
Hartree{Fok ApproximateMoleular Orbital TheoryJustin T. Fermann3 letures on theory1 leture on programming
PurposeFirst, we de�ne the problem, beginning with the Shr�odinger equationĤ	 = E	: (1)Our goal is to ome up with an analyti equation for the energy whih an be minimized withrespet to some variational parameter(s) to give an upper bound on the energy. To do this, wemust1. Understand the hamiltonian operater Ĥ.2. Find an appropriate wave funtion 	 whih allows simple alulation of the eletroni energy.3. Examine potential variational parameters to �gure out how to minimize the energy.
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It will likely be onvenient to have an outline of where we're going, so here it is:I. Puropse (whih we've been through)II. The Hamiltonian, Ĥ� Kineti energy operators� Coulombi potential operatorsIII. The Wave Funtion, 	� 1 eletron orbitals� Hartree produts� Slater determinantsIV. Hamiltonian as Energy Operator, Shr�odinger Equation� E = h	jĤj	i� Integrals over one eletron operators� Integrals over two eletron operators� Spei� ase energy expressions� General form of HF energyV. What Variational Parameter?� LCAO{MO theory, energy in AO basis� Density MatriesVI. Hartree{Fok Equations� Lagrangs's Undetermined Multipliers� A load 'o mathVII. Matrix FormalismVIII. Program Outline
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The Hamiltonian, ĤThe Hamiltonian is the total energy operator for a system, and is written as the sum of the kinetienergy of all the omponents of the system and the internal potential energy. In an atom ormoleule, omprised of positive nulei and negative eletrons, the potential energy is simply thatdue to the oulombi interations present. Thus for the kineti energy in a system of M nuleiand N eletrons: T̂N = � MXA 12MAr2A (2)T̂e = � NXi 12r2i : (3)And for the potential energy: V̂NN = MXA>B ZAZBrAB (4)V̂ee = NXi>j 1rij (5)V̂eN = � MXA NXi ZAriA : (6)Sine Ĥ = T̂ + V̂ ,̂H = � NXi 12r2i � MXA NXi ZAriA + NXi>j 1rij � MXA 12MAr2A + MXA>B ZAZBrAB : (7)Within the Born{Oppenheimer approximation, we assume the nulei are held �xed while theeletrons move really fast around them. (note: Mp=Me � 1840.) In this ase, nulear motion andeletroni motion are seperated. The last two terms an be removed from the total hamiltonianto give the eletroni hamiltonian, Ĥe, sine V̂NN = K, and r2A = 0. The nulear motion ishandled in a rotational/vibrational analysis. We will be working within the B{O approximation,so realizing Ĥe = � NXi 12r2i � MXA NXi ZAriA + NXi>j 1rij (8)we ompletly de�ne the problem. Solving the eletroni Shr�odinger equation using this will givethe eletroni struture of a moleular system at a �xed nulear geometry.3



The Wave Funtion, 	We've derived a omplete many{eletron Hamiltonian operator. Of ourse, the Shr�odinger equa-tion involving it is intratable, so let's onsider a simpler problem, involving the one{eletronhamiltonian ĥ(i) = �12r2i + MXA 1riA (9)whih involves no eletron{eletron interation. This is soluable in the B{O approximation (reallthe hydrogen atom by lettingM = 1). Call the solutions to the one{eletron Shr�odinger equation�i(x). These will be moleular spin orbitals when we get around to it, but for now let it suÆe toknow they satisify the eigenequation ĥ(i)�j(xi) = "j�j(xi) (10)with the interpretation that eletron i oupies spin orbital �j with energy "j. If we ignoreeletron{eletron interation in Ĥe, we onstrut a simpler system with HamiltonianĤ = NXi ĥ(i): (11)It will have eigenfuntions whih are simple produts of oupied spin orbitals, and thus an energywhih is a sum of individual orbital energies, as	HP = �i(x1)�j(x2)�k(x3) � � ���(xN) (12)h	jĤj	i = "i + "j + "k + : : :+ "� = E: (13)This kind of wavefuntion is alled a Hartree Produt, and it is not physially realisti. Inthe �rst plae, it is an independent{eletron model, and we know eletrons repel eah other.Seondly, it does not satisfy the antisymmetry priniple due to Pauli whih states that the signof the wavefuntion must be inverted under the operation of swithing the oordinates of any twoeletrons, or 	(� � �xi � � �xj � � �) = �	(� � �xj � � �xi � � �): (14)Part of the proof of equation 13 aknowledges this is not so for a Hartree Produt. To rem-edy this, �rst onsider a two{eletron system, suh as helium. Two equivalent Hartree Produtwavefuntions for this system are 	HP1 = �i(x1)�j(x2)	HP2 = �i(x2)�j(x1): (15)4



