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Data containing many variables are often collected in weed science research, but 
until recently few weed scientists have used multivariate statistical methods to ex- 
amine such data. Multivariate analysis can be used for both descriptive and predictive 
modeling. This paper provides an intuitive geometric introduction to the more com- 
monly used and relevant multivariate methods in weed science research, including 
ordination, discriminant analysis, and canonical analysis. These methods are illus- 
trated using a simple artificial data set consisting of abundance measures of six weed 
species and two soil variables over 12 sample plots. 
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Multivariate ("many variable") statistical techniques are 
powerful tools for investigating and summarizing underlying 
trends in complex data structures (Legendre and Legendre 
1998). The term "multivariate" refers to the methods that 
undertake a simultaneous analysis of several variables or di- 
mensions. Multivariate statistical methods were developed in 
the early 20th century, but computational limitations de- 
layed their wider application until the advent of high-speed 
computers. In biology, multivariate methods were first used 
by plant ecologists to explore and model vegetation survey 
data (Goodall 1954; Orloci 1966). More recently, agricul- 
tural scientists have used these scaling methods to analyze 
and interpret complex survey and experimental data (e.g., 
Derksen et al. 1995; Post 1988; Thomas and Frick 1993). 
Although multivariable data are often collected in weed sci- 
ence and related disciplines, the potential advantages of a 
multivariate approach to analyzing such data are not always 
appreciated. Proper application and interpretation of mul- 
tivariate techniques requires an understanding of the theory, 
assumptions, and limitations of the various methods avail- 
able. 

In this paper we present a selective, nonstatistical over- 
view of the more commonly used multivariate scaling meth- 
ods, including descriptive ordination models and predictive 
canonical models. Our objective is to instill in the reader an 
intuitive understanding of these methods and their appli- 
cations using simple numerical examples. Although some 
basic computational aspects are discussed, the reader is re- 
ferred to specialized monographs for more detailed infor- 
mation on the underlying theory and mathematics. 

What are Multivariate Data? 

Multivariate data arise when attributes for more than one 
variable are measured on each sampling unit within the con- 
text of a sample survey or experiment. The resulting data 

are summarized in matrix form as a set of p variables mea- 
sured on each of the n sampling units (Figure 1). An ex- 
ample is a data set consisting of density values for p weed 
species (variables) enumerated in each of the n field plots 
(sampling units). An interpretative analysis of multivariate 
data considers all the variables simultaneously rather than as 
a set of p independent variables. Coordinated responses 
among variables result in an underlying structure to multi- 
variate data. A primary objective of multivariate analysis is 
to detect and effectively summarize this underlying struc- 
ture. A univariate approach, in which each variable is ex- 
amined independently of the others, will fail to detect the 
higher-order responses that define the underlying commu- 
nity structure. 

Objectives of Multivariate Analysis 

Following Jeffers (1982), we define a model as a formal 
expression of the relationship between sampling units ex- 
pressed in mathematical terms. A number of modeling ap- 
proaches are used in agricultural sciences, including dynam- 
ic, stochastic, optimization, game theory, catastrophe theory, 
matrix, and multivariate modeling. Two major objectives of 
multivariate modeling can be distinguished: descriptive 
modeling that typically involves summarizing underlying 
data structure and predictive or confirmatory modeling that 
generally involves statistical hypothesis testing (Jeffers 1988). 
Descriptive modeling, a common objective when analyzing 
sample survey data, is undertaken to achieve a parsimonious 
representation of the underlying data structure and to sum- 
marize variable intercorrelations. This approach is lucidly 
described by Rao (1964): 

When a large number of measurements [variables] are 
available, it is natural to enquire whether they could be 
replaced by a fewer number of the measurements or of 
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XlI X12 X13 ... Xln 

X21 X22 X23 ... X2n 

X - X31 X32 X33 ... X3n 

Xp1 Xp2 Xp3 ... Xpn 

FIGURE 1. Generalized matrix X of p variables (rows) and n sampling units 
(columns). An element of the matrix (Xij) denotes the value of the ith 
variable in the jth sampling unit. 

their functions, without loss of much information, for con- 
venience in the analysis and in the interpretation of data. 

In analyzing sample survey data, multivariate methods are 
generally used as exploratory descriptive modeling tools for 
generating hypotheses regarding the causal mechanisms pro- 
ducing an underlying data structure. By contrast, statistical 
hypothesis testing is a confirmatory or predictive approach 
undertaken within the context of more formalized survey 
and experimental designs. In both descriptive and predictive 
modeling, data reduction and summarization are the distin- 
guishing features of multivariate analysis (Legendre and Le- 
gendre 1998). 

Data Structures and Data Partitioning 

Two basic multivariate data structures are distinguished: 
biotic data comprised response variables, and abiotic data 
comprised factor variables (Figure 2). As an example of a 
biotic data set, consider again a survey of weed species abun- 
dance across a series of field plots. All the variables quanti- 
fied are measured on the same scale, i.e., weed density by 
species. A biotic data set typically has two distinguishing 
features: a high proportion of zeros because many species 
are absent from most fields and occasional "hot spots" where 
a given species is locally abundant (e.g., species F in Plot 3, 
Figure 2). These features render many biotic data sets non- 
linear, which in turn compromises the effectiveness of linear 
multivariate methods (Kenkel and Orloci 1986; Legendre 
and Legendre 1998). As an example of an abiotic data struc- 
ture, consider measurements of soil variables in the same 
field plots. In this case the variables quantified are often 
measured on different scales (e.g., pH, nutrient concentra- 
tion, percent organic matter), making it necessary to stan- 

dardize the variables to render them commensurable. Be- 
cause most abiotic data have no zero entries and lack hot 
spots, they produce broadly linear data structures that are 
most effectively summarized using linear multivariate meth- 
ods. 

Multivariate data matrices can be partitioned in various 
ways (Figure 3). Unpartitioned data are analyzed using stan- 
dard ordination methods, with the objective of exploring 
and summarizing underlying trends. More sophisticated 
multivariate methods are required when the data have an 
underlying structure related to a specific sampling or exper- 
imental design. Canonical discriminant analysis (CDA) is 
appropriate when the objective is to examine relationships 
among sampling units naturally partitioned into two or 
more groups or treatments, whereas canonical analysis is 
used to examine relationships between two variable sets (fac- 
tor and response variables) measured on the same sampling 
units. More complex partitionings are of course possible; for 
example, repeated measures add a third dimension to the 
basic data set (species by plot by time). Complex designs 
present considerable challenges to the analysis and interpre- 
tation of multivariate data structures (Green 1979, 1993). 

