

Central European Institute of Technology BRNO | CZECH REPUBLIC

BioAFM imaging Nové směry v bioanalytické chemii

Jan Přibyl

CEITEC MU Kamenice 5/A35, CZ-62500 Brno pribyl@nanobio.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Microscopy techniques - resolution

Scanning Probe Microscope basic scheme

SNOM (=NSOM) Scanning NearField Optical Microscopy

SNOM – basic principles

NSOM topgraphy

TiO₂ particles wrapped in PPV film

Fluorescence quenching by TiO₂ particles

- Light diffraction limit conventional optical microscopy:
 λ/2 ~ 250 nm (→ Abbe diffraction limit)
- Real cases optical resolution ~ λ, 500 nm
- SNOM offers higher resolution around 50 nm (or even < 30 nm), depending on tip aperture size.
- Near-field = distance << wavelegth</p>

- **SNOM** simultaneous measurements of the:
 - topography
 - + optical properties (fluorescence)
 - direct correlation between surface nanofeatures and optical/electronic properties.
- Useful for the **studying**:

inhomogeneous material surfaces (nanoparticles, polymer blends, porous silicon, biological systems)

History of NSOM

1928 roots trace back – letters between Edward Hutchinson Synge and Albert Einstein

Technology developed in 1990's:

Eric Betzig, et al. Science, 262, 1422-1425 (1993).
 Prototype commercial available since 2000's

Scheme of SNOM apparatus

Picocyanobacteria (PCC 7942)

Real instrument example

Ntgra Vita AURA, Ntgra Vita SPECTRA (NTMDT, Zelenograd, Russia)

TERS

Solution for all possible excitation/detection and TERS geometries

Tip Enhanced Raman Spectroscopy

CONTRACT.

Stiffness of HDPE/LDPE polymer sandwich cut by microtome

Overlap of Raman maps: HDPE (red), LDPE (blue)

AFM topography

Examples

Use TERS technology for DNA structure study

Molecular Characterization of DNA Double Strand Breaks with Tip-Enhanced Raman Scattering

Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles

Scanning Tunnelling Microscopy

- STM the first member of SPM family
- Developed in 1982 by Gerd Binnig and Heinrich Rohrer members of IBM in Zurich (Phys. Rev. Lett., 1982, vol 49, p57)
- 1986 Nobel prize in physics for their brilliant invention

1982 - Triumph of Scanning Probe Microscopy - image of silicon surface 7x7 reconstruction.

STM tip

- **STM tip** conductive (metals Pt, W, Pt/lr)
- **STM** microscopy uses the very top (outermost) atom at the tip and the nearest atom on sample

Tip is not necessarily very sharp in shape (different from AFM)

- Tip preparation:
 - Cutting with scissors
 - Electrochemical etching
 - Other techniques such as FIB (and combination

STM modes

Constant height / constant current

Si (111) 7x7, 40nm empty states image, room temperature, dark spots represent missing atoms or adsorbates

Ag-Si (111) 10nm

Atomic Force Microscopy

AFM microscope basic scheme

Tip and cantilever

Cantilever and tip

- Cantilever holder is quite universal
- Cantilever and tip a variety of various types

Material properties – Stiffness Force Constant [N/m]

Force const.[N/m]	10-130	1-10	0.1-1.0	0.005-0.1
Material	cryst. silicon	pol. silicon	glass	Si ₃ N ₄
Res. f. [kHz]	200-500	100-200	15-100	1-20

Special applications - conductive, colloid, magnetic, tip less.

CEITEC

Cantilever characterization you may find on box

Cantilever field choose the one you like/need

AFM probes (micro)fabrication is quite complex

Cantilever fabrication

FIB (Focus Ion Beam) post-fabrication of AFM probes (tip)

Plateau Tip

Curvature radius (R) effect

Curvature radius (R) effect

Laser, photodiode a cantilever

Laser + photodiode → Detection of cantilever bending

SemiContact - 12 FB FB Gain 0.400 Mag - 4.291 Set Point 2.750 C Bias Voltage 0.00) V 🔆 Laser 🍄 XV	
File View Settings Tools Help Ask on-line!		
[🔄 Data 🛃 Aiming 🛄 Resonance 🤍 Approach 🖆 Scan 🖵 Curves 🚅 Litho		
× 🛛 ×	r 🔲	
	DEI	
		0.0
		~ ~
		0.0
	lacor	21 8
	Lasei	51.0
		

Automatic adjustment available

Bruker Icon/Fast\$can

JPK Force Robot head

NTMDT Solver Next

User interface with a sensible workflow and automatic setup.

AFM modes of operation

Contact mode

- Measured parameter cantilever bending (= deflection, DFL)
- Deflection ~ tip sample force interaction
- Hook`s law: $F = -k * \Delta h$

F – force, **k** force constant (stiffness), **Δh** – height (=deflection)

Semicontact mode (tapping mode, AC mode, oscillation mode, ...)

