NMR spektroskopie

Metody biofyzikální chemie - seminář (C5856)

Martin Novák 323460@mail.muni.cz

24. října 2016

Interakce jaderného spinového momentu - kontext

Doplňte k zadaným interakčním mechanismům symbolické znázornění a příslušný Hamiltonián:

Dipol-dipolová interakce Chemický posun Nepřímá spin-spinová interakce

イロト イポト イヨト イヨ

 Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.

24. říina 2016

3 / 17

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.

(ロ) (回) (三) (三)

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.
- V NMR pevné fáze jsou spektra ovlivněna anizotropií chemického stínění a přímou dipól-dipólovou interakcí

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.
- V NMR pevné fáze jsou spektra ovlivněna anizotropií chemického stínění a přímou dipól-dipólovou interakcí
- Rozlišení signálů v NMR spektru roste s velikostí externího magnetického pole, protože rezonanční frekvence je úměrná B₀.

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.
- V NMR pevné fáze jsou spektra ovlivněna anizotropií chemického stínění a přímou dipól-dipólovou interakcí
- Rozlišení signálů v NMR spektru roste s velikostí externího magnetického pole, protože rezonanční frekvence je úměrná B₀.
- Rezonanční signál ovlivněný pomalou výměnou vzhledem k NMR časové škále se projevuje ve spektru rozšířením a polohou rezonanční linie odpovídající váženému průměru chemických posunů limitních stavů.

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.
- V NMR pevné fáze jsou spektra ovlivněna anizotropií chemického stínění a přímou dipól-dipólovou interakcí
- Rozlišení signálů v NMR spektru roste s velikostí externího magnetického pole, protože rezonanční frekvence je úměrná B₀.
- Rezonanční signál ovlivněný pomalou výměnou vzhledem k NMR časové škále se projevuje ve spektru rozšířením a polohou rezonanční linie odpovídající váženému průměru chemických posunů limitních stavů.
- NMR spektrum proteinu s malým stupněm strukturovanosti(foldu) se vyznačuje úzkými signály a malou disperzí.

- Metodou NMR strukturní analýzy se rutinně studují biosystémy o velikosti do 10 kDa.
- Nukleární Overhauserův efekt umožňuje korelovat NMR aktivní jádra pouze v rámci jednoho spinového systému.
- V NMR pevné fáze jsou spektra ovlivněna anizotropií chemického stínění a přímou dipól-dipólovou interakcí
- Rozlišení signálů v NMR spektru roste s velikostí externího magnetického pole, protože rezonanční frekvence je úměrná B₀.
- Rezonanční signál ovlivněný pomalou výměnou vzhledem k NMR časové škále se projevuje ve spektru rozšířením a polohou rezonanční linie odpovídající váženému průměru chemických posunů limitních stavů.
- NMR spektrum proteinu s malým stupněm strukturovanosti(foldu) se vyznačuje úzkými signály a malou disperzí.
- Počet signálů v uhlíkovém 1D NMR spektru určité molekuly odpovídá počtu neekvivalentních atomů izotopu ¹³C.

イロン イロン イヨン イヨン

Úloha 1: Chemický posun - identifikace aminokyselin

Pro daná ¹³C NMR spektra určete, jaké aromatické aminokyselině náleží a proč.

24. říina 2016

4 / 17

Úloha 2: Chemický posun - rozlišení

Pro dané systémy, rozhodněte, který z dvojice označených atomů bude mít vyšší hodnotou chemického posunu:

M. Novák

Úloha 3: *J*-coupling a konformace vazby, Karplusova rovnice

Pro určení torzního úhlu v kovalentních strukturách slouží analýza vicinálních spin-spinových konstant (tzv. ³*J*-coupling).

M. Novák

 Kvalitativní pohled: Na základě srovnání orbitálního překryvu rozhodněte, v jaké konfiguraci nabývá ³J větší hodnoty.

Kvantitativní pohled: K určení konformace cukr-fosfátové páteře nukleových kyselin se používá Karplusova rovnice parametrizovaná mj. pro interakci H5' a P:
³ J_{HCOP} = 15.3cos²φ - 6.2cosφ + 1.5.
Vypočtěte hodnotu konstanty pro znázorněné konformery a charakterizujte je pomocí velikosti standartního úhlu β :

Úloha 3: *J*-coupling a konformace vazby, Karplusova rovnice

Pro určení torzního úhlu v kovalentních strukturách slouží analýza vicinálních spin-spinových konstant (tzv. ³*J*-coupling).

