Spektrometrie s indukčně vázaným plazmatem – ICP Principy a analytické vlastnosti

Viktor Kanický, Aleš Hrdlička Laboratoř atomové spektrochemie Ústav chemie Přírodovědecké fakulty Masarykovy univerzity

#### Účel a princip analytické atomové spektrometrie

#### Stanovení

které prvky obsahuje vzorek – kvalitativní analýza

jaký/á je obsah/koncentrace daného prvku ve vzorku – kvantitativní analýza

Excitační (ionizační) zdroj – odpaření, atomizace, excitace (atomů i iontů), ionizace vzorku

#### Optická emisní spektrometrie - OES

Deexcitace atomu/iontu – zářivé přechody – charakteristické čáry ve spektru o určitých vlnových délkách  $\lambda$  pro daný prvek

#### Hmotnostní spektrometrie – MS

Sběr iontů a vstup přes vakuové rozhraní do hmotnostního spektrometru

Poloha píku ve spektru poměrů *m/z* – určení izotopu, prvku

Výška nebo plocha čáry o dané  $\lambda$  v OES nebo výška píku o daném *m/z* v MS nad pozadím často přímo úměrná koncentraci prvku

#### Excitační zdroje pro atomovou emisní spektroskopii v chemické analýze

1. Plamen

#### 2. Elektrické výboje

- a) Elektrodové výboje
  - i. Elektrický oblouk (střídavý, stejnosměrný)
  - ii. Elektrická jiskra (100-500 Hz, nn, vn)
- b) Stejnosměrný plazmový výboj (DCP)
- c) Výboje za sníženého tlaku
  - i. Stejnosměrný doutnavý výboj GDL (Grimm)
  - ii. Radiofrekvenční (RF-GDL) doutnavý výboj
- d) Radiofrekvenční plazmaťa
  - i. Indukčně vázané plazma ICP (za atmosférického tlaku)
  - i. RF kapacitně vázané plazma (plasma jet)
- e) Mikrovlnná plazmata
  - i. MikrovInné indukčně vázané plazma (MIP)
  - ii. Kapacitně vázané mikrovlnné plazma (CMP)
- 3. Laserem indukované plazma (LIBS, LÍPS)

3.11.2016



#### ICP-OES Jobin Yvon 170 Ultrace



#### ICP-OES Jobin Yvon 170 Ultrace



#### **ICP-OES**

#### Varian - Vista MPX<sup>TM</sup>



#### Perkin Elmer - OPTIMA 7000



#### Thermo - iCAP 6300



#### Spectro - CirosVision



#### **ICP-OES**

#### Leeman Labs Teledyne - Profile



3.11.2016



#### ICP výboj – plazmová hlavice



3.11.2016



A- argon/argonové plazma, B – argon/dusíkové plazma. Trubice: 1 – vnější (plazmová), 2 – prostřední, 3 – injektor.
Konfigurační faktor plazmové hlavice = a/b, kde a je vnější průměr prostřední trubice, b je vnitřní průměr vnější (plazmové) trubice.

Toky plynů: **A: 5 – vnější plazmový (8-15 l/min Ar), 6 – střední plazmový (0-1 l/min Ar), nosný (0,5-1,0 l/min Ar)**; B: 5 – chladicí (15-20 l/min N2), 6 – plazmový (5-10 l/min Ar), 7 – nosný (1-3 l/min Ar); 4 – indukční cívka, 5 – chladicí voda.

11





| Ra | dial Torch | and Mount Assembly                |            |  |
|----|------------|-----------------------------------|------------|--|
| 1  | N0580534   | Thumbscrew #10                    |            |  |
| 2  | N0680503   | <b>Crossflow End Cap Assembly</b> | 5          |  |
| 3  | N0582184   | Torch Injector - Alumina          | i nortotta |  |
| 4  | N0582258   | Inner Spray Chamber               |            |  |
| 5  | N0690568   | Quartz Torch                      |            |  |
| 6  | N0690593   | Adjustable Mount Assembly         |            |  |
| 7  | N0690607   | RF Ignitor Cable Assembly         | 18         |  |
| 8  | N0695214   | Fitting - Injector to Chamber     |            |  |
| 9  | N0695220   | Support Torch                     |            |  |
| 10 | N0695222   | Outer Spray Chamber               | A          |  |
| 11 | N0695225   | Adjustable Mount Pointer          | 6          |  |
| 12 | N0695238   | Clamp Plate                       |            |  |
| 13 | N0581558   | Screw, Knurled                    | 1          |  |
| 14 | N0581793   | Clamp Bracket                     | 9          |  |
| 15 | 00473194   | O-Ring                            |            |  |
| 16 | 02506516   | Clear Tygon Tubing                |            |  |
| 17 | 09902207   | O-Ring                            | 1          |  |
| 18 | 09902155   | O-Ring                            | L          |  |
| 19 | 09902247   | O-Ring                            | $-\Gamma$  |  |
| 20 | 09903094   | Insert                            | 10         |  |
| 21 | 09902015   | O-Ring                            | 10         |  |
| 22 | 02506517   | Polyethylene Tube                 |            |  |
| 23 | 09920118   | Insert 1/4in. o.d. 3/16in. i.d.   |            |  |
| 24 | 09940438   | Marker - Plasma                   |            |  |



#### Plazmová hlavice je uložena koaxiálně v indukční cívce a má tyto funkce:

- 1. izoluje plazma od indukční cívky
- 2. usměrňuje tok *vnějšího plazmového plynu*  $\Rightarrow$  podmínky pro iniciaci a udržení stabilního výboje
- 3. umožňuje ovlivnění polohy výboje v axiálním směru pomocí středního plazmového plynu
- 4. umožňuje zavádění vzorku do plazmatu pomocí nosného plynu vytékajícího z trysky injektoru.

