

Poplaton

"Populační ekologie živočichů"

Stano Pekár

Ecological Models

- aim: to simulate (predict) what can happen
- model is tested by comparison with observed data
- realistic models complex (many parameters), realistic, used to simulate real situations
- strategic models simple (few parameters), unrealistic, used for understanding the model behaviour
- <u>a model should be:</u>
- 1. a satisfactory description of diverse systems
- 2. an aid to enlighten aspects of population dynamics
- 3. a system that can be incorporated into more complex models
- deterministic models everything is predictable
- stochastic models including random events

discrete models:

- time is composed of discrete intervals or measured in generations
- used for populations with synchronised reproduction (annual species)
- modelled by difference equations
- continuous models:
- time is continual (very short intervals) thus change is instantaneous
- used for populations with asynchronous and continuous overlapping reproduction
- modelled by differential equations

STABILITY

unstable equilibrium

stable equilibrium

how population changes in time
stable equilibrium is a state (population density) to which a population will move after a perturbation

Population processes

focus on rates of population processes

- number of cockroaches in a living room increases:
- influx of cockroaches from adjoining rooms $\rightarrow \underline{\text{immigration}} [I]$
- cockroaches were born $\rightarrow \underline{\text{birth}}[B]$
- number of cockroaches declines:
- dispersal of cockroaches \rightarrow <u>emigration</u> [*E*]
- cockroaches died \rightarrow <u>death</u> [**D**]

 $N_{t+1} = N_t + I + B - D - E$

- population increases if I + B > E + D
- ▶ rate of increase is a summary of all events (I + B E D)
- growth models are based on B and D
- spatial models are based on I and E

Blatta orientalis

Density-independent population increase

Population processes are independent of its density

Assumptions:

- immigration and emigration are none or ignored
- all individuals are identical
- natality and mortality are constant
- all individuals are genetically similar
- reproduction is asexual
- population structure is ignored
- resources are infinite
- population change is instant, no lags

Used only for

- relative short time periods
- closed and homogeneous environments (experimental chambers)

Discrete (difference) model

 for population with discrete generations (annual reproduction), no generation overlap

- time (t) is discrete, equivalent to generation
- exponential (geometric) growth

▶ Malthus (1834) realised that any species can potentially increase in numbers according to a geometric series

 N_0 .. initial density b .. birth rate (per capita)

d... death rate (per capita)

$$b = \frac{B}{N} \qquad \qquad d = \frac{D}{N}$$

$$\Delta N = bN_{t-1} - dN_{t-1}$$

$$N_t - N_{t-1} = (b - d)N_{t-1}$$

$$N_t = (1 + b - d)N_{t-1}$$

$$1 + b - d = \lambda$$
$$b - d = R$$
$$\lambda = 1 + R$$

R...demographic growth rate

- shows proportional change (in percentage)

 λ .. finite growth rate, per capita rate of growth

 $\lambda = 1.23$ then R = 0.23.. 23% increase

In number of individuals is multiplied each time - the larger the population the larger the increase

• if λ is constant, population number in generations *t* is equal to

$$N_t = N_{t-1}\lambda$$

$$N_2 = N_1 \lambda = N_0 \lambda \lambda$$
$$N_t = N_0 \lambda^t$$

Average of finite growth rates - estimated as geometric mean

$$\overline{\lambda} = \left(\prod_{i=1}^{t} \lambda_i\right)^{\frac{1}{t}} = \left(\lambda_1 \lambda_2 \dots \lambda_t\right)^{\frac{1}{t}}$$

Continuous (differential) model

populations that are continuously reproducing, with overlapping generations

- when change in population number is permanent
- derived from the discrete model

 $N_t = N_0 \lambda^t$

 $\ln(N_t) = \ln(N_0) + t \ln(\lambda)$ $\ln(N_t) - \ln(N_0) = t \ln(\lambda)$ $\frac{dN}{dt} \frac{1}{N} = \ln(\lambda)$ $\frac{dN}{dt} = N \ln(\lambda)$

