.	100% mortality after 3 days of the	31 +/- 37 % inhibition of	23 +/- 24 % inhibition of
magna (21-d exposure)	test, no reproduction could be	reproduction, not statistically	reproduction, not statistically
	evaluated	significant	significant
FETAX (96-h exposure)	62 +/- 10 % of malformed embryos;	43 +/- 12 % of malformed embryos;	34 +/- 14 % of malformed embryos;
π	no effect on embryo length	no effect on embryo length	no effect on embryo length
•	observed	observed	observed
FET (120-h exposure)	effects observed in number of	no significant effects observed	effects observed in number of
	defected embryos - absence of gas		defected embryos, number of
	bladder, (head) deformities and		underdeveloped embryos and
	underdeveloped embryos were		length
	observed the most often.		*
In vitro - cytotoxicity	no effect observed compared to	no effect observed compared to	no effect observed compared to
	solvent control	solvent control	solvent control
In vitro - estrogenicity	effect under LOQ	effect under LOQ	effect under LOQ
In vitro - dioxin-like toxicity	effect under LOQ	effect under LOQ	effect under LOQ
In vitro - androgenicity	effect under LOQ	effect under LOQ	effect under LOQ
In vitro - antiandrogenicity	effect under LOQ	effect under LOQ	effect under LOQ


Contaminated samples? Case study "air"

Active sampling particles vs gaseous phase

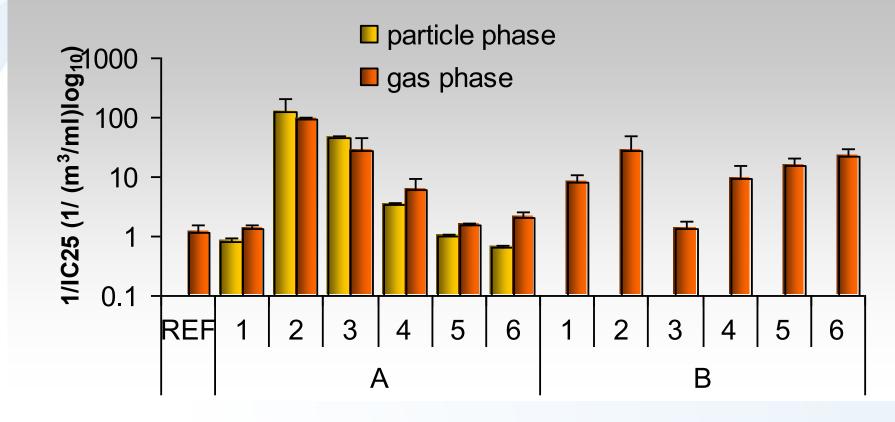
- Reference locality agriculture (Košetice observatory)
- Region A industrial (historically OCPs production)
- **Region B** combined: industry, agriculture, traffic

Novák et al. (2009) Environment International


Dioxin-like effects

dioxin-like toxicity

Labs on Wed + Thu


• Difference B>A

Difference B vs A – particles vs gas

Antiandrogenic effects

antiandrogenicity

Quantitative – comparable

Clear differences in patterns ... no effects on particles in "B" (?)

Summary on When, Where, What

Regulatory world

– Assessment of "chemicals"!

Contaminated samples

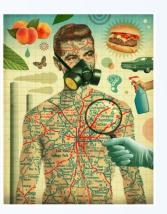
- effects rarely tested
 - Great value of bioassays in assessment of contaminated samples
 - Effects observed (!)
 - How to set the "limits"?

Research issues and questions

- Nanomaterials, Pharmaceuticals, EDCs
- Mixtures!
- Exposome

Contents lists available at ScienceDirect

Environment International


journal homepage: www.elsevier.com/locate/envint

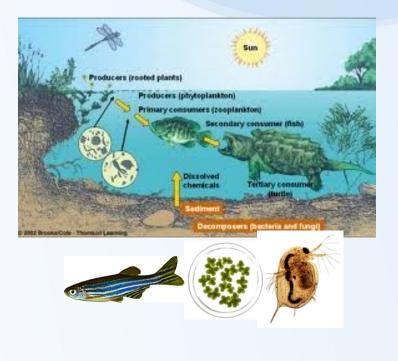
Review

What level of estrogenic activity determined by *in vitro* assays in municipal waste waters can be considered as safe?

Barbora Jarošová ^a, Luděk Bláha ^a, John P. Giesy ^b, Klára Hilscherová ^{a,*}

^a Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
^b Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

to assess the toxicity


Assessment of chemical hazards

....to....

Humans (TOXICOLOGY)

Other organisms (**ECO**toxicology)

(Eco)Toxicology – science of "doses"

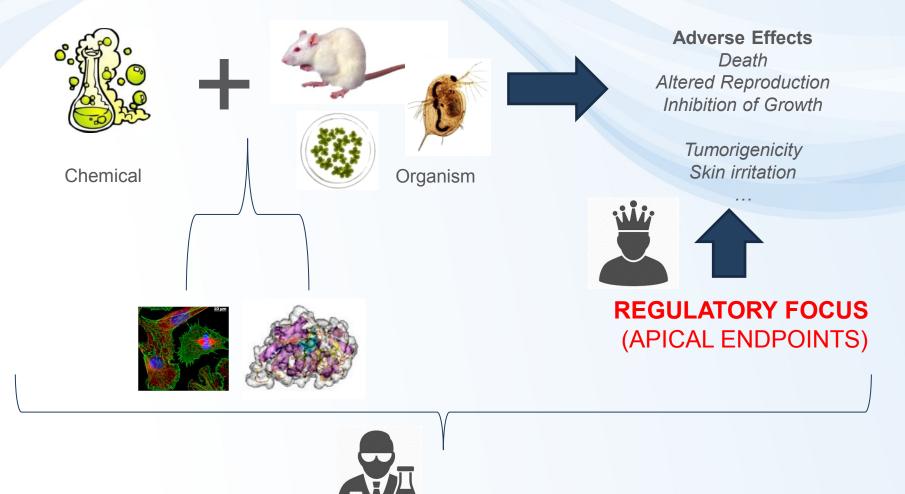
Paracelsus (1493 - 1541)

What is there which is not a poison?