#### Plazmová hlavice s indukční cívkou



#### Cívka Perkin-Elmer, OPTIMA, zlacená



Cívka Perkin-Elmer, OPTIMA



#### Plazmová hlavice ICP Toky plynu a jejich funkce

| Prostor           | mezi<br>plazmovou a<br>prostřední<br>trubicí | mezi<br>prostřední<br>trubicí a<br>injektorem | injektor                                          |
|-------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Označení<br>plynu | vnější<br>plazmový                           | střední<br>plazmový                           | nosný                                             |
| Funkce<br>plynu   | vytváří výboj                                | stabilizuje<br>výboj                          | vytváří<br>analytický<br>kanál a vnáší<br>aerosol |

- Plazmové hlavice jsou konstruovány jako:
  - <u>kompaktní</u>, kdy všechny tři trubice tvoří pevný celek,
  - <u>rozebiratelné</u>, kdy jednotlivé trubice jsou samostatně fixovány v plastovém nebo keramickém bloku opatřeném přívody argonu,
  - <u>kombinované</u>, kdy prostřední a vnější trubice tvoří celek a injektor je samostatný.

- Kompaktní:
  - fixní symetrie ©,
  - při poškození nutná výměna jako celek ☺,
- Rozebiratelná:
  - symetrie závislá na výměně 3,
  - při poškození vyměnitelné jednotlivé trubice ③
- Kombinovaná:
  - fixní symetrie vnější a prostřední trubice ③
  - možnost výměny injektoru (korund, křemen, různé průměry trysky <sup>©</sup>.

### Kompaktní plazmové hlavice



Perkin Elmer PE 5500

3.11.2016

#### Rozebiratelné plazmové hlavice (Jobin-Yvon)

Vnější plazmová trubice, křemen



Prostřední plazmová trubice, křemen

Prostřední plazmová trubice, korund





### Kombinované plazmové hlavice



### Kombinované plazmové hlavice

Perkin-Elmer Optima 3000 DV



- Prodloužená plazmová trubice–<u>extended sleeve</u>  $\Rightarrow$ 
  - zvýšení stability výboje <sup>©</sup>
  - snížení pronikání atm. plynů do výboje ©
  - zvýšené opotřebení 🛞
  - pro laterální pozorování nutný výřez analytická zóna uvnitř trubice
- Horizontální hlavice pro axiální pozorování:
  - významné lokální poškození gravitační usazování nevypařeného vzorku v hlavici na "spodní straně"<sup>3</sup>

- Horizontální hlavice pro axiální pozorování:
  - proud horkého Ar směřuje proti vstupní optice spektrometru: nutnost izolovat optiku od ICP:
    - ✓ "odstřihnutí" chvostu výboje a horkého Ar proudem vzduchu kolmo na výboj (shear gas)
    - ✓ rozfukováním chvostu protiproudem plynu
    - ✓ vnořením kovového kuželu s aperturou ve vrcholu do plazmatu (jako ICP-MS)

#### Axiální pozorování



## Plazmová hlavice

- Čištění plazmové hlavice provádí se nejlépe každodenně:
  - minimalizuje se kontaminace,
  - prodlužuje se životnost hlavice.
- Čisticí lázně
  - HNO<sub>3</sub> zředěná 1:1,
  - směs HNO<sub>3</sub> + HCI v poměru 1:1,
  - H<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O<sub>2</sub> pro odstranění zbytků organiky (tuky).
  - Pro čištění plazmové hlavice je možno použít ultrazvukovou lázeň

Vysokofrekvenční (*vf*) generátor dodává výboji ICP energii potřebnou k vykonání ionizační práce. Generátor se skládá ze tří základních částí:

i. zdroje stejnosměrného napětí,

ii. vyskofrekvenčního (vf) oscilátoru a
 iii. obvodu impedančního přizpůsobení s
 indukční cívkou pro generování ICP.

Generátory ICP (1-2 kW) pracují na kmitočtech vyhrazených pro průmyslové použití v pásmech 27, 36, 40, 50 a 64 MHz.

Byla také studována plazmata s frekvencí oscilátoru 80 a 100 MHz.

•Vyšší frekvence poskytují:

- vyšší poměry signálu k pozadí,
- nižší meze detekce,
- menší nespektrální interference,
- snadnější zavádění vzorku
- snížení spotřeby argonu i energie.

Vysokofrekvenční generátor ICP Oscilátor je zdroj elektrických kmitů s ustálenou amplitudou a určitou frekvencí a je tvořen resonančním (laděným) obvodem a zesilovačem.



•Výkonové vf zesilovače generátorů ICP:

• elektronkové,

3.11.2016

polovodičové (cca od1995).

- Při zavedení vzorku do ICP se změní impedance výboje, což vyžaduje impedanční přizpůsobení vf generátoru.
- Podle způsobu, jak se generátor vyrovnává se změnou zátěže plazmatu, rozeznáváme
   2 typy oscilátorů:
  - volně kmitající (s plovoucí frekvencí, <u>free-</u> <u>running</u>),
  - <u>krystalově řízené</u> (s pevnou frekvencí, <u>fixed</u> <u>frequncy</u>).

- <u>Generátor s volně kmitajícím oscilátorem</u> přizpůsobí svou resonanční frekvenci komplexnímu odporu zátěže;
- je <u>stabilizován výkonově</u> ⇒ při změně zátěže (aerosoly koncentrovaných roztoků solí, organická rozpouštědla) se:
- <u>změní frekvence</u> oscilátoru (velmi málo),
- zůstane stabilní výkon předávaný do ICP.

- Generátor s oscilátorem řízeným krystalem:
- se dolaďuje <u>rychlou změnou impedance</u> přizpůsobovacího členu (změnou kapacity proměnného kondenzátoru řízeného servomotorem) tak, aby zůstaly <u>zachovány podmínky pro resonanci</u> vazebního obvodu <u>při frekvenci krystalu</u>.
- Generátor měření <u>odraženého výkonu:</u>
- rozdíl mezi <u>výstupním výkonem oscilátoru a výkonem</u> <u>absorbovaným plazmatem</u>.
- Doladěním se odražený výkon minimalizuje a dosahuje se opět maximální účinnosti vazby.

