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INTRODUCTION

Some straightforward reviews on basis sets are available: (Ahlrich & Tay-
lor, 1981), (Andzelm et al., 1984), (Dunning & Hay, 1977), (Feller & David-
son, 1986), (Feller & Davidson, 1990), (Poirier et al., 1985).

Historically, the quantum calculations for molecules were performed as
LCAO MO, i.e. Linear Combination of Atomic Orbitals - Molecular Orbitals.
This means that molecular orbitals are formed as a linear combination of
atomic orbitals:

'l:bi = zn: cui¢u
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where 1); 1s the i1-th molecular orbital, c,; are the coeflicients of linear
combination, ¢, is the py-th atomic orbital, and n is the number of atomic
orbitals.

Strictly speaking, Atomic Orbitals (AO) are solutions of the Hartree-
Fock equations for the atom, i.e. a wave functions for a single electron in the
atom. Anything else is not really an atomic orbital. Some things are similar
though, and there is a lot of confusion in the terminology used. Later on, the
term atomic orbital was replaced by “basis function” or “contraction,” when
appropriate. Early, the Slater Type Orbitals (STO’s) were used as basis
functions due to their similarity to atomic orbitals of the hydrogen atom.
They are described by the function depending on spherical coordinates:
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where N is a normalization constant, ( is called “exponent”. Ther, 8, and
¢ are spherical coordinates, and Y}, is the angular momentum part (function
describing “shape”). The n, 1, and m are quantum numbers: principal,
angular momentum, and magnetic; respectively.

Unfortunately, functions of this kind are not suitable for fast calculations
of necessary two-electron integrals. That is why, the Gaussian Type Or-
bitals (GTOs) were introduced. You can approximate the shape of the STO
function by summing up a number of GTOs with different exponents and
coefficients. Even if you use ten GTO’s to represent STO, you will still cal-
culate your integrals much faster than if original STOs are used. The GTO
(called also cartesian gaussian) is expressed as:

g(a,l,myn;z,y,2) = Ne_a’"Za:lymz”

where N is a normalization constant, « is called “exponent”. The x, y, and
z are cartesian coordinates. The 1, m, and n are not quantum numbers
but simply integral exponents at cartesian coordinates. r% = z? + y2 + 2%

Calling gaussians GTOs is probably a misnomer, since they are not really
orbitals. They are simpler functions. In recent literature, they are frequently
called gaussian primitives. The main difference is that »™!, the preexpo-
nential factor, is dropped, the r in the exponential function is squared, and
angular momentum part is a simple function of cartesian coordinates. The
absence of r™! factor restricts single gaussian primitive to approximating
only 1s, 2p, 3d, 4f ... orbitals. It was done for practical reasons, namely, for
fast integral calculations. However, combinations of gaussians are able to ap-
proximate correct nodal properties of atomic orbitals if primitives are taken
with different signs (see examples later in this text). Following cartesian
gaussian functions are possible:
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3d,, = Ne 2z
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etc.
Sometimes, the so-called scale factor, f, is used to scale all exponents in
the related gaussians. In this case, the gaussian function is written as:

g(a7 l) m7 n) f; m) y) Z) = Ne_afZTZmlymzn

Be careful not to confuse it with “f” for the f-orbital.

The sum of exponents at cartesian coordinates, L = [ + m + n, is used
analogously to the angular momentum quantum number for atoms, to mark
functions as s-type (L=0), p-type (L=1), d-type (L=2), f-type (L=3), etc.

There is a problem with d-type and higher functions. There are only 5
linearly independent and orthogonal d orbitals, while there are 6 possible
cartesian gaussians. If we use all six, we are also introducing a 3s type
function since:

3d,. + 3dyy +3d,, = N(:Ez + y2 + zz)e—aTZ _ ]\[’rze_mﬂ2 = 3s

More recently, this effect was studied for sulphur by (Sapio & Topiol,
1989).

Examination of f-type functions shows that there are 10 possible carte-
sian gaussians, which introduce 4p,, 4p, and 4p, type contamination. How-
ever, there are only 7 linearly independent f-type functions. This is a major
headache since some programs remove these spurious functions and some do
not. Of course, the results obtained with all possible cartesian gaussians will
be different from those obtained with a reduced set.



HOW ARE THESE GAUSSIAN PRIMITIVES DE-
RIVED?