Obviously, neither of these is appropriate. However, using the old \by inspetion..." trik, wenotie that 	 = 1p2[�i(x1)�j(x2)� �i(x2)�j(x1)℄ (16)does. The mathematial form of this wavefuntion an be generated by a determinant of �'s,	 = 2�1=2 ����� �i(x1) �j(x1)�i(x2) �j(x2) ����� : (17)The familiar Pauli exlusion priniple follows diretly from this example. When we attempt todoubly oupy a spin orbital �i by putting eletron 1 and eletron 2 in it, what happens?	 = 2�1=2 ����� �i(x1) �i(x1)�i(x2) �i(x2) ����� (18)= 1p2[�i(x1)�i(x2)� �i(x2)�i(x1)℄= 0Equation 17 an be generalized to give the N eletron Slater determinant	 = (N !)�1=2 ���������� �i(x1) �j(x1) � � � ��(x1)�i(x2) �j(x2) � � � ��(x2)... ... . . . ...�i(xN ) �j(xN ) � � � ��(xN) ���������� : (19)A shorthand notation for a Slater determinant has been introdued, where all the diagonal elementsin the determinant are written in order as a \ket" vetor. Equation 19 an thus be written as	 = j�i(x1)�j(x2) � � ���(xN)i (20)where the normalization onstant is absorbed into the notation.Now we have written down a wave funtion appropriate for use in the ase where Ĥ = P ĥ(i). InHF theory, we make some simpli�ations so many{eletron atoms and moleules an be treatedthis way. By taitly assuming that eah eletron moves in a perieved eletri �eld generated bythe stationary nulei and the average spatial distribution of all the other eletrons, it essentiallybeomes an independant{eletron problem. The HF Self Consistent Field proedure (SCF) willbe bent on onstruting eah �(x) to give the lowest energy.
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Energy ExpressionsLet's assume a wave funtion of the Slater determinant form and �nd an expression for theexpetation value of the energy. We've written a Slater determinant as a ket vetor in shorthandnotation, allowing us to make use of Dira notation for suh things as overlap. In this ontext,reall that h	aj	bi = (	a;	b)h	aj	bi = Z 	�a(x)	b(x)dx (21)where the basis vetors 	 is expanded in are every possible value of x with ontration oeÆientsidenti�ed as the value of 	(x) at x. Thus plaing an operator (suh as Ĥ) inside the braket, weget the expetation value of the observable assoiated with that operator. Sine Ĥ is the energyoperator, E0 = Z d�	�0Ĥe	0= h	0jĤej	0i: (22)d� is the di�erential of all the spin and spae oordinates of all the eletrons.With muh foresight, we ontinue to simplify the problem by writing Ĥ as a sum of one{ andtwo{eletron operators Ĥe = Xi ĥ(i) +Xi>j 1rij (23)= Ĥore1 + Ĥ2: (24)This will allow us to more preisely develop the eletroni energy by it's omponents.First, examine the ore hamiltonian Ĥore1 .h	jĤore1 j	i = Xi h	jĥ(i)j	i (25)= Xi h�1(x1) : : : �i(xi) : : : jĥ(i)j�1(x1) : : : �i(xi) : : :i (26)The nature of this is best evidened by example, so we turn to the familiar helium atom, 	 =j�1(x1)�2(x2)i. Look at one term in the above sum, for the sake of illustration take ĥ(1).h�1(x1)�2(x2)jĥ(1)j�1(x1)�2(x2)i = 12 Z [��1(x1)��2(x2)� ��1(x2)��2(x1)℄ĥ(1)[�1(x1)�2(x2)� �1(x2)�2(x1)℄dx1dx2 (27)6