## Generátor, spotřeba a využití energie

- Do plazmové hlavice je dodáno asi 70-80 % vf výkonu generátoru.
- Zbývající výkon je rozptýlen v obvodech oscilátoru a v indukční cívce v podobě tepla.
- Výkon dodaný do plazmové hlavice je jen částečně využit pro udržení výboje, atomizaci, ionizaci a excitaci.
- V závislosti na konstrukci plazmové hlavice je část výkonu odváděna:
  - konvekcí proudem argonu a

– kondukcí stěnou vnější plazmové trubice.

### Generátor, spotřeba a využití energie

- Výkonová bilance je vyjádřena vztahem
- $0,75 P_g = P_t = P_p + P_s + P_c + P_w$ 
  - $-P_g$  je výkon generátoru,
  - $-P_t$  je příkon do plazmové hlavice,
  - P<sub>p</sub> je příkon potřebný na udržení kinetické teploty plynu 3500 K (65 W) a na spojité záření plazmatu (25 W),
  - P<sub>s</sub> je příkon potřebný na odpaření, disociaci, atomizaci, ionizaci a excitaci vzorku (25 W pro vodné roztoky, 200 W pro org. rozpouštědla).
     3.11.2016

## Generátor, spotřeba a využití energie

- Při výkonu generátoru 1000 W připadá celkem 450 W až 600 W na ztráty :
  - $-P_c$  konvekcí proudem Ar a
  - $-P_w$  přestupem tepla stěnou hlavice,
- Teoreticky na udržení výboje stačí pouze

   100 až 300 W příkonu do plazmové hlavice, tj.
   asi 150-400 W výkonu generátoru.
- Skutečnost: 1300 W při průtoku nosného plynu 0,6 L Ar/min

#### Plazmová hlavice a spotřeba argonu

- Pro udržení stabilního výboje je třeba, aby vnější plazmový plyn dosahoval při daném příkonu do plazmatu alespoň určité
  - minimální lineární rychlosti proudění  $v_c$ (kritická rychlost). Průtok  $F_p$  plazmového plynu je potom určen vztahém

$$F_p = v_c S_P$$

kde S<sub>p</sub> je průřez, kterým proudí vnější plazmový plyn (plocha mezikruží vymezená vnějším průměrem prostřední plazmové trubice a vnitřním průměrem vnější plazmové trubice).

### Plazmová hlavice a spotřeba argonu

- Snížit spotřebu lze tedy zmenšením šířky anulární štěrbiny e mezi prostřední a vnější plazmovou trubicí.
- Konfigurační faktor: = a/b, kde a je vnější průměr prostřední trubice, b je vnitřní průměr vnější (plazmové) trubice.


- Excitační zdroj energie pro vypaření, disociaci, atomizaci a excitaci (ionizaci) se získá jako:
  - energie chemické reakce hoření plamene
  - energie procesů v plazmatu udržovaného vysokofrekvenčním elektromagnetickým polem, nejedná se o hoření = oxidační procesy (proto nelze nazývat plazmovou hlavici ICP hořákem), primárně se jedná o kinetickou energii elektronů a iontů Ar urychlených vf polem

 $vf \rightarrow e^{-} + Ar \rightarrow e^{-} + e^{-} + Ar^{+}$ 

- Vzácné plyny vs molekulární plyny
  - Přednosti vzácných plynů
    - jednoduchá spektra
    - netvoří stabilní sloučeniny
    - v plazmatu se nespotřebovává energie na disociaci "plazmového plynu"
    - vysoká ionizační energie ⇒ excitace a ionizace většiny prvků
  - Nevýhoda vzácných plynů
    - vysoká cena

- Helium je zajímavé díky
  - -nejvyšší 1. ionizační energii (24,6 eV) 😳
  - –vysoké tepelné vodivosti (140,5 mW. m<sup>-1</sup>K<sup>-1</sup> při 293 K) ☺.
- Helium přináší vysoké provozní náklady 😕
- Argon představuje kompromis z hlediska –fyzikálních vlastností

-ceny

- Argon: 1. ionizační energie 15,8 eV  $\Rightarrow$ 
  - ionizace všech prvků kromě He, Ne a F  $\Rightarrow$  ICP-MS  $\odot$
  - nevýhoda Ar: <u>nízká tepelná vodivost</u> (16,2 mW.m<sup>-1</sup>K<sup>-1</sup> při 293 K), 9 x nižší než He ⇒ omezená účinnost atomizačních procesů. Lze zlepšit přídavkem:
  - vodíku nejvyšší tepelná vodivost ze všech plynů

(169,9 mW.m<sup>-1</sup>K<sup>-1</sup> při 293 K)

<u>Přídavek kyslíku</u> umožňuje dokonalé spálení uhlíku při rozkladu organických látek (např. rozpouštědel), čímž se zabrání usazování uhlíku v plazmové hlavici

#### Závislost stupně ionizace na ionizační energii



#### Argonové plazma

- Viskozita plazmatu:
- Viskozita vzácných plynů roste významně s teplotou. Při zvýšení teploty z 293 K na 6000 K <u>vzroste viskozita Ar o jeden řád</u>, což klade značné nároky na zavádění aerosolu do výboje.

- Koncentrace elektronů v ICP:
- 10<sup>20</sup>-10<sup>21</sup> m<sup>-3</sup> v tzv. <u>analytické zóně</u>
- $\times$  plamen (10<sup>14</sup>-10<sup>17</sup>m<sup>-3</sup>)
- <u>stupeň ionizace</u> ICP je přibližně <u>0,1 %</u>.
- Důsledkem vysoké elektronové hustoty je – malý vliv i vysoké koncentrace snadno ionizovatelných prvků na ionizační rovnováhy,
  - významné pozadí v UV a Vis oblasti spektra, vyvolané zářivou rekombinací argonu  $Ar^+ + e^- \rightarrow Ar^0 + hv_{cont}$

- $Ar^+ + e^- \rightarrow Ar^0 + hv_{cont}$
- Toto spojité pozadí prochází maximem při 450 nm, což vysvětluje modrou barvu argonového plazmatu
- Teplota plazmatu:
  - závisí na pozorované oblasti výboje.
  - plazmatu nelze přiřadit jedinou termodynamickou teplotu.