Gaussian primitives are usually obtained from quantum calculations on
atoms (i.e. Hartree-Fock or Hartree-Fock plus some correlated calculations,
e.g. CI). Typically, the exponents are varied until the lowest total energy of
the atom is achieved (Clementi et al., 1990). In some cases, the exponents are
optimized independently. In others, the exponents are related to each other
by some equation, and parameters in this equation are optimized (e.g. even-
tempered or “geometrical” and well-tempered basis sets). The primitives so
derived describe isolated atoms and cannot accurately describe deformations
of atomic orbitals brought by the presence of other atoms in the molecule.
Basis sets for molecular calculations are therefore frequently augmented with
other functions which will be discussed later.

For molecular calculations, these gaussian primitives have to be con-
tracted, i.e., certain linear combinations of them will be used as basis func-
tions. The term contraction means “a linear combination of gaussian prim-
itives to be used as a basis function.” Such a basis function will have its
coefficients and exponents fixed. The contractions are sometimes called Con-
tracted Gaussian Type Orbitals (CGTO). To clear things up, a simple ex-
ample from Szabo and Ostlund, 1989. The coefficients and exponents of
Gaussian expansion which minimizes energy of the hydrogen atom were de-
rived by Huzinaga, 1965. Four s-type gaussians were used to represent 1s
orbital of hydrogen as:

$1s = 0.50907N;e 012317 4 47449 N, e~ 0453757 |
0.13424 N3 e~2013307" 1 ( 01906 N, e 13-36157 (1)

N; is a normalization constant for a given primitive. In the case of gaus-

sians of type s it is equal to (2a/7)%/* .

These primitives may be grouped in 2 contractions. The first contraction
contains only 1 primitive:

_ 2
by = Nye 0123317
3 primitives are present in the second contraction:

s = N[0.4T449 Ny **453757 1 0.13424 Ny~ 201339 1 0.01906. N4 e~ 320157"]
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N is a normalization constant for the whole contraction.

In this case, 4 primitives were contracted to 2 basis functions. It is fre-
quently denoted as (4s) — [2s] contraction (some use (4s)/[2s] notation). The
coeflicients in function ¢, are then fixed in subsequent molecular calculations.

The way in which contractions are derived is not easy to summarize.
Moreover, it depends upon the intended use for the basis functions. It is a
good idea to always read the original paper which describes the way in which
contractions have been done. Some basis sets are good for geometry and en-
ergies, some are aimed at properties (e.g. polarizability), some are optimized
only with Hartree-Fock in mind, and some are tailored for correlated calcu-
lations. Finally, some are good for anions and other for cations and neutral
molecules. For some calculations, a good representation of the inner (core)
orbitals is necessary (e.g. for properties required to analyze NMR spectrum),
while other require best possible representation of valence electrons.

WHY ARE CONTRACTIONS DONE

Obviously, the best results could be obtained if all coefficients in gaussian
expansion were allowed to vary during molecular calculations. Moreover,
the computational effort (i.e. “CPU time”) for calculating integrals in the
Hartree-Fock procedure depends upon the 4th power in the number of gaus-
sian primitives. However, all subsequent steps depend upon the number of
basis functions (i.e. contractions). Also, the storage required for integrals
(when Direct SCF is not used) is proportional to the number of basis func-
tions (not primitives!). Frequently the disk storage and not the CPU time
is a limiting factor. The CPU time requirements are more acute when post-
Hartree- Fock (e.g. correlated methods) are used, since the dependence upon
the number of basis functions here is more steep than the 4th power.

There are two basic forms of contractions, namely “segmented” and “gen-
eral”. The segmented contractions are disjointed, i.e., given primitive appears
only in one contraction. The example given above (4s) — [2s] is a segmented
contraction. Occasionally, one or two primitives may appear in more than
one contraction, but this is an exception to the rule. The general contrac-
tions, on the contrary, allow each of the primitives to appear in each basis
function (contraction). The segmented contractions are far more popular and
will be described first. The reason for their popularity is not that they are



better, but simply, that the most popular ab initio packages do not imple-
ment efficient integral calculations with general contractions. The computer
code to perform integral calculations with general contractions is much more
complex than that for the segmented case.