= 12 Z ��1(x1)��2(x2)ĥ(1)�1(x1)�2(x2)d� + Z ��1(x2)��2(x1)ĥ(1)�1(x2)�2(x1)d�� Z ��1(x2)��2(x1)ĥ(1)�1(x1)�2(x2)d� � Z ��1(x1)��2(x2)ĥ(1)�1(x2)�2(x1)d� (28)= 12(h�1jĥj�1i+ h�2jĥj�2i) (29)Here h�1jĥj�1i is de�ned as R ��1(x1)ĥ(1)�1(x1)dx1. In the �rst two terms of equation 28, theintegrations over eletron two's oordinates an be arried out irrespetive of eletron one's, andgive the two terms of equation 29. The last two terms integrate to zero due to the orthogonalityof �1 and �2. Repeating this for ĥ(2) we get exatly the same thing, and we seeXi h	jĥ(i)j	i = h�1jĥj�1i+ h�2jĥj�2i (30)Profound, isn't it? Seems that every oupied spin orbital �i yields a term of the form h�ijĥj�iito the one eletron energy.Now look at Ĥ2. h	jĤ2j	i = Xi>jh	j 1rij j	i= Xi>jh�1(x1) : : : �i(xi) : : : j 1rij j�1(x1) : : : �i(xi) : : :i (31)Continuing to work in the helium atom example (realize that this ould be any two eletronsystem) pik (i; j) = (1; 2) and look at that one term.h�1(x1)�2(x2)j 1r12 j�1(x1)�2(x2)i = 12 Z [�1(x1)�2(x2)� �1(x2)�2(x1)℄ 1r12[�1(x1)�2(x2)� �1(x2)�2(x1)℄dx1dx2 (32)= 12 Z ��1(x1)��2(x2) 1r12�1(x1)�2(x2)d� + Z ��1(x2)��2(x1) 1r12�1(x2)�2(x1)d�� Z ��1(x2)��2(x1) 1r12�1(x1)�2(x2)d� � Z ��1(x1)��2(x2) 1r12�1(x2)�2(x1)d� (33)Unfortunately, the 1r12 operator prevents seperation of the integrations over the eletroni oor-dinates of eletron 1 and eletron 2. It annot be assured that the last two terms are zero. In7



general, they are not. However, sine the x1 and x2 are dummy variables, the �rst and seondterms of equation 33 are equal, as are the last two. Thus for the two eletron operator 1r12 ,h�1(x1)�2(x2)j 1r12 j�1(x1)�2(x2)i = h12j12i � h12j21i = h12k12i (34)where hijjkli = Z dx1dx2��i (x1)��j(x2) 1r12�k(x1)�l(x2) (35)hijkkli = hijjkli � hijjlki: (36)The onstrution hijkkli is alled an antisymmetrized two eletron integral in physiists notation.By working in the spin orbital basis, muh trouble is avoided. In fat, by extending the resultsshown previously to the general ase, we an now write down the HF energy for a given set ofoupied spin orbitals. EHF = h	jĤej	i = h	jĤore1 + Ĥ2j	i (37)EHF = h�1(x1) : : : �i(xi) : : : jĤ1j�1(x1) : : : �i(xi) : : :i+h�1(x1) : : : �i(xi) : : : jĤ2j�1(x1) : : : �i(xi) : : :i (38)= Xi h�1(x1) : : : �i(xi) : : : jĥ(i)j�1(x1) : : : �i(xi) : : :i+Xi>jh�1(x1) : : : �i(xi) : : : j 1r12 j�1(x1) : : : �i(xi) : : :i (39)= Xi h�ijhj�ii+Xi>jhijkiji (40)Now move on and onsider working in the spatial orbital basis, where�i(x) =  a(r)!: (41)This is more natural, sine our intuition is usually based on having a region of spae whihdesribes the loation (more or less) of two eletrons, one of alpha spin and one of beta spin.Some of quantum hemistry is formulated entirely in terms of spin orbitals, for various reasons.For our purposes, we will work entirely in the spatial orbital basis. This will ause things to getsomewhat murky soon, but in the long run it will be simpler.At any rate, in the two eletron system we adore so muh, we an identify the two oupied spinorbitals �1 and �2 as the spin up and spin down halves of the single lowest lying spatial orbital, a1s in helium or the � bonding orbital in H2 for example. These an be more preisely de�ned as�1(x) =  1(r)��2(x) =  1(r)�: (42)(43)8



