

Matrix Analyses

"Populační ekologie živočichů"

Stano Pekár

Net reproductive rate (R_0)

• average total number of offspring produced by a female in her lifetime

$$R_0 = \sum_{x=0}^n l_x m_x$$

Average generation time (T)

- average age of females when they give birth
- not valid for populations with generation overlap

$$T = \frac{\sum_{x=0}^{n} x l_x m_x}{R_0}$$

Expectation of life

▶ age specific expectation of life – average age that is expected for particular age class

▶ *o* .. oldest age

$$e_x = \frac{T_x}{l_x}$$
 where $T_x = \sum_x^o L_x$ $L_x = \frac{l_x + l_{x+1}}{2}$

Growth rates

Discrete time/generations

- estimate of λ (finite growth rate) from the life table:

$$\mathbf{A}\widetilde{\mathbf{N}}_{t} = \lambda \widetilde{\mathbf{N}}_{t}$$

where \mathbf{N}_t is vector at stable age distribution λ is dominant positive eigenvalue of \mathbf{A}

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$

$$- \text{ or } \lambda \approx \frac{R_0}{T}$$

<u>Continuous time</u> *r* can be estimated from λ *r*by approximation

or by Euler-Lotka method

$$r = \ln(\lambda)$$

$$r \approx \frac{\ln(R_0)}{T}$$

$$1 = \sum_{x}^{\omega} l_{x} m_{x} e^{-rx}$$

Stable Class distribution (SCD)

relative abundance of different life history age/stage/size categories
population approaches stable age distribution:

 $N_0: N_1: N_2: N_3: ...: N_s$ is stable

- once population reached SCD it grows exponentially
- \mathbf{w}_1 .. right eigenvector (vector of the dominant eigenvalue)
- provides stable age distribution
- scale \mathbf{w}_1 by sum of individuals

$$\mathbf{A}\mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

Reproductive value (v_x)

 measures relative reproductive potential and identifies age class that contributes most to the population growth
 such class is under highest selection force

- when population increases then early offspring contribute more to v_x than older ones
- ▶ is a function of fertility and survival

$$\mathbf{v}_1 \mathbf{A}' = \lambda_1 \mathbf{v}_1$$

▶ v₁ .. left eigenvector (vector of the dominant eigenvalue of transposed A)

- \mathbf{v}_1 is proportional to the reproductive values and scaled to the first category

$$v_x = \frac{v_{1x}}{v_{11}}$$

 $x \neq 1$

Sensitivity (s)

• identifies which process (p, F, G) has largest effect on the population increase (λ_1)

- examines change in λ_1 given small change in processes (a_{ij})
- sensitivity is larger for survival of early, and for fertility of older classes
- not used for postreproductive census with class 0

$$s_{ij} = \frac{v_{ij} w'_{ij}}{\langle \mathbf{v}, \mathbf{w} \rangle} \leftarrow \text{sum}$$

- sum of pairwise products

Elasticity (e)

- weighted measure of sensitivity
- measures relative contribution to the population increase
- impossible transitions = 0

$$e_{ij} = \frac{a_{ij}}{\lambda_1} s_{ij}$$

Conservation biology

to adopt means for population promotion or control

Conservation/control procedure

- 1. Construction of a life table
- 2. Estimation of the intrinsic rates
- 3. Sensitivity analysis helps to decide where
- conservation/control efforts should be focused
- 4. Development and application of management plan
- 5. Prediction of future