"Cause-effect paradigm"

- All things are poison and nothing without poison.
- Solely the dose determines that a thing is not a poison.

Toxicology – ultimate goal ?


To identify (or predict) safe vs hazardous levels

Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models

Depends on legislation (... of course !) ... but current EU legislations tend to be harmonized

(use similar approaches)

→ example of REACH

REACH

Registration, Evaluation and Authorisation of Chemicals

- 27-2-2001: White Paper on the Strategy for Future Chemicals Policy
- 23-10-2003: Commission's proposal REACH
- December 2008: Pre-registration mandatory (all chemicals in EU must be registered at ECHA

ECHA > Homepage

15/06/2015 - Press release

Two new substances of very high concern (SVHCs) added to the Candidate List

ECHA took the decision to include two substances on the Candidate List based on proposals by Sweden and the Netherlands respectively, following the SVHC identification process with involvement of the Member State Committee. The Candidate List now contains 163 substances. Of those, 31 have subsequently been included in the Authorisation List. European Chemicals Agency (http://echa.europa.eu)

Existing substances and REACH

NBY31,2018

une 2001 2008 2008 2008 2010 122 2010

- > 95,000,000 known chemicals
 (...and counting http://www.cas.org/)
- 100,000 substances in EINECS (i.e. commercial use)
- 30,000 relevant for R
- cc 3000 HPVCs (Hig Volume Chemicals)

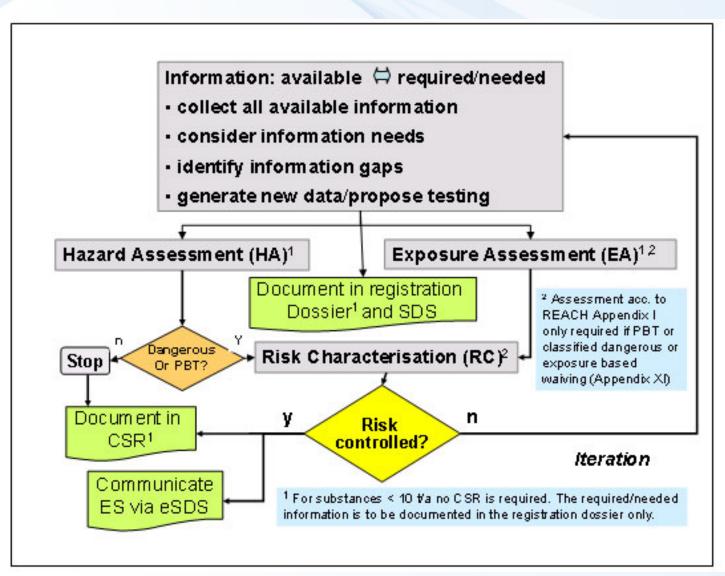
REACH comes into force

Start of the pre-registration phase

End of the pre-registration phase

Registration of:

≥ 1000 to/a R50-53 ≥ 100 to/a CMR cat 1,2 ≥ 1 to/a


≥ 100 to/a

≥ 1 to/a

New substances

REACH legislation in EU

Registration, Evaluation and Authorisation and Restriction of Chemicals

- Physico-chemical properties, e.g.:
 - Vapour pressure, boiling point, Kow,...
- Human toxicology, e.g.:
 - Acute and chronic toxicity, skin irritation, carcinogenity,...
- Environment/ Ecotoxicological information, e.g.:
 - Acute and/or chronic toxicity for aquatic organisms, biodegradation, ...

REACH: testing

Classification categories	Test requirements in REACH			
	>1	t	>10t	>100t
	New or prioritised substance			
Reproductive toxicity (a generation test)	no	no	no	no
Chronic toxicity and cancer	no	no	no	(yes)
90-day study	no	no	no	(yes)
28-day study	no	no	(yes)	yes
Acute toxicity (a second route of exposure)	no	no	yes	yes
Acute toxicity	no	yes	yes	yes
Skin allergy	no	yes	yes	yes
Skin and eye irritation	no	yes	yes	yes
Mutageneicity (in vitro)	no	yes	yes	yes
Further ecotoxicity studies (incl long term tests)	no	no	no	yes
Acute toxicity: fish	no	no	yes	yes
Acute toxicity: algae	no	yes	yes	yes
Acute toxicity: Daphnia	no	yes	yes	yes
Biotic degradation	no	yes	yes	yes

• Total costs: 2,8 to 5,6 billion € (industry pays)

Testing costs (50-60% of total): 86% for Human, 14% Ecotox

Depends on legislation (... of course !) ... but current EU legislations tend to be harmonized (use similar approaches)

→ example of REACH

Assays must be STANDARDIZED for REACH should follow OECD Guidelines

Other standardization agencies (also include toxicity tests) e.g. ISO, ASTM

OECD guidelines for testing of chemicals

- 5 main sections
 - Section 1: Physical Chemical Properties
 - Section 2: Effects on Biotic Systems (i.e. Ecotoxicity)
 - Section 3: Degradation and Accumulation
 - Section 4: Health Effects
 - (i.e. Toxicity)
 - Section 5: Other Test Guidelines

OECD guidelines (examples – selection)

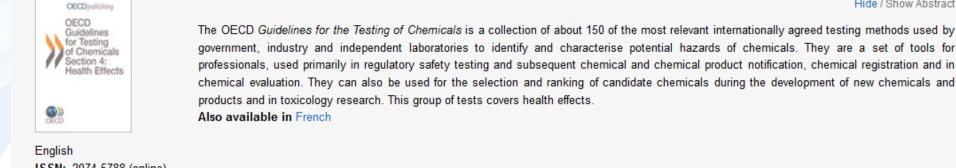
OECD

SECTION 2 - Aquatic organisms

Test No. 201: Alga, Growth Inhibition Test	11 July 2006
Test No. 221: Lemna sp. Growth Inhabition Test	11 July 2006
Test No. 202: Daphnia sp. Acute Immobilisation Test	23 Nov 2004
Test No. 211: Daphnia magna Reproduction Test	16 Oct 2008
Test No. 203: Fish, Acute Toxicity Test	17 July 1992
Test No. 204: Fish, Prolonged Toxicity Test: 14-Day Study	04 Apr 1984
Test No. 210: Fish, Early-Life Stage Toxicity Test	17 July 1992
Test No. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages	21 Sep 1998
Test No. 215: Fish, Juvenile Growth Test	21 Jan 2000
Test No. 229: Fish Short Term Reproduction Assay	08 Sep 2009
Test No. 230: 21-day Fish Assay	08 Sep 2009
Test No. 231: Amphibian Metamorphosis Assay	08 Sep 2009

