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PurposeFirst, we de�ne the problem, beginning with the S
hr�odinger equationĤ	 = E	: (1)Our goal is to 
ome up with an analyti
 equation for the energy whi
h 
an be minimized withrespe
t to some variational parameter(s) to give an upper bound on the energy. To do this, wemust1. Understand the hamiltonian operater Ĥ.2. Find an appropriate wave fun
tion 	 whi
h allows simple 
al
ulation of the ele
troni
 energy.3. Examine potential variational parameters to �gure out how to minimize the energy.
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It will likely be 
onvenient to have an outline of where we're going, so here it is:I. Puropse (whi
h we've been through)II. The Hamiltonian, Ĥ� Kineti
 energy operators� Coulombi
 potential operatorsIII. The Wave Fun
tion, 	� 1 ele
tron orbitals� Hartree produ
ts� Slater determinantsIV. Hamiltonian as Energy Operator, S
hr�odinger Equation� E = h	jĤj	i� Integrals over one ele
tron operators� Integrals over two ele
tron operators� Spe
i�
 
ase energy expressions� General form of HF energyV. What Variational Parameter?� LCAO{MO theory, energy in AO basis� Density Matri
esVI. Hartree{Fo
k Equations� Lagrangs's Undetermined Multipliers� A load 'o mathVII. Matrix FormalismVIII. Program Outline
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The Hamiltonian, ĤThe Hamiltonian is the total energy operator for a system, and is written as the sum of the kineti
energy of all the 
omponents of the system and the internal potential energy. In an atom ormole
ule, 
omprised of positive nu
lei and negative ele
trons, the potential energy is simply thatdue to the 
oulombi
 intera
tions present. Thus for the kineti
 energy in a system of M nu
leiand N ele
trons: T̂N = � MXA 12MAr2A (2)T̂e = � NXi 12r2i : (3)And for the potential energy: V̂NN = MXA>B ZAZBrAB (4)V̂ee = NXi>j 1rij (5)V̂eN = � MXA NXi ZAriA : (6)Sin
e Ĥ = T̂ + V̂ ,̂H = � NXi 12r2i � MXA NXi ZAriA + NXi>j 1rij � MXA 12MAr2A + MXA>B ZAZBrAB : (7)Within the Born{Oppenheimer approximation, we assume the nu
lei are held �xed while theele
trons move really fast around them. (note: Mp=Me � 1840.) In this 
ase, nu
lear motion andele
troni
 motion are seperated. The last two terms 
an be removed from the total hamiltonianto give the ele
troni
 hamiltonian, Ĥe, sin
e V̂NN = K, and r2A = 0. The nu
lear motion ishandled in a rotational/vibrational analysis. We will be working within the B{O approximation,so realizing Ĥe = � NXi 12r2i � MXA NXi ZAriA + NXi>j 1rij (8)we 
ompletly de�ne the problem. Solving the ele
troni
 S
hr�odinger equation using this will givethe ele
troni
 stru
ture of a mole
ular system at a �xed nu
lear geometry.3



The Wave Fun
tion, 	We've derived a 
omplete many{ele
tron Hamiltonian operator. Of 
ourse, the S
hr�odinger equa-tion involving it is intra
table, so let's 
onsider a simpler problem, involving the one{ele
tronhamiltonian ĥ(i) = �12r2i + MXA 1riA (9)whi
h involves no ele
tron{ele
tron intera
tion. This is soluable in the B{O approximation (re
allthe hydrogen atom by lettingM = 1). Call the solutions to the one{ele
tron S
hr�odinger equation�i(x). These will be mole
ular spin orbitals when we get around to it, but for now let it suÆ
e toknow they satisify the eigenequation ĥ(i)�j(xi) = "j�j(xi) (10)with the interpretation that ele
tron i o

upies spin orbital �j with energy "j. If we ignoreele
tron{ele
tron intera
tion in Ĥe, we 
onstru
t a simpler system with HamiltonianĤ = NXi ĥ(i): (11)It will have eigenfun
tions whi
h are simple produ
ts of o