This hanges the way we write slater determinants. Using an overbar to denote � spin oupationof a spatial orbital,  , j�1(x1)�2(x2)i = j 1(r1) 1(r2)i = j 1 1i (44)Rethinking the one eletron integrals for this ase,Xi h 1 1jĥ(i)j 1 1i = h 1jĥ(1)j 1i+ h 1jĥ(2)j 1i (45)= ( 1jĥj 1) + ( 1jĥj 1) (46)� h11 + h11 (47)The notation ( 1jĥj 1) is used to denote an integral over only spatial oordinates, what remainsafter the spin integrations have been arried out, giving a fator of 1 or 0.That was a neat losed shell system. How about something like 	 = j 1 1 2i?Xi h	jĥ(i)j	i = h 1jĥj 1i+ h 1jĥj 1i+ h 2jĥj 2i (48)= ( 1jĥj 1) + ( 1jĥj 1) + ( 2jĥj 2) (49)= 2h11 + h22= 2 doXi hii + soXi hii= 2 oXi fihii (50)The oeÆient fi here is related to the oupation of spatial orbital i, and will be more preiselyde�ned later. The two eletron integrals are a tad more involved, but we go about it in essentiallythe same manner. h�1�2j�1�2i = h 1 1j 1 1i (51)= [ 1 1j 1 1℄ (52)= ( 1 1j 1 1) (53)h�1�2j�2�1i = h 1 1j 1 1i (54)= [ 1 1j 1 1℄ (55)= 0 (56)Yes, I know. Very onfusing. But it's all just notation, and an be understood. In physiist'snotation (equivalent to Dira notation), h i jj k li refers to the two eletron integral where  iand  k are funtions of eletron 1, while  j and  l are funtions of eletron 2. Chemist's notation(with the square brakets [℄) plaes the funtions of eletron 1 on the left and the funtions of9



eletron 2 on the right. When the two funtions of a single eletron are not of the same spin, thewhole integral goes to zero, otherwise the spin integrates out to 1. Hene the spin{free notation( 1 1j 1 1). What ours when the two eletrons are of parallel spin, requiring distint spatialorbitals and a wavefuntion something like 	 = j 1 2i? The same general form is present, and arelated antisymmetrized two eletron integral is evaluated. In this ase, h 1 2k 1 2i.h 1 2k 1 2i = h12k12i= h12j12i � h12j21i= [11j22℄� [12j21℄= (11j22)� (12j21) (57)h 1 2k 1 2i = J12 �K12 (58)Another bit of notation, whih should be apparent. J12 = (11j22) and K12 = (12j21). Jij istermed a oulomb integral and has the physially reassuring interpretation of somehow aountingfor eletroni repulsion between eletrons in moleular orbital i and moleular orbital j. Kij, theexhange integral, has no lassial analog and no true physial interpretation. Many have tried toome up with something, and a typial attempt says that it \orrelates the motions of eletroni and j when they have parallel spins, lowering the energy sine those eletrons avoid eah otherbetter." Whatever.Best to just move on to a general energy equation in the spatial MO basis. In summary:� The one eletron integrals ontribute hii for eah eletron in orbital i.� The two eletron integrals ontribute Jij for eah pair of eletrons, and (�Kij) for eah pairof parallel spin. EHF = 2 oXi fihii + oXi;j f�ij(iijjj) + �ij(ijjij)g= 2 oXi fihii + oXi;j f�ijJij + �ijKijg (59)fi = ( 1 if i doubly oupied1/2 if i singly oupied (60)�ij = 8><>: 2 if i and j doubly oupied1 if i or j doubly oupied and the other singly oupied1/2 if i and j singly oupied (61)10