Comparison of discrete and continuous generations

if
$$r = \ln(\lambda)$$

r .. **intrinsic rate of natural increase**, instantaneous per capita growth rate

$$\frac{\mathrm{d}N}{\mathrm{d}t} = Nr$$

N

Solution of the differential equation:

- analytical or numerical

▶ at each point it is possible to determine the rate of change by differentiation (slope of the tangent)

• when *t* is large it is approximated by the exponential function

$$\frac{\mathrm{d}N}{\mathrm{d}t} = Nr$$
$$\frac{\mathrm{d}N}{\mathrm{d}t}\frac{1}{N} = r$$
$$\frac{1}{\mathrm{d}}N = \int_{0}^{T} r\mathrm{d}t$$

$$\int_{0}^{1} \frac{1}{N} dN = \int_{0}^{1} r dt$$

T

$$\ln(N_T) - \ln(N_0) = r(T - 0)$$

$$\ln\!\left(\frac{N_T}{N_0}\right) = rT$$

$$\frac{N_T}{N_0} = e^{rT}$$

$$N_t = N_0 e^{rt}$$

 doubling time: time required for a population to double

$$t = \frac{\ln(2)}{r}$$

r versus λ

$$N_t = N_0 \lambda^t \qquad N_t = N_0 e^{rt}$$

 $\lambda^t = e^{rt}$ $r = \ln(\lambda)$

• r is symmetric around 0, λ is not $r = 0.5 \dots \lambda = 1.65$ $r = -0.5 \dots \lambda = 0.61$

Population structure

• **Demography** - study of organisms with special attention to stage or age structure

processes are associated to age, stage or size

x .. age/stage/size category

 p_x .. age/stage/size specific survival

$$p_x = \frac{S_{x+1}}{S_x}$$

 $m_{\rm x}$.. reproductive rate (expected average number of offspring per female)

- main focus on births and deaths
 immigration & emigration is
 ignored
- no adult survive
- one (not overlapping)

generation per year

- egg pods over-winter
- despite high fecundity they just
 replace themselves

breed at discrete
 periods

 no overlapping generations

Biennal species

- breed at discrete periods
- adult generation may overlap

Perennial species

- breed at discrete periods
- breeding adults consist of
- individuals of various ages (1-5 years)
 - adults of different generations are

equivalent

overlapping generations

Parus major

Age-size-stage life-table

age/stage
 classification is based
 on developmental time

 size may be more appropriate than age (fish, sedentary animals)

 Hughes (1984) used combination of age/stage and size for the description of coral growth Agaricia agaricites

Age-dependent life-tables

- show organisms' mortality and reproduction as a function of age
 Static (vertical) life-tables
- examination of a population during one segment (time interval)
 segment = group of individuals of different cohorts
- designed for long-lived organisms
- ► ASSUMPTIONS:
- Birth rate and survival are constant over time
- population does not grow
- DRAWBACKS: confuses age-specific changes in e.g. mortality with temporal variation

X	Sx	Dx	Ix	рх	qx	mx
1	129	15	1.000	0.884	0.116	0.000
2	114	1	0.884	0.991	0.009	0.000
3	113	32	0.876	0.717	0.283	0.310
4	81	3	0.628	0.963	0.037	0.280
5	78	19	0.605	0.756	0.244	0.300
6	59	-6	0.457	1.102	-0.102	0.400
7	65	10	0.504	0.846	0.154	0.480
8	55	30	0.426	0.455	0.545	0.360
9	25	16	0.194	0.360	0.640	0.450
10	9	1	0.070	0.889	0.111	0.290
11	8	1	0.062	0.875	0.125	0.280
12	7	5	0.054	0.286	0.714	0.290
13	2	1	0.016	0.500	0.500	0.280
14	1	-3	0.008	4.000	-3.000	0.280
15	4	2	0.031	0.500	0.500	0.290
16	2	2	0.016	0.000	1.000	0.280

 S_x .. number of survivors

- D_x .. number of dead individuals
 - $D_x = S_x S_{x+1}$

 l_x .. standardised number of survivors

 $l_x = \frac{S_x}{S_0}$

 q_x .. age-specific mortality

 $q_x = \frac{D_x}{S_x}$

 p_x ... age-specific survival

Lowe (1969)

$$p_x = \frac{l_{x+1}}{l_x}$$

Cohort (horizontal) life-table

- examination of a population in a cohort = a group of individuals born at the same period
- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