OECD guidelines (examples – selection)

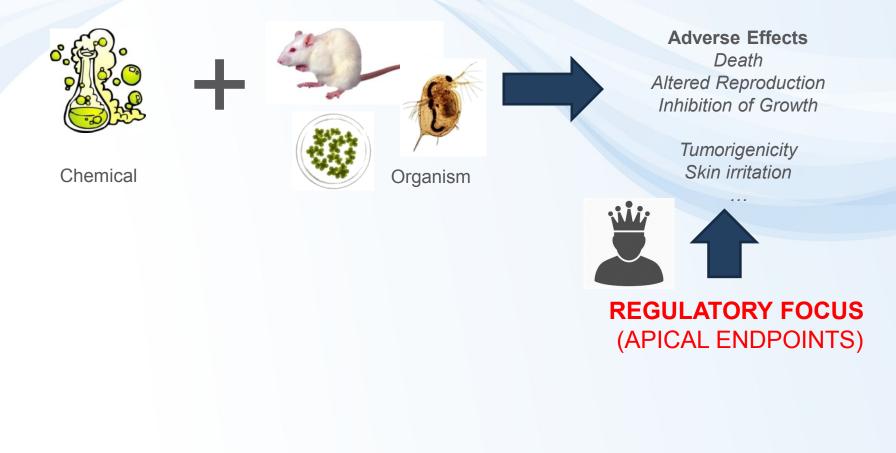
SECTION 4 – Human health effects


- Test No. 401: Acute Oral Toxicity
- Test No. 402: Acute Dermal Toxicity
- Test No. 403: Acute Inhalation Toxicity
- Test No. 404: Acute Dermal Irritation/Corrosion
- Test No. 405: Acute Eye Irritation/Corrosion
- Test No. 406: Skin Sensitisation
- Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents
- Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents
- Test No. 409: Repeated Dose 90-Day Oral Toxicity Study in Non-Rodents
- Test No. 410: Repeated Dose Dermal Toxicity: 21/28-day Study
- Test No. 411: Subchronic Dermal Toxicity: 90-day Study
- Test No. 412: Subacute Inhalation Toxicity: 28-Day Study

OECD Guidelines for the Testing of Chemicals, Section 4 Health Effects

Subscribe to the feed

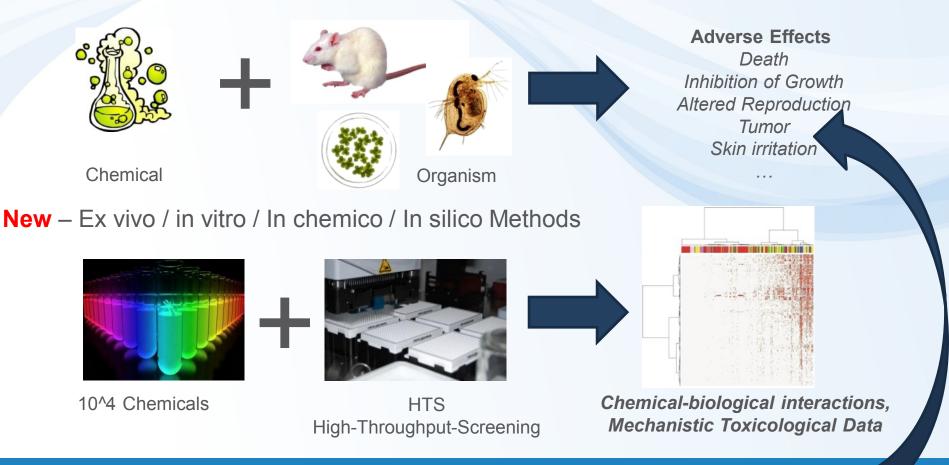
Hide / Show Abstract



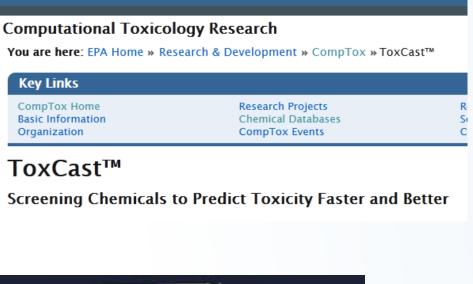
ISSN: 2074-5788 (online) DOI: 10.1787/20745788

			Hide / Show all Abstracts
Mark	¢ Date	♦ Title	Click to Access
	11 Sep 2006	Summary of Considerations in the Report from the OECD Expert Groups on Short Term and Long Term Toxicology OECD	🕭 PDF 💿 READ
	24 Feb 1987	Test No. 401: Acute Oral Toxicity OECD	🕭 PDF 💿 READ
	24 Feb 1987	Test No. 402: Acute Dermal Toxicity OECD	nter 🖉 PDF 🖉 Read
	08 Sep 2009	Test No. 403: Acute Inhalation Toxicity OECD	🤌 PDF 💿 READ
÷	ONIVERSIZA STOR	Try it! download a your guideline	

Hazard assessment


Traditionally – Evaluation of adverse effects using the whole organism models

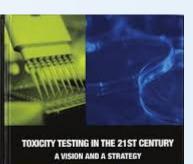
Hazard assessment


Traditionally – Evaluation of adverse effects using the whole organism models

Key task/question: How to link MECHANISTIC INFORMATION with APICAL ENDPOINTS ?