SEGMENTED CONTRACTIONS. TERMS AND NO-
TATION

The segmented basis sets are usually structured in such a way that the
most diffuse primitives (primitives with the smallest exponent) are left uncon-
tracted (i.e. one primitive per basis function). More compact primitives (i.e.
those with larger exponents) are taken with their coeflicients from atomic
Hartree-Fock calculations and one or more contractions are formed. Then
the contractions are renormalized. Sometimes different contractions share
one or two functions (the most diffuse function(s) from the first contraction
enters the next one).

Cartesian gaussians are grouped in shells corresponding to the same value
of angular momentum quantum number. Of course, these shells should not be
confused with electron shells (i.e. electrons with the same principal quantum
number: K — n=1, L - n=2, etc.). Quantum chemists must have run out
of words on this one. And hence, we have s-shell, p-shell, d-shell, f-shell,
g-shell, etc. The shell is a collection of cartesian gaussians that have the
same L (see definition of cartesian gaussian above). Thus, the s-shell is a
collection of s type gaussians; p-shell is a collection of p-type gaussians; d-
shell is a collection of d-type gaussians; and so on. Of course, combining
primitives belonging to different shells within the same contraction does not
make sense because primitives from different shells are orthogonal.

But even here there is a room for more confusion. Many basis sets use
the same exponents for functions corresponding to the same principal quan-
tum number, i.e., electronic shell. STO-3G is an example, as well as other
basis sets from Pople’s group. Atoms of the first and second row (i.e. Li -
Ne, Na - Cl) have the same exponents for s- and p-type gaussians formally
associated with a given electron shell of the isolated atom. For the basis sets
in which s- and p-type functions share the same exponents, the term SP-shell
is used. Sometimes term L-shell is used by analogy to the 2nd electron shell.
This approximation works very well in practice. Moreover, it is possible to



write efficient code for calculating integrals for such case. It is important to
stress here that the distinction between inner orbitals and valence orbitals is
kind of arbitrary and lingers from the past era of Slater orbitals. Contrac-
tions consisting of primitives with large exponents are associated with inner
atomic orbitals while more diffuse fuctions are allied with valence orbitals.
Basis functions are not usually atomic orbitals, and in many cases, they do
not even resemble orbitals of isolated atoms. In fact, examining coefficients
of molecular orbitals frequently reveals that these “core” basis functions con-
tribute substantially to the Highest Occupied Molecular Orbital (HOMO). It
is a consequence of the fact that basis functions on a given center are usually
not orthogonal to each other. Also “core” basis functions on different centers
are not really compact and overlap to a great extent with “core” functions on
neighbor centers — situation not likely to occur with true atomic core orbitals.

The early gaussian contractions were obtained by a least square fit to
Slater atomic orbitals. The number of contractions (not primitives!) used
for representing a single Slater atomic orbital (i.e. zeta, () was a measure of
the goodness of the set. From this era we have terms like single zeta (SZ),
double zeta (DZ), triple zeta (TZ), quadruple zeta (QZ), etc. In the minimal
basis set (i.e. SZ) only one basis function (contraction) per Slater atomic
orbital is used. DZ sets have two basis functions per orbital, etc. Since
valence orbitals of atoms are more affected by forming a bond than the inner
(core) orbitals, more basis functions should be assigned to describe valence
orbitals. This prompted development of split-valence (SV) basis sets, i.e.,
basis sets in which more contractions are used to describe valence orbitals
than core orbitals. That more basis functions are assigned to valence orbitals
does not mean the valence orbitals incorporate more primitives. Frequently,
the core orbitals are long contractions consisting of many primitive gaussians
to represent well the “cusp” of s type function at the position of the nucleus.
The “zeta” terminology is often augmented with a number of polarization
functions which will be described later. So, DZP means double-zeta plus
polarization, TZP stands for triple-zeta plus polarization, etc. Sometimes
the number of polarization functions is given, e.g. TZDP, TZ2P, TZ+2P
stands for triple-zeta plus double polarization. Letter V denotes split valence
basis sets, e.g., DZV represents basis set with only one contraction for inner
orbitals, and two contractions for valence orbitals. The creativity here is
enormous and spontaneous.

