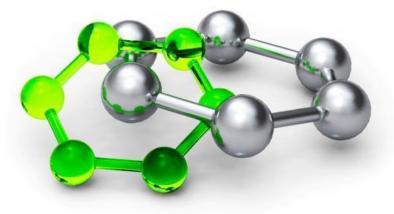


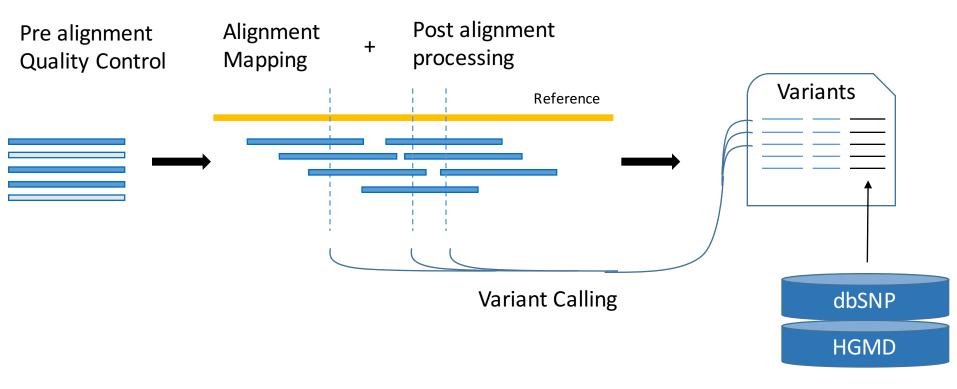
Central European Institute of Technology BRNO | CZECH REPUBLIC

Moderní metody analýzy genomu Bioinformatika II

Karol Pál


Brno, 25.11.2016

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE



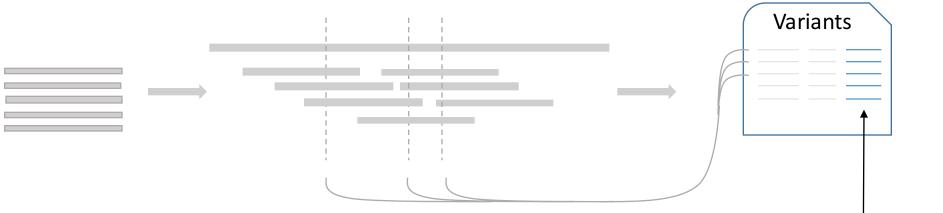
OP Research and Development for Innovation

Recap from last lecture

- NGS data analysis
 - Commercial software vs "In house" pipeline
 - (Different license for different kind of experiment)

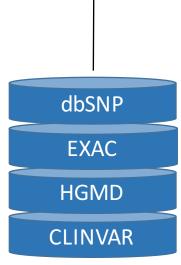
IGV (Showing a bam file)

					IGV					- = ×
<u>File View Tracks</u> He REL606 Escherichia		REL606:910,274-91	10,358 Go 1	🗄 < Þ 🕸 🖪 X 🖵						
	NAME DATA FILE DATA TVPE	\$10,2 0 0 bp	910,290 bp	\$10,300 bp	310,310 bp	— 36 bp — 510,320 bp	310 ,33 0 bp	310 ,340 bp	310,359 bp	51
	NANU DATE DATE 0 - 301		1							_
sorted_REL606 5 bern sorted_REL606 5 bern	(0 - 39)				G					
sorted_REL605.5.barn Coverag								T	A C A	
sorted_REL605.5.bam					÷					
Sequence →	CAT	AAAATTTG	TTAAATAC	CGTTTTTTAATO	CCGAGCTAT		с с т д д с т а а а		GATGCTTTT	A T A T A (-
Gene						REL606				
REL606:910, 318									238M of	588M 🗊

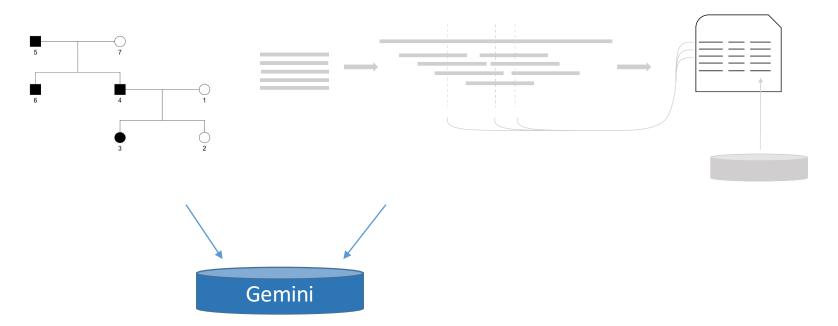

Experiment design

- Modifications to the basic pipeline depending on input material and expected output
- Next-gen Sequencing
 - Whole Genome Sequencing (WGS)
 - Targeted Sequencing
 - Whole Exome Sequencing
 - Gene panels
 - PCR based
 - RNA Sequencing
- 3rd generation Sequencing
 - Various applications