upied spin orbitals, and thus an energywhi
h is a sum of individual orbital energies, as	HP = �i(x1)�j(x2)�k(x3) � � ���(xN) (12)h	jĤj	i = "i + "j + "k + : : :+ "� = E: (13)This kind of wavefun
tion is 
alled a Hartree Produ
t, and it is not physi
ally realisti
. Inthe �rst pla
e, it is an independent{ele
tron model, and we know ele
trons repel ea
h other.Se
ondly, it does not satisfy the antisymmetry prin
iple due to Pauli whi
h states that the signof the wavefun
tion must be inverted under the operation of swit
hing the 
oordinates of any twoele
trons, or 	(� � �xi � � �xj � � �) = �	(� � �xj � � �xi � � �): (14)Part of the proof of equation 13 a
knowledges this is not so for a Hartree Produ
t. To rem-edy this, �rst 
onsider a two{ele
tron system, su
h as helium. Two equivalent Hartree Produ
twavefun
tions for this system are 	HP1 = �i(x1)�j(x2)	HP2 = �i(x2)�j(x1): (15)4



Obviously, neither of these is appropriate. However, using the old \by inspe
tion..." tri
k, wenoti
e that 	 = 1p2[�i(x1)�j(x2)� �i(x2)�j(x1)℄ (16)does. The mathemati
al form of this wavefun
tion 
an be generated by a determinant of �'s,	 = 2�1=2 ����� �i(x1) �j(x1)�i(x2) �j(x2) ����� : (17)The familiar Pauli ex
lusion prin
iple follows dire
tly from this example. When we attempt todoubly o

upy a spin orbital �i by putting ele
tron 1 and ele
tron 2 in it, what happens?	 = 2�1=2 ����� �i(x1) �i(x1)�i(x2) �i(x2) ����� (18)= 1p2[�i(x1)�i(x2)� �i(x2)�i(x1)℄= 0Equation 17 
an be generalized to give the N ele
tron Slater determinant	 = (N !)�1=2 ���������� �i(x1) �j(x1) � � � ��(x1)�i(x2) �j(x2) � � � ��(x2)... ... . . . ...�i(xN ) �j(xN ) � � � ��(xN) ���������� : (19)A shorthand notation for a Slater determinant has been introdu
ed, where all the diagonal elementsin the determinant are written in order as a \ket" ve
tor. Equation 19 
an thus be written as	 = j�i(x1)�j(x2) � � ���(xN)i (20)where the normalization 
onstant is absorbed into the notation.Now we have written down a wave fun
tion appropriate for use in the 
ase where Ĥ = P ĥ(i). InHF theory, we make some simpli�
ations so many{ele
tron atoms and mole
ules 
an be treatedthis way. By ta
itly assuming that ea
h ele
tron moves in a per
ieved ele
tri
 �eld generated bythe stationary nu
lei and the average spatial distribution of all the other ele
trons, it essentiallybe
omes an independant{ele
tron problem. The HF Self Consistent Field pro
edure (SCF) willbe bent on 
onstru
ting ea
h �(x) to give the lowest energy.
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Energy ExpressionsLet's assume a wave fun
tion of the Slater determinant form and �nd an expression for theexpe
tation value of the energy. We've written a Slater determinant as a ket ve
tor in shorthandnotation, allowing us to make use of Dira
 notation for su
h things as overlap. In this 
ontext,re
all that h	aj	bi = (	a;	b)h	aj	bi = Z 	�a(x)	b(x)dx (21)where the basis ve
tors 	 is expanded in are every possible value of x with 
ontra
tion 
oeÆ
ientsidenti�ed as the value of 	(x) at x. Thus pla
ing an operator (su
h as Ĥ) inside the bra
ket, weget the expe
tation value of the observable asso
iated with that operator. Sin
e Ĥ is the energyoperator, E0 = Z d�	�0Ĥe	0= h	0jĤej	0i: (22)d� is the di�erential of all the spin and spa
e 
oordinates of all the ele
trons.With mu
h foresight, we 
ontinue to simplify the problem by writing Ĥ as a sum of one{ andtwo{ele
tron operators Ĥe = Xi ĥ(i) +Xi>j 1rij (23)= Ĥ
ore1 + Ĥ2: (24)This will allow us to more pre
isely develop the ele
troni
 energy by it's 
omponents.First, examine the 
ore hamiltonian Ĥ
ore1 .h	jĤ
ore1 j	i = Xi h	jĥ(i)j	i (25)= Xi h�1(x1) : : : �i(xi) : : : jĥ(i)j�1(x1) : : : �i(xi) : : :i (26)The nature of this is best eviden
ed by example, so we turn to the familiar helium atom, 	 =j�1(x1)�2(x2)i. Look at one term in the above sum, for the sake of illustration take ĥ(1).h�1(x1)�2(x2)jĥ(1)j�1(x1)�2(x2)i = 12 Z [��1(x1)��2(x2)� ��1(x2)��2(x1)℄ĥ(1)[�1(x1)�2(x2)� �1(x2)�2(x1)℄dx1dx2 (27)6