MoA and omics are supported by strategic documents

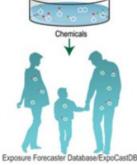
Toxicity Testing in the 21st Century: A Vision and a Strategy US National Academies of Sciences http://www.nap.edu/catalog/11970.html

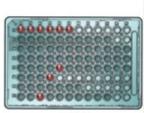


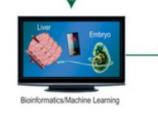
Key Links CompTox Home

Organization

Basic Information


LEARN THE ISSUES | SCIENCE & TECHNOLOGY | LAWS & REGULATIONS | ABOUT E





(30 years/\$2 billion of animal tests)

ToxCast rapid automated chemical tests

Human Disease Outcome

How ToxCast Fits Into CompTox Research

Adverse Outcome Pathways

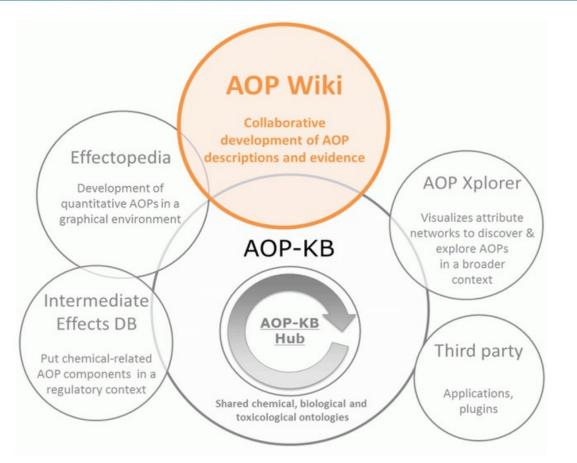
The EXISTING KNOWLEDGE is used to link the two anchor points: Molecular Initiating Event (MIE) and Adverse Outcome (AO) via a series of intermediate steps: Key Events

Ankley, G. T., R. S. Bennett, et al. (2010) "Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment." <u>Environmental Toxicology and Chemistry</u> **29**(3): 730-741.

AOP = Global strategy with support from OECD, EU, USA

	OECD.org	Data	Publication	More sites	•	News	Job vacancie)S
	OECD					> A to Sear	Z ch oecd.org	٩
OECD	Home About	Countries ~	Topics ~				> Fr	rançais

OECD Home > Chemical safety and biosafety > Testing of chemicals > Adverse Outcome Pathways, Molecular Screening and Toxicogenomics


> Testing of chemicals	Adverse Outcome Pathways, Molecular Screening and
> Assessment of chemicals	Toxicogenomics
> Risk management of chemicals	
> Chemical accident prevention, preparedness and response	WHAT'S NEW
> Pollutant release and transfer register	SURVEY ON ADVERSE OUTCOME PATHWAYS (AOPS) TO IDENTIFY DEVELOPMENT PRIORITIES The OECD has launched a survey to explore the utility of AOPs for regulatory assessment of chemicals and to identify development priorities. The objective is to collect
Safety of manufactured nanomaterials	feedback on how the AOP concept and/or existing AOPs are already being used for regulatory purposes, to understand where they fall short regarding their utility, and to identify what directions and priorities future AOP development work should embrace to increase their impact on regulatory toxicology and chemical risk assessment.
nanomateriais	The survey is mainly for chemical safety regulators who are experiencing a transition in their work towards an increased use of 'alternative' methods and AOPs. However, stakeholders that come from the regulated community and environmental NGOs are also welcome to participate.
 Agricultural pesticides and biocides 	 The survey is now closed. Thank you for your submissions.
> Biosafety - BioTrack	

http://www.oecd.org/chemicalsafety/testing/projects-adverse-outcome-pathways.htm

Adverse Outcome Pathway Knowledge Base (AOP-KB)

| AOP-KB || Background || How to contribute |

Please click on any of the AOP-KB elements you want to use. Please note that the AOP-KB is work in progress and more elements will become available over time.

http://aopkb.org/

Key documents

OECD Guidance document and a template for developing and assessing adverse outcome pathways (Series No. 184, Series on Testing and Assessment)

Handbook for AOP developers

AOP Wiki

- <u>https://aopkb.org/aopwiki/index.php/Main_Page</u>
- Wiki-based platform for development of AOPs
- Only members of an OECD AOP development
 project can create / edit AOPs

What AOPs are now in AOP Wiki (May 2016?)

OECD Endorsed (WNT and TFHA)	1	Covalent Protein binding leading to Skin Sensitisation
EAGMST Approved	6	1x ecotoxicology: Aromatase inhibition leading to reproductive dysfunction (in fish)
EAGMST Under Review	12	
EAGMST Under Development	84	
SAAOP AOP Under Development	15	

- OECD Extended Advisory Group on Molecular Screening and Toxicogenomics (EAG MST)
- The Working Group of the National Coordinators of the Test Guidelines Programme (WNT)

https://aopwiki.org/aops

AOPs Ready for Commenting

OECD Endorsed (WNT and TFHA)