Variable Selection, Standardization, and 
Transformation 

The proper selection of variables is critical to the success 
of any multivariate survey or experiment. A clear statement 
of study objectives helps ensure that the variables selected 
are relevant to the task at hand. Jeffers (1988) emphasizes 
this point: 

Much time and effort have been wasted by the applica- 
tion of multivariate analysis to sets of data containing a 
"rag-bag" of variates included because they were easy to 
measure, or because they happened to be available, with- 
out any apparent consideration of the logical design of 
the investigation. 

Abiotic variables should be selected with care to ensure 
that they are pertinent to the specific objectives of the study. 
Selection of biotic variables is less problematic because re- 
searchers generally collect information on all species en- 
countered during a study. However, rare species may be 
eliminated from the data set before multivariate analysis be- 
cause they may unduly influence the results. 

The most commonly used multivariate methods assume 
ratio variables (quantitative variables with a defined zero), 

1 2 3 4 5 6 7 8 9 10 11 12 

A 1 3 3 4 7 9 1 3 5 7 9 10 12 

B 4 5 3 7 8 11 1 1 2 3 6 8 9 

C 5 8 0 0 0 0 0 3 0 0 0 0 

D 2 7 0 0 3 1 1 7 0 0 0 0 0 
E 1 0 0 0 7 10 1 0 1 0 0 7 9 

F 0 0 8 6 0 0 1 0 0 4 0 0 0 

______----------1---------------- 
N 5 5 8 3 7 8 3 3 2 5 6 10 

K 7 5 9 2 6 6 I 5 3 1 3 4 7 

FIGURE 2. The data set used in the examples. Variables A-F are the abundance of six weed species (response variables, biotic data set), whereas N and K 
are two soil variables (factor variables, abiotic data set). The 12 sampling units (columns I to 12) fall into two groups (1 to 6 and 7 to 12). 
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FIGURE 3. Data sets, partitionings, and methods appropriate to their anal- 
ysis: (a) no partitioning, (b) partitioning of sampling units, (c) partitioning 
of variables. Modified from Green 1979. 

of which counts, densities, and lengths are examples. Spe- 
cialized methods and approaches are required for mixed data 
sets that contain nominal (unordered) or ordinal (rank or- 
der) variables (Orloci 1978). Interval variables (quantitative 
variables lacking a defined zero, e.g., compass direction) 
should be recoded as ratio variables before analysis. 

Standardization is required to render variables commen- 
surable when they are measured on different scales. The 
most common is the "unit-variance" standardization, which 
involves expressing a measured value as the deviation from 
the variable mean followed by division by the variable's stan- 
dard deviation. This standardization places all the variables 
on a common scale; each is standardized to zero mean and 
unit variance, rendering them additive and dimensionless 
(Jeffers 1988). The unit-variance standardization is used in 
most multivariate analyses and is implicitly incorporated in 
the familiar product-moment correlation coefficient. Sam- 
pling units may also be standardized. For example, species 
abundance data may be standardized to a sum to 100% in 
each sample plot. This transformation is appropriate if pro- 
portional rather than absolute differences in species abun- 
dance among plots are of interest. 

Variable transformations are undertaken to ensure that 
variables conform to an assumed underlying distribution 
(e.g., multivariate normality) to increase the linear relation- 
ship among variables and to reduce heteroscedasticity of the 
variance-covariance structure. Many multivariate methods 
assume an underlying normal (or multivariate normal) dis- 
tribution, although strict adherence to this assumption is 
required only when undertaking formal hypothesis testing. 
Normalizing transformations have the added benefit of re- 
ducing the influence of data outliers tO which most multi- 
variate methods are sensitive. The logarithmic transforma- 
tion renders a multiplicative series additive, making it ap- 

propriate in cases where a biological population (e.g., a weed 
newly introduced into a field) is capable of exponential in- 
creases in cover abundance. A square root transformation is 
often appropriate for count data that follow the Poisson dis- 
tribution, whereas the arcsine transformation is generally ap- 
plied to proportional data. Choice of an appropriate trans- 
formation is dependent on the structure of the data being 
analyzed, the objectives of the investigation, and the mul- 
tivariate methods used (Zar 1974). 

Selection and Enumeration of Sampling Units 
Taken together, the sampling units enumerated in a mul- 

tivariate survey or experiment constitute a sample from a 
much larger population. Statistical inference requires that 
the sample be representative, which can be accomplished 
using randomization methods developed by sampling theo- 
rists (Cochran 1977). The analysis of multivariate data from 
agroecosystem experiments raises additional issues that are 
critical to the proper interpretation of results, including data 
collection, nature of system-level treatments, and experi- 
mental design. Consistency in data collection is critically 
important in ensuring that results are comparable in space 
(between sites) and over time (between years). Ideally, the 
same number of sampling units should be enumerated at 
each site and at each date, and the data should be collected 
at the same time of the year or at the same stage of crop 
development (Derksen et al. 1998). Because weed commu- 
nities are characterized by fluctuational rather than direc- 
tional dynamics (Derksen et al. 1995), weed communities 
should be enumerated over many years. If data are collected 
only at the end of a multiyear trial, cumulative treatment 
effects and growing conditions at the time of sampling will 
be confounded and difficult to separate. 

Although treatment combinations in weed agroecosystem 
experiments often have simple labels (e.g., crop rotation, 
low-input treatment, tillage system), they in fact represent 
composites of numerous interacting factors. For example, 
the effect of different crop rotations on weed community 
composition is the result of crop competitive ability coupled 
with crop management practices, such as seeding date, seed- 
ing rate, row spacing, fertilizer timing and placement, her- 
bicide usage, and interrow cultivation. Results should, there- 
fore, be interpreted as system rather than simple treatment 
effects (Jeffers 1978). Indeed, a clear statement of system 
effects is critical if results from different research programs 
are to be compared. 

A balanced experimental design is important when com- 
paring weed management strategies and weed communities 
across agronomic systems. Traditional herbicide experiments 
have weed-free or weed-present controls, whereas in systems- 
level experiments one compares the relative effects of differ- 
ing systems on the weed community. For example, the ap- 
propriate "check" for a low-input system would be a con- 
ventional-input system, each employing the same herbicides, 
seeding dates, and so forth. Balance is achieved by having 
sufficient commonality such that system effects can be 
parsed out, even if treatment details are confounded. For 
example, an experiment comparing input levels may use dif- 
ferent herbicides and seeding dates but may include the 
same crops grown in rotation. Weed management strategies 
should be designed by taking into consideration the trial 
objectives and the system definitions. Trials that utilize non- 
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registered herbicides, multiple applications of herbicides, 
tillage to ensure weed-free conditions, or rotations atypical 
of the systems being compared (e.g., organic farming vs. 
zero tillage) may meet agronomic objectives but may not be 
appropriate for weed community comparisons. It is also crit- 
ical that all phases of crop rotations be present in each year 
to avoid confounding system effects and year-to-year cli- 
matic variability (Derksen et al. 1995). 