= 12 Z ��1(x1)��2(x2)ĥ(1)�1(x1)�2(x2)d� + Z ��1(x2)��2(x1)ĥ(1)�1(x2)�2(x1)d�� Z ��1(x2)��2(x1)ĥ(1)�1(x1)�2(x2)d� � Z ��1(x1)��2(x2)ĥ(1)�1(x2)�2(x1)d� (28)= 12(h�1jĥj�1i+ h�2jĥj�2i) (29)Here h�1jĥj�1i is de�ned as R ��1(x1)ĥ(1)�1(x1)dx1. In the �rst two terms of equation 28, theintegrations over ele
tron two's 
oordinates 
an be 
arried out irrespe
tive of ele
tron one's, andgive the two terms of equation 29. The last two terms integrate to zero due to the orthogonalityof �1 and �2. Repeating this for ĥ(2) we get exa
tly the same thing, and we seeXi h	jĥ(i)j	i = h�1jĥj�1i+ h�2jĥj�2i (30)Profound, isn't it? Seems that every o

upied spin orbital �i yields a term of the form h�ijĥj�iito the one ele
tron energy.Now look at Ĥ2. h	jĤ2j	i = Xi>jh	j 1rij j	i= Xi>jh�1(x1) : : : �i(xi) : : : j 1rij j�1(x1) : : : �i(xi) : : :i (31)Continuing to work in the helium atom example (realize that this 
ould be any two ele
tronsystem) pi
k (i; j) = (1; 2) and look at that one term.h�1(x1)�2(x2)j 1r12 j�1(x1)�2(x2)i = 12 Z [�1(x1)�2(x2)� �1(x2)�2(x1)℄ 1r12[�1(x1)�2(x2)� �1(x2)�2(x1)℄dx1dx2 (32)= 12 Z ��1(x1)��2(x2) 1r12�1(x1)�2(x2)d� + Z ��1(x2)��2(x1) 1r12�1(x2)�2(x1)d�� Z ��1(x2)��2(x1) 1r12�1(x1)�2(x2)d� � Z ��1(x1)��2(x2) 1r12�1(x2)�2(x1)d� (33)Unfortunately, the 1r12 operator prevents seperation of the integrations over the ele
troni
 
oor-dinates of ele
tron 1 and ele
tron 2. It 
annot be assured that the last two terms are zero. In7



general, they are not. However, sin
e the x1 and x2 are dummy variables, the �rst and se
ondterms of equation 33 are equal, as are the last two. Thus for the two ele
tron operator 1r12 ,h�1(x1)�2(x2)j 1r12 j�1(x1)�2(x2)i = h12j12i � h12j21i = h12k12i (34)where hijjkli = Z dx1dx2��i (x1)��j(x2) 1r12�k(x1)�l(x2) (35)hijkkli = hijjkli � hijjlki: (36)The 
onstru
tion hijkkli is 
alled an antisymmetrized two ele
tron integral in physi
ists notation.By working in the spin orbital basis, mu
h trouble is avoided. In fa
t, by extending the resultsshown previously to the general 
ase, we 
an now write down the HF energy for a given set ofo