Click here for links to the official OECD versions

Title

Covalent Protein binding leading to Skin Sensitisation

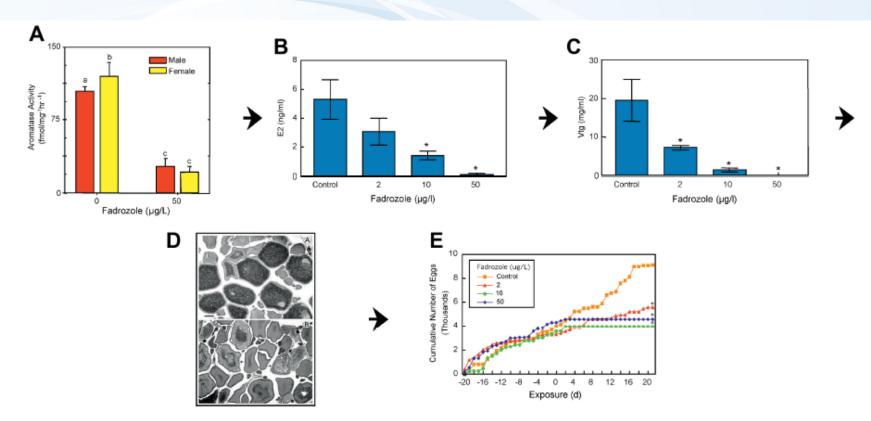
EAGMST Approved

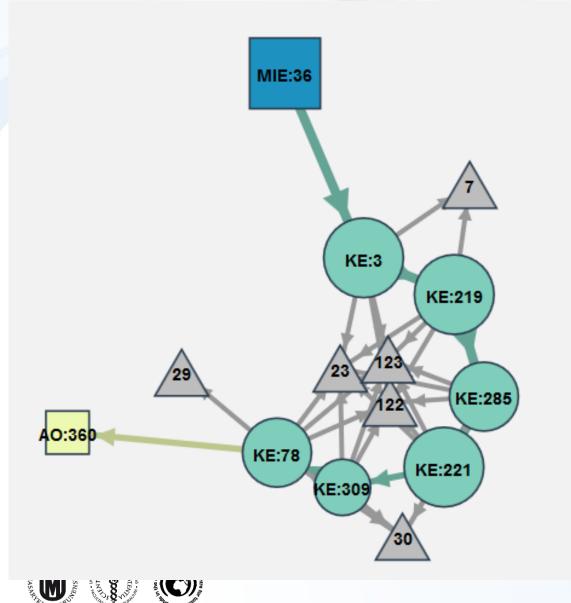
Click here for links to the EAGMST approved versions

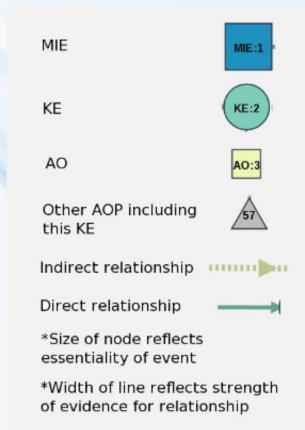
Title	
Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations	٥
Androgen receptor agonism leading to reproductive dysfunction	
Aromatase inhibition leading to reproductive dysfunction (in fish)	٥
Binding of agonists to ionotropic glutamate receptors in adult brain causes excitotoxicity that mediates neuronal cell death, contributing learning and memory impairment.	to
Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning an memory abilities	nd
Protein Alkylation leading to Liver Fibrosis	٥

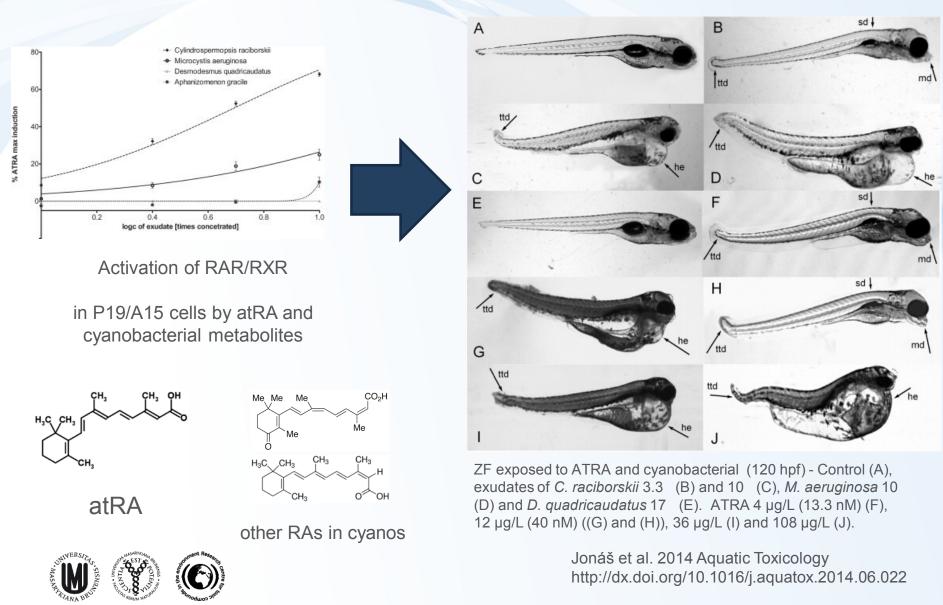
https://aopwiki.org/aops

AOP Example: MIE aromatase inhibition




Fig. 3. An adverse outcome pathway in fish [2,50]. Aromatase inhibitor example. (A) Aromatase inhibition by fadrozole; (B) Reduction in circulating estradiol; (C) Reduction in circulating vitellogenin (Vtg); (D) Histopathology of ovarian tissue, top panel normal ovary, bottom panel fadrozole treated; note oocyte atresia; (E) Adverse outcome on egg production–fecundity (© Elsevier, Used with permission,)


Environmental Toxicology and Chemistry, Vol. 30, No. 1, pp. 64-76, 2011


Aromatase inhibition leading to reproductive dysfunction (in fish)

https://aopwiki.org/wiki/index.php/Aop:25

AOP Example from RECETOX: Modulation of RAR/RXR \rightarrow developmental toxicity in fish

Summary on How

Toxicology is about doses •

The goal is LD(LC)50 or NOAEL/NOEC

Legislation defines

- ... what assays and how to do them
- About 30 assays
- The most widely used standard OECD Guidelines for _ **Testing of Chemicals**

Replacing "black box" in traditional testing ullet

- Synthesis of mechanistic and omics data
- Adverse Outcome Pathways
- Strategically supported by OECD, EU, USA

What if not

Do we need testing? Are there alternatives

"Alternatives" to toxicity testing ... 3R rules

3Rs

121/2

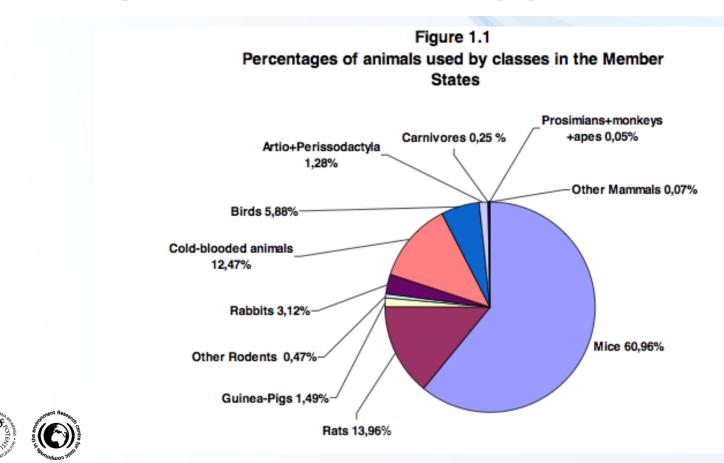
Replacement

REFINEMENT

Why doing replacement, reduction, refinement?