�ij = 8>>><>>>: -1 if i and j doubly oupied-1/2 if i or j singly oupied, the other doubly oupied-1/2 if i and j singly oupied, with parallel spin1/2 if i and j singly oupied, with opposite spin (62)
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What Variational Parameter?Ah, the rux of the problem, is it not? Up until now, we've just assumed we have some set ofmoleular orbitals �i or  i, whih we an manipulate at will. But how does one ome up witheven approximate solutions to the many body Shr�odinger equation without having to solve it?Start with the elebrated linear ombination of atomi orbitals to get moleular orbitals (LCAO{MO) approximation. This allows us to use some set of (approximate) atomi orbitals, the basisfuntions whih we know and love, to expand the MOs in. In the most general terms, i =X� Ci���: (63) i remains a spatial moleular orbital, �� is a spatial atomi orbital (perhaps symmetry orbital,but no matter), and Ci� are the ontration oeÆients by whih we transform from one basis toanother. Armed with only this, we should be able to ompose the eletroni energy in the atomiorbital basis. Why, you ask? Beause we have an expression in terms of integrals over MOs.To variationally minimize that energy, we need to vary the MOs themselves, but have no way todo that, sine they remain these amorphous onstruts. By de�ning them a bit more preisely,we should arrive at a point where an obvious set of variational parameters (hint: Ci�) presentthemselves. Begin with the losed shell HF energy in terms of spatial MOs.EHF = 2 doXi hii + doXi;j f2Jij �Kijg= 2 doXi hii + doXi;j f2(iijjj)� (ijjij)gSine ( ijhj i) = R  �i (r1)h(1) i(r1)dr1 and  i = P�Ci���,Z  �i (r1)h(1) i(r1)dr1 = Z X� Ci�� ���(r1)h(1)X� Ci���(r1)dr1= X� X� Ci�� Ci� Z ���(r1)h(1)��(r1)dr1= X� X� Ci�� Ci�(��jhj��) (64)= X� X� Ci�� Ci�h�� (65)(��jhj��) is a one eletron integral over atomi orbitals. Do we have something we an atuallyalulate!? Take an aside and examine this quantity super�ially.12



Typially, basis funtions are onstruted to mimi true atomi orbitals. The Hydrogenatom an be desribed rigorously, and the eigenfuntions found. The 1s orbital lookssomething like Ne��r. It satis�es all the appropriate boundary onditions, havinga usp at the nuleus and exponentially deaying to zero at in�nity. Higher angularmomentum funtions, like 2p's and 3d's, an be built from this basi framework throughadding the angular nodes by multiplying in fators of x, y, and z. Basis funtions suhas these are alled slater{type orbitals. If instead of the exponential Ne��r we usea gaussian funtion, Ne��r2 , we loose the boundary onditions but generate a moretratable problem when it omes to alulating integrals. Using a linear ombinationof single artesian gaussian{type orbitals to approximate a slater{type orbital givesbetter omputational auray without too muh more e�ort. Here's the funtionalforms of all three types: �STO� (r) = Nxlymzne��r (66)�SGTO� (r) = Nxlymzne��r2 (67)�CGTO� (r) = X� C�� �SGTO� (r) (68)Just taking a 1s SGTO for illustrative purposes, what is that one eletron integral?(�SGTO1s (r1)jh(1)j�SGTO1s (r1)) = N2 Z e��r2(�r2 + 1r )e��r2dr (69)Hey! We an do that!Bak to the problem at hand, we now need to expand the two eletron integrals in the MO basis.Following a proedure analogus to equation 64, we get(ijjkl) =X� X� X� X� Ci�� Cj�� Ck�C l�(��j��) (70)All of these AO integrals an be alulated and stored, to be alled up when needed to evaluatethe eletroni energy. The losed shell energy in the AO basis an be written asElsf = 2X�� D��h�� + X����D��D��f2(��j��)� (��j��)g (71)= X�� D�� [2h�� +X�� D��f2(��j��)� (��j��)g℄ (72)D�� is the density matrix, a produt of AO{MO oeÆient matries, orD�� = X�� Ci�� Ci�D�� = CyC (73)13



Hartree Fok EquationsThe eletroni energy is a funtional of the spin orbitals, and we want to minimize it subjet tosome set of onstraints. This an be done using the alulus of variations applied to funtionals.So lets look at a general example of funtional variation applied to E, a funtional of some trialwavefuntion � that an be linearly varied under a single onstraint.E = h�jHj�i (74)j�i = NXi ij	ii (75)By equation 74, we see that E[�℄, depending on the form of the wavefuntion, and by equation75 that j�i an be linearly expanded (hene linearly varied) in some set of N funtions. This isdiretly analogous to expanding the asymmetri top rotational wavefuntions in a omplete set ofsymmetri top rotational wavefuntions. The task is to minimize E subjet to the single onstraintthat the wavefuntion � remain normalized, orh�j�i =Xij �i jh	ij	ji = 1 (76)Writing the energy as E = h�jHj�i =Xij �i jh	ijHj	ji (77)we want ÆE = 0, so ÆE = �E�1 Æ1 + �E�2 Æ2 + �E�3 Æ3 + � � �+ �E�N ÆN= NXi �E�i Æi = 0: (78)However, due to the normalization onstraint, there is one linear dependany in the expansionoeÆients. If we simply solve equation 78 for the oeÆients, they may no longer be normalized,and if we solve for N � 1 of the oeÆients and invoke the normalization ondition to determinethe N th, the energy may not be stationary about it. So we onstrut the funtionL[�℄ = h�jHj�i+ E(h�j�i � 1)L[�℄ = Xij �i jh	ijHj	ji+Xij �i jE(h	ij	ji � 1): (79)Taking the di�erential of L,ÆL[�℄ = Xij Æ�i jh	ijHj	ji+Xij �i Æjh	ijHj	ji+14