Descriptive Multivariate Modeling: 
Ordination Methods 

Multivariate data are structurally complex, making pre- 
liminary exploratory analysis of underlying data structures 
critical to the success of any descriptive or predictive mod- 
eling program. Exploratory analysis should be viewed as a 
highly flexible exercise designed to elucidate and summarize 
underlying trends in the data (Tukey 1977). Such analyses 
are preliminary in the sense that they provide insights into 
the data structure, which in turn direct the user to more 
meaningful analyses and interpretations. An optimal explor- 
atory analysis is achieved using a graphical interface that 
dynamically produces scatterplots, frequency histograms, 
and various summary statistics of the variables and sampling 
units (Chambers et al. 1983). Exploratory analysis is well 
suited to the detection of outliers and nonlinear trends, al- 
lowing the user to make informed decisions in choosing the 
most appropriate data transformation and multivariate ap- 
proach. 

It is recommended that multivariate modeling proceed in 
steps, carefully examining the results obtained at a given 
stage before proceeding further (Jeffers 1988). Indeed, ex- 
perienced multivariate data analysts view modeling as an 
adaptive learning process, in which decisions made at each 
stage of the analysis direct subsequent steps and strategies 
(Tukey 1977). 

Ordination refers to a group of analytical methods de- 
signed to represent a complex multivariate data structure in 
a low-dimensional space, while retaining as much of the 
underlying trended variation as possible. This objective is 
achievable provided that the variables are intercorrelated or 
trended with one another. Ordination methods are generally 
used in an exploratory strategy to search for and summarize 
underlying trends. This approach is often referred to as in- 
direct gradient analysis (ter Braak and Prentice 1988) be- 
cause ordination is used to generate hypotheses regarding 
the causal factors underlying the trends present in the data. 
A number of ordination or scaling methods are available, 
including principal component analysis (PCA), principal co- 
ordinate analysis (PCoA), correspondence analysis (CA), and 
nonmetric multidimensional scaling (NMDS). Selection of 
the appropriate ordination method is dependent on the un- 
derlying data structure as well as on the study objectives. 

Principal Component Analysis 
In PCA a p-dimensional data space is represented as a set 

of mutually perpendicular (orthogonal) ordination axes. 
Successive ordination axes are obtained through rigid rota- 
tion of the original p variable axes to maximize the linear 
variation accounted for. As a simple example, consider a 
scattergram of 12 field plots with respect to p =2 variables 
(species A and B, Figure 2). The example is very simple 
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FIGuRE 4. Principal component analysis (PCA) of 12 sampling units (1 to 
12), using data from species A and B in Figure 2. (a) Scattergram of the 
12 sampling units in two-dimensional species space, showing the original 
species axes centered on their respective means (dashed lines Xi and X2) 
and the two-fitted component axes Q] and Q2. (b) Two-dimensional or- 
dination of the 12 sampling units, which in this example retains 100% of 
the total variance. (c) A reduced (one dimensional) ordination of the data 
on the first (principal) component axis Q]. This representation retains XI/ 
sml rep17.93/21.g84.34% of the total variance. (d) covariance matrix 
S, eigenvalues X, and eigenvector matrix B of the example data set. In the 
covariance matrix, the diagonal elements SI, 11.72 and S22 = 9.54 are 
the variances of species A and B, respectively; the off-diagonal element S12 
=pS21 = 7.22 is the covariance of species A and B (covariance is positive 

because the two species are positively correlated). The principal eigenvalue 
Al = 17.93 is the variance of sampling unit scores along the first axis (refer 
to Panel c). Note that XI + X2 =SI1I + S22, indicating that PCA is a 
simple repartitioning of the total variance. Matrix B contains eigenvector 
elements: for example, b1 1 = 0.758 is the direction cosine of species A and 
component axis Q], b12 = 0.652 is the direction cosine of species B and 
component axis Qi. 

(normally p > 2) but useful for illustrative purposes. The 
12 plots are represented as points in two-dimensional species 
space (Figure 4) together with three sets of axes: (1) the 
original variable axes, labeled species A and B; (2) the same 
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variable axes, but centered on their respective means (i.e., 
the centroid of the plot swarm), labeled XI and X2; and (3) 
the ordination or principal component axes, labeled Q1 and 
Q2. Note that the relative plot positions are not changed; 
Qi and Q2 simply describe a new coordinate system for the 
12 plots, each based on a linear combination of species A 
and B. The first ordination axis (Q1) represents a specific 
rotation of axes XI and X2 such that linear variation along 
QJ is maximized. This axis is uniquely defined; it minimizes 
the sum of squares perpendicular point-to-line distances, 
which is equivalent to maximizing the variance along Q1. 
The variance of the plot coordinates (ordination scores) on 
Qi is termed the eigenvalue Al. The second ordination axis 
(Q2) must be orthogonal (perpendicular) to QJ. In our sim- 
ple two-dimensional example Q2 is automatically defined 
once Q1 has been located, but this is not the case for higher- 
dimensional (p > 2) data. Specifically, when p > 2 the 
second axis Q2 must be orthogonal to QJ while at the same 
time accounting for the maximum amount of residual linear 
variation not already accounted for by Qi. For multivariate 
data, third and subsequent axes are defined in the same way. 
The PCA solution for a given data set is, therefore, entirely 
deterministic. 

It is important to recognize that PCA does not reduce 
dimensionality per se (Figure 4). Instead, dimension reduc- 
tion is achieved by ignoring higher-ordination (numerically 
unimportant) axes and displaying the point configuration 
on the first few, most highly trended axes (Figure 4c). If the 
data have a strong underlying linear structure, the first few 
ordination axes will provide a reasonable and parsimonious 
representation of major trends underlying the data. For the 
two-dimensional case, the analogy to simple regression anal- 
ysis is apparent. In regression analysis the relationship be- 
tween two variables is expressed unidimensionally, i.e., as a 
"line of best fit" that is similar (though not identical) to 
ordination axis Qi. Methods for determining the number 
of statistically significant ordination axes are summarized in 
Jackson (1993) and Legendre and Legendre (1998). 