Because activists put pressure to do so?
Because animal welfare is a concern for EU citizen?
Because animal testing is "bad" and "alternatives" are good?
Because I will get "better" results?
Because it is cutting edge technologies?
Because I have to? E.g. EU law directive 2010/63/eu, ban on animal testing for cosmetics

SRs are driven by EU laws, little by Member States.
Scientific agenda is not driven enough by scientists itself...
Academia is in general more reactive than proactive e.g. stop vivisection's ECI


European Policies on 3Rs

DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 22 September 2010

on the protection of animals used for scientific purposes

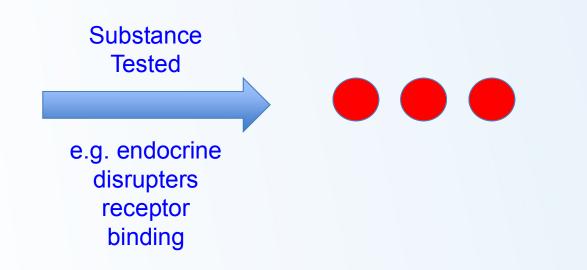
Use of animals in EU (2011)

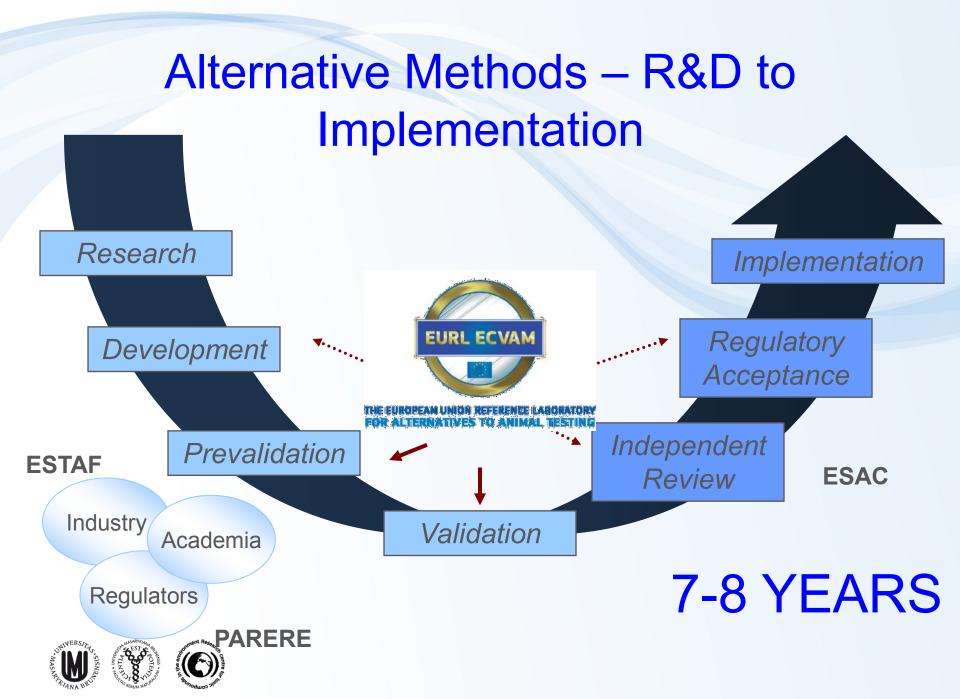
Table 1.0: Changes in species number and proportion between 2008 and 2011

Specie	S	Number of animals in EU 27	Number of animals in EU 27	Change since 2008	% change by species
		2008	2011		
1.a	Mice (Mus musculus)	7122188	6999312	-122876	-1,73
1.b	Rats (Rattus norvegicus)	2121727	1602969	-518758	-24,45
1.c	Guinea-Pigs (Cavia porcellus)	220985	171584	-49401	-22,35
1.d	Hamsters (Mesocricetus)	32739	25251	-7488	-22,87
1.e	Other Rodents (other Rodentia)	39506	28465	-11041	-27,95
1.f	Rabbits (Oryctolagus cuniculus)	333213	358213	25000	7,50
1.g	Cats (Felis catus)	4088	3713	-375	-9,17
1.h	Dogs (Canis familiaris)	21315	17896	-3419	-16,04
1.i	Ferrets (Mustela putorius furo)	3208	2540	-668	-20,82
1.j	Other Carnivores	2853	4982	2129	74,62
1.k	Horses, donkeys and cross-				
	breds (Equidae)	5976	6686	710	11,88
1.1	Pigs (Sus)	92813	77280	-15533	-16,74
1.m	Goats (Capra)	3840	2907	-933	-24,30
1.n	Sheep (Ovis)	30190	28892	-1298	-4,30
1.0	Cattle (Bos)	33952	30914	-3038	-8,95
1.p	Prosimians (Prosimia)	1261	83	-1178	-93,42
1.q	New World Monkeys (Ceboidea)	904	700	-204	-22,57
1.r	Old World Monkeys (Cercopithecoidea)	7404	5312	-2092	-28,25
1.s	Apes (Hominoidea)	0	0	0	0,00
1.t	Other Mammals (other Mammalia)	5704	7888	2184	38 29
1.u	Quail (Coturnix coturnix)	9626	5614	-4012	-41,68
1.v	Other birds (other Aves)	754485	669451	-85034	-11,27
1.w	Reptiles (Reptilia)	4101	3824	-277	-6,75
1.x	Amphibians (Amphibia)	61789	29583	-32206	-52,12
1.y	Fish (Pisces)	1087155	1397462	310307	28,54
1.z	TOTAL	12001022	11481521	-519501	-4,33