Exome Sequencing (WES)

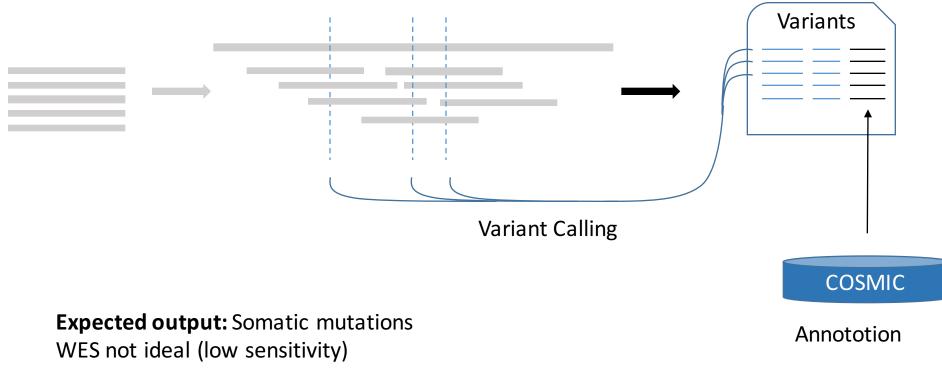

- Input material :
 - Coding regions + small RNA's
 - Represents 1% of DNA (human)
- Coverage ~ 80x
- Scenarios:
 - Single individual
 - Family with phenotype
 - Paired cancer + healthy tissue from one individual

WES single individual


Expected output:

- (rare) germline variants
 - ExAC
 - ESP6500
 - Kaviar
 - dbSNP
- Inherited disease
 - HGMD
 - CLINVAR

Annotation


WES Family with phenotype

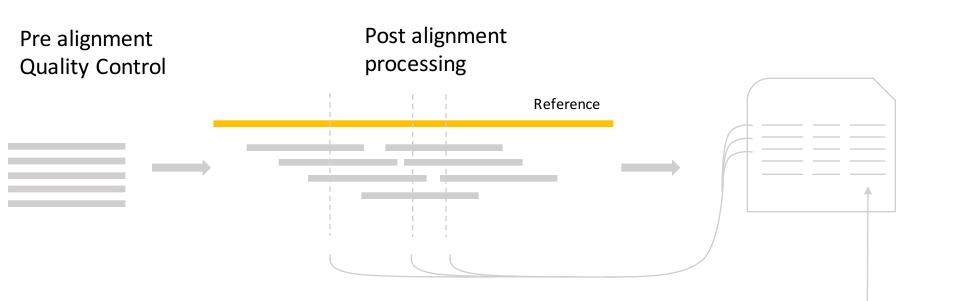
Expected output: find disease causing mutations GEMINI = SQLite database

- SQL queries
- Preformatted queries for Autosomal Dominant and Autosomal Recessive phenotypes

WES paired samples (healthy + cancer)

Mutect:

- Variant caller specialized for somatic point mutations in cancer genomes
- Takes two bam files as input

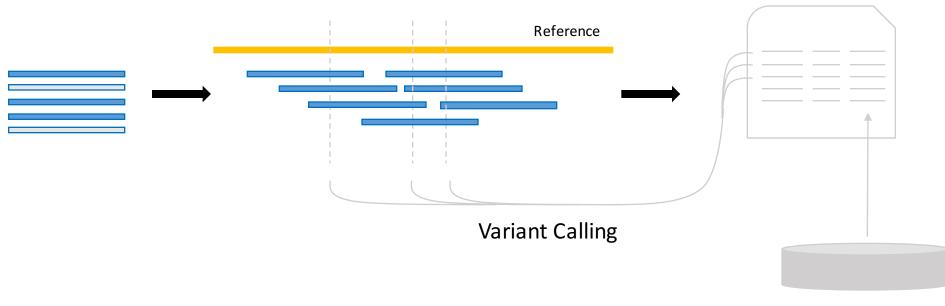

Targeted sequencing PCR + Panels

- Higher coverage (up to 10 000x)
- High sensitivity somatic variants VAF up to 0.1%
- Methods used in diagnostics
 - CZECANCA (panel) targeting 219 cancer susceptibility genes
 - BRCA (PCR)