In practice principal component axes are obtained 
through eigenanalysis of a p-dimensional covariance (or cor- 
relation) matrix S. Because a covariance matrix summarizes 
only linear relationships, PCA is not suitable for the analysis 
of nonlinear data structures. For a given variance-covariance 
matrix S, unique sets of eigenvalues and eigenvectors are 
sought that satisfy the matrix equation: 

[S - AI]B O [1] 

where A is a row vector of p eigenvalues, B is a matrix of p 
eigenvectors, and I is the identity matrix (a square matrix 
containing ones as the diagonal elements, and zeroes as the 
off-diagonal elements). The sum of eigenvalues equals the 
sum of the individual variances of the p variables because 
PCA is simply a linear transformation that repartitions the 
total variance along linearly orthogonal component axes. 
The extracted component axes are, therefore, linear combi- 
nations of the original variables. Specifically, each variable is 
"weighted" on each component axis, according to its cor- 
relation with the trend summarized by that axis. Variable 
weights on the component axes are contained in the eigen- 
vector matrix B. An element bi of B is a direction cosine 
(range - 1 tO + 1 ) or the cosine of the angle between variable 
axis i and the jth component axis. The larger the absolute 

value of the direction cosine, the more highly weighted the 
variable is on the ordination axis. The product-moment 
correlation of the ith variable and the jth component axis 
is: 

rij - bi S2] [2] 

where Si 2 is the variance of the ith variable. Direction co- 
sines are critical to the interpretation of PCA results because 
they indicate the relative contribution of each variable to 
the major structural trends (ordination axes) underlying the 
data. Direction cosines can be summarized in the tabular 
form, or alternatively they can be graphed directly on the 
ordination diagram to produce a biplot (Gabriel 1981; Po- 
dani 1994). 

The coordinate positions or component scores of the n 
sampling units on the derived component axes are simple 
linear combinations of the variable weights (direction co- 
sines). For example, the score of individual Xi on compo- 
nent axis 1 is: 

Qij = b11(X1j - X1) + b 12(X2j - X2) + **- 

+ b1p(Xp, - Xp) [3] 

A given component score Q- is thus defined as a linear 
combination of the p variables, with the direction cosines as 
multiplying factors. 

In the earlier presentation, it is assumed that S is a co- 
variance matrix. The use of covariance in PCA is appropriate 
when variables are measured on the same scale (e.g., biotic 
data sets). If the variables are measured on different scales 
(e.g., many abiotic data sets), a correlation matrix must be 
specified to render the variables commensurable. Because 
each of the p variables is scaled to unit variance, the eigen- 
values from a PCA of a correlation matrix sum to p. 

In weed science research, PCA is the method of choice 
when the underlying data structure is broadly linear (i.e., 
relatively few zero values in the data set). Example applica- 
tions include Legere and Samson (1999) and Ominski et al. 
(1999). 

Principal Coordinate Analysis 

PCoA, which is also known as metric multidimensional 
scaling, produces a map of the n individuals in ordination 
space such that the pairwise distances among individuals in 
that space match as closely as possible the corresponding 
distances in variable space (compare with NMDS, which is 
discussed subsequently). PCoA can also be viewed as a gen- 
eralized variant of PCA because the method exploits the 
close relationship between covariance and Euclidean metric 
spaces (Gower 1966) to perform an eigenanalysis of an n- 
dimensional distance matrix (Digby and Kempton 1987). 
In fact, for a given data set, PCoA of the n-dimensional 
Euclidean distance matrix produces an ordination identical 
to that obtained from PCA of a p-dimensional covariance 
matrix. The chief advantage of PCoA lies in its generality 
because the method can be used to perform eigenanalysis 
on a wide variety of broadly metric distance measures (Le- 
gendre and Legendre 1998). A drawback of the method is 
that variable direction cosines and biplot scores are not avail- 
able because it operates directly in n-dimensional space. Al- 
though PCoA has not been widely used, it has considerable 
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potential in analyses where covariance-correlation calcula- 
tions are inappropriate or ill defined (Jeffers 1988). 

Correspondence Analysis (CA) 
CA refers to a family of closely related ordination meth- 

ods that includes reciprocal-weighted (two way) averaging 
(Hill 1973; ter Braak 1995), dual scaling, and canonical 
analysis of contingency tables (Greenacre 1984). Despite 
considerable differences in statistical derivation, these vari- 
ous CA algorithms produce identical results, except for mi- 
nor variations in the scaling of ordination scores (Benzecri 
1992; Greenacre 1984). CA can also be viewed as a special 
case of PCoA, in which the data are doubly standardized by 
the row and column totals (Digby and Kempton 1987, page 
90). 

One approach is to consider CA as a multivariate contin- 
gency table eigenanalysis of a data matrix X The total in- 
ertia of X is x2/X.. where x2 is the familiar chi-squared sta- 
tistic: 

n 
x2 = 2 EX[Xii - Eij]IEij [4] 

i=i j=i 

and E- = [Xj.XIj/X], Xi is the ith row total, Xj is the jth 
column total, and X.. is the grand total. 

Inertia measures the degree of correspondence between 
the row and column categories (variables and sampling 
units, respectively) of the matrix X. In CA eigenanalysis is 
used to partition the total inertia into k = MIN (p,n) linear 
additive components (Digby and Kempton 1987): 

k k 

X2 = X2i= X ERi2 [5] 
i=1 i=l 

The eigenvalue Xj = R2 associated with the ith ordination 
axis is a squared canonical correlation (range 0 to 1), which 
is interpretable as a measure of the correspondence between 
variables and sampling units. CA is, therefore, a special case 
of canonical correlation analysis (CANCOR), which is de- 
scribed in the next section (see Gittins 1985 for a more 
detailed account of this relationship). This interpretation 
highlights the distinction between PCA and CA; whereas 
PCA axes maximize linear variation in p-dimensional vari- 
able space, CA ordination axes are derived to maximize the 
correspondence between variables and sampling units. High 
inertia indicates a strong correspondence between specific 
combinations of variables and sampling units. CA produces 
an ordination biplot of variables and sampling units (Figure 
5), allowing a visual interpretation of their codependency 
(Jeffers 1988). Different CA programs scale the variable and 
individual scores differently, but this does not affect the in- 
terpretation of the results (Legendre and Legendre 1998). 

CA is currently the most widely used ordination method 
in ecology and related disciplines (Digby and Kempton 
1987; Legendre and Legendre 1998). It is well suited to the 
summarization of biotic data, which are characteristically 
nonlinear and contain a large proportion of zeros. However, 
CA is quite sensitive to outliers and will often highlight 
unique variable-individual combinations at the expense of 
summarizing overall data trends (ter Braak 1995, page 109). 
Simulation tests using artificial data have revealed an addi- 
tional fault; when a single trend underlies the data, the sec- 
ond CA axis is a simple quadratic function of the first. This 
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FIGURE 5. Correspondence analysis of twelve sampling units (1 to 12), using 
data from six species A-F in Figure 2. (a) Two-dimensional ordination 
biplot (QJ vs. Q2), showing the configuration of sampling units, species, 
and interrelationship between sampling units and species (e.g., species Fis 
most closely associated with sampling units 3, 4, and 9). Total inertia of 
the data set = 1.12 1. The first two eigenvalues Al = 0.489 and X2 = 0.373 
together account for 77% of the total inertia, indicating that a two-dimen- 
sional ordination summarizes most of the contingency information in the 
data. (b) A one-dimensional (QJ) ordination biplot, which summarizes 
43.7% of the total interia. 

so-called arch effect is "a mathematical artifact, correspond- 
ing to no real structure in the data" (Hill and Gauch 1980). 
Detrended correspondence analysis (DCA) was explicitly de- 
veloped to overcome the arch effect (Hill and Gauch 1980). 
Although widely used, we cannot recommend DCA for gen- 
eral use (see also Legendre and Legendre 1998, page 471). 
Digby and Kempton (1987) noted that DCA "seems to us 
to be rather arbitrary and the precise details of the method 
are hidden in a computer program." Numerous simulation 
studies have indicated that detrending may distort mean- 
ingful CA results (e.g., Jackson and Somers 1991; Kenkel 
and Orloci 1986). Detrending should never be applied au- 
tomatically and should only be used if a demonstrable CA 
arch effect is observed (Legendre and Legendre 1998). 

