



"Populační ekologie živočichů"

Stano Pekár

# Predator-prey system

#### Acarus



#### Cheyletus





## Predator-prey model

▶ continuous model of Lotka & Volterra (1925-1928) used to explain decrease in prey fish and increase in predatory fish after World War I

- ▶ assumptions
- continuous predation (high population density)
- populations are well mixed
- closed populations (no immigration or emigration)
- no stochastic events
- predators are specialised on one prey species
- populations are unstructured
- reproduction immediately follows feeding

*H* .. density of prey*r* .. intrinsic rate of prey population*a* .. predation rate

*P* .. density of predators*m* .. predator mortality rate*b* .. reproduction rate of predators

• in the absence of predator, prey grows exponentially  $\rightarrow \frac{dH}{dt} = rH$ dP

• in the absence of prey, predator dies exponentially  $\rightarrow \frac{\mathrm{d}P}{\mathrm{d}t} = -mP$ 

predation rate is linear function
 of the number of prey .. *aHP*

• each prey contributes identically to the growth of predator .. *bHP* 

$$\frac{dH}{dt} = rH - aHP$$
$$\frac{dP}{dt} = bHP - mP$$

#### **Analysis of the model**

#### Zero isoclines:

for prey population:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0 \qquad 0 = rH - aHP$$

$$P = \frac{r}{a}$$

for predator population:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 0 \qquad 0 = bHP - mP \qquad H$$

$$H = \frac{m}{b}$$

→ do not converge, has no asymptotic
 stability (trajectories are closed lines)
 → neutral stability

• unstable system, amplitude of the cycles is determined by initial numbers

prey isoclinepredator isocline





### **Addition of density-dependence**

• in the absence of the predator prey population reaches carrying capacity K

$$\frac{dH}{dt} = rH\left(1 - \frac{H}{K}\right) - aHP$$
$$\frac{dP}{dt} = bHP - mP$$

• for given parameter values: r = 3, m = 2, a = 0.1, b = 0.3, K = 10

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 3H\left(1 - \frac{H}{10}\right) - 0.1HP \qquad \qquad \frac{\mathrm{d}P}{\mathrm{d}t} = 0.3HP - 2P$$

## <u>Zero isoclines:</u> • for <u>prey population</u>: $\frac{dH}{dt} = 0$ $0 = 3H\left(1 - \frac{H}{10}\right) - 0.1HP$

if H = 0 (trivial solution) or if  $0 = 3\left(1 - \frac{H}{10}\right) - 0.1P$ 

$$P=30-3H$$

• for predator population: 
$$\frac{dP}{dt} = 0$$
  $0.3HP - 2P = 0$ 

if P = 0 (trivial solution) or if 0.3H - 2 = 0

$$H = 6.667$$

gradient of prey isocline is negative





has single positive asymptotically stable equilibrium defined by crossing of isoclines
converges to the stable equilibrium

#### **Addition of functional response of Type II**

functional response Type II:

р

 $H_a = \frac{aHT}{1 + aHT_h}$ 

rate of consumption by all predators:

 $\frac{H_a P}{T} = \frac{aHP}{1 + aHT_h}$ 

$$\frac{\mathrm{d}H}{\mathrm{d}t} = r_H H \left( 1 - \frac{H}{K} \right) - \frac{aHP}{1 + aHT_h} \qquad \frac{\mathrm{d}P}{\mathrm{d}t} = bHP - mP$$

• for parameters:  $r_H = 3$ , a = 0.1,  $T_h = 2$ , K = 10

$$\frac{dH}{dt} = 0 \qquad 0 = 3H\left(1 - \frac{H}{10}\right) - \frac{0.1HP}{1 + 0.1H2} \qquad H = \frac{m}{b}$$
  
orey isocline:  $P = 30 + 6H - 0.6H^2$  predator isocline:  $H = constant$ 



### **Addition of predator's carrying capacity**

logistic model with carrying capacity proportional to *H k* .. parameter of carrying capacity of the predator
 *r<sub>p</sub>* = *bH* - *m*

$$\frac{\mathrm{d}P}{\mathrm{d}t} = bHP - mP$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = r_P P \left(1 - \frac{P}{kH}\right) \qquad \frac{\mathrm{d}H}{\mathrm{d}t} = r_H H \left(1 - \frac{H}{K}\right) - \frac{aHP}{1 + aHT_h}$$