Targeted sequencing PCR based

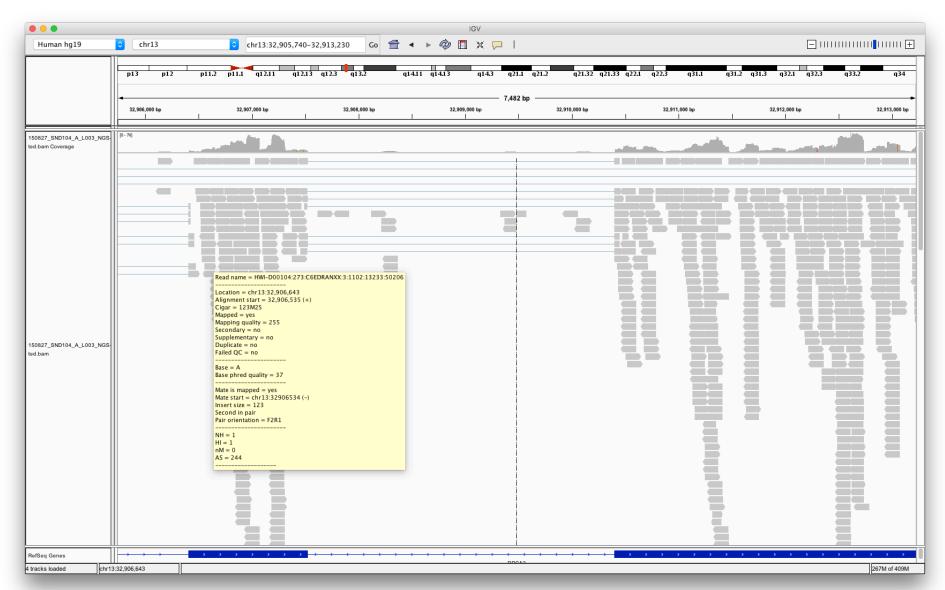
● ● ● Human hg19	Ch	r13		;	hr13:32,910,8	18-32,912,0	689 Go		< ►	ig'		I						[
	p13	p12	p11.2	p11.1	q12.11 q1	2.13 q12.3	q13.2	q1	4.11 qi	14.13		q21.1 q21.2	q21.32	q21.33 q22.	1 q22.3	q31.1	q31.2 q3	1.3 q32.1 q	32.3 q3	13.2 q34
	- -) bp	:	32,911,000 bp 		32,911,200 bp 	1	32,911,400 I I	ap I		32,911,600 bp 	1,	870 bp 32,911,800 bp I	I	32,912,000 bp 	1	32,912,200 I) bp 	32,912,400 bp 		32,912,600 bp
BR-0052_bowtie2.bam Covera	[0 - 3355]						_			•							_			
		111	I		1					11										
			1		1				1											
				1					I											1
			1	I			1	I		11 1					I					
3R-0052_bowtie2.bam				1										I						
																	I			
																		•		
quence 🗕																				
fSeq Genes	> 	> > >	> > >	> >	> > >	> >	> > >	> >	>	> > >	> > 	>>>> BRCA2	>>	> > >	> > :	> > >	> > >		> >	<u>></u> >>>
racks loaded chr1	3:32,911,117																			232M of 407

Targeted Sequencing



- Trim primer sequences
- Do not remove PCR duplicates (PCR based)

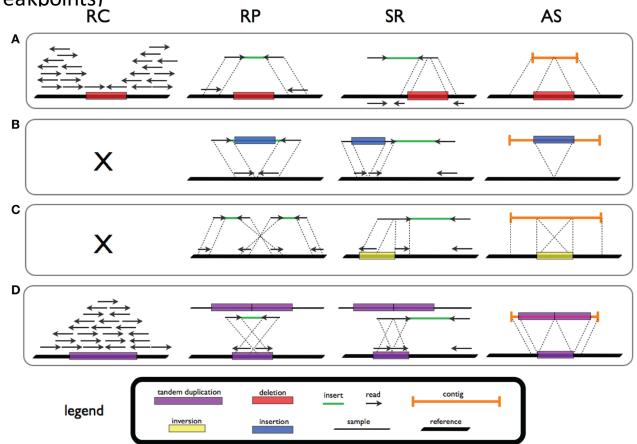
RNA Seq


- Input material: cDNA
 - Poly A tailing
 - Specific capture
- Possible outputs:
 - Expression levels (RPKM, FPKM or tag counting)
 - Structural variants
 - (Variant calling)