CA is often performed using the proprietary program 
CANOCO (ter Braak 1987), which uses Hill's (1973) com- 
putationally efficient reciprocal-averaging algorithm and 
thus avoids eigenanalysis (Digby and Kempton 1987; ter 
Braak 1995). A recent study indicates some problems with 
the implementation of CA and DCA algorithms in older 
versions of CANOCO and offers specific solutions to resolve 
these problems (Oksanen and Minchin 1997). Conn and 
Delapp (1983) provided an application of CA to weed sci- 
ence research. 

Nonmetric Multidimensional Scaling (NMDS) 
In NMDS a map of n individuals in a low-dimensional 

ordination space is obtained such that the pairwise distances 
among individuals match as closely as possible to the pair- 
wise distances as measured in the original p-dimensional var- 
iable space. Unlike PCoA, the matching of distances in var- 
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iable and ordination spaces considers only the rankings of 
the distance values (Digby and Kempton 1987). NMDS 
does not use eigenanalysis and requires that users specify the 
dimensionality of the ordination solution before analysis. A 
computationally intensive algorithm of successive approxi- 
mations is used to iteratively improve the rank-order rela- 
tionship between ordination distances and original distances. 
At each iteration a stress coefficient measuring the corre- 
spondence between ranked ordination and variable space 
distances is computed. Iterations continue until no further 
reduction in stress is forthcoming. The final result is an 
optimized mapping of the n individuals in a low-dimen- 
sional ordination space. NMDS ordination axes serve only 
as a relative coordinate system, so unlike PCA, PCoA, and 
CA ordination axes, they are not interpretable in terms of 
their importance in summarizing variation or redundancy. 

A major advantage of NMDS is its considerable flexibil- 
ity. As a rank-order-mapping method, it makes no assump- 
tions about the underlying data structure. A wide variety of 
distance measures are, therefore, acceptable as input into 
NMDS, including nonlinear and ordinal distance measures 
(Bradfield and Kenkel 1987; Digby and Kempton 1987). 
As with PCoA, the lack of variable weights and biplot scores 
complicates the interpretation of NMDS ordination results. 
A recent application of NMDS in weed science research is 
found in Leeson et al. (1999). 

Selecting an Ordination Method 

Selection of an appropriate ordination method is depen- 
dent on both the study objectives and the underlying data 
structure (Jeffers 1988; Kenkel and Orloci 1986). Explor- 
atory data analysis will help elucidate the underlying data 
structure and so guide users in making appropriate decisions 
regarding which ordination method to use. As a general rule, 
biotic data are often nonlinear and thus best modeled using 
CA (or PcoA or NMDS provided specification of an appro- 
priate nonlinear distance measure). By contrast, abiotic data 
are typically linear (or are easily transformed to meet the 
linearity assumption) and thus best analyzed using PCA. 

A straightforward interpretation of results is paramount 
when undertaking descriptive modeling of multivariate data, 
giving ordination methods that produce biplots (PCA, CA) 
a clear advantage over those that do not (PCoA, NMDS). 
However, NMDS and PCoA are powerful methods used for 
analyzing nonstandard data sets (e.g., a matrix of niche over- 
lap values or rank-order data) that cannot be accommodated 
by PCA and CA. As there is no universal panacea in ordi- 
nation analysis, it is imperative that users understand the 
basics of available methods and appreciate both their advan- 
tages and limitations. 

Predictive Multivariate Modeling: 
Canonical Methods 

The term "canonical" refers to the simplest, most com- 
prehensive form to which the relationship between two var- 
iable sets can be reduced without loss of generalization (Le- 
gendre and Legendre 1998). Two predictive canonical mod- 
eling objectives are distinguished: group discrimination and 
the analysis of variable set correspondence. CDA is the ap- 
propriate statistical model when testing for group discrimi- 
nation. Consider n sampling units partitioned into g non- 

overlapping groups, where p variables are measured on each 
sampling unit (Figure 3b). CDA tests whether the g groups 
are statistically different from one another and determines 
the contribution of each variable to group discrimination. 
Discriminant analysis is thus closely related to multivariate 
analysis of variance (ANOVA) (Morrison 1990), the mul- 
tivariable generalization of univariate ANOVA. Discrimi- 
nant functions can also be used to optimally assign individ- 
uals to one of the several classes (Morrison 1990, Chapter 
6). 

Other canonical models are used to determine the cor- 
respondence between two sets of variables measured on each 
of the n sampling units (Figure 3c). These include CAN- 
COR, redundancy analysis (RDA), and canonical corre- 
spondence analysis (CCA). Canonical correlation is the mul- 
tivariate extension of product-moment correlation, whereas 
RDA and CCA are related to multiple regression analysis 
(ter Braak 1995). RDA is the canonical form of PCA, 
whereas CCA is the canonical form of CA (Legendre and 
Legendre 1998). 

Canonical Discriminant Analysis 

CDA, also known as multiple discriminant analysis or 
canonical variates analysis, is used in predictive modeling 
and formal hypothesis testing (Legendre and Legendre 
1998). In CDA it is assumed that each of the n sampling 
units has been assigned to one of the g groups (Gittins 
1985). One objective of discriminant analysis, in common 
with multivariate ANOVA (Morrison 1990), is to determine 
whether the g groups are statistically different from one an- 
other based on the p measured variables. If statistical signif- 
icance is achieved, discriminant analysis proceeds to find 
discriminant axes (linear composites, similar to PCA axes) 
that maximally separate the groups (Figure 6). In addition, 
discriminant weights are assigned to the p variables on each 
discriminant axis. Discriminant weights are interpretable as 
measures of the relative discriminating power of variables in 
separating groups. 