upied spin orbitals. EHF = h	jĤej	i = h	jĤ
ore1 + Ĥ2j	i (37)EHF = h�1(x1) : : : �i(xi) : : : jĤ1j�1(x1) : : : �i(xi) : : :i+h�1(x1) : : : �i(xi) : : : jĤ2j�1(x1) : : : �i(xi) : : :i (38)= Xi h�1(x1) : : : �i(xi) : : : jĥ(i)j�1(x1) : : : �i(xi) : : :i+Xi>jh�1(x1) : : : �i(xi) : : : j 1r12 j�1(x1) : : : �i(xi) : : :i (39)= Xi h�ijhj�ii+Xi>jhijkiji (40)Now move on and 
onsider working in the spatial orbital basis, where�i(x) =  a(r)!: (41)This is more natural, sin
e our intuition is usually based on having a region of spa
e whi
hdes
ribes the lo
ation (more or less) of two ele
trons, one of alpha spin and one of beta spin.Some of quantum 
hemistry is formulated entirely in terms of spin orbitals, for various reasons.For our purposes, we will work entirely in the spatial orbital basis. This will 
ause things to getsomewhat murky soon, but in the long run it will be simpler.At any rate, in the two ele
tron system we adore so mu
h, we 
an identify the two o

upied spinorbitals �1 and �2 as the spin up and spin down halves of the single lowest lying spatial orbital, a1s in helium or the � bonding orbital in H2 for example. These 
an be more pre
isely de�ned as�1(x) =  1(r)��2(x) =  1(r)�: (42)(43)8



This 
hanges the way we write slater determinants. Using an overbar to denote � spin o

upationof a spatial orbital,  , j�1(x1)�2(x2)i = j 1(r1) 1(r2)i = j 1 1i (44)Rethinking the one ele
tron integrals for this 
ase,Xi h 1 1jĥ(i)j 1 1i = h 1jĥ(1)j 1i+ h 1jĥ(2)j 1i (45)= ( 1jĥj 1) + ( 1jĥj 1) (46)� h11 + h11 (47)The notation ( 1jĥj 1) is used to denote an integral over only spatial 
oordinates, what remainsafter the spin integrations have been 
arried out, giving a fa
tor of 1 or 0.That was a neat 
losed shell system. How about something like 	 = j 1 1 2i?Xi h	jĥ(i)j	i = h 1jĥj 1i+ h 1jĥj 1i+ h 2jĥj 2i (48)= ( 1jĥj 1) + ( 1jĥj 1) + ( 2jĥj 2) (49)= 2h11 + h22= 2 do

Xi hii + so

Xi hii= 2 o

Xi fihii (50)The 
oeÆ
ient fi here is related to the o

upation of spatial orbital i, and will be more pre
iselyde�ned later. The two ele
tron integrals are a tad more involved, but we go about it in essentiallythe same manner. h�1�2j�1�2i = h 1 1j 1 1i (51)= [ 1 1j 1 1℄ (52)= ( 1 1j 1 1) (53)h�1�2j�2�1i = h 1 1j 1 1i (54)= [ 1 1j 1 1℄ (55)= 0 (56)Yes, I know. Very 
onfusing. But it's all just notation, and 
an be understood. In physi
ist'snotation (equivalent to Dira
 notation), h i jj k li refers to the two ele
tron integral where  iand  k are fun
tions of ele
tron 1, while  j and  l are fun
tions of ele
tron 2. Chemist's notation(with the square bra
kets [℄) pla
es the fun
tions of ele
tron 1 on the left and the fun
tions of9



ele
tron 2 on the right. When the two fun
tions of a single ele
tron are not of the same spin, thewhole integral goes to zero, otherwise the spin integrates out to 1. Hen
e the spin{free notation( 1 1j 1 1). What o

urs when the two ele
trons are of parallel spin, requiring distin
t spatialorbitals and a wavefun
tion something like 	 = j 1 2i? The same general form is present, and arelated antisymmetrized two ele
tron integral is evaluated. In this 
ase, h 1 2k 1 2i.h 1 2k 1 2i = h12k12i= h12j12i � h12j21i= [11j22℄� [12j21℄= (11j22)� (12j21) (57)h 1 2k 1 2i = J12 �K12 (58)Another bit of notation, whi
h should be apparent. J12 = (11j22) and K12 = (12j21). Jij istermed a 
oulomb integral and has the physi
ally reassuring interpretation of somehow a

ountingfor ele
troni
 repulsion between ele
trons in mole
ular orbital i and mole
ular orbital j. Kij, theex
hange integral, has no 
lassi
al analog and no true physi
al interpretation. Many have tried to
ome up with something, and a typi
al attempt says that it \
orrelates the motions of ele
troni and j when they have parallel spins, lowering the energy sin
e those ele
trons avoid ea
h otherbetter." Whatever.Best to just move on to a general energy equation in the spatial MO basis. In summary:� The one ele
tron integrals 
ontribute hii for ea
h ele
tron in orbital i.� The two ele
tron integrals 
ontribute Jij for ea
h pair of ele
trons, and (�Kij) for ea
h pairof parallel spin. EHF = 2 o