- Teplota plazmatu
- Mezi střední kinetickou energií *E<sub>st</sub>* částic s maxwellovským rozdělením rychlostí a kinetickou teplotou *T<sub>kin</sub>* platí pro jednorozměrný pohyb

$$E_{st} = \frac{1}{2} \, \mathbf{k} T_{kin}$$

 Hmotnost iontů a elektronů je značně rozdílná ⇒ rozdílná je i jejich kinetická energie.

- Základní teploty definované v plazmatu jsou:
  - Kinetická teplota těžkých částic  $T_q$
  - Kinetická teplota elektronů T<sub>e</sub>
  - Excitační teplota  $T_{exc}$
  - Ionizační teplota Tion
  - Teplota záření T
- Jsou–li si tyto teploty rovny, pak je systém v termodynamické rovnováze (TE) – není to případ laboratorních plazmat

 Maxwellovo trojrozměrné rozdělení F(v) rychlostí v všech druhů částic je dáno vztahem

$$F(v) = \frac{\mathrm{d}n}{n_0 \mathrm{d}v} = 4\pi \frac{m^{\frac{3}{2}}}{(2\,\mathrm{k}\,T_{kin})^{\frac{3}{2}}} v^2 \exp\left(-\frac{mv^2}{2\,\mathrm{k}\,T_{kin}}\right)$$

kde  $T_{kin}$  je kinetická teplota  $T_g$  nebo  $T_e$ ,  $n_0$  je počet částic v jednotkovém objemu a m je hmotnost těžké částice nebo elektronu.

 Excitační teplota T<sub>exc</sub> vystupuje v Boltzmannově rozdělení, které vyjadřuje distribuci populace excitovaných hladin atomů a iontů:

$$\frac{n_p}{n_q} = \frac{g_p}{g_q} \exp\left(-\frac{E_p - E_q}{kT_{exc}}\right)$$

kde  $n_p$  a  $n_q$  jsou počty atomů nebo iontů v horním (p) a dolním (q) energetickém stavu,  $g_p$  a  $g_q$  jsou statistické váhy stavů dané multiplicitou g = 2J + 1, kde J = S + L, přičemž J, S a L jsou v uvedeném pořadí celkové, spinové a orbitální kvantové číslo a  $E_p^{11} a^{11} E_q$  jsou energie horní a dolní hladiny přechodů<sup>8</sup>.

 Ionizační teplota T<sub>ion</sub> je parametrem Sahovy rovnice, která popisuje ionizační rovnováhu:

$$\frac{n_i n_e}{n_a} = \left(\frac{2\pi m_e k T_{ion}}{h^3}\right)^{\frac{3}{2}} 2\frac{Z_i}{Z_a} \exp\left(-\frac{E_i}{kT_{ion}}\right)$$

kde  $n_i$ ,  $n_e$ ,  $n_a$  jsou koncentrace iontů, elektronů a neutrálních atomů,  $m_e$  je hmotnost elektronu a  $Z_i$  a  $Z_a$  jsou partiční funkce iontového a atomového stavu daného prvku,  $E_i$  je ionizační energie atomu.

 Jsou-li výše uvedené procesy včetně disociace molekul popsány jedinou teplotou a je-li rozdělení zářivé energie ve spektru exaktně popsáno
Planckovým vyzařovacím zákonem

$$u = \frac{8hv^3}{c^3} \frac{1}{\exp\left(\frac{hv}{kT}\right) - 1}$$

kde *u* je hustota zářivé energie, je daný systém v termodynamické rovnováze TE.

- <u>Laboratorní plazmové zdroje</u> s omezenými rozměry Planckův zákon obecně <u>nesplňují</u> a mohou být proto v nejlepším případě v tzv. <u>částečné termodynamické rovnováze:</u>
- pTE-partial Thermodynamic Equilibrium.
- <u>Částečná termodynamická rovnováha</u> je tedy stav, kdy existuje
  - chemická rovnováha mezi všemi druhy částic včetně iontů a elektronů,
  - rovnovážné rozdělení mezi kinetickou a vnitřní energií částic.

- Je-li změna teploty v plazmatu podél střední volné dráhy částice zanedbatelná ve srovnání se střední teplotou v odpovídajícím objemovém elementu plazmatu, je vliv teplotního gradientu na rovnovážné podmínky nevýznamný a plazma se nachází ve stavu
- Částečné lokální termodynamické rovnováhy partial Local Thermodynamic Equilibrium = pLTE

- Topografie výboje ICP rozlišuje dvě zásadně odlišné oblasti:
  - indukční zónu (plazmový prstenec, annulus), v níž dochází k přenosu energie elektromagnetického pole cívky do plazmatu,
  - analytický kanál, v němž je soustředěn vzorek transportovaný nosným plynem.
- odchylky od **pLTE** jsou především na rozhraní
  - plazmového prstence s teplotou 10000 K a
  - analytického kanálu s tokem chladného argonu, v němž je kinetická teplota  $T_g$  atomů a iontů přibližně 3500 K .