X	Sx	Dx	lx	рх	qx	mx
0	250	50	1.000	0.800	0.200	0.000
1	200	120	0.800	0.400	0.600	0.000
2	80	50	0.320	0.375	0.625	2.000
3	30	15	0.120	0.500	0.500	2.100
4	15	9	0.060	0.400	0.600	2.300
5	6	6	0.024	0.000	1.000	2.400
6	0	0	0.000			

Vulpes vulpes

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

X	Sx	Dx	Ix	рх	qx	mx
Egg	450	68	1.000	0.849	0.151	0
Larva I	382	67	0.849	0.825	0.175	0
Larva II	315	158	0.700	0.498	0.502	0
Larva III	157	118	0.349	0.248	0.752	0
Larva IV	39	7	0.087	0.821	0.179	0
Larva V	32	9	0.071	0.719	0.281	0
Larva VI	23	1	0.051	0.957	0.043	0
Pre-pupa	22	4	0.049	0.818	0.182	0
Pupa	18	2	0.040	0.889	0.111	0
Adult	16	16	0.036	0.000	1.000	185

Campbell (1981)

Lymantria dispar

Survivorship curves

- display change in survival by plotting $log(l_x)$ against age (x)
- sheep mortality increases with age
- survivorship of lapwing (Vanellus) is independent of age but survival of sheep is age-dependent

Pearls (1928) classified hypothetical age-specific mortality:

- Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality is constant over age (seeds, birds)
- Type III .. mortality is highest in the beginning of life (invertebrates, fish, reptiles)

Birth rate curves

- fecundity potential number of offspring
- fertility real number of offspring
- semelparous .. reproducing once a life
- iteroparous .. reproducing several times during life
- birth pulse .. discrete reproduction
 (seasonal reproduction)
- birth flow .. continuous reproduction

Time [Days]

k-value - killing power - another measure of mortality

 $k = -\log(p)$

k-values are additive unlike q

$$K = \sum k_{x}$$

• Key-factor analysis - a method to identify the most important factors that regulates population dynamics

- k-values are estimated for a number of years
- important factors are identified by regressing k_x on $\log(N)$

Leptinotarsa decemlineata

• over-wintering adults emerge in June \rightarrow eggs are laid in

clusters on the lower side of leafs \rightarrow larvae pass through 4 instars

- \rightarrow form pupal cells in the soil \rightarrow summer adults emerge in August
- \rightarrow begin to hibernate in September
- mortality factors overlap

Harcourt (1971)

Age interval	Numbers per 96 potato hills	Numbers 'dying'	'Mortality factor'	log ₁₀ N	k-value	
Eggs Early larvae Late larvae Pupal cells Summer adults Female × 2 Hibernating adults Spring adults	11 799 9268 8823 8415 7268 6892 6892 3170 3154 3280 16 14	2531 445 408 1147 376 0 3722 16 - 126 3264 2	Not deposited Infertile Rainfall Cannibalism Predators Rainfall Starvation D. doryphorae Sex (52% female) Emigration Frost	4.072 3.967 3.946 3.925 3.861 3.838 3.838 3.838 3.501 3.499 3.516 1.204 1.146	0.105 0.021 0.021 0.064 0.024 0 0.337 0.002 -0.017 2.312 0.058 2.926	$(k_{1a}) (k_{1b}) (k_{1c}) (k_{1c}) (k_{1c}) (k_{2}) (k_{3}) (k_{4}) (k_{5}) (k_{6}) (k_{total})$

Summary over 10 years

highest k-value indicates the role of a factor in each generation

▶ profile of a factor parallel with the *K* profile reveals the key factor

emigration is the key-factor

Matrix (structured) models

model of Leslie (1945) uses parameters (survival and fecundity) from life-tables

• where populations are composed of individuals of different age, stage or size with specific natality and mortality

- generations are not overlapping
- reproduction is asexual

• used for modelling of density-independent processes (exponential growth)