The minimal basis set is the smallest possible set, i.e., it contains only one



function per occupied atomic orbital in the ground state. Actually, it always
includes all orbitals from partially occupied subshells and valence p-type
functions for elements from the first 2 groups of the periodic table. So for Li
and Be atoms it has 2 s-type contractions and 1 p-type contraction. Minimal
basis set for S atom has 3 s-type contractions and 2 p-type contractions. The
most popular minimal basis sets are the STO-nG, where n denotes number of
primitives in the contraction. These sets were obtained by the least square fit
of the combination of n gaussian functions to a Slater type orbital of the same
type with ¢ = 1.0, For this set additional constraint is used, that exponents of
corresponding gaussian primitives are the same for basis functions describing
orbitals with the same principal quantum number (e.g. the same primitives
are used for 2s and 2p function). Then, these exponents are multipled by the
square of zeta in the Slater orbital which described best the set of molecules.
For details, see Szabo and Ostlund (1989) or original literature quoted on
page 71 of Hehre et al. (1986). The STO-3G (i.e. 3 primitives per each
Slater type function) is the most widely used set.

For other sets a more complicated notation needs to be used to specify the
number of primitives and contractions explicitly. The parentheses () embrace
the number of primitives that are given in the order of angular momentum
quantum number. Square brackets [] are used to specify the number of result-
ing contractions. For example: (12s,9p,1d) means 12 primitives on s-shell, 9
primitives on p-shell, and 1 primitive on d-shell. This is sometimes abbrevi-
ated even further by skipping the shell symbols (12,9,1). The [5,4,1] means
that s-shell has 5 contractions, p-shell has 4 contractions and d-shell has 1
contraction. To denote how contractions were performed, the following no-
tation is frequently used: (12,9,1) — [5,4,1] or (12,9,1)/[5,4,1] or (12s,9p,1d)
— [5s,4p,1d]. This means that 12 s-type primitives were contracted to form
5 s-type contractions, 9 p-primitives were contracted to 4 basis functions and
1 d-primitive was used as a basis function by itself. Note of caution here.
The statement “9 p-primitives were contracted to 4 basis functions” actually
means that 12 basis functions were created. Each p-type basis function has
3 variants: p., py, and p, which differ in their cartesian part (i.e., angular
part). The same is true for d-, {-, and higher angular momentum functions.

The notation above does not say how many primitives are used in each
contraction. The more elaborate notation explicitly lists the number of primi-
tives in each contraction. For example: (63111,4311,1) means that there are 5
s-type contractions consisting of 6, 3, 1, 1 and 1 primitives, respectively. The



p-shell consists of 4 basis functions with 4, 3, 1 and 1 primitives, and d-shell
has 1 uncontracted primitive. Sometimes slashes are used instead of commas:
(63111/4311/1). This is sometimes “abbreviated” to (633x1,432x1,1). There
is also another notation to denote contractions as L(i/j/k/l1...) for each shell
corresponding to angular momentum quantum number equal to L. For exam-
ple, the (63111,4311,1) basis set is represented as: s(6/3/1/1/1), p(4/3/1/1),
and d(1). Of course, variants of this notation are also used. You can find
this set written as: (6s,3s,1s,1s,1s/4p,3p,1p,1p/1d) or (6,6,1,1,1/4,3,1,1/1)
or [6s,3s,1s,1s,1s/4p,3p,1p,1p/1d] (sic!). I did not study the combinatorics of
this, but quantum chemists might have exhausted all combinations of dig-
its, brackets and commas. However, if you ask 10 quantum chemists which
notation is considered standard, you will get 20 different answers.

Sometimes the same primitive is incorporated in two contractions (i.e.
is “doubled”); e.g., the popular Chandler-McLean (12,9) sulphur basis set
(McLean and Chandler, 1980) is contracted as [6,5] with the scheme (631111,
42111). If you count primitives contained in contractions for the s-shell, you
get 13 primitives instead of 12. This means that one primitive is shared
(i.e. doubled) between two contractions, 6- and 3-contraction in this case.
It would make little sense to share a primitive between 6- and 1- or 3- and
1-contrac- tion since such contraction would yield the basis set of the same
quality as “undoubled” one. In many cases the smallest exponent from the
first contraction is repeated in the next contraction as the largest one. In the
above case, the basis set formally represents a general contraction, but since
only one function is doubled, this set is used frequently in programs that do
not support general contractions.