• Measured parameter **amplitude of oscillation** (= **magnitude**, **MAG**, ...)

PZT

Piezoelectric tubes

Piezoelectric tubes PZT Piezoelectrodes

- Hollow ceramic tubes
- Metal covered in selected parts
- Voltage application \rightarrow change of size

Notes + cautions

- Fragile
- High voltage applied

PZT – construction approaches of AFM

• Range z 10-15 um

Scanning by sample construction

- *x*,*y*,*z* axes movement by sample
 - Oscillator in head
 - Range x,y **1**-10 um
 - Range *z* 1-3 um
 - Low noise

PZT: voltage-extension dependency

Sample preparation for AFM

Concentration – surface density

Substrates for preparation of AFM samples

Atomically flat surfaces 1. HOPG Highly Ordered Pyrolytic Graphite

- Kish's graphite, waste in steel production
- Hexagonal planar structure
- •C-C bond142 pm, layer-layer distance335 pm
- Conductive, highly hydrophobic
- Planar structure
- Synthetic form of graphite, high chemical purity
- •Traditionally substrate for SEM, STM i AFM (\rightarrow conductivity)
- Immobilization spontaneous adsorption (→ hydrophobicity)

Atomically flat surfaces 1. HOPG Highly Ordered Pyrolytic Graphite

Atomically flat surfaces

2. Mica (muscovite)

- "Cat's silver", muscovite acc. to city of Moscow
- Chem. structure: K₂O·Al₂O₃·SiO₂
- •Hydrophilic surface
- Easy to be modified by chemical synthesis
- Immobilization by chemical bonding as well as ionic interaction
- •pKa ~ 3, physiological pH \rightarrow negative surface charge
- Mica = silicate, hydrated SiO₂ (~ Si-OH) from the chemical point of view

Atomically flat surfaces 2. Mica (muscovite)

Extremely flat on small and larger areas

Other surfaces 3. Gold

- Inert metal
- Traditionally in (bio)electrochemistry (i.e. biosensors) electrodes
- Conductive STM + AFM
 - Hydrophobic: spontaneous non-selective adsorption of molecules (proteins, DNA, ...)
- Specific chemical binding of thiols (-SH) – organic molecules + cysteine
- Prepared usually by evaporation
- Adhesion layer for operation in

Gold

Contact Angle

Other surfaces 4. Glass

Amorphous noncrystalline structure

- •Lab glass composition: 75% SiO₂ plus Na₂O, CaO, borate and minor additives
- •Si-OH \rightarrow from chemical point of view
- •Less hydrophilic comparing to mica
- Roughness much higher comparing to mica (production by pressing)
- •Not suitable for individual molecules imaging with AFM

• Most of lab supplies made of plastic (PP, PE, PS)

• No functional groups to be used in covalent binding

PS – hydrophobic → spontaneous non-specific adsorption of proteins
 J → usually as underlying support (i.e. for cell attachment)

Immobilization procedures

1. Proteins

Surface: mica or HOPG (extremely flat)

Protein: charge is given by IEP + pH

Immobilization on mica: pKa (mica) < pH < IEP

Protein immobilization on HOPG

A. **Spontaneous** (non-specific) **adsorption** of protein \rightarrow hydrophobic surface (best results at zero charge pH = IEP)

B. **lonic** (specific) **binding** of molecules → creation of charge/chem. groups on HOPG surface

2. DNA

Surface: mica or HOPG (extremely flat)

Immobilization problem:

DNA (sugar-phosphate bone) as well as **mica – negative charge** under physiological pH

 \rightarrow surface introduction of **positive charge**

silanization

hydrophobizatio n

Examples of alkoxysiloxanes

APDMES

Self-polymerization practical complication

- Especially with **APTES** during liquid silanization
 - Even vapors of water can cause this effect
- Fixation for optical microscopy expected factor
- In contrary in fixation for AFM very distuicing
- Solution:
 silanization in vapours under vacuum (i.e. in

- monoalkoxysilanes – can not poly3-(Ethoxydimethylsilyl)propylamine APDMES

H₂N

B. DNA on HOPG

Adsorption of long chain double-sided $Oldsymbol{iOns}$ (C_{16}/C_{18})

3. Nanoparticles

Substrates for immobilization: **mica / HOPG** (smooth surfaces), also gold, glass in selected cases.

Example: gold nanoparticles (AuNP) mercapto-silanized mica (SH-mica):

3. Bacteria, spores

Protein adhesive layer, i.e. pLL (poly-L-lysine \rightarrow introducing positive charge)

Standard coating on glass

5. Eukaryotic A. Standard culturing on polystyrene dishes

Adhesive protein layers usually takes place (i.e. pLL, RGD adhesion factors, fibronectin,

Cell culturing equipm

BioAFM incl. Petri dish heater for in-

B. Fixation agents

- Adhesion of cells out of incubator (37°C, 5% CO₂) is mostly problematic
- Allows study of cells in long term periods after removal from incubator
- Cell wall destruction

AFM spectroscopy

Force-distance curves

Force is measured in an **SFM** by collecting a force curve, which is a plot of cantilever deflection, d_c, as a function of sample position along the **z**-axis (i.e. towards or away from the probe tip; the **z**-piezo position). It assumes a simple relationship (i.e. **Hooke's Law**) between the force, **F**, and the cantilever deflection:

$F = -k d_c$

where **k** is the spring constant of the cantilever.