EXij Æ�i jh	ij	ji+ EXij �i Æjh	ij	ji= Xij Æ�i j[h	ijHj	ji+ Eh	ij	ji℄+Xij �i Æj[h	ijHj	ji+ Eh	ij	ji℄ (80)= Xi Æ�i [Xj j(h	ijHj	ji+ Eh	ij	ji)℄ +Xj Æj[Xi �i (h	ijHj	ji+ Eh	ij	ji)℄= Xi Æ�i [Xj j(h	ijHj	ji+ Eh	ij	ji)℄ +Xi Æi[Xj �j(h	jjHj	ii+ Eh	jj	ii)℄= Xi Æ�i [Xj j(Hij + ESij℄ +Xi Æi[Xj �j(H�ij + ES�ij℄ = 0 (81)Sine Æi and Æ�i are arbitrary, the braketed parts of equation 81 must be zero. ThusXj (Hijj � ESijj) = 0: (82)It is lear that this an be written as a matrix produt, and is in fat an eigenvalue equation inthe form H = SE (83)Knowing that H and S are hermetian, this matrix eigenvalue equation an be rewritten asS�1=2H = S1=2ES�1=2HS�1=2S1=2 = S1=2E (84)The matrix S�1=2HS�1=2 is symmetri and easily diagonalized, with eigenvetors S1=2. These anbe transformed (multiply on the left by S�1=2) to give the optimal oeÆients i for eah stationarystate. This is very powerful, sine in one fell swoop we've got the entire energy spetrum and theappropriate wave funtions, properly orthonormal, for all the states. This should illustrate thegeneral tehnique we will be employing to develop the Hartree{Fok equations and from them thealgebrai Roothaan equations, whih you will be programming later this summer.On to the true problem. Assume we have a wave funtion in the form of a Slater determinant ofspin orbitals, 	0 = j�1�2 � � ��Ni. We state the problem as:Please minimize the eletroni energy of this single determinant subjet to the on-straint that the spin orbitals all remain orthonormal to one another.15



We already understand the energy �ne by equation 37, and the onstraint an be simply stated ashajbi � Æab = 0 (85)There are N spin orbitals, so there are N(N +1)=2 independent onstraints (note: hajbi = hbjai�),so we need that many undetermined multipliers in our lagrangian funtion, for whih we presentL[f�ag℄ = E0[f�ag℄� NXa aXb "ba(hajbi � Æab) (86)The restrited sum will prove inonvenient, but it an be eliminated. By taking the omplexonjugate of the onstraints and the lagrangian funtion, equation 86,hajbi� � Æab = 0hbjai � Æab = 0 (87)L[f�ag℄ = E0[f�ag℄� NXa aXb "�ba(hbjai � Æab) (88)we realize we an unrestrit the summation by restraining "ab to be a hermitian matrix, suh that"�ab = "ba. This introdues no new undetermined multipliers into the equation, and reates a formmore amenable to further derivation. Thus the Lagrangian funtion we will be working with isL[f�ag℄ = E0[f�ag℄� NXa NXb "ba(hajbi � Æab): (89)The di�erential of this funtion must be set to zero as before, giving usÆL = ÆE0 � NXa NXb "baÆhajbi = 0 (90)Sine we have an eletroni energy in terms of spin orbitalsE0 = NXa hajHjai+ 12 NXab habkabiE0 = NXa hajHjai+ 12 NXab [habjabi � habjbai℄; (91)we an write the variane of the energy ÆE0 asÆE0 = NXa (hÆajHjai+ hajHjÆai)+12 NXab " hÆabjabi+ haÆbjabi + habjÆabi + habjaÆbi+�hÆabjbai � haÆbjbai � habjÆbai � habjbÆai # : (92)16