- chladnější centrální kanál se vzorkem je obklopen horkým anulárním plazmatem a vzorek neproniká do indukční oblasti
- excitované atomy v kanálu nejsou obklopeny atomy v nižších energetických stavech
- v indukční oblasti je minimální samoabsorpce (nebo s. nenastává)
- linearita kalibračních závislostí je 5-6 řádů 3.11.2016



- Podle procesů probíhajících v <u>analytickém kanálu</u> a podle prostorového rozdělení emise čar se člení na
  - předehřívací zónu (PreHeating Zone PHZ),
  - počáteční zářivou zónu (Initial Radiation Zone IRZ),
  - analytickou zónu (Normal Analytical Zone NAZ)
  - chvost výboje (Tailflame T)

#### Laterální pozorování





3.11.2016

#### ICP hlavice, výboj

Chvost výboje Analytická zóna

Mg

3.11.2016

PV 8490 Philips (r. 1978)



#### Laterální (radiální) pozorování



- 1- Light path to optical system
- 2- Excitation zone
- 3- Sample flow
- 4- Emission zone
- 5- Recombination zone

Side-on Plasma Interface (SPI)



#### Axiální pozorování





#### Axiální pozorování



3.11.2016

- NAZ je oblastí preferenční excitace iontů:
  - supratermická koncentrace iontů a tedy i
  - výrazná emise iontových čar,
  - poměry intenzity iontové čáry k intenzitě atomové čáry téhož prvku převyšují rovnovážné hodnoty až o 3 řády,

teploty jednotlivých procesů klesají v pořadí

• 
$$T_e > T_{ion} > T_{exc} > T_g$$

Energie [J] emitovaná excitovanými atomy nebo ionty při přechodu z horního stavu *p* na dolní hladinu *q* za jednotku času [s] z jednotkového objemu [m<sup>3</sup>] do jednotkového prostorového úhlu [sr] je <u>emisivita</u> [W sr<sup>-1</sup>m<sup>-3</sup>]

$$J_{pq} = \frac{hv_{pq}}{4\pi} A_{pq} n_p = \frac{hc}{4\pi\lambda_{pq}} A_{pq} n_p$$

kde  $v_{pq}$  a  $\lambda_{pq}$  jsou frekvence a vlnová délka,  $4\pi$  je plný prostorový úhel,  $A_{pq}$  je pravděpodobnost spontánní emise  $p \rightarrow q$  (za sekundu),  $n_p$  je koncentrace atomů a iontů na hladině p [m<sup>-3</sup>], h je Planckova konstanta a c je rychlost syětla

- Emisivita J<sub>pq</sub> rozměrově vystihuje pojem
- "radiální rozdělení intenzity";
- Je to energie vyzářená excitovanými atomy nebo ionty z jednotkového objemu [m<sup>3</sup>] za jednotku času [s] do jednotkového prostorového úhlu [sr] při přechodu z horní hladiny přechodu *p* na dolní hladinu *q*.





- Energie vyzářená za jednotku času do jednotkového prostorového úhlu vrstvou plazmatu s jednotkovým průřezem a s tloušťkou *d* představuje:
- výkon vyzářený do do jednotkového prostorového úhlu jednotkovou plochou povrchu plazmatu a označuje se jako intenzita vyzařování *I<sub>pq</sub>* a představuje "laterální" a 3.11.2 axiální rozdělení intenzity emise"

- Výkon vyzářený určitým povrchem plazmatu se měří v čase (integrace signálu)
- intenzita signálu je odpovídající elektrická veličina (fotoelektrický proud, napětí, náboj).
- Výboj ICP je prostorově nehomogenní útvar
- Koncentrace částic v daném energetickém stavu je v různých místech výboje různá.
- Prostorové rozdělení částic vychází:
  - z prostorového rozdělení hustoty energie
  - ze zavádění vzorku do výboje.

- ➢ Frekvence oscilátoru ovlivňuje
  - rozdělení i hodnoty koncentrace elektronů
  - excitační teploty
- Pro danou frekvenci generátoru má na emisi vliv:
  - Geometrie plazmové hlavice
  - Příkon do plazmatu, P
  - Průtoky plynů (vnější  $F_p$ , střední  $F_a$ , nosný  $F_c$ )
  - Režim pozorování ICP (axiální, laterální/radiální – výška pozorování)
  - ionizační E<sub>i</sub>, E<sub>i+1</sub> a excitační energie E<sub>exc</sub> prvků a přechodů

3.11.2016 Množství a složení vzorku vnášeného do ICP67

- Měřený analytický signál závisí na pozorované oblasti výboje.
- Dva směry pozorování vzhledem k rotační ose symetrie ICP
  - kolmo k ose výboje, neboli side-on view, "radiální" nebo "laterální plazma"
  - podél osy výboje, neboli *end-on view,* "axiální plazma"



1analytický kanál 2 předehřívací zóna 3 počáteční zářivá zóna 4 analytická zóna 5 chvost výboje 6 indukční zóna – annulus 7 aerosol 8 základna výboje h<sub>p</sub> výška pozorování r vzdálenost od osy výboje

#### Prostorové rozdělení emise v ICP Axiální rozdělení intenzity LATERÁLNÍ POZOROVÁNÍ 30 mm Laterální rozdělení intenzity Т Intenzita NAZ čáry Intenzita 4mm čáry IRZ **₩**0 mm Intenzita pozadí Ar Intenzita pozadí Ar Směr pozorování PHZ Indukční cívka Směr pozorování

3.11.2016



#### ► PHZ:

- desolvatace aerosolu
- vypařování pevných částic
- atomizace molekul a radikálů

≻ IRZ:

- Excitace atomových čar s nízkou až střední 1. excitační energií, tyto zde vykazují maxima emise axiálního rozdělení
- Méně intenzivní iontové čáry (II), nízké hodnoty S/B
- <u>Nespektrální (matriční) interference</u> zesílení emise atomových i iontových čar v přítomnosti nadbytku snadno ionizovatelných prvků – <u>excitační interference</u>
# Prostorové rozdělení emise v ICP