JOINT RESEARCH CENTRE

The European Commission's in-house science service


VALIDATION MoA Reliable Relevant



THE EUROPEAN UNION REFERENCE LABORATORY FOR ALTERNATIVES TO ANIMAL TESTING

JOINT RESEARCH CENTRE

Institute for Health and Consumer Protection (IHCP)

European Commission > JRC > IHCP > TSAR

TSAR : Tracking System for Alternative test methods Review, Validation and Approval in the Context of EU Regulations on Chemicals

The Process

- Review and Validation
- + Regulatory Approval

Validation of Methods

Approval of Methods

- Skin Corrosion TER EpiSkin™ EpiDerm™ SkinEthic™ RHE EST-1000™ CORROSITEX
- + Skin Irritation
- Eye Irritation BCOP ICE IRE HET-CAM CM FL
- LVET
- + Skin Sensitisation
- + Mutagenicity
- + Acute Systemic Toxicity
- + Repeated Dose Toxicity
- + Reproductive Toxicity
- + Other
- + Acute Toxicity to Fish

TSAR is a tool to provide a transparent view on the status of **alternative methods** as they progress from purely scientific protocols submitted for prevalidation to being actively used in a regulatory context.

This tracking system intends to cover all steps, from the initial submission for pre-validation until final adoption by inclusion in the EU legislation and/or related Guidance Documents, when appropriate. It is worth mentioning that not all alternative methods will or need to be included in the Test Methods regulation (TMR, Commission Regulation (EC) No 440/2008 of 30 May 2008), as this Regulation only contains relevant methods for the assessment of properties of chemicals that fall directly under its remit (see below some links to relevant legislation that contains data requirements). In addition to TMR, a number of methods are used on a day to day basis in a regulatory context through other product related guidance, as part of intelligent testing strategies or as pre-screening methods. Regardless of the way of implementation, they all contribute to the replacement, reduction and refinement of the use of animals in scientific procedures.

The process of validation and regulatory approval has been broken down into a number of steps. Although this is a continuous process that may, sometimes, also involve some iterations, for practical reasons it has been broken down in two parts:

A) Review and Validation.

B) Regulatory Approval (see simplified scheme for alternative methods).

These have, on its turn, been broken down into several stages. An explanation of each stage can be found by clicking on the submenus of the "The Process" menu on the left side of the screen.

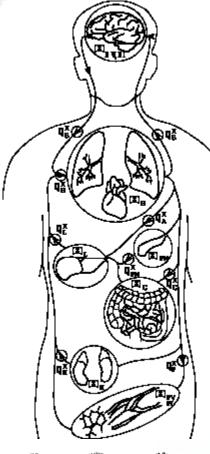
The methods whose status of validation or regulatory acceptance are tracked here have been grouped by the relevant endpoint they cover, as can be seen in the left side menus.

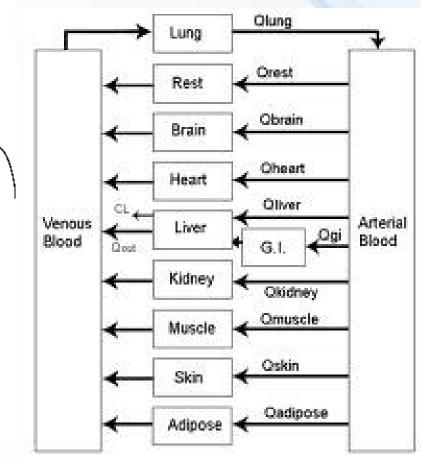
However, currently, the system only contains information tracking specific alternative methods in terms of the <u>regulatory approval part</u> from the stage "Validation statement" onwards. The remaining parts of the TSAR web site dealing with the other stages in the process of validation and regulatory approval are under construction and it is foreseen that they will be added in the near future. Some other utilities as site searching capabilities will also be added in future.

The drop-down menus on the left hand side of the screen allow the user to display the information on individual alternative methods by just clicking on them.

The test methods have been classified according to a simple colour code: Green: Already in the EU legislation or other regulatory use. Orange: Undergoing process to be incorporated in the EU regulatory context. Purple: No regulatory use identified.

- >60 3Rs Tests submitted to ECVAM since 2008 (update 01/2015)
- 10 validated or ongoing validation => Prioritisation!


COMPUTATIONAL (ECO)TOXICOLOGY



PBPK models

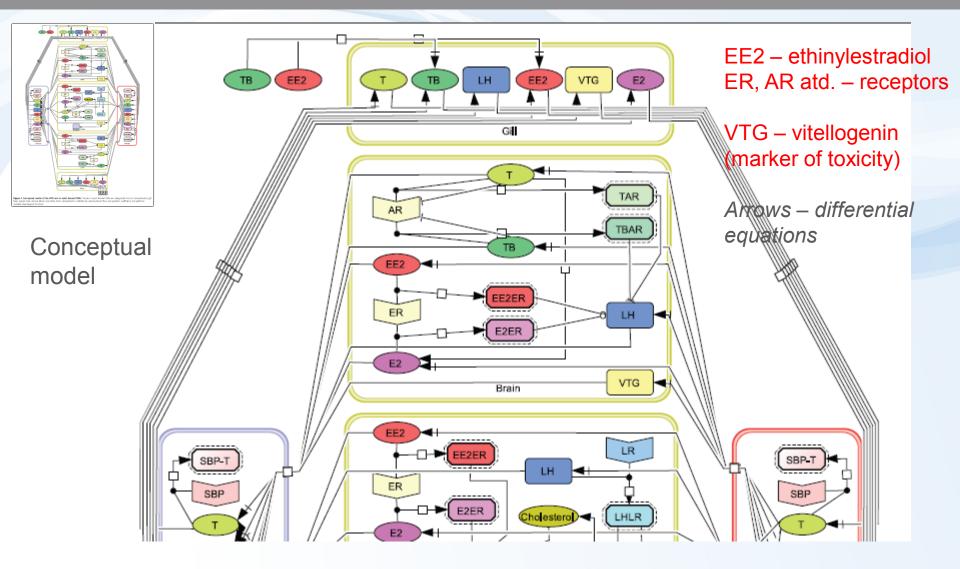
PBPK (PBTK) Physiologically based pharmacokinetic (toxicokinetic) models