M. Novák

 Kvalitativní pohled: Na základě srovnání orbitálního překryvu rozhodněte, v jaké konfiguraci nabývá ³J větší hodnoty.

 Kvantitativní pohled: K určení konformace cukr-fosfátové páteře nukleových kyselin se používá Karplusova rovnice parametrizovaná mj. pro interakci H5' a P: ³J_{HCOP} = 15.3cos²φ - 6.2cosφ + 1.5. Vypočtěte hodnotu konstanty pro znázorněné konformery a charakterizujte je pomocí velikosti standartního úhlu β :

Úloha 3: *J*-coupling a konformace vazby, Karplusova rovnice

Pro určení torzního úhlu v kovalentních strukturách slouží analýza vicinálních spin-spinových konstant (tzv. ³*J*-coupling).

M. Novák

 Kvalitativní pohled: Na základě srovnání orbitálního překryvu rozhodněte, v jaké konfiguraci nabývá ³J větší hodnoty.

Kvantitativní pohled: K určení konformace cukr-fosfátové páteře nukleových kyselin se používá Karplusova rovnice parametrizovaná mj. pro interakci H5' a P:
³ J_{HCOP} = 15.3cos²φ - 6.2cosφ + 1.5.
Vypočtěte hodnotu konstanty pro znázorněné konformery a charakterizujte je pomocí velikosti standartního úhlu β :

Úloha 3: *J*-coupling a konformace vazby

Pomocí přiloženého 1D ¹H NMR spektra odhadněte poměr α a β izomeru v roztoku D-glukopyranozy naměřeném v D₂O.

A D > A B > A B >

Úloha 3: *J*-coupling a konformace vazby

Pomocí přiloženého 1D ¹H NMR spektra odhadněte poměr α a β izomeru v roztoku D-glukopyranozy naměřeném v D₂O.

A D > A B > A B >

Úloha 4: Relaxační mechanismy

Návrat NMR signálu do rovnovážného stavu se děje dvěma ději: tzv. **spin-mřížkovou** a **spin-spinovou relaxací**. Na základě přiloženého popisu přiřaď te odpovídající křivku závislosti relaxačního času T_1 , T_2 na rychlosti pohybu.

Spin-mřížková relaxace odpovídá konverzi $\alpha \rightleftharpoons \beta$ stavu vlivem lokálních fluktuací magnetického pole o frekvenci blízké rezonanční frekvenci. Je charakterizovaná kinetickým parametrem T_1 .

Spin-spinová relaxace odpovídá ztráte koherence excitovaného signálu (rozfázovaní) vlivem lokálních fluktuací magnetického pole. Pomalý pohyb vystavuje spin v molekule nehomogenitám a vede ke změně precesní frekvence, zatímco rychlý pohyb průměruje lokální změny pole a spin-spinová relaxace je méně účinná. Je charakterizovaná kinetickým parametrem T₂.

イロト 不得下 イヨト イヨト

Úloha 4: Relaxační mechanismy

Návrat NMR signálu do rovnovážného stavu se děje dvěma ději: tzv. **spin-mřížkovou** a **spin-spinovou relaxací**. Na základě přiloženého popisu přiřaď te odpovídající křivku závislosti relaxačního času T_1 , T_2 na rychlosti pohybu.

Spin-mřížková relaxace odpovídá konverzi $\alpha \rightleftharpoons \beta$ stavu vlivem lokálních fluktuací magnetického pole o frekvenci blízké rezonanční frekvenci. Je charakterizovaná kinetickým parametrem T_1 .

Spin-spinová relaxace odpovídá ztráte koherence excitovaného signálu (rozfázovaní) vlivem lokálních fluktuací magnetického pole. Pomalý pohyb vystavuje spin v molekule nehomogenitám a vede ke změně precesní frekvence, zatímco rychlý pohyb průměruje lokální změny pole a spin-spinová relaxace je méně účinná. Je charakterizovaná kinetickým parametrem T₂.