It takes some thought to realize that there are only two unique two eletron integrals in this list,and that it an be writtenÆE0 = NXa hÆajHjai+ NXab (hÆabjabi � hÆabjbai) + omplex onjugate (93)The other variane we need is "baÆhajbi, whih an be expanded asXab "bahÆajbi+Xab "bahajÆbi = Xab "bahÆajbi+Xab "abhbjÆai= Xab ("bahÆajbi+ "�bahÆajbi�): (94)So the whole thing boils down to one neat statement,ÆL = Xa hÆajHjai+ NXa hÆajbi+ NXab (hÆabkabi � "bahÆajbi) + omplex onjugate = 0 (95)If we onveniently de�ne a oulomb operator Ĵb(1) and an exhange operator K̂b(1) asĴb(1) = Z dx2j�b(2)j2r�112 (96)K̂b(1)�a(1) = Z dx2��b(2)r�112 �a(2)�b(1); (97)we an rewrite the two eletron integralhabkabi = Z dx1��a(1)(Ĵb(1)� K̂b(1))�a(1)= haj(Ĵb(1)� K̂b(1))jai: (98)This allows for a more ompat notation to be employed in writing the variane in the lagrangianfuntionÆL =Xa Z dx1Æ��a(1)[ĥ(1)�a(1) +Xb f(Ĵb(1)� K̂b(1))�a(1)� "ba�b(1)g℄ + omplex onjugate = 0:(99)Like before, the part in brakets is fored to be zero, sine Æ��a(1) an be anything. Setting itequal to zero and rearranging to make it look like some sort of eigenvalue equation yields[ĥ(1) +Xb (Ĵb(1)� K̂b(1))℄�a(1) = Xb "ba�b(1) (100)f(1)�a(1) =Xb "ba�b(1) (101)17



These are the glorious Hartree{Fok equations derived in general in the spin orbital basis. Butwait { there's a problem. These are oupled integro{di�erential equations, and while they are notstritly unsolvable, they're a pain. It would be nie to at least unouple them, so let's do that.If we apply a unitary rotation to the full set of spin orbitals, generating a new set�0a =Xb �bUba (102)whereU is unitary, ie. Uy = U�1, what hanges? The rotation an be written as a matrix produt,if we de�ne A as the matrix resembling the slater determinant for the system, ie. (N !)�1=2 det(A)= j	0i. In that ase, det(A0) = det(A) det(U) (103)However, sine this matrix U is unitary, j det(U)j2 = 1, det(U) = ei� and the new wavefuntiondi�ers from the old by a phase fator, a�eting nothing observable. How does it a�et f(1) and"ba? Xa Ĵ 0a(1) = Xa Z dx2�0�a (2)r�112 �0a(2) (104)= Xa Z dx2Xb U�ba��b(2)r�112 X Ua�(1) (105)= Xb (Xa U�baUa) Z dx2��b(2)r�112 �(2) (106)= Xb Æb Z dx2��b(2)r�112 �(2) =Xb Ĵb(1) (107)Xa K̂ 0a(1)�0d(1) = Xa Z dx2�0�a (2)r�112 �0d(2)�0a(1) (108)= Xa Z dx2Xb U�ba��b(2)r�112 �d(2)0X Ua�(1) (109)= Xb (Xa U�baUa) Z dx2��b(2)r�112 �d(2)0�(1) (110)= Xb Æb Z dx2��b(2)r�112 �d(2)0�(1) =Xb K̂b(1)�0d(1) (111)So f(1)0 = f(1)! How about "ba? Start by realizing that "ba are matrix elements of the fokoperator. h�jf j�ai =Xb "bah�j�bi (112)18



