Introduction to Computational Quantum Chemistry

Practical Lesson 1: Molecular Builders & Single Point Calculations

Martin Novák (NCBR)

Builders and SPs

October 11, 2016 1 / 14

< A >

Available builders on Wolf cluster

- Avogadro
 - + fast
 - + free
 - + forcefield preoptimization
- Gabedit
 - + aligning structures in coordinate system
 - relatively slow
- Gaussview
 - + generating specific distances/angles/dihedrals
 - + aligning molecules
 - commercial
- Nemesis
 - No idea

- The most widely used in QM are XYZ and Z-matrices
- Cube files:
 - Grid of points with specific values of a given quality
 - Electron density, Electrostatic potential, Laplacian of el. density...
 - Generated from Gaussian wavefunction
- Wavefunction files:
 - Gaussian: (Formatted) checkpoint
 - ADF: TAPEs
 - Turbomole: mos

Practical task I: Gaussian

• Prepare input file for calculations:

- Most builders can generate the file for you (usually has to be edited)
- You can write it yourself from scratch
- General suffix is either ".com" or ".gjf"
- Use:
 - 2 cores
 - 3 GB of memory
- Save the wavefunction
- Gaussian manual:

http://www.gaussian.com/g_tech/g09ur.htm

- Add gaussian module
- g09 input.com

4 3 5 4 3 5

- Read the logfile, see the structure, extract information
- *qmutil*: nifty module to extract data from gaussian output:
 - extract-gopt-ene logfile
 - extract-gopt-xyz logfile
 - extract-gdrv-ene logfile
 - extract-gdrv-xyz logfile
 - extract-xyz-str xyzfile framenumber
 - extract-xyz-numstr xyzfile

< A >

- Stores wavefunction in binary
- Convert into ASCII file:
 - formchk -3 file.chk
- Can be read by gaussview ¹
- Analysis of orbitals, electron density
- Export into cubefiles (ASCII grid files)

 ¹ A bug in Gaussview: Change word "independent" to "independent".
 Image: Change word "independent" to "independent".

 Martin Novák (NCBR)
 Builders and SPs
 October 11, 2016
 6 / 14

- Turbomole is probably the fastest code available here (for Gaussian-type basis functions)
- Tmolex as GUI (licence not available)
- RI-J approximation of coulombic term extremely fast (meta)GGA SCF convergence
- Interactive preparation of the input using define
- Turbomole manual: http:

//www.turbomole-gmbh.com/turbomole-manuals.html

E > < E >

Preparing the job: Define

- First two items can be skipped
- Molecular geometry:
 - a coord Reads in the geometry
 - ired Generates internal coordinates
 - Proceed to next stage
- Basis set:
 - b all def2-SVP Assign this basis set to all atoms
 - * Proceed to next stage
- Method
 - eht Perform initial guess from Extended Hückel Theory
 - Accept all defaults

< 🗇 🕨

4 3 1 1 4

define - cont.

- Method
 - dft Enter the DFT submenu
 - on Use DFT
 - func b-lyp Select the functional
 - grid m5 Increase the gridsize to m5
 - * Exit the submenu
 - ri Enter the RI submenu
 - m Assign memory for RI
 - 2000 As much as possible
 - on Use RI
 - Exit the submenu
 - dsp Use dispersion correction
 - on Use Grimme D3 correction
 - Exit the submenu
 - marij Multipole-Accelerated RI-J
- * End the define session

- For running TM in parallel mode use the parallel build
- module add turbomole:7.00:x86_64:para
- Infinity selects it by default if ncpu > 1

mnovak@wolf

#!/bin/bash
module add turbomole:7.00
jobex -ri -c 1024 > dft.out

File	Contens
dft.out	Optimization procedure
energy	Energies of steps
gradient	Gradients of steps
mos	Molecular orbitals
freq.out	Output from aoforce program

Martin Novák (NCBR)

Builders and SPs

October 11, 2016 11 / 14

э

э

ヘロマ ヘロマ ヘビマ・

- Only software using Slater-type orbitals
- Up to 2-component relativistic effects (ZORA+SpinOrbit)
- Awful output file structure
- Extremely fast and efficient
- ADF GUI: adfview
- Very bad memory handling

Preparing ADF input

- Using GUI (the easiest way)
- Write from scratch
- Keywords in blocks:

ATOMS*	definition of geometry in xyz	
SYMMETRY NOSYMM	Switch off all symmetry	
XC*	DFT functional	
BASIS*	Basis set	
SAVE TAPE21	Save wavefunction	
NOPRINT LOGFILE	Do not print input into logfile	
* Section terminated by END keyword		

• Manual pages: http://www.scm.com/Doc/Doc2014/ADF/ ADFUsersGuide/page1.html

Martin Novák (NCBR)

글 노 네 글

• *adf* < input.adf > output.out

∃ → < ∃</p>

< A >