4 1

Motivation

Why to quantify elasticity of (living) objects?

- Stiffness (Young's modulus) mapping
 → stiffness = basic parameter of any material
- Elasticity-phenotype relation ship
- Mechanobiological characterization
- Driving of instrument properties (QNM, QI)

Young's modulus of materials

72
Methods to measure Young's modulus

Acta Biomater. 2007 Jul; 3(4): 413-438.

Mechanical Properties of Living Cells Using Atomic Force Microscopy

J. Vis. Exp. (76), e50497, doi:10.3791/50497 (2013).

1. Biomechanical characterization

Embryonic bodies - iPS cardiomyocytes

Adrenergic reactivity - Metoprolol

Drug testing studies

2. Nanomechanical mapping

& relation to physical and phenotype properties

Hertzian fit

Measured curves were fitted to following function:

Four-sided pyramid 2,84 µn 310 ph 2,50 $F = \frac{E}{1 - v^2} \frac{\tan \alpha}{\sqrt{2}} \delta^2$ 2.00 1.50 1.00 0,50 face angle, usually α = given for Si₃N₄-cantilevers ↑ (SetPoint) Height[•] Young modulus 10 10 9 8 Adhesion Extend (nN) tical Deflection: edge angle, usually = % given for Si-cantilevers -2 -2 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 Height (measured & smoothed) (μm) 6.6 5.6 5.8 6.0 6.2 6.4 6.6 Height (measured & smoothed) (µm) 6.8 5.4 5.6 5.8 6.0 6.2 6.4 Height (measured) (µm) 6.6 6.8 [F[nN] x=z Cantilever ō Sample **Tip-sample separation** = correction of measured curve (height) for cantilever bending Height measured Tip sample separation Signal A = SE2 Signal B = InLens Mixing = Off Date :24 Feb 2010 Time :16:59:59 EHT = 1.75 kV WD = 9.4 mm Mag = 8.63 K X Sample ID = -contact point [nm]

Vertical Deflection:

Extend (nN)

shTAZ cells

Cells MCF7_PDLIMsiRNA

Copyright 2012 V

Figure 1. Cellular Asymmetry in Wall Stiffness in Dark-Grown Hypocotyl

(Peaucelle et al., CB 2015)

Plant samples under AFM spectroscopy investigation

Water – YM 7.09 MPa

Manitol YM 0.69 MPa

Glycoaminoglycanes

structure & interaction with myeloperoxidase

Flexible surfaces (gels) as support for single CMs

With Vladimir Vinarsky, Giorgia Nardone, Giancarlo Forte (ICRC, FNUSA, Brno)

3. (Semi)automatic driving of AFM

Quantitative imaging (QI mode) TiO₂ NT

JPK NanoWizard 3

Fig. 10: Herpes Simplex Virus capsid imaged in liquid, scan size 300 nm x 300 nm. a) Height image (z-range: 100 nm) shows substructure of the virus. b) In the adhesion image it is possible to detect the sticky virus (data range: 200 pN). c) the substructures can be also recognized in the elasticity image.

Quantitative NanoMechanics (QNM)

PeakForce QNM = quantitative nanomechanical information (biological samples without damaging)

Based on **Peak Force Tapping technology** - probe is oscillated (~TappingMode), res. freq 1 - 8 kHz (=sampling rate) depending on the tool).

Difference: **Tapping Mode** – const. amplitude, **Peak Force Tapping** maximum peak force on the probe (much lower comparing to contact mode – biological samples)

Bruker Dimension Icon/FastScan DNA on mica

With H. Kolarova, H. Zapletalova,

UPOL

Lipozomes on graphite electrode

27.6 nm

-42.8 nm

90 With J. Vacek, UPOL

AFM CoreFacility CEITEC MU

CEITEC AFM CoreFacility

JPK NanoWizard3

Bruker FastScan Bio

NTMDT NTgra Vita

NTMDT Solver Next

AFM visualization of biomolecules and bioobjects

- J. Hejátko YM mapping
- P. Bouchal YM mapping
- J. Paleček DNA
- M. Pešl, V. Rotrekl CMCs
- J. Sládková CMCs

- A. Meli CMC
- M. Kalbáčová TiO2 NT
- H. Kolářová DNA
- I. Crha sperms

Optical microscopy

AFM

Confocal microscopy

Young modulus

Děkuji za pozornost