< ロ > < 同 > < 三 > < 三

Úloha 5: Příklady strukturně-biologických aplikací

K uvedeným problémům strukturní analýzy přiřaď te odpovídající techniku:

Potlačení dipol-dipolové relaxace u proteinu

Rozlišení intra- a intermolekulárních kontaktů v komplexu ligand-receptor

Odstranění signálů labilních protonů v molekule nukleové kyseliny

> Přiřazení málo rozlišených signálů v nestrukturované části proteinu

Mapování reziduí směřujících k povrchu proteinu

Převedení vzorku do D₂O ¹³C editované NOESY spektrum Exprese proteinu v deuterovaném médiu Aplikace paramagnetických sond Multidimenzionální inverzní experimenty (4D, 5D)

Úloha 5: Příklady strukturně-biologických aplikací

K uvedeným problémům strukturní analýzy přiřaď te odpovídající techniku:

Potlačení dipol-dipolové relaxace u proteinu

Rozlišení intra- a intermolekulárních kontaktů v komplexu ligand-receptor

Odstranění signálů labilních protonů v molekule nukleové kyseliny

> Přiřazení málo rozlišených signálů v nestrukturované části proteinu

Mapování reziduí směřujících k povrchu proteinu

exprese proteinu v deuterovaném médiu

¹³C editované NOESY spektrum

převedení vzorku do D₂O

multidimenzionální inverzní experimenty (4D, 5D)

イロト イポト イヨト イヨト

aplikace paramagnetických sond

24. října 2016 9 / 17

Úloha 6: Protein vs. Nukleové kyseliny: NMR aspekty

Diskutujte o následujících praktických okolnostech NMR experimentů při srovnání protein vs. DNA/RNA:

	Proteiny	NA	
Syntéza vzorku			
Izotopické značení			
Hustota ¹ H			
Sekvenční přiřazení			
Restrainy pro určení struktury			

Úloha 6: Protein vs. Nukleové kyseliny: NMR aspekty

Diskutujte o následujících praktických okolnostech NMR experimentů při srovnání protein vs. DNA/RNA:

	Proteiny	NA
Syntéza vzorku	in vivo	chemickou cestou
Izotopické značení	snadné	nákladné
Hustota ¹ H	rel. vysoká	nižší
Sekvenční přiřazení	přes vazby: J-coupling	dipól-dopólová inter- akce: NOE
Restrainy pro určení struktury	δ : alfa vs. beta, NOE, RDC	mj. NOE, RDC, J- coupling(riboza), ³¹ P

Úloha 7: Sekvenční přiřazení peptidu

Pomocí fiktivních výsledků (strip-plotu) 3D NMR experimentů (HNCA, HN(CO)CA) určete N \rightarrow C sekvenci hypotetického peptidu. Dbejte na správné pořadí od N-konce k C-konci peptidu.

Úloha 7: Sekvenční přiřazení peptidu

Pomocí fiktivních výsledků (strip-plotu) 3D NMR experimentů (HNCA, HN(CO)CA) určete N \rightarrow C sekvenci hypotetického peptidu. Dbejte na správné pořadí od N-konce k C-konci peptidu.

Úloha 8: Časová škála interakce ligand-receptor

Charakterizujte přiložená ¹H-¹⁵N HSQC spektra zobrazující titrační experiment pomocí pojmů: *rychlá, střední a pomalá výměna*:

Úloha 9: Populace jaderného spinu

Vypočtěte rozdíl v populaci izolovaných jaderných spinů α - β pro atom ¹H (magnetogyrická konstanta $\gamma = 2.68.10^8 T^{-1} s^{-1}$) v magnetickém poli 11.7 T a teplotě 298 K.

Úloha 9: Populace jaderného spinu

Vypočtěte rozdíl v populaci izolovaných jaderných spinů α - β pro atom ¹H (magnetogyrická konstanta $\gamma = 2.68.10^8 T^{-1} s^{-1}$) v magnetickém poli 11.7 T a teplotě 298 K.

<ロ> (日) (日) (日) (日) (日)

Úloha 10: Nukleární Overhauserův efekt

Uvažujme zjednodušený NOE experiment provedený na malém proteinu. Krátkým ozařováním o délce 25 ms saturujeme populaci spinu H β a okamžitě měříme signál blízkého spinu H γ v leucinu - za podmínky aproximace počátečního stavu $(t \rightarrow 0)$. Ukažte, jak se za těchto podmínek zjednoduší kinetická rovnice prvního řádu popisující časový vývoj magnetizace spinu H γ v závislosti na auto-relaxaci (rychlostní konstanta ρ) a cross-relaxaci (rychlostní konstanta σ):

 $rac{\mathrm{d}I_{\gamma}}{\mathrm{d}t} = ho[I_{\gamma} - I_{\gamma}(0)] - \sigma[I_{\beta} - I_{\beta}(0)]$

Jaká je přibližná vzdálenost atomů H β a H γ , jestliže jsme při tomto experimentu pozorovali změnu signálu v důsledku NOE o velikosti -0.04 a pro referenční vzdálenost atomů H β_1 - H β_2 1.75Å bylo naměřeno NOE -0.3?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Úloha 10: Nukleární Overhauserův efekt