 $P = 30 + 6H - 0.6H^2$ 

H = 5P

• for parameters: 
$$r_P = 2, k = 0.2$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 0 \qquad 0 = 2P \left(1 - \frac{P}{0.2H}\right)$$

predator isocline:

prey isocline:



quick approach to stable equilibrium

## Host-parasitoid system

Zatypota



Theridion





## Host-parasitoid model

- discrete model of Nicholson & Bailey (1935)
- discrete generations
- attack happens at reproduction
- 1, .., several, or less than 1 host
- random host search and functional response Type III
- lay eggs in aggregation

 $H_t$  = number of hosts in time *t*  $H_a$  = number of attacked hosts  $\lambda$  = finite rate of increase of the host

 $H_{t+1} = \lambda (H_t - H_a)$  $P_{t+1} = cH_a = H_a$ 

 $P_t$  = number of parasitoids c = conversion rate, no. of parasitoids for 1 host

#### **Incorporation of random search**

parasitoid searches randomly

encounters (x) are random (Poisson distribution)

$$p_x = \frac{\mu^x e^{-\mu}}{x!}$$
  $x = 0, 1, 2, ...$   $p_0 = e^{-\mu}$ 

 $p_0$  = proportion of not encountered,  $\mu$ .. mean number of encounters

 $E_t$  = total number of encounters a = searching efficiency

$$E_t = a H_t P_t \longrightarrow \frac{E_t}{H_t} = a P_t = \mu \longrightarrow p_0 = e^{-aP_t}$$

• proportion of encounters (1 or more times):  $p = (1 - p_0)$ 

$$p = (1 - e^{-aP_t})$$
$$H_a = H_t \left(1 - e^{-aP_t}\right)$$

$$H_{t+1} = \lambda (H_t - H_a)$$

$$P_{t+1} = H_a$$

$$H_{t+1} = \lambda H_t e^{-aP_t}$$

$$P_{t+1} = H_t (1 - e^{-aP_t})$$

highly unstable model for all parameter values:
 equilibrium is possible but the slightest disturbance leads to divergent oscillations (extinction of parasitoid)



#### **Addition of density-dependence**

exponential growth of hosts is replaced by logistic equation

$$H_{t+1} = \lambda H_t e^{\left(1 - \frac{H_t}{K}\right) - aP_t}$$
$$P_{t+1} = H_t \left(1 - e^{-aP_t}\right)$$

$$q = \frac{H^*}{K}$$

*H*\*.. new host carrying capacity → depends on parasitoids' efficiency - when *a* is low then  $q \rightarrow 1$ - when *a* is high then  $q \rightarrow 0$ 

density-dependence have
 stabilising effect for moderate r and q



Beddington et al. (1975)

### **Addition of the refuge**

▶ if hosts are distributed non-randomly in the space

<u>Fixed number in refuge</u>:  $H_0$  hosts are always protected

$$H_{t+1} = \lambda H_0 + \lambda (H_t - H_0) e^{-aP_t}$$
$$P_{t+1} = (H_t - H_0) (1 - e^{-aP_t})$$

▶ have strong stabilising effect even for large r



### Addition of aggregated distribution

• distribution of encounters is not random but aggregated (negative binomial distribution)  $(a B)^{-k}$ 

- proportion of hosts not encountered  $(p_0)$ :

$$p_0 = \left(1 + \frac{aP_t}{k}\right)^2$$

where k = degree of aggregation

$$H_{t+1} = \lambda H_t e^{\left(1 - \frac{H_t}{K}\right)\left(1 + \frac{aP_t}{k}\right)^{-k}}$$
$$P_{t+1} = H_t \left(1 - \left(1 + \frac{aP_t}{k}\right)^{-k}\right)$$

• very stable model system if  $k \leq 1$ 

Stability boundaries: a)  $k = \infty$ , b) k = 2, c) k = 1, d) k = 0