Fragmentation of a complex systém to "boxes"

→ All Processes described by arrows (mathematical equations) Example – computational toxicology for EDCs

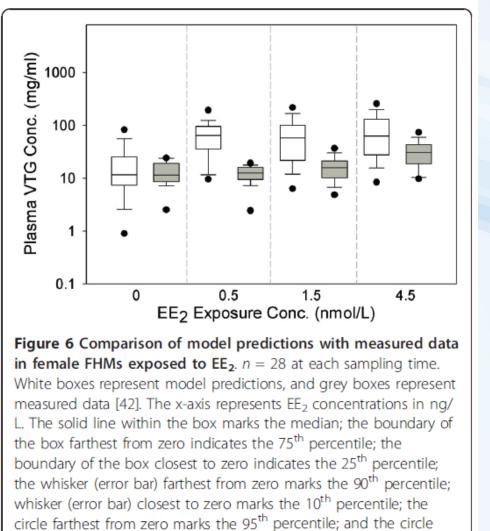
Li et al. BMC Systems Biology 2011, 5:63 http://www.biomedcentral.com/1752-0509/5/63

Open Access


RESEARCH ARTICLE

A computational model of the hypothalamic pituitary - gonadal axis in female fathead minnows (*Pimephales promelas*) exposed to 17α -ethynylestradiol and 17β -trenbolone

Zhenhong Li¹, Kevin J Kroll², Kathleen M Jensen³, Daniel L Villeneuve³, Gerald T Ankley³, Jayne V Brian⁴, María S Sepúlveda⁵, Edward F Orlando⁶, James M Lazorchak⁷, Mitchell Kostich⁷, Brandon Armstrong⁸, Nancy D Denslow² and Karen H Watanabe^{1*}



Li (2011) BMC Systems Biology

Li (2011) BMC Systems Biology

closest to zero marks the 5th percentile.

Results:

MODELLED (white) Vs MEASURED (grey)

...good comparable

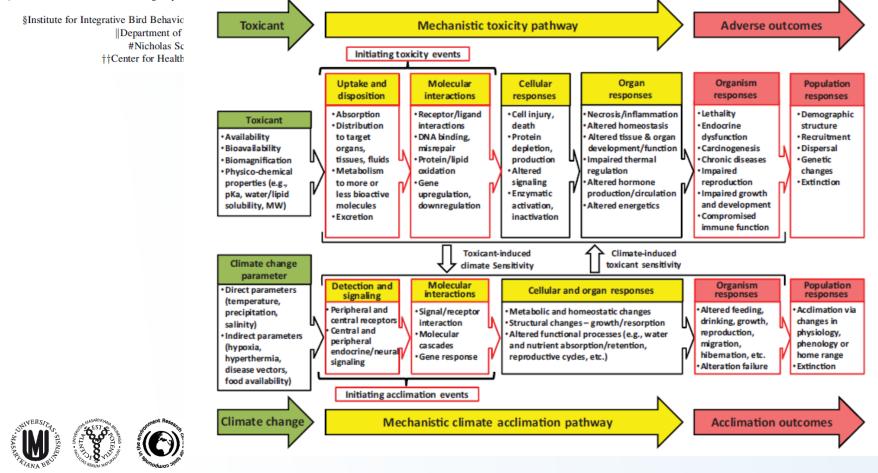
Wrap-up

Eco/Toxicology matters

- Relevant especially for "chemicals"
- ... but also for "mixtures" and contaminated samples
 - Effect based tools in monitoring
- Important results improving lives
- Exciting with many open questions

- Regulatory and Science worlds are different
 ... but are getting closer and closer
 - Mechanistic knowledge and utilization of "omics" data
 - Development of AOPs
 - In vitro (alternative) models
 - Quantitative computational toxicology

Global Climate Change


INTERACTIONS BETWEEN CHEMICAL AND CLIMATE STRESSORS: A ROLE FOR MECHANISTIC TOXICOLOGY IN ASSESSING CLIMATE CHANGE RISKS

MICHAEL J. HOOPER,*† GERALD T. ANKLEY,‡ DANIEL A. CRISTOL,§ LINDLEY A. MARYOUNG,

PAMELA D. NOYES, # and KENT E. PINKERTON^{††}

†U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri

‡U.S. Environmental Protection Agency, Office of Research and Development. National Health and Environmental Effects Research Laboratory

Environmental Toxicology and Chemistry, Vol. 32, No. 1, pp. 32–48, 2013 © 2013 SETAC Printed in the USA DOI: 10.1002/etc.2043

Global Climate Change

INTERACTIONS BETWEEN CHEMICAL AND CLIMATE STRESSORS: A ROLE FOR MECHANISTIC TOXICOLOGY IN ASSESSING CLIMATE CHANGE RISKS

MICHAEL J. HOOPER, *† GERALD T. ANKLEY, ‡ DANIEL A. CRISTOL, § LINDLEY A. MARYOUNG, || PAMELA D. NOYES, # and KENT E. PINKERTON†† †U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri

‡U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota §Institute for Integrative Bird Behavior Studies, Department of Biology, The College of William and Mary, Williamsburg, Virginia, USA

Department of Environmental Sciences, University of California, Riverside, California, USA #Nicholas School of the Environment, Duke University, Durham, North Carolina, USA ††Center for Health and the Environment, University of California at Davis, Davis, California, USA



Fig. 2. Adverse outcome pathway of the interaction of ultraviolet radiation with polycyclic aromatic hydrocarbons. With permission from Ankley et al. [14]. [Color figure can be seen in the online version of this article, available at wileyonlinelibrary.com.]

Thank you for your attention

blaha@recetox.muni.cz