Xi fihii + o

Xi;j f�ij(iijjj) + �ij(ijjij)g= 2 o

Xi fihii + o

Xi;j f�ijJij + �ijKijg (59)fi = ( 1 if i doubly o

upied1/2 if i singly o

upied (60)�ij = 8><>: 2 if i and j doubly o

upied1 if i or j doubly o

upied and the other singly o

upied1/2 if i and j singly o

upied (61)10



�ij = 8>>><>>>: -1 if i and j doubly o

upied-1/2 if i or j singly o

upied, the other doubly o

upied-1/2 if i and j singly o

upied, with parallel spin1/2 if i and j singly o

upied, with opposite spin (62)
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What Variational Parameter?Ah, the 
rux of the problem, is it not? Up until now, we've just assumed we have some set ofmole
ular orbitals �i or  i, whi
h we 
an manipulate at will. But how does one 
ome up witheven approximate solutions to the many body S
hr�odinger equation without having to solve it?Start with the 
elebrated linear 
ombination of atomi
 orbitals to get mole
ular orbitals (LCAO{MO) approximation. This allows us to use some set of (approximate) atomi
 orbitals, the basisfun
tions whi
h we know and love, to expand the MOs in. In the most general terms, i =X� Ci���: (63) i remains a spatial mole
ular orbital, �� is a spatial atomi
 orbital (perhaps symmetry orbital,but no matter), and Ci� are the 
ontra
tion 
oeÆ
ients by whi
h we transform from one basis toanother. Armed with only this, we should be able to 
ompose the ele
troni
 energy in the atomi
orbital basis. Why, you ask? Be
ause we have an expression in terms of integrals over MOs.To variationally minimize that energy, we need to vary the MOs themselves, but have no way todo that, sin
e they remain these amorphous 
onstru
ts. By de�ning them a bit more pre
isely,we should arrive at a point where an obvious set of variational parameters (hint: Ci�) presentthemselves. Begin with the 
losed shell HF energy in terms of spatial MOs.EHF = 2 do

Xi hii + do

Xi;j f2Jij �Kijg= 2 do

Xi hii + do

Xi;j f2(iijjj)� (ijjij)gSin
e ( ijhj i) = R  �i (r1)h(1) i(r1)dr1 and  i = P�Ci���,Z  �i (r1)h(1) i(r1)dr1 = Z X� Ci�� ���(r1)h(1)X� Ci���(r1)dr1= X� X� Ci�� Ci� Z ���(r1)h(1)��(r1)dr1= X� X� Ci�� Ci�(��jhj��) (64)= X� X� Ci�� Ci�h�� (65)(��jhj��) is a one ele
tron integral over atomi
 orbitals. Do we have something we 
an a
tually
al
ulate!? Take an aside and examine this quantity super�
ially.12



Typi
ally, basis fun
tions are 
onstru
ted to mimi
 true atomi
 orbitals. The Hydrogenatom 
an be des
ribed rigorously, and the eigenfun
tions found. The 1s orbital lookssomething like Ne��r. It satis�es all the appropriate boundary 
onditions, havinga 
usp at the nu
leus and exponentially de
aying to zero at in�nity. Higher angularmomentum fun
tions, like 2p's and 3d's, 
an be built from this basi
 framework throughadding the angular nodes by multiplying in fa
tors of x, y, and z. Basis fun
tions su
has these are 
alled slater{type orbitals. If instead of the exponential Ne��r we usea gaussian fun
tion, Ne��r2 , we loose the boundary 
onditions but generate a moretra
table problem when it 
omes to 
al
ulating integrals. Using a linear 
ombinationof single 
artesian gaussian{type orbitals to approximate a slater{type orbital givesbetter 
omputational a