In univariate ANOVA, differences among treatment 
(group) means are determined using a statistical test based 
on the ratio of the among- to within-group variances. CDA 
is essentially the multivariate extension of this concept. Spe- 
cifically, group discrimination is assessed by comparing the 
among-groups cross-product matrix G and the pooled with- 
in-groups cross-product matrix W. Numerically, this is 
achieved through eigenanalysis of the matrix product W- G: 

[W-1G - AI]B = 0 [6] 

where X is a row vector of t eigenvalues (t is the lesser of g 
- 1 and p), and B is an eigenvector matrix containing the 
discriminant weights. The close relationship between CDA 
and PCA is apparent upon comparing Equations 1 and 6. 
The difference is that PCA axes maximize dispersion over 
the full data set, whereas CDA axes are constrained so as to 
maximize the dispersion among groups. 

In CDA an eigenvalue Xi is the ratio of the among-groups 
to the within-groups sum of squares on the discriminant 
axis i. The discriminant weights for axis i quantify the rel- 
ative importance of each variable in discriminating among 
the groups on that axis. Different computer programs scale 
these weights differently, but their relative values are unaf- 
fected. Discriminant weights are most commonly scaled to 
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Fi;uiRE 6. Canonical discriminant analysis of two groups (sampling units 1 
to 6 and 7 to 12), using data from species A and B in Figure 2. (a) Scat- 
tergram of the 12 sampling units, showing the two groups (open and filled 
circles) in two-dimensional species space. The original species axes centered 
on their respective means are shown (dashed lines XI and X2) together with 
the single discriminant axis Dl. Note that Dl does not correspond to the 
main variance trend in the data (compare principal component axis QJ in 
Figure 4) because it is constrained to maximally discriminate between the 
two groups. The eigenvalue (ratio of among-groups to within-groups sum 
of squares) is Xi = 6.77, which corresponds to x2 = 18.46 (df = 2, P < 
0.0001), indicating significant two-group discrimination. Eigenvector ele- 
ments are b1 = -1.023 (species A) and b2 = 1.008 (species B), indicating 
that the two species contribute about equally to group discrimination. (b) 
Projection (discriminant scores) of sampling units 1 to 12 on discriminant 
axis Dl. 

unit variance within groups (Podani 1994). Like PCA, dis- 
criminant scores of sampling units are obtained as linear 
combinations of the p variables (refer to Equation 2), but 
with re-scaled discriminant weights as the multiplying fac- 
tors. 

Several assumptions must be met when using CDA for 
predictive modeling and hypothesis testing: 

1. The joint distribution of variables must be approximately 
multivariate normal (i.e., reasonably symmetric and not 
too "long tailed"). Outliers strongly affect discriminant 
analysis results and may lead to erroneous conclusions. 

2. The within-group covariance matrices must be homo- 
geneous because they are pooled before eigenanalysis 
(this is equivalent to the assumption of variance equality 
in univariate ANOVA). Aberrant covariance matrices will 
adversely affect the discriminant axis orientation and will 
produce misleading results. 

3. As in PGA, discriminant analysis assumes an underlying 
linear data structure. Nonlinear data structures will result 
in highly distorted results. 

4. The total number of sampling units must exceed the 
number of variables measured. 

If these assumptions are met, various formal statistical 
tests are available to determine whether the groups are sta- 
tistically different and to compute the number of statistically 
significant discriminant axes (Legendre and Legendre 1998; 
Morrison 1990). For summary purposes, the sampling units 
are normally displayed in discriminant axis space. Statistical 
confidence ellipses for each of the g groups, and biplot scores 
for the p variables, are often presented as well (Podani 
1994). 

CDA is a powerful method for exploring and formally 
testing the statistical significance of various treatment com- 
binations in weed agroecosystem experiments (e.g., Barberi 
et al. 1997, 1998; Derksen et al. 1993). Basic discriminant 
analysis assumes a complete randomized design. Multivariate 
designs involving factorial treatment combinations, block- 
ing, and repeated measures can be accommodated in the 
multivariate ANOVA (Morrison 1990, Chapter 5), but such 
designs present challenges when applying discriminant anal- 
ysis. Two-way designs and repeated measures can be accom- 
modated in the discriminant analysis by treating each treat- 
ment combination or time interval as a separate discrimi- 
nant group (e.g., Derksen et al. 1998), but this approach 
has the potential drawback of ignoring treatment interac- 
tions or temporal autocorrelation in the data. Multivariate 
data from complex experimental designs can also be effec- 
tively summarized using the canonical methods described in 
the following section (e.g., Thomas and Frick 1993). 

Canonical Correlation Analysis (CANCOR) 

CANCOR determines the linear relationship between 
two sets of variables, the X set containing p variables and 
the Yset containing q variables (in developing the method, 
we will assume that p - q). The objective of CANCOR is 
to summarize the correlation between the two variable sets 
X and Y across the n sampling units. This is accomplished 
by maximizing the product-moment correlation between a 
pair of derived linear composites or canonical variates, U1 
for variable set X and V1I for variable set Y For example, 
the scores of individual XA on the first pair of canonical 
variates U1 and V1 are given by: 

Ulj =al(Xlj - X1) + al2(X2j - X2) + * 

+ alp(Xpj - Xp) and [7] 

V1j b1l(Y1j - Y1) + b12 (Y2j - Y2) + * 

+ biq(Yqj - Yq) [81 

The vectors a1 and b1 contain canonical weights for the 
original variables. The method thus derives linear compos- 
ites U1 and V1 such that the correlation between coordinate 
scores of the n sampling units on U1 and V1 is maximized 
(Figure 7). A maximum of t pairs of canonical variates Ui 
and Vi are obtained, where t is the lesser of p and q. The 
successive canonical variates are obtained subject to their 
being uncorrelated with previously extracted linear compos- 
ite pairs. 

Canonical correlation involves eigenanalysis of the matrix 
equation: 

[Syy'1SwxSXX-S1 SX-AI]B 0 [9] 
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FIGURE 7. Canonical correlation analysis of sampling units 1 to 12, using 
data from species A and B and soil variables N and K in Figure 2. (a) 
Scattergram of the 12 sampling units in species space (left) and variable 
space (right), showing the original species and soil variable axes centered 
on their respective means (dashed lines XI and X2 for species and YJ and 
Y2 for soil variables). The first pair of canonical axes, U] in species space 
and VI in soil variable space, are also shown. (b) Reduced one-dimensional 
ordinations (scores of the 12 sampling units) on axes UJ and VI. Also 
shown is a plot of the UJ vs. VI scores, indicating a strong interset cor- 

reato (1 0.967). The interset correlation for U2 and V2 is R2 2 - 

0.345. (c) The within and cross-set correlation matrix S for the two species 
and two variables, e.g., the correlations between species A and B is r 
0.683 and between variables Nand Kis r 0.773. The cross-set correlation 
between species A and variable Nfis r 0.480. Redundancy values are also 
summarized. Total redundancy is much higher in species space (80%) than 
in soil variable space (27%); variation in species space corresponds closely 
to the canonical relationship between the two data sets (compare U] and 
the principal component QJ of the same data, Figure 4), but variation in 
soIl variable space does not. 

where Sxx and s are correlation matrices for variable sets 
Xand Y1 respectively, and Syx =S'y is the matrix of cross- 
set correlations. The close relationship of CANCOR, CDA, 
and PCA is apparent upon comparing Equations 1, 6, and 
9. The vector A contains the t eigenvalues, which are known 
as canonical correlations. A canonical correlation ruiv-1 is in- 
terpretable as the product-moment correlation between 
paired canonical variates or alternatively as the multiple cor- 
relation between a canonical variate of one variable set and 
the original variables of the other set. 