#### > NAZ:

- Vyšší koncentrace elektronů a teplota než v × IRZ
- Maxima axiálního rozdělení emise iontových čar a také maxima jejich S/B
- Dostatečná emise atomových čar s nízkými až středními ionizačními energiemi, vyšší poměry S/B proti IRZ
- Jen minimální matriční interference –kombinace efektů zmlžování a transportu aerosolu s interferencemi v plazmatu, obvykle snížení emise o < 5% prvkově nespecifické
- ► T:
  - Nižší teplota a koncentrace elektronů než v NAZ
  - Rekombinační reakce, ionizační interference, intenzivní
     <sup>3.11.2</sup>@mise alkalických kovů

Populace částic n<sub>ap</sub> na hladině p se řídí Boltzmannovým vztahem, kde na je koncentrace atomů, g<sub>p</sub> statsitická váha stavu p, Z<sub>a</sub> partiční funkce, E<sub>k</sub>, E<sub>p</sub> jsou excitační energie stavů p, k

$$n_{ap} = n_a \left(\frac{g_p^a}{Z_a}\right) exp\left(-\frac{E_p^a}{kT}\right)$$

Kde partiční funkce (součet po k stavech ) je

$$Z_a = \sum_k g_k^a \exp\left(-\frac{E_k^a}{kT}\right)$$



Energie fotonu Počet fotonů za **1 s** do **1 sr** jednotkovou plochou povrchu plazmatu z objemu **1×d** 

> Intenzita emise (intenzita vyzařování) atomové čáry závisí na

- > koncentraci atomů (bez náboje) n<sub>a</sub>,
- > vlnové délce  $\lambda_{pq}$ ,
- přechodové pravděpodobnosti A<sub>pq</sub>,
- statistické váze stavu a partiční funkci g<sub>p</sub><sup>a</sup>, Z<sub>a</sub>
- » excitační energii E<sub>p</sub><sup>a</sup>
- <sup>3.11.2016</sup> → Teplotě T

Sahova rovnice popisuje úbytek neutrálních atomů s rostoucí teplotou ve prospěch iontů

$$\frac{n_i n_e}{n_a} = \left(\frac{2\pi m_e k T_{ion}}{h^3}\right)^{3/2} 2\frac{Z_i}{Z_a} exp\left(-\frac{E_i}{k T_{ion}}\right)$$

Stupeň ionizace je vyjádřen zlomkem

$$\alpha = \frac{n_i}{n_a + n_i}$$

Intenzita emise atomové čáry je pak ovlivněna nejen populací atomů excitovaných na horní hladinu přechodu, ale také stupněm ionizace

$$I_{pq} = \left(\frac{hc}{\lambda_{pq}}\right) \frac{d}{4\pi} A_{pq} n_0 (1-\alpha) \left(\frac{g_p^a}{Z_a}\right) \exp\left(-\frac{E_p^a}{kT}\right)$$

kde  $n_0 = n_a + n_i$  je celková koncentrace částic (atomů i iontů) pro daný prvek.

≻Atomová emise:

- roste s teplotou podle Boltzmannova členu,
- ale současně klesá podle Sahovy rovnice.
- Závislost emise na teplotě prochází maximem normová teplota

- Axiální rozdělení intenzity emise atomové čáry vykazuje maximum při určité výšce pozorování *h* v závislosti na koncentraci elektronů a specií Ar<sup>+</sup>, Ar<sup>\*</sup> and Ar<sup>m</sup>, a dále *E<sub>i</sub>*, *E<sub>i+1</sub>* and *E<sub>exc</sub>* kdy je dosaženo "normové teploty" pro danou čáru.
- U stabilních sloučenin hraje důležitou úlohu i disociační energie.

 Intenzita emise iontové čáry je popsána Boltzmannovým vztahem, v němž vystupuje součet ionizační a excitační energie; koncentrace iontů je dána Sahovou rovnicí

$$I_{pq} = \frac{hc}{\lambda_{pq}} \left( \frac{d}{4\pi} \frac{g_p^i A_{pq} n_i}{Z_i} \right) \cdot \exp\left( -\frac{E_i + E_{exc}}{kT} \right) = \frac{hc}{\lambda_{pq}} \left( \frac{d}{4\pi} \frac{g_p^i A_{pq} n_0 \alpha}{Z_i} \right) \cdot \exp\left( -\frac{E_i + E_{exc}}{kT} \right)$$

Emise pozadí v důsledku rekombinace (Ar)

 $I_{v < v_L} = K \frac{n_e n_i}{\sqrt{kT_-}}$ 

K zahrnuje energii fotonu,

prostorový úhel, objem

Intenzita emise rekombinačního kontinua je

- úměrná součinu koncentrací elektronů a iontů Ar<sup>+</sup>,
- nezávisí na frekvenci tohoto záření pro frekvence nižší než je určitá limitní hodnota v<sub>L</sub>

$$I_{\nu > \nu_{L}} = K \frac{n_{e}n_{i}}{\sqrt{kT_{e}}} \exp\left(\frac{h(\nu_{L} - \nu)}{kT_{e}}\right)$$

a exponenciálně klesá pro frekvence vyšší  $_{3.11.20}$  než v<sub>L</sub> směrem ke kratším vlnovým délkám

Axiální rozdělení emise v ICP  
> Platí přibližně 
$$n_i = n_{Ar^+} = n_e$$
  
 $I_{v < v_L} = K \frac{n_e^2}{\sqrt{kT_e}} I_{v > v_L} = K \frac{n_e^2}{\sqrt{kT_e}} exp \left( \frac{h(v_L - v)}{kT_e} \right)$ 

- intenzita rekombinačního kontinua roste proto se druhou mocninou koncentrace elektronů a ta roste s teplotou, t.j. s příkonem.
- Intenzita emise pozadí Ar se zvyšuje s rostoucím příkonem rychleji než intenzita emise čáry.