By convention, the primitives are listed as exponents and coefficients
starting from the highest exponent. In tables of exponents and coeflicients
the numbers are frequently represented in an interesting way, with powers of
10 in parentheses, e.g. 457.3695 is denoted as 4.573696(+2) and 0.01403732
as 1.403732(-2). Of course, it is obvious if you know it. The typical basis set
specification (Gordon, 1980, modified) is given below as an example:

In the example above, corresponding exponents for s- and p-type contrac-
tions are equal but coefficients in s- and p-type contractions are different.
Gaussian primitives are normalized here since coefficients for basis functions
consisting of one primitive (last row) are exactly 1.0. The basis set above
represents the following contraction (16s,10p) — [4s,3p] or (6631,631).

To add to the confusion, the coeflicients are sometimes listed either as



Table 1: 66-31G basis set for silicon.

Shell  Exponent s coefficient p coefficient

1S 1.61921(+4) 1.94924(-3)
2.43609(+3) 1.48559(-2)
5.56001(+2) 7.25689(-2)
1.56813(+2) 2.45655(-1)
5.01692(+1) 4.86060(-1)
1.70300(+1)  3.25720(-1)

2 SP  2.93350(+2) -2.82991(-3) 4.43334(-3)
7.01173(4+1) -3.60737(-2)  3.24402(-2)
2.24301(+1) -1.16808(-1) 1.33719(-1)
8.19425 9.35768(-2)  3.26780(-1)
3.14768 6.01705(-1)  4.51139(-1)
1.21515 4.22207(-1)  2.64105(-1)

3 SP  1.65370 -2.40600(-1) -1.51774(-2)
5.40760(-1) 7.37953(-2)  2.75139(-2)
2.04406(-1) 1.04094 7.83008(-1)

3 SP 7.23837(-2) 1.00000 1.00000
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original coeflicients in atomic orbitals or are renormalized for the given con-
traction. In some cases coefficients are premultiplied by a normalization
constant for a gaussian primitive, but in most cases it is assumed that
g9(a,l,m,n;z,y, z) is already normalized (and this is the correct way!). You
have to be prepared for surprises when entering explicit basis sets from the
literature. Program manuals neglect basis sets description assuming it is
common knowledge. When specifying structure of the basis sets for the en-
tire molecule, slashes are used to separate information for different atoms
(or rows, if basis sets for a given row have the same structure for all atoms).
The information is given starting from the heaviest atoms. For example, the
basis set for water would be given as (10s,5p,1d/5s,1p) — [4s,2p,1d/2s,1p]
in which case the contractions for oxygen atoms are (10,5p,1d) — [4s,2p,1d]
and for the hydrogen (5s,1p) — [2s,1p].

Pople’s basis sets

A different convention was adopted by Pople and coworkers. The basis set
structure is given for the whole molecule, rather than particular atom. This
notation emphasizes also a split valence (SV) nature of these sets. Symbols
like n-1jG or n-ijkG can be encoded as: n - number of primitives for the
inner shells; ij or ijk - number of primitives for contractions in the valence
shell. The ij notations describes sets of valence double zeta quality and ijk
sets of valence triple zeta quality. Generally, in basis sets derived by Pople’s
group, the s and p contractions belonging to the same “electron shell” (i.e.
corresponding formally to the same principal quantum number n) are folded
into a sp-shell. In this case, number of s-type and p-type primitives is the
same, and they have identical exponents. However, the coefficients for s- and
p-type contractions are different.

Now, some examples. The 4-31G basis set for hydrogen (hydrogen has
only valence electrons!) is a contraction (31) or (4s) — [2s]; for first row atoms
(8s,4p) — [3s,2p] or (431,31); and for 2nd row atoms the contraction scheme
is (12s,8p) — [4s,3p] or (4431,431). For water molecule, these contractions
could be encoded as (431,31/31). The 6-311G set represents the following
contractions for water (6311,311)/(311) or (11s,5p/5s) — [4s,3p/3s].

The Pople’s basis sets can also be augmented with d type polarization
functions on heavy atoms only (n-ijG* or n-ijkG*) or on all atoms, with
p-functions on hydrogens (n-ijG** or n-ijkG**). In methane, the 4-31G*
encodes the following split (431,31,1)/(31) or (8s,4p,1d/4s)—[3s,2p,1d/2s],

while 6-311G** for HCN molecule would involve the following contractions:
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(6311,311,1)/(311,1) or (11s,5p,1d/5s,1p) — [4s,3p,1d/3s,1p]. Currently, the
6-311G keyword for second row atoms, as implemented in Gaussian90 pro-
gram, does not actually correspond to the true 6-311G set. It is explicitly
mentioned in Gaussian90 manual. For these atoms, 6-311G keyword defaults
to MC basis sets (McLean and Chandler, 1980) of the type (12s,9p) — [6,5]
with contraction scheme (631111,42111). Note, that one of the s-type func-
tions is doubled. The basis sets for P, S and Cl correspond actually to the
“anion” basis sets in the original paper since “these were deemed to give
better results for neutral molecules as well.”