ura
y without too mu
h more e�ort. Here's the fun
tionalforms of all three types: �STO� (r) = Nxlymzne��r (66)�SGTO� (r) = Nxlymzne��r2 (67)�CGTO� (r) = X� C�� �SGTO� (r) (68)Just taking a 1s SGTO for illustrative purposes, what is that one ele
tron integral?(�SGTO1s (r1)jh(1)j�SGTO1s (r1)) = N2 Z e��r2(�r2 + 1r )e��r2dr (69)Hey! We 
an do that!Ba
k to the problem at hand, we now need to expand the two ele
tron integrals in the MO basis.Following a pro
edure analogus to equation 64, we get(ijjkl) =X� X� X� X� Ci�� Cj�� Ck�C l�(��j��) (70)All of these AO integrals 
an be 
al
ulated and stored, to be 
alled up when needed to evaluatethe ele
troni
 energy. The 
losed shell energy in the AO basis 
an be written asE
ls
f = 2X�� D��h�� + X����D��D��f2(��j��)� (��j��)g (71)= X�� D�� [2h�� +X�� D��f2(��j��)� (��j��)g℄ (72)D�� is the density matrix, a produ
t of AO{MO 
oeÆ
ient matri
es, orD�� = X�� Ci�� Ci�D�� = CyC (73)13



Hartree Fo
k EquationsThe ele
troni
 energy is a fun
tional of the spin orbitals, and we want to minimize it subje
t tosome set of 
onstraints. This 
an be done using the 
al
ulus of variations applied to fun
tionals.So lets look at a general example of fun
tional variation applied to E, a fun
tional of some trialwavefun
tion � that 
an be linearly varied under a single 
onstraint.E = h�jHj�i (74)j�i = NXi 
ij	ii (75)By equation 74, we see that E[�℄, depending on the form of the wavefun
tion, and by equation75 that j�i 
an be linearly expanded (hen
e linearly varied) in some set of N fun
tions. This isdire
tly analogous to expanding the asymmetri
 top rotational wavefun
tions in a 
omplete set ofsymmetri
 top rotational wavefun
tions. The task is to minimize E subje
t to the single 
onstraintthat the wavefun
tion � remain normalized, orh�j�i =Xij 
�i 
jh	ij	ji = 1 (76)Writing the energy as E = h�jHj�i =Xij 
�i 
jh	ijHj	ji (77)we want ÆE = 0, so ÆE = �E�
1 Æ
1 + �E�
2 Æ
2 + �E�
3 Æ
3 + � � �+ �E�
N Æ
N= NXi �E�
i Æ
i = 0: (78)However, due to the normalization 
onstraint, there is one linear dependan
y in the expansion
oeÆ
ients. If we simply solve equation 78 for the 
oeÆ
ients, they may no longer be normalized,and if we solve for N � 1 of the 
oeÆ
ients and invoke the normalization 
ondition to determinethe N th, the energy may not be stationary about it. So we 
onstru
t the fun
tionL[�℄ = h�jHj�i+ E(h�j�i � 1)L[�℄ = Xij 
�i 
jh	ijHj	ji+Xij 
�i 
jE(h	ij	ji � 1): (79)Taking the di�erential of L,ÆL[�℄ = Xij Æ
�i 
jh	ijHj	ji+Xij 
�i Æ
jh	ijHj	ji+14



EXij Æ
�i 
jh	ij	ji+ EXij 
�i Æ
jh	ij	ji= Xij Æ
�i 
j[h	ijHj	ji+ Eh	ij	ji℄+Xij 
�i Æ
j[h	ijHj	ji+ Eh	ij	ji℄ (80)= Xi Æ
�i [Xj 
j(h	ijHj	ji+ Eh	ij	ji)℄ +Xj Æ
j[Xi 
�i (h	ijHj	ji+ Eh	ij	ji)℄= Xi Æ
�i [Xj 
j(h	ijHj	ji+ Eh	ij	ji)℄ +Xi Æ
i[Xj 
�j(h	jjHj	ii+ Eh	jj	ii)℄= Xi Æ
�i [Xj 
j(Hij + ESij℄ +Xi Æ
i[Xj 
�j(H�ij + ES�ij℄ = 0 (81)Sin
e Æ
i and Æ
�i are arbitrary, the bra
keted parts of equation 81 must be zero. ThusXj (Hij
j � ESij
j) = 0: (82)It is 
lear that this 
an be written as a matrix produ
t, and is in fa
t an eigenvalue equation inthe form H
 = S
E (83)Knowing that H and S are hermetian, this matrix eigenvalue equation 
an be rewritten asS�1=2H
 = S1=2
ES�1=2HS�1=2S1=2
 = S1=2
E (84)The matrix S�1=2HS�1=2 is symmetri
 and easily diagonalized, with eigenve
tors S1=2
. These 
anbe transformed (multiply on the left by S�1=2) to give the optimal 
oeÆ
ients 
i for ea
h stationarystate. This is very powerful, sin
e in one fell swoop we've got the entire energy spe
trum and theappropriate wave fun
tions, properly orthonormal, for all the states. This should illustrate thegeneral te
hnique we will be employing to develop the Hartree{Fo
k equations and from them thealgebrai
 Roothaan equations, whi
h you will be programming later this summer.On to the true problem. Assume we have a wave fun
tion in the form of a Slater determinant ofspin orbitals, 	0 = j�1�2 � � ��Ni. We state the problem as:Please minimize the ele
troni
 energy of this single determinant subje
t to the 
on-straint that the spin orbitals all remain orthonormal to one another.15