#### Pozadí v ICP

- Rekombinační kontinuum
- Ar<sup>+</sup> + e<sup>-</sup>=Ar<sup>\*</sup> + hv<sub>cont</sub> λ<sub>max</sub>450 nm Ca<sup>+</sup>/Ca<sup>\*</sup>: > 302 nm, 202 nm; Mg<sup>+</sup>/Mg<sup>\*</sup>: 257-274 nm, <255nm, <162 nm; Al<sup>+</sup>/Al<sup>\*</sup>: 210 nm

- Molekulová pásová emise
- Čarová (I, II) emise
- Bremsstrahlung

Stabilní oxidy nad/pod NAZ; OH (281-355nm); NH 336 nm; NO (200-280 nm); C<sub>2</sub>, CN, CO, PO, SO

205 Ar čar mezi 207-600 nm, většinou u 430 nm, žádné v oblasti 200-300 nm

Ar<sup>+</sup> + e<sup>-</sup>=Ar<sup>+</sup> + e<sup>-</sup> hv<sub>brems</sub> λ>500 nm

#### Vzdálená UV oblast spektra ICP



Periodic table of the elements with sensitive emission lines in the VUV range

3.11.2016 below 180 nm.

#### Pás NH 336 nm



Vliv odsínění zobrazení periferní oblasti výboje na mřížku na pozorovanou emisi molekulového pásu z atmosféry.

1 - clona o šířce 2 mm vymezuje část 4 mm širokého kanálu výboje, emise molekulového pásu snížena, snížena také emise čar (a) z kanálu

- •2 clona 3 mm, emise pásu i čar
  (b) vyšší
- •3 zobrazena celá šířka výboje (clona 40 mm), emise čar(d)
- Při cloně 4 mm je emise čar mírně snížena (c)

#### Chování spektrálních čar

- Rozdíly v prostorovém rozdělení intenzity různých spektrálních čar a jejich odlišnosti v chování při změně pracovních podmínek ICP
- Měkké čáry (soft lines) atomové čáry prvků s nízkými a středními prvními ionizačními energiemi
- Tvrdé čáry (hard lines) atomové čáry prvků s vysokými prvními ionizačními energiemi a převážná většina iontových čar

#### Axiální a radiální rozdělení emise v ICP



3.11.20 Axiální rozdělení emise čar



Radiální rozdělení emise čar 86

- V excitačních mechanismech se uplatňují zejména částice e<sup>-</sup>, Ar<sup>+</sup>, Ar \*
- Elektrony mají význam pro vytváření plazmatu.
- Jsou urychlovány vf polem a ionizují atomy Ar.
- $vf \rightarrow e^- + Ar \rightarrow e^- + e^- + Ar^+$
- Elektrony musí mít kinetickou energii rovnou minimálně ionizační energii Ar (15,8 eV).

- Změna rychlosti elektronů v elektrickém poli iontů *Ar*<sup>+</sup> je spojena s nekvantovaným energetickým přechodem, který je označován jako přechod volně-volný (free-free) a projevuje se emisí při vlnových délkách nad 500 nm.
- Zářivá rekombinace je přechod elektronu z nekvantovaného stavu na některou energetickou hladinu (přechod volně-vázaný, free-bound) při němž se uvolňuje spojité rekombinační záření

- Ar +  $e^- \rightarrow Ar^* + hv_{cont}$
- Maximální intenzita Ar kontinua je při 450 nm.
- Excitované atomy argonu podléhají zářivé deexcitaci
- $\operatorname{Ar}^*_{(2)} \to \operatorname{Ar}^*_{(1)} + \operatorname{hv}_{\operatorname{line2}}$
- $\operatorname{Ar}^*_{(1)} \to \operatorname{Ar}_{(0)} + \operatorname{hv}_{\operatorname{line1}}$
- kde v<sub>cont</sub> a v<sub>line</sub> jsou frekvence spojitého záření a čárové emise a dolní indexy (2), (1) různé excitované stavy, případně základní stav (0).
- Intenzivní atomové čáry argonu se nacházejí v oblasti vlnových délek 400 až 450 nm, ve vzdálené UV oblasti ~ 100 nm se nacházejí další resonanční čáry argonu 3.11.2016

- •Ar<sup>+</sup> + X  $\rightarrow$  Ar + X<sup>+\*</sup>  $\pm \Delta$  E přenos náboje
- •Ar<sup>m</sup> +  $X \rightarrow$  Ar +  $X^{+*}$

• $e^-$  + X  $\rightarrow e^-$  +  $e^-$  + X<sup>+</sup> srážková ionizace

 $^{\bullet}e^{-} + X \rightarrow e^{-} + X^{*}$ 

Penningův efekt srážková ionizace

- srážková excitace
- (X atom analytu)

90



### Fyzikální vlastnosti ICP

- Anulární (toroidální) plazma
- Indukční oblast (10 000 K), skin-efekt
- Centrální analytický kanál (5000-6000 K)
- Vysoká teplota a dostatečná doba pobytu vzorku v plazmatu (3 ms)  $\Rightarrow$  účinná atomizace
- Vysoká koncentrace Ar<sup>+</sup>, Ar<sup>\*</sup>, Ar<sup>m</sup> ⇒ účinná ionizace / excitace (E<sub>i(Ar)</sub>= 15.8 eV)
- Vysoká koncentrace elektronů 10<sup>20</sup>-10<sup>21</sup> m<sup>-3</sup> (0.1% ionizace Ar) >> v plameni (10<sup>14</sup>-10<sup>17</sup> m<sup>-3</sup>) ⇒ malý vliv ionizace osnovy vzorku na posun ionizačních rovnováh ⇒ absence ionizačních interferencí typických pro plamen nebo oblouk<sub>91</sub>

#### Analytické vlastnosti ICP-AES

- Stanovení 73 prvků včetně P, S, Cl, Br, I
- Simultánní a rychlé sekvenční stanovení
- Vysoká selektivita (rozlišení spektrometru)
- Nízké meze detekce (0.1-10 ng/ml)
- Lineární dynamický rozsah 5-6 řádů
- Minimální interference osnovy (< ± 10 % rel.)
- Přesnost (0.5 2 % rel.)
- Správnost (~ 1 % rel.)
- Vnášení kapalných, plynných a pevných vzorků
- Běžné průtoky (ml/min) i mikrovzorky (μl/min)
- Rychlost stanovení 10<sup>2</sup> 10<sup>3</sup> /hod.
- 3.11.20 Automatizace provozu