Sometimes, for atoms of the second row nm-ijG notation is used. For
example, 66-31G means that there is:

e 1 function containing 6 primitives on the innermost s-shell,

e 1 set of functions belonging to the inner SP-shell (i.e. 2SP shell), each
consisting of 6 gaussian primitives (i.e. 1 s-type function and p,, py,
p. functions consisting of 6 primitives with the same exponents). Note
though that coeflicients in s and p type contractions are different,

e 2 sets of SP functions for valence SP shell (one set consisting of con-
tractions with 3 primitives and the other with 1 primitive).

It is possible to write this as (16s,10p) — [4s,3p] or in more detail as (6631,631)
contraction scheme or alternatively as s(6/6/3/1), p(6/3/1).

Polarization and diffuse functions

The original contractions derived from atomic Hartree-Fock calculations
are frequently augmented with other functions. The most popular are the
polarization and diffuse functions. The polarization functions are simply
functions having higher values of L than those present in occupied atomic
orbitals for the corresponding atom. At least for me, there is some ambiguity
here, since for lithium, the p-type functions are not considered polarization
functions, while for sulphur, the d-functions are considered polarization func-
tions. In both cases these orbitals are not populated in the ground electronic
state of the atom. The reason for including p-type functions in the Li and
Be atoms, even in the minimal basis sets, is prac- tical, however. Without
these functions, the results are extremely poor. The reason for not including
d-type functions for sulphur should be the same as for other atoms, i.e., you
can obtain reasonable results without them. I wish, I could believe that.
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The exponents for polarization functions cannot be derived from Hartree-
Fock calculations for the atom, since they are not populated. However, they
can be estimated from correlated calculations involving atoms. In practice,
however, these exponents are estimated “using well established rules of thumb
or by explicit optimization” (Dunning, 1989).

The polarization functions are important for reproducing chemical bond-
ing. They were frequently derived from optimizing exponents for a set of
molecules. They should also be included in all correlated calculations. They
are usually added as uncontracted gaussians. It is important to remember
that adding them is costly. Augmenting basis set with d type polarization
functions adds 5 (or 6) basis function on each heavy atom while adding f
type functions adds 7 (or 10, if spurious combinations are not removed).
This brings us to the problem of specifying the number of d, f, g, etc. po-
larization functions in a form of some compact notation. Unfortunately,
there is no provision for this information in the notations described above.
Pople’s 6-31G* basis uses 6 d type functions as polarization functions, while
6-311G* uses 5 of them. The () notation is no better. If the paper does
not say explicitly how many d or f functions are used, you are on your own.
The only way to find out is to repeat the calculations or contact the author.
Many papers do not specify this important information. The Pople’s group
introduced yet another more general notation to encode type of polarization
functions. The easiest way is to explain an example. The 6-31G** is synony-
mous to 6-31G(d,p); the 6-311G(3d2f,2p) represents 6-311G set augmented
with 3 functions of type d and 2 functions of type f on heavy atoms, and 2
functions of type p on hydrogens or specifically (6311,311,111,11)/(311,11),
ie. (11s,4p,3d,2f/5s,2p) — [4s3p3d2f/3s2p] contraction. The 6 d-type po-
larization function is added to 6-31G set, while only 5 to 6-311G. For both
6-31G and 6-311G set, f-type polarization functions are added in groups of
7. Polarization functions are, as a rule, uncontracted. More information
can be found in the following papers: (Dunning, 1989), (Francl et al., 1982),
(Gutowski et al., 1987), (Jankowski, 1985), (Krishnan et al., 1980).

