Intersiccific Interactions

Types of interactions

DIRECT

$5_{-} \quad$ Effect of species 1 on fitness of species				
.		Increase	Neutral	Decrease
-	Increase	+ +		
玄\%	Neutral	$0+$	00	
	Decrease	+ -	- 0	--

+ + .. mutualism (plants and pollinators)
$0+$.. commensalism (saprophytism, parasitism, phoresis)
- + .. predation (herbivory, parasitism), mimicry
- 0 .. amensalism (allelopathy)
- - .. competition

INDIRECT Apparent competition Facilitation
Exploitation competition

Niche measures

- Niche breadth

Levin's index (D):

- p_{k}.. proportion of individuals in class k
- does not include resource availability

$$
\begin{aligned}
D & =\frac{1}{\sum_{k=1}^{n} p_{k}^{2}} \\
F T & =\sum_{k=1}^{n} \sqrt{p_{k} q_{k}}
\end{aligned}
$$

$-1<D<\infty$
Smith's index ($F T$):

- q_{k}.. proportion of available individuals in class k
$-0<F T<1$
- Niche overlap

Pianka's index (a):

- does not account for resource availability

$$
a=\frac{\sum p_{1 k} p_{2 k}}{\sqrt{\sum p_{1 k} \sum p_{2 k}}}
$$

- $0<a<1$

Lloyd's index (L):

$-0<L<\infty$

$$
L=\sum \frac{p_{1 k} p_{2 k}}{q_{k}}
$$

Model of competition

- based on the logistic differential model
- assumptions:

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=N r\left(1-\frac{N}{K}\right)
$$

- all parameters are constant
- individuals of the same species are identical
- environment is homogenous, differentiation of niches is not possible
- only exact compensation is present
- model of Lotka (1925) and Volterra (1926)
species 1: N_{1}, K_{1}, r_{1}

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =N_{1} r_{1}\left(1-\frac{N_{1}+N_{2}}{K_{1}}\right) \\
\frac{d N_{2}}{d t} & =N_{2} r_{2}\left(1-\frac{N_{1}+N_{2}}{K_{2}}\right)
\end{aligned}
$$

- total competitive effect (intra + inter-specific)

$$
\left(N_{1}+\alpha N_{2}\right) \quad \text { where } \alpha \text {.. coefficient of competition }
$$

$\alpha=0$.. no interspecific competition
$\alpha<1$.. species 2 has lower effect on species 1 than species 1 on itself $\alpha=0.5$.. one individual of species 1 is equivalent to 0.5 individuals of species 2)
$\alpha=1$.. both species has equal effect on the other one
$\alpha>1$.. species 2 has greater effect on species 1 than species 1 on itself

- if competing species use the same resource then interspecific competition is equal to intraspecific

Equilibrium analysis of the model

- examination of the model behaviour using null isoclines
- used to describe change in any two variables in coupled differential equations by projecting orthogonal vectors
- identification of isoclines: a set of abundances for which the change in populations is 0 :

- species 1

$$
\begin{aligned}
& r_{1} N_{1}\left(1-\left[N_{1}+\alpha_{12} N_{2}\right] / K_{1}\right)=0 \\
& r_{1} N_{1}\left(\left[K_{1}-N_{1}-\alpha_{12} N_{2}\right] / K_{1}\right)=0
\end{aligned}
$$

trivial solution if $r_{1}, N_{1}, K_{1}=0$
and if $K_{1}-N_{1}-\alpha_{12} N_{2}=0$
then $\quad N_{1}=K_{1}-\alpha_{12} N_{2}$

> if $N_{1}=0$ then $N_{2}=K_{1} / \alpha_{12}$
> if $N_{2}=0$ then $N_{1}=K_{1}$

- species 2

$$
\begin{aligned}
& r_{2} N_{2}\left(1-\left[N_{2}+\alpha_{21} N_{1}\right] / K_{2}\right)=0 \\
& N_{2}=K_{2}-\alpha_{21} N_{1}
\end{aligned}
$$

trivial solution if $r_{2}, N_{2}, K_{2}=0$
if $N_{2}=0$ then $N_{1}=K_{2} / \alpha_{21}$

if $N_{1}=0$ then $N_{2}=K_{2}$

- above isocline i_{1} and below i_{2} competition is weak
- in-between i_{1} and i_{2} competition is strong