We already understand the energy �ne by equation 37, and the 
onstraint 
an be simply stated ashajbi � Æab = 0 (85)There are N spin orbitals, so there are N(N +1)=2 independent 
onstraints (note: hajbi = hbjai�),so we need that many undetermined multipliers in our lagrangian fun
tion, for whi
h we presentL[f�ag℄ = E0[f�ag℄� NXa aXb "ba(hajbi � Æab) (86)The restri
ted sum will prove in
onvenient, but it 
an be eliminated. By taking the 
omplex
onjugate of the 
onstraints and the lagrangian fun
tion, equation 86,hajbi� � Æab = 0hbjai � Æab = 0 (87)L[f�ag℄ = E0[f�ag℄� NXa aXb "�ba(hbjai � Æab) (88)we realize we 
an unrestri
t the summation by restraining "ab to be a hermitian matrix, su
h that"�ab = "ba. This introdu
es no new undetermined multipliers into the equation, and 
reates a formmore amenable to further derivation. Thus the Lagrangian fun
tion we will be working with isL[f�ag℄ = E0[f�ag℄� NXa NXb "ba(hajbi � Æab): (89)The di�erential of this fun
tion must be set to zero as before, giving usÆL = ÆE0 � NXa NXb "baÆhajbi = 0 (90)Sin
e we have an ele
troni
 energy in terms of spin orbitalsE0 = NXa hajHjai+ 12 NXab habkabiE0 = NXa hajHjai+ 12 NXab [habjabi � habjbai℄; (91)we 
an write the varian
e of the energy ÆE0 asÆE0 = NXa (hÆajHjai+ hajHjÆai)+12 NXab " hÆabjabi+ haÆbjabi + habjÆabi + habjaÆbi+�hÆabjbai � haÆbjbai � habjÆbai � habjbÆai # : (92)16



It takes some thought to realize that there are only two unique two ele
tron integrals in this list,and that it 
an be writtenÆE0 = NXa hÆajHjai+ NXab (hÆabjabi � hÆabjbai) + 
omplex 
onjugate (93)The other varian
e we need is "baÆhajbi, whi
h 
an be expanded asXab "bahÆajbi+Xab "bahajÆbi = Xab "bahÆajbi+Xab "abhbjÆai= Xab ("bahÆajbi+ "�bahÆajbi�): (94)So the whole thing boils down to one neat statement,ÆL = Xa hÆajHjai+ NXa hÆajbi+ NXab (hÆabkabi � "bahÆajbi) + 
omplex 
onjugate = 0 (95)If we 
onveniently de�ne a 
oulomb operator Ĵb(1) and an ex
hange operator K̂b(1) asĴb(1) = Z dx2j�b(2)j2r�112 (96)K̂b(1)�a(1) = Z dx2��b(2)r�112 �a(2)�b(1); (97)we 
an rewrite the two ele
tron integralhabkabi = Z dx1��a(1)(Ĵb(1)� K̂b(1))�a(1)= haj(Ĵb(1)� K̂b(1))jai: (98)This allows for a more 
ompa
t notation to be employed in writing the varian
e in the lagrangianfun
tionÆL =Xa Z dx1Æ��a(1)[ĥ(1)�a(1) +Xb f(Ĵb(1)� K̂b(1))�a(1)� "ba