#### Pracovní parametry zdroje ICP

- Frekvence generátoru f
- Příkon do plazmatu P
- Průtoky plynů F:
  - ≻ vnější plazmový F<sub>p</sub>
  - střední plazmový F<sub>a</sub>
  - ➢ nosný aerosolu F<sub>c</sub>
- Průtok roztoku vzorku v
- Výška pozorování h
- Integrační doba t<sub>i</sub>

#### Vliv výšky pozorování a průtoku nosného plynu na emisi "tvrdé" čáry a molekulového pásu





Vliv podmínek na pozadí tvořené rekombinací Ar (A) a kombinované pozadí s molekulovým pásem (B)



Axiální rozdělení intenzity emise pozadí čáry Y II 371,030 nm v závislosti na průtoku nosného plynu *Fc* (l/min Ar); 1 - 0,79; 2 – 0,92; 3 – 1,06; 4 – 1,19; 5 – 1,32;  $6^{11.2016}$ ; 7 – 1,58; 8 – 1,72;



Pozadí čar Gd II 335,862 nm a Gd II 336,2233 nm tvořené emisí pásu NH 336,0 nm a spojitým rekombinačním zářením argonu, naměřené při různých výškách pozorování *h*; křivka č. – *h* (mm): 1 - 28; 2 – 24; 3 – 20; 4 – 16; 5 – 12; 6 - 8; P = 1,1 kW, průtoky plynů (l/min Ar) *Fc* = 1,06; *Fa* = 0,43; *Fp* =18,3; 2 mg/l Gd v 1,4 mol/l HNO3





Vliv integrační doby na RSD emise



98



$$I_{L+B} = I_{L} + I_{B}$$
$$S_{L+B}^{2} = S_{L}^{2} + S_{B}^{2}$$

Závislost standardní a relativní standardní odchylky čisté intenzity emise čáry  $I_L$  a korigovaní intenzity emise čáry  $I_N$  na koncentraci

$$I_{N} = I_{L+B} - I_{B}$$
  
 $s_{N}^{2} = s_{L+B}^{2} + s_{B}^{2} =$   
 $s_{L}^{2} + 2s_{B}^{2}$ 

## Analytické parametry

#### Mez detekce

- Mez detekce je důležitý parametr, který umožňuje charakterizaci metody a srovnání různých analytických technik.
- Mez detekce je definována jako nejmenší možná koncentrace c<sub>L</sub>, kterou lze s předem stanovenou pravděpodobností odlišit od náhodných fluktuací pozadí.
- Ve spektroskopii neměříme přímo koncentraci, ale signál.
   Vztah mezi signálem a koncentrací je určen kalibrací.
- Za předpokladu, že fluktuace pozadí mají Gaussovo rozdělení, je šum vyjádřen jako standardní odchylka rozdělení o.

#### Analytické parametry Mez detekce

Mezi detekce odpovídá nejmenší hrubý signál X<sub>L</sub>, který lze statisticky odlišit od spektrálního pozadí

 $X_L = B + \mathbf{ks}_B$ 

kde B je průměrná hodnota měření pozadí,  $s_B$  je odhad standardní odchylky měření pozadí B a k je konstanta závislá na hladině spolehlivosti. IUPAC doporučuje k = 3 Čistý signál S<sub>L</sub> odpovídající mezi detekce c<sub>L</sub> je vyjádřen jako:

$$S_L = X_L - B = ks_B$$

Hrubý signál je lineárně vázán na koncentraci c

#### Analytické parametry





#### Optimalizační kritéria

- Signál S při jednotkové koncentrací = citlivost
- Poměr signálu k pozadí S/B, SBR
- Poměr signálu k šumu S/N, SNR
- Relativní standardní odchylka pozadí RSD<sub>B</sub>

- Přesnost (opakovatelnost) RSD<sub>S</sub>= (S/N)<sup>-1</sup>
- Mez detekce C<sub>L</sub>

$$c_{L} = \frac{3s_{B}}{S} \times \frac{B}{B} = 3\frac{s_{B}}{B} \times \frac{B}{S} = 3 \times RSD_{B} \times \frac{1}{SBR}$$

$$\frac{RSD_{B}}{S} = \frac{s_{B}}{B}$$

$$\frac{B}{S} = \frac{1}{SBR}$$

104

#### Analytické parametry

Vliv rozlišení na mez detekce Efektivní šířka spektrální čáry ovlivňuje:

Intenzitu emise čáry
Intenzitu spojitého záření pozadí

• Poměr signál/pozadí je nepřímo úměrný efektivní šířce spektrální čáry  $\Delta \lambda_{eff}$ , poněvadž intenzita emise čáry roste lineárně s šířkou štěrbiny, kdežto intenzita emise pozadí vzrůstá s druhou mocninou šířky štěrbiny.

 <u>Efektivní šířka čáry</u>  $\Delta\lambda_{eff}$  zahrnuje příspěvek fyzikální šířky,  $\Delta\lambda_L$  a instrumentální šířky čáry  $\Delta\lambda_{ins}$ 

$$\Delta \lambda_{\rm eff} = (\Delta \lambda_{\rm L}^2 + \Delta \lambda_{\rm ins}^2)^{1/2}$$

# RSD: dlouhodobá opakovatelnost, reálné vzorky silikátů



# RSD: dlouhodobá opakovatelnost, reálné vzorky silikátů, drift přístroje, diagnostika



Mgll 280 / Mg I 285 nm Mgll / Mg 1.14 Drift warm-up time 11 110 105 100 80 75 70-10 15 20 Time (min) Ball 2.5 ppm -+ Zn ll 10 ppm -\* Ar I 107

Day-to-day reproduc