The eigenvector elements contained in matrix B are 
known as canonical coefficients and are interpretable as ca- 
nonical weights for the variables of set X. Corresponding 
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FIGURE 8. Redundancy analysis of sampling units 1 to 12, using data from 
species A and B and soil variables Nand Kin Figure 2. In this analysis the 
two species are the response variables. Biplot scores (arrows) of soil variables 
Nand Kare also shown. Axis 1 accounts for 97.6% of the total canonical 
relationship. The interset correlation for axis 1 is R12 = 0.967, and for 
Axis 2 is R22 = 0.345. Note that these are identical to the interset corre- 
lations obtained in canonical corrrelation analysis (CANCOR) (Figure 7c). 
The ratio of the sum of the constrained eigenvalues to the total variance is 
80%, which is identical to redundancy of the species data in CANCOR. 

canonical variates, known as structure correlations, are more 
stable and easily interpreted (Morrison 1990). 

Canonical correlation measures the correlation between 
pairs of derived linear composites, not the original variables 
themselves. Because the linear composites U1 and Vi are not 
necessarily collinear with the major linear trends (PCA axes) 
in the X and Y variable spaces, they may account for only 
a small proportion of the total variation present in the two 
data sets. Consider, for example, the case in which a single 
variable Xi in X is highly correlated with a single variable Y. 
in Y, but all other pairwise correlations among variables in 
the X and Y sets are negligible. The canonical correlation 
will by definition equal or exceed the squared product-mo- 
ment correlation between Xi and Y., even though the re- 
maining correlations are small. This makes canonical cor- 
relation a poor measure of the overall relationship between 
the two variable sets. A direct measure of the interrelatedness 
of the two variable sets is the redundancy or explained var- 
iance (Gittins 1985), which measures the proportion of the 
total variance of a given variable set that is predictable from 
the derived canonical variates of the other set. The total 
redundancy, summed over all canonical variates, measures 
the proportion of variance in one variable set that is ac- 
counted for by the variables of the other set (Figure 7c). 

For predictive modeling, tests are available to determine 
the statistical significance of canonical correlations (Morri- 
son 1990). These tests assume that the data meet the basic 
assumptions of multivariate linearity and normality. Because 
canonical correlation summarizes linear relationships, it 
should only be applied to data with an underlying linear 
structure. The use of CANCOR in determining relation- 
ships between weeds and site characteristics in landscape 
research has recently been described by Dieleman et al. 
(2000a, 2000b). 

Redundancy Analysis (RDA) 

RDA is a canonical or constrained form of PCA (Legen- 
dre and Legendre 1998). The objective of RDA is to max- 
imize predictions for a set of response variables Y (biotic 
data), given a set of factor variables X (abiotic data). The 
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FIGURE 9. Canonical correspondence analysis of sampling units 1 to 12, 
using data from six species A-Fand soil variables Nand Kin Figure 2. In 
this analysis the six species are the response variables. Biplot scores (arrows) 
of soil variables Nand Kare also shown. Axis 1 accounts for 89.7% of the 
total canonical relationship. The interset correlation for Axis 1 is R12 = 
0.981 and for Axis 2 is R22 = 0.487. The ratio of the sum of the con- 
strained eigenvalues to the total inertia (0.342/1.121 = 30.5%) is equiva- 
lent to the redundancy as used in canonical correlation analysis and redun- 
dancy analysis. 

method is essentially a PCA in which the sampling unit 
scores of the response variable set are restricted to be linear 
combinations of the factor variable set (ter Braak 1995; 
Wollenberg 1977). The method is, therefore, closely related 
to multiple regression analysis and produces results similar 
to CANCOR (Figure 8). An intuitive description of RDA 
as a multiple regression analysis followed by PCA is given 
by Legendre and Legendre (1998): 

1. Using linear multiple regression, regress each response 
variable Yi on the complete set of factor variables X and 
compute fitted multiple regression values. 

2. Perform PCA on the set of fitted multiple regression val- 
ues to obtain a matrix of canonical eigenvectors. 

3. Use the canonical eigenvectors to obtain sampling unit 
scores either in factor space X or response space Y. Scores 
in response space are known as weighted averages (WA), 
whereas those in factor space are known as linear com- 
binations (LC). In most applications, WA scores are 
more relevant and interpretable (refer to the section on 
CCA for details). 

RDA has not been widely used but has considerable po- 
tential in determining the relationship between agronomic 
treatments and weed community composition (e.g., 
O'Donovan et al. 1997; Thomas and Frick 1993). Because 
the method is based on linear multiple regression and PCA, 
RDA should only be applied to broadly linear data sets (Le- 
gendre and Legendre 1998). 

Canonical Correspondence Analysis (CCA) 

CCA is very similar to RDA, but it is a constrained or 
canonical form of CA rather than PCA (Legendre and Le- 
gendre 1998; ter Braak and Prentice 1988). Like RDA, the 
method uses multiple regression to select linear combina- 
tions of factor variables that best explain variation in ordi- 

nation scores obtained from the response variables (ter Braak 
1995). CCA is widely used in plant ecology to model the 
canonical relationship between floristic composition (re- 
sponse variables, biotic data set Y) and measured environ- 
mental variables (factor variables, abiotic data set X). Be- 
cause the method is based on CA, it is well suited to the 
canonical analysis of nonlinear biotic data sets (Figure 9). 
As in multiple regression analysis, the inclusion of noisy or 
trivial factor variables in CCA can result in misleading in- 
terpretations (McCune 1997). 

Some controversy exists regarding the implementation 
and interpretation of CCA within the proprietary program 
CANOCO (Oksanen and Minchin 1997). The program 
contains a detrending option, but it is not recommended 
(ter Braak 1987). As in RDA, users have a choice between 
WA and LC scores. Palmer (1993) recommends using LC 
scores but under most circumstances we feel otherwise. Be- 
cause LC scores are obtained directly from the fitted mul- 
tiple regressions in factor space X, two sampling units hav- 
ing identical factor variables will necessarily have identical 
LC scores even if they share no species (response variables) 
in common. In most circumstances this extreme degree of 
constraint is misleading, particularly if CCA is used as a 
predictive tool and when (as is often the case) only a small 
subset of all possible factor variables is considered. The use 
of WA scores is, therefore, recommended for most situa- 
tions. Legendre and Legendre (1998, page 765) provide an 
example of predictive modeling in which the use of LC 
scores is justified. 