1. Species 2 drives species 1 to extinction

- K and α determine the model behaviour
- disregarding initial densities species 2 (stronger competitor) will outcompete species 1 (weaker competitor)
- equilibrium $\left(0, K_{2}\right)$

$$
K_{2}>\frac{K_{1}}{\alpha_{12}} \quad K_{1}<\frac{K_{2}}{\alpha_{21}}
$$

$$
\begin{array}{cc}
K_{1}=K_{2} & r_{1}=r_{2} \\
\alpha_{12}>\alpha_{21} & N_{01}=N_{02}
\end{array}
$$

2. Species $\mathbf{1}$ drives species 2 to extinction

- species 1 (stronger competitor) will outcompete species 2 (weaker competitor)
- equilibrium $\left(K_{1}, 0\right)$

$$
K_{1}>\frac{K_{2}}{\alpha_{21}} \quad K_{2}<\frac{K_{1}}{\alpha_{12}}
$$

$$
\begin{array}{ccc}
r_{1}=r_{2} & K_{1}=K_{2} \\
N_{01}=N_{02} & \alpha_{12}<\alpha_{21}
\end{array}
$$

3. Stable coexistence of species

- disregarding initial densities both species will coexist at stable equilibrium (where isoclines cross)
- at at equilibrium population density of both species is reduced
- both species are weak competitors
- equilibrium $\left(K_{1}{ }^{*}, K_{2}^{*}\right)$

$$
K_{1}<\frac{K_{2}}{\alpha_{21}} \quad K_{2}<\frac{K_{1}}{\alpha_{12}}
$$

$$
\begin{array}{cc}
r_{1}<r_{2} & K_{1}=K_{2} \\
N_{01}=N_{02} & \alpha_{12}, \alpha_{21}<1
\end{array}
$$

4. Competitive exclusion

- one species will drive other to extinction depending on the initial conditions
- coexistence only for a short time
- both species are strong competitors
- equilibrium $\left(K_{1}, 0\right)$ or $\left(0, K_{2}\right)$

$$
K_{1}>\frac{K_{2}}{\alpha_{21}} \quad K_{2}>\frac{K_{1}}{\alpha_{12}}
$$

Stability analysis

- Jacobian matrix of partial derivations for 2dimensional system

$$
\mathbf{J}=\left(\begin{array}{ll}
\frac{\partial \mathrm{d} N_{1} / \mathrm{d} t}{\partial N_{1}} & \frac{\partial \mathrm{~d} N_{1} / \mathrm{d} t}{\partial N_{2}} \\
\frac{\partial \mathrm{~d} N_{2} / \mathrm{d} t}{\partial N_{1}} & \frac{\partial \mathrm{~d} N_{2} \mathrm{~d} t}{\partial N_{2}}
\end{array}\right)
$$

- evaluation of the derivations for densities close to equilibrium
- estimate eigenvalues of the matrix
- if all eigenvalues < 0 .. locally stable
- Lotka-Volterra system is stable for $\alpha_{12} \alpha_{21}<1$

Test of the model

- when Rhizopertha and Oryzaephilus were reared separately both species increased to 420-450 individuals $(=K)$
- when reared together Rhizopertha reached $K_{1}=360$, while

Oryzaephilus $K_{2}=150$ individuals

- combination resulted in more efficient conversion of grain ($K_{12}=510$ individuals)
- three combinations of densities converged to the same stable equilibrium
- prediction of

Lotka-Volterra model is correct

Crombie (1947)

System for discrete generations

- solution of the differential model - Ricker's model:

$$
N_{1, t+1}=N_{1, t} e^{r_{1}\left(\frac{K_{1}-N_{1, t}-\alpha_{12} N_{2, t}}{K_{1}}\right)} N_{2, t+1}=N_{2, t} e^{r_{2}\left(\frac{K_{2}-N_{2, t}-\alpha_{21} N_{1, t}}{K_{2}}\right)}
$$

- dynamic (multiple) regression is used to estimate parameters from a series of abundances
.. a, b, c - regression parameters

$$
\begin{aligned}
& \ln \left(\frac{N_{1, t+1}}{N_{1, t}}\right)=r_{1}-N_{1, t} \frac{r_{1}}{K_{1}}-N_{2, t} \frac{r_{1} \alpha_{12}}{K_{1}} \\
& \ln \left(\frac{N_{2, t+1}}{N_{2, t}}\right)=r_{2}-N_{2, t} \frac{r_{2}}{K_{2}}-N_{1, t} \frac{r_{2} \alpha_{21}}{K_{2}}
\end{aligned}
$$

$$
r=a \quad \alpha=\frac{K c}{r} \quad K=\frac{r}{b}
$$