 $N_{x,t}$.. no. of organisms in age x and time t

 $G_{\rm x}$.. probability of persistence in the same size/stage

 $F_{\rm x}$.. age/stage specific fertility (average no. of offspring per female)

 p_x .. age/stage specific survival

Age-structured

- class 0 is omitted
- number of individuals in the first age class

$$N_{1,t+1} = \sum_{x=1}^{n} N_{x,t} F_x = N_{1,t} F_1 + N_{2,t} F_2 + \dots$$

number of individuals in the remaining age class

$$N_{x+1,t+1} = N_{x,t} p_x$$

• each column in A specifies fate of an organism in a specific age: 3rd column: organism in age 2 produces F_2 offspring and goes to age 3 with probability p_{23}

- ► A is always a square matrix
- \triangleright N_t is always one column matrix = a vector

▶ fertilities/fecundities (*F*) and survivals (*p*) depend on census and reproduction

- populations with discrete pulses post-reproductive census

$$p_x = \frac{l_{x+1}}{l_x}$$
 $F_x = p_x m_{x+1}$ includes *p* of reproductive stages

- populations with discrete pulses pre-reproductive census

$$p_x = \frac{l_{x+1}}{l_x} \qquad \qquad F_x = p_0 m_{x+1}$$

includes *p* of the youngest stage

- for pre-reproductive census 0 age is omitted
- for populations with continuous reproduction

$$p_{x} = \left(\frac{l_{x} + l_{x+1}}{l_{x-1} + l_{x}}\right) \qquad \qquad F_{x} = \frac{\sqrt{l_{1}}(m_{x} + p_{x}m_{x+1})}{2}$$

Stage-structured

- only imagoes reproduce thus $F_{1,2,3} = 0$
- no imago survives to another reproduction period: $p_4 = 0$

$$\begin{bmatrix} 0 & 0 & 0 & F_4 \\ p_1 & 0 & 0 & 0 \\ 0 & p_2 & 0 & 0 \\ 0 & 0 & p_3 & 0 \end{bmatrix}$$

 model of Lefkovitch (1965) uses 3 parameters (mortality, fecundity and persistence)

► $F_1 = 0$

$$\begin{bmatrix} G_{11} & F_2 & F_3 & F_4 \\ p_1 & G_{22} & 0 & 0 \\ 0 & p_2 & G_{33} & 0 \\ 0 & 0 & p_3 & G_{44} \end{bmatrix}$$

Matrix operations

multiplication

by a scalar

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times 3 = \begin{bmatrix} 6 & 9 \\ 15 & 21 \end{bmatrix}$$

- determinant
- eigenvalue (λ)

 $Au = \lambda u$

by a vector

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \times 4 + 3 \times 5 \\ 5 \times 4 + 7 \times 5 \end{bmatrix} = \begin{bmatrix} 23 \\ 55 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = 2 \times 7 - 4 \times 3 = 2$$

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$

$$\begin{bmatrix} 2 & 4 \\ 0.25 & 0 \end{bmatrix} \begin{bmatrix} 2-\lambda & 4 \\ 0.25 & 0-\lambda \end{bmatrix} = (2-\lambda) \times (0-\lambda) - (0.25 \times 4) = \lambda^2 - 2\lambda - 1 = 0$$
$$-h + \sqrt{h^2 - 4ac} \qquad \lambda_1 = 2.41$$

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \begin{array}{l} \lambda_1 = 2.41 \\ \lambda_2 = -0.41 \end{array}$$

$$\mathbf{N}_{2} = \mathbf{A}\mathbf{N}_{1}$$
$$\mathbf{N}_{3} = \mathbf{A}\mathbf{N}_{2}$$
$$\mathbf{N}_{t+2} = \mathbf{A}\mathbf{A}\mathbf{N}_{t} = \mathbf{A}^{2}\mathbf{N}_{t}$$
$$\mathbf{N}_{t} = \mathbf{A}^{t}\mathbf{N}_{0}$$

 parameters are constant over time and independent of population density

 follows constant exponential growth after initial damped oscillations