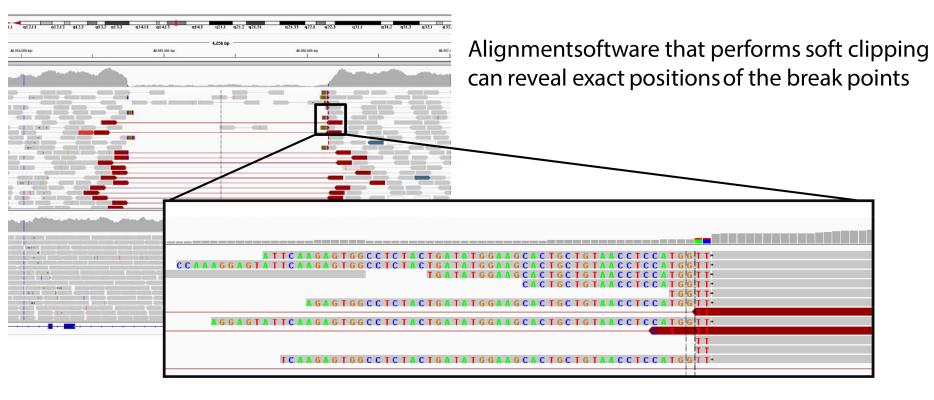
RNA Seq gapped alignment

Gapped alignment vs. alignment to "transcriptome"

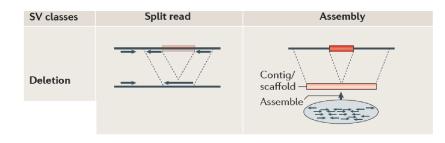
RNA Seq gapped alignment



WGS structural variants

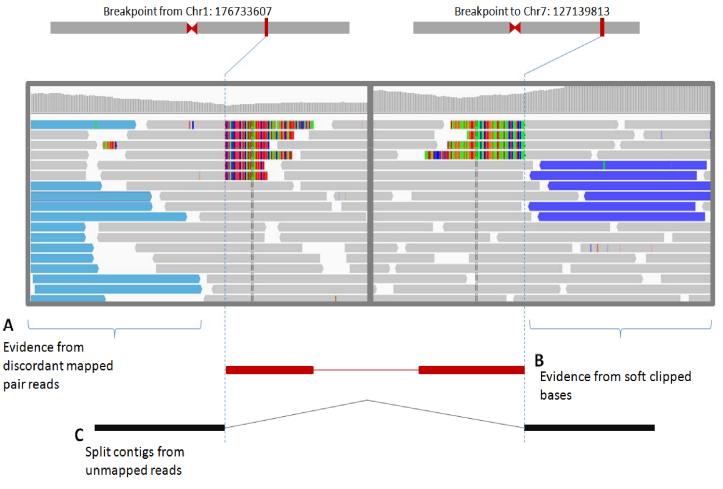

Methods used

- Read counts (Coverage) can be used for WES
- Read pair (span and orientation of reads)
- Split reads (breakpoints) RC



Clusters of soft clippingindicate rearrangement break points

Further realignment of the clipped sequences produces split reads



Reads with soft clippingand unmappedreads can be assembled into contigs that span break points

qSV : Detecting Somatic Structural Variants

qSV detects 3 types of supportingevidence

Resolves all lines of evidence to identify breakpoints to base pair resolution

Felicity Newell

Nanopore

- Long reads high error rate
- Scaffold for de novo assembly
- Transcripts
- Presence of pathogens

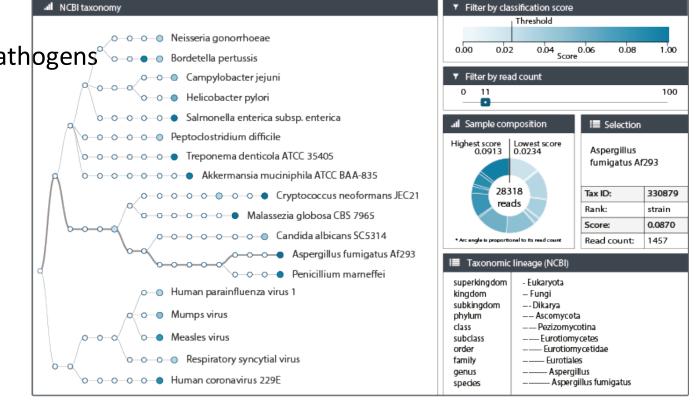


Fig. 1 Metrichor WIMP report, shown for a sample containing bacteria, viruses and fungi

Thank you for your attention

links

- <u>http://exac.broadinstitute.org/</u>
- <u>http://evs.gs.washington.edu/EVS/</u>
- <u>http://db.systemsbiology.net/kaviar/</u>
- <u>https://gemini.readthedocs.io/en/latest/</u>
- <u>http://archive.broadinstitute.org/cancer/cga/mutect</u>
- <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479793/</u>