The basis sets are also frequently augmented with the so-called diffuse
functions. The name says it all. These gaussians have very small exponents
and decay slowly with distance from the nucleus. Diffuse gaussians are usu-
ally of s and p type, however sometimes diffuse polarization functions are also
used. Diffuse functions are necessary for correct description of anions and
weak bonds (e.g. hydrogen bonds) and are frequently used for calculations of
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properties (e.g. dipole moments, polarizabilities, etc.). For the Pople’s basis
sets the following notation is used: n-1ij+G, or n-ijk+G when 1 diffuse s-type
and p-type gaussian are added to a standard basis set on heavy atoms. The
s- and p-type function have the same exponents in this case. The n-1j++G,
or n-ijk++G are obtained by adding 1 diffuse s-type and p-type gaussian on
heavy atoms and 1 diffuse s-type gaussian on hydrogens. For example, the
6-31++G* represents (6311,311,1)/(311) or (11s,5p,1d/5s) — [4s,3p,1d/3s].
The 6-3114G(2d1f,2pld) stands for (63111,3111,11,1)/(311,11,1) split, or
(12s,6p,2d,1f) — [5s,2p,1d]. For more information about diffuse functions
see, for example (Clark et al., 1983), (Del Bene, 1989), and (Frisch et al.,
1984).

To calculate total number of primitives/basis functions in your molecule,
you sum up the number of primitives/basis functions for each partaking atom.
As an example, let us compute the number of functions for H2SO3 molecule
assuming the use of Gaussian90 program. The 6-311++G(3df,2p) basis set
is used as an example. In this case, the reduced set of d and f gaussians is
used, i.e., 5 d-type functions and 7 f-type functions. It corresponds to the
following contractions:

S: (6311111,421111,111,1) (for sulphur, Gaussian90 defaults to McLean-
Chandler basis set (631111,42111) for sulphur anion which is aug-
mented with one diffuse s and one diffuse p function, and three d and
one f polarization functions)

O: (63111,3111,111,1) (this is 6-311G for oxygen augmented with one s-
and one p-type diffuse function, and three d and one f polarization
function)

H: (3111,11) (this is 6-311G augmented with one diffuse s and two p-
functions for polarization)

Number of basis functions:

S: 7 s-type functions, 6x3 p-type functions, 3x5 d-type functions and 1x7
f-type functions

O: 5 s-type functions, 4x3 p-type functions, 3x5 d-type functions and 1x7
f-type functions
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H: 4 functions of type s and 2x3 functions of type p (there are 3 p function
for each p type contraction, i.e. py, py, P2)

H2S503 = (4 + 2x3)x2 4+ (7 + 6x3 + 3x5 4+ 1x7) + (5 + 4x3 + 3x5
+ 1x7)x3 = 184

Total number of gaussian primitives:

S: 1x(64+3+1+14+1+141) + 3x(4+2+1+1+141) + 5x(1+1+1) + 7Tx1 =
66

O: 1x(6+43+1+1+1) + 3x(34+1+141) + 5x(14+1+1) + 7x1 = 52
H: 1x(34+1+141) + 3x(141) = 12

H2S503 = 2x12 + 66 4+ 3x52 = 246 primitives.

GENERAL CONTRACTIONS. TERMS AND NO-
TATION

Raffenetti (1973) introduced term “general contraction” for basis sets in
which the same gaussian primitives can appear in several basis functions. In
general contraction scheme, the basis functions are formed as different linear
combinations of the same primitives. This is clearly in contrast with the
segmented scheme described above. Please do not confuse general contrac-
tions with a term “general basis set” used in some program manuals to denote
“user defined segmented basis sets”.

General contractions have many advantages from the theoretical point
of view. The most important is that they might be chosen to approximate
true atomic orbitals which makes interpretation of coefficients in molecular
orbitals meaningful. Also for correlated calculations their performance is
praised (Almlof and Taylor, 1987; Almlof et al., 1988; Dunning, 1989) Sec-
ondly, they can be chosen in a more standard way than segmented contrac-
tions, either as true atomic orbitals obtained from Hartree- Fock calculations
for the atom with uncontracted primitives as basis functions, or as Atomic
Natural Orbitals (ANO). For description of ANO’s consult papers by Almlof
and coworkers or read appropriate chapter in Szabo and Ostlund, (1989).
The only problem with general contractions is that only a few programs sup-
port them. The code for integral package is much more complicated in this
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case, since it has to work on a block of integrals at each time, to compute
the contribution from the given primitive set only once. Of course, you can
always enter general contractions as “user defined segmented basis sets,” by
repeating the same primitives over and over again in different contractions.
This will cost you, however, immensely in computer time at the integral
computation stage. Remember, the time required for calculating integrals is
proportional to the 4th power in the number of gaussian primitives, and most
programs assume that primitives entering different contractions are different.