= "a (113)"0ab = Z dx1�0�a f(1)�0b(1) (114)= Xd U�aUdb"d (115)= Uy"U (116)This last result an be written as a martix produt as well, and it is seen that this is now aunitary transformation to the matrix ". We are free to hoose U to be whatever we please, and ifwe hoose it to make " diagonal, we an rewrite the Hartree{Fok equations asf j�ai = "aj�ai: (117)When this is done, the resulting spin orbitals are termed the Hartree{Fok anonial orbitals. Readsetion 3.3 in Szabo and Ostlund for various fun things to do with the Hartree{Fok equations.The problem still remains, though. These are integro{di�erential equations, whih omputers(and omputer programmers) balk at. That is why Roothaan is a HERO! Through his results,we an transform these into a set of matrix formulated algebrai equations that omputers andprogrammers dig. The general ase is too troublesome for now, so let's limit ourselves to losedshell, RHF orbitals. To take advantage of the simpli�ations this an a�ord, we need to return tothe spatial orbital basis. We've derived the spin orbital based Fok operatorf(x1) = ĥ(x1) + NXa (Ĵa(x1)� K̂a(x1)): (118)Without further ado, we'll introdue the spatial orbital based Fok operator and be done with it.f(r1) = ĥ(r1) + N=2Xa (2Ĵa(r1)� K̂a(r1) (119)Ĵb(r1) = Z dr2j b(r2)j2r�112 (120)K̂b(r1) a(r1) = Z dr2 �b (r2)r�112  a(r2) b(1) (121)With the properties f(r1) j(r1) = "j j(r1) (122)"i = hii + N=2Xb 2Jib �Kib (123)19



Now we introdue a basis set expansion to bring the HF integro{di�erential equations to soluablealgebrai equations. Letting  i = P�Ci���,f(1)X� Ci��� = "iX� Ci��� (124)Multiplying by ���(1) and integrating over eletron 1 givesX� Ci� Z dr1���(1)f(1)��(1) = "iX� Ci� Z dr1���(1)��(1): (125)Identifying the integrals as matrix elements of the fok operator and the unit operator (overlap)respetively, X� F��Ci� = "iX� S��Ci� (126)Using the fat that " is diagonal, this an be written as the matrix produtFC = SC" (127)So what is F, this so alled Fok Matrix? We've de�ned F�� before as the matrix element of theone eletron fok operator, f(1) in equation 119. Writing out this integral and expanding,F�� = Z dr1���(1)f(1)��(1)= Z dr1���(1)[h(1) +Xa (2Ĵa(1)� K̂a(1))℄��(1)= Z dr1���(1)h(1)��(1) +Xa [2 Z dr1���(1)Ĵa(1)��(1)� Z dr1���(1)K̂a(1)��(1)℄ (128)= h�� +Xa 2(��jaa)� (�aja�)= h�� +Xa [X�� Ca�Ca�2(��j��)� (��j��)℄= h�� +X�� (Xa Ca�Ca�)[2(��j��)� (��j��)℄= h�� +X�� D��[2(��j��)� (��j��)℄ (129)This is a quantity whih an be easily onstruted given a set of moleular orbitals (the oeÆientsCa�) and a prealulated set of atomi orbital integrals. At this point, the Hartree{Fok equationshave been redued to a matrix eigenvetor problem, FC = SC", but not in a omputationallyonvenient form. Following the analysis leading to equation 84, we �rst de�ne the transformedFok matrix as Ft = S�1=2FS�1=2: (130)20



We an then take Ft(S1=2C) = (S1=2C)" (131)to be equivalent to equation 127. Sine " is diagonal by hoie, diagonalizing the transformed Fokmatrix gives a set of transformed moleular orbital oeÆients, Cy = S1=2C. The matrix S1=2Can be bak transformed to give the true MO oeÆient matrix, C. The density matrix for theseoeÆients is formed by the produt D = CyC, and an subsequently be used to onstrut a newfok matrix via equation 129. Sine the overlap matrix S does not depend on the MO oeÆients,the same unitary transformation an be applied to the new fok matrix to give a new transformedfok matrix. This an be diagonalized to produe new MO oeÆients, and the proess repeateduntil onvergane. As an initial guess for the fok matrix, one generally uses the ore hamiltonian,ignoring all the two eletron integrals.F 1�� = H�� = Z ���(�r2i +XA ZAriA )�� (132)From the ore hamiltonian, an initialC is obtained and a muh improved Fok matrix an be builtinluding the two eletron integrals. And that's about it for the Hartree{Fok Self Consistent FieldMethod. These last few pages will be the most important when you get around to programmingthe losed shell SCF method for the spei� ase of water, as you will be given the integrals in a�le, and you an begin the proess by building the ore hamiltonian as desribed above.
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