Although not widely used in the agricultural sciences, 
CCA is a very powerful multivariate method for descriptive 
and predictive modeling. CCA has great potential as a meth- 
od for examining the response of a weed community to 
various agronomic treatments (e.g., Dale et al. 1992; Del la 
Fuente et al. 1999; McCloskey et al. 1996). A simple ex- 
ample relating meadow vegetation composition to various 
agricultural practices is presented in ter Braak (1995, Section 
5.4). The proprietary program CANOCO includes more 
sophisticated methods, such as covariate and partial regres- 
sion canonical analyses, that are beyond the scope of this 
review (see Legendre and Legendre 1998; ter Braak and 
Prentice 1988). Leeson et al. (2000) provide a recent appli- 
cation of partial CCA to weed community analysis. 

In applying predictive canonical models, we recommend 
that users first undertake descriptive analyses of the factor 
and response variable data sets using ordination methods. 
By applying CA ordination before CCA, for example, a re- 
searcher can objectively determine the effect of canonical 
constraining. In CCA the ratio of the constrained eigenvalue 
total to the total inertia is equivalent to redundancy as used 
in CANCOR. 

Selecting a Canonical Method 
CDA is appropriate when there exists a known grouping 

of sampling units, and the objective is to determine the 
extent to which a set of measured variables can distinguish 
among these groups. Like PCA, CDA is a linear method 
and should only be applied to broadly linear data structures 
with an underlying multivariate normal distribution (Gittins 
1985). In addition, CDA requires that the number of sam- 
pling units exceed the number of variables. Both of these 
limitations can be overcome using an approach combining 
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descriptive and predictive modeling, as explained subse- 
quently. An alternative approach to CDA is to utilize within 
RDA or CCA "dummy" explanatory variables that code for 
groups such as agronomic treatments (Legendre and Legen- 
dre 1998; ter Braak 1995). 

When the objective is to determine the correspondence 
between two variable sets, CANCOR, RDA, and CCA are 
the methods of choice. CANCOR is a symmetric method 
that finds the maximum linear correlation between the fac- 
tor and the response variables. By contrast, RDA and CCA 
are asymmetric methods that use multiple regression to de- 
termine the extent to which the response variables (biotic 
data) can be explained by the factor variables (abiotic data). 
Legendre and Legendre (1998) noted that asymmetric ca- 
nonical models (RDA and CCA) are more appropriate than 
the symmetric CANCOR model in most biological appli- 
cations. RDA is a constrained form of PCA and is therefore 
appropriate when the two variable sets display linear rela- 
tionships. By contrast, CCA is a constrained form of CA 
and should be used when the response variables are nonlin- 
ear. Under most circumstances, CCA is the more appropri- 
ate method for modeling the relationship between nonlinear 
species abundance data and environmental factors or agro- 
nomic treatments. 

Combining Descriptive and Predictive Modeling 

As previously discussed, multivariate methods such as 
PCA, CDA, RDA, and CANCOR, can effectively sum- 
marize linear variation but are ill suited to the analysis of 
nonlinear data structures. Another common problem in 
multivariate surveys and experiments is that the number of 
variables is often large and may even exceed the number of 
sampling units. As the number of variables rises, the poten- 
tial for variable multicollinearity (a strong interaction among 
three or more independent variables) increases. Furthermore, 
the statistical power of multivariate statistical tests is severely 
compromised when the number of sampling units does not 
greatly exceed the number of variables (Gittins 1985; Mor- 
rison 1990). A stepwise analytic approach can be used to 
circumvent these problems (Green 1993). As a simple ex- 
ample, consider a biotic data set consisting of p variables 
and n sampling units divided into three groups, where p > 
n (Figure 10). As the first step, the data are subjected to CA 
ordination, which implicitly ignores the underlying group 
structure. This step produces ordination axes that achieve 
two important goals: the nonlinear data structure is sum- 
marized as new, uncorrelated linear composites, and the 
number of variables is considerably reduced. The new de- 
rived data set consists of scores for the n sampling units on 
t <K p derived linear variates (ordination axes). This derived 
t X n data set is then used as input into CDA. The as- 
sumptions of CDA are now met because the data are linear 
and the number of variates t is small relative to the number 
of sampling units. This is a powerful and useful approach, 
its only potential drawback being that the discriminant anal- 
ysis is now based on the derived ordination scores rather 
than on the original variables, complicating the interpreta- 
tion of the results. This and other stepwise analytic ap- 
proaches are outlined in Green (1993). 

(a) Original Data 

n sampling units 

variables [* 

L I J 

(b) Ordination of Original Data 

* U+ 

(c) Derived Data (Ordination Scores) 

r S 

n sampling units 

variables 

(d) Multiple Discriminant Analysis 

FIGURE 10. A stepwise approach to multivariate analysis. (a) The original 
data, consisting of cover-abundance measures of p weed species in a series 
of n = 12 plots across three treatments (n = 4 for each treatment). The 
objective is to determine whether the weed communities in the three treat- 
ments are statistically different. Unfortunately, the number of species p 
exceeds the number of plots in each treatment, making it impossible to 
perform canonical discriminant analysis (CDA) on the original data. Fur- 
thermore, the data are highly nonlinear. (b) The original data are subjected 
to ordination (e.g., principal component analysis or correspondence anal- 
ysis) to obtain a lower-dimensional representation. (c) Examination of the 
ordination indicated that a two-dimensional representation captures the es- 
sential features of the original data. A derived data set consisting of ordi- 
nation scores (derived variables) on the first two ordination axes is, there- 
fore, produced. (d) The derived data set is subjected to CDA. Significant 
discrimination indicates that weed communities in the three treatments are 
statistically different. 

Discussion 

Multivariate methods are powerful and sophisticated tools 
for both descriptive and predictive modeling of complex 
data structures in weed science. Ordination methods are 
used primarily to elucidate and summarize underlying trends 
in many-variable data sets. Discriminant analysis is used to 
test specific hypotheses regarding the effect of various ag- 
ronomic treatments on weed community composition, 
whereas canonical methods are used to examine the rela- 
tionship between weed community composition and mea- 
sured environmental factors or agronomic treatment cate- 
gories (or both). Multivariate methods are, therefore, indis- 
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pensable to weed science researchers interested in exploring 
and modeling the structure, composition, and dynamic na- 
ture of weed communities. 
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