As an example, the general contractions of (8s4p) set of primitives for
oxygen by Huzinaga et al., 1971 (taken from: Raffenetti, 1973).

Exponents ‘ coeflicients ‘
s-exponents 1s 2s s’ s”
5.18664(+3) 1.95900(-3) 4.49000(-4) 0.00000 0.00000
7.77805(42) 1.50290(-2)  3.38100(-3) 0.00000 0.00000
1.76161(+2) 17.38340(-2) 1.76630(-2) 0.00000 0.00000
4.93608(+1) 2.47316(-1) 6.05540(-2) 0.00000 0.00000
1.58205(+1) 4.73314(-1) 1.59948(-1) 0.00000 0.00000
5.51493 3.27039(-1) 1.46197(-1) 0.00000 0.00000
1.03159 1.93420(-2) -5.46581(-1) 0.00000 1.00000
3.06844(-1) -3.57900(-3) -5. 84553( 1) 1.00000 0.00000
p-exponents 2p p’ p”
1.78462(+1) 4.25100(-2)  0.00000 0.00000

3.88748 2.26972(-1)  0.00000 0.00000

1.05481 5.07788(-1)  0.00000 1.00000
2.77222(-1)  4.63550(-1)  1.00000 0.00000

In the table above, integer numbers in parentheses denote powers of 10
multiplying number in front of them.

The set above can be described as (8s,4p) — [4s,3p] contraction. Clearly,
the notation giving the number of primitives in each contraction as (abcd...)
is not really useful here. It is especially true with newer sets implement-
ing general contractions, where each primitive has all nonzero coeflicients in

practically every column.
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EFFECTIVE CORE POTENTIALS (EFFECTIVE
POTENTIALS)

It was known for a long time that core (inner) orbitals are in most cases
not affected significantly by changes in chemical bonding. This prompted
the development of Effective Core Potential (ECP) or Effective Potentials
(EP) approaches, which allow treatment of inner shell electrons as if they
were some averaged potential rather than actual particles. ECP’s are not
orbitals but modifications to a hamiltonian, and as such are very eflicient
computationally. Also, it is very easy to incorporate relativistic effects into
ECP, while all-electron relativistic computations are very expensive. The
relativistic effects are very important in describing heavier atoms, and luckily
ECP’s simplify calculations and at the same time make them more accurate
with popular non-relativistic ab initio packages (provided that such packages
have support for ECP’s). The core potentials are usually specified for shells
that are filled, however, especially for rare earth elements with partially filled
f cores, the open shell cores are necessary (see, e.g., Dolg et al., 1989). For the
rest of electrons (i.e. valence electrons), you have to provide basis functions.
These are special basis sets optimized for the use with specific ECP’s. These
basis sets are usually listed in original papers together with corresponding
ECP’s. Some examples of papers describing ECP’s: (Andrae et al., 1991),
(Durand and Bartelat, 1975), (Hay and Wadt, 1985ab), (Hurley et al., 1986),
(Pacios and Christensen, 1985), (Stevens et al., 1984), (Wadt and Hay, 1985),
(Walace et al., 1991). The ECP are usually tabulated in the literature as
parameters of the following expansion:

M
ECP(r) = Z dirmie= G
=1

where M is the number of terms in the expansion, d; is a coefficient for
each term, r denotes distance from nucleus, n; is a power of r for the i-th
term, and (; represents the exponent for the i-th term.

To specify ECP for a given atomic center, you need to include typically:
the number of core electrons that are substituted by ECP, the largest angular
momentum quantum number included in the potential (e.g., 1 for s only, 2
for s and p, 3 for s, p, and d; etc.), and number of terms in the “polynomial
gaussian expansion” shown above. For each term in this expansion you need
to specify: coeflicient (d;), power of r (n;) and exponent in the gaussian
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function (zeta;). Also you need to enter basis set for valence electrons specific
to this potential. As a result of applying the ECP’s you drastically reduce
number of needed basis functions, since only functions for valence electrons
are required. In many cases, it would simply be impossible to perform some
calculations on systems involving heavier elements without ECP’s (try to
calculate number of functions in TZ2P basis set for e.g. U, and you will
know why).
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