Uvažujme zjednodušený NOE experiment provedený na malém proteinu. Krátkým ozařováním o délce 25 ms saturujeme populaci spinu H β a okamžitě měříme signál blízkého spinu H γ v leucinu - za podmínky aproximace počátečního stavu $(t \rightarrow 0)$. Ukažte, jak se za těchto podmínek zjednoduší kinetická rovnice prvního řádu popisující časový vývoj magnetizace spinu H γ v závislosti na auto-relaxaci (rychlostní konstanta ρ) a cross-relaxaci (rychlostní konstanta σ):

 $rac{\mathrm{d}I_{\gamma}}{\mathrm{d}t} = ho[I_{\gamma} - I_{\gamma}(0)] - \sigma[I_{\beta} - I_{\beta}(0)]$

Jaká je přibližná vzdálenost atomů H β a H γ , jestliže jsme při tomto experimentu pozorovali změnu signálu v důsledku NOE o velikosti -0.04 a pro referenční vzdálenost atomů H β_1 - H β_2 1.75Å bylo naměřeno NOE -0.3?

Řešení

$$\frac{\mathrm{d}I_{\gamma}}{\mathrm{d}t}|_{t\to 0} = -\rho[I_{\gamma}(0) - I_{\gamma}(0)] + \sigma I_{\beta}(0) = \sigma I_{\beta}(0) \Rightarrow I_{\gamma} = \sigma I_{\beta}(0)t$$

$$rac{NOE_{\gamma-eta}}{NOE_{eta1-eta2}} = rac{r_{eta1-eta2}^o}{r_{eta-eta}^o} \Rightarrow r_{\gamma-eta}^6 = 1.75^6 rac{-0.3}{-0.04} = 2.44$$
Å

イロン イロン イヨン イヨン

Úloha 11: Určování vazebné konstanty

Pomocí NMR titrace lze určit disociační konstantu např. interakce enzym-inhibitor: $EI \leftrightarrows E + I, \qquad K_D = \frac{[I][E]}{[EI]}$

V případě rychlé výměny pozorujeme posun zprůměrovaného signálu inhibitoru v závislosti na poměru volné a vázané formy inhibitoru (relativní frakce $f_l = [I] | F_l| + [I], f_{El} = [El] | F_l| - [$

Úloha 11: Určování vazebné konstanty

Pomocí NMR titrace lze určit disociační konstantu např. interakce enzym-inhibitor: $EI \leftrightarrows E + I$, $K_D = \frac{[I][E]}{[EI]}$ V případě rychlé výměny pozorujeme posun zprůměrovaného signálu inhibitoru v závislosti na poměru volné a vázané formy inhibitoru (relativní frakce $f_I = \frac{[I]}{[EI]+[I]}$, $f_{EI} = \frac{[EI]}{[EI]+[I]}$). Ukažte, čemu se rovnají parametry lineární závislosti **počáteční koncentrace inhibitoru** I_0 **na změně chemického posunu inhibitoru** během titrace $\Delta \delta_I = \delta_I - \delta_I(0)$, pokud je počáteční koncentrace inhibitoru mnohem větší než koncentrace enzymu. V této závislost vystupují jako parametry interakce: **počáteční koncentrace enzymu** E_0 , **disociační konstanta inhibice**

 \mathcal{K}_D a rozdíl chemického posunu volné a vázané formy inhibitoru $\delta_{El} - \delta_l$

Řešení $\Delta \delta_{I} = \frac{[EI]}{l_{0}} (\delta_{EI} - \delta_{I})$ $[EI] = \frac{E_{0}l_{0}}{K_{D} + l_{0}}$ $l_{0} = E_{0} (\delta_{EI} - \delta_{I}) \frac{1}{\Delta \delta_{I}} - K_{D} \rightarrow$ směrnice: $E_{0} (\delta_{EI} - \delta_{I})$, průsečík s osou y: $-K_{D}$.

イロン イロン イヨン イヨン 三日

http://bouman.chem.georgetown.edu/nmr/dipolar/dipolar.html http://groups.chem.ubc.ca/straus/l2.pdf http://www.columbia.edu/itc/chemistry/chem-c1403/lectures/Fall2005/ http://otter.biochem.ubc.ca/publications/BcX_Tyrosine_JBNMR_2011.pdf P. Atkins, J. de Paula: Physical Chemistry

Příště: M. Novák: Molekulové modelování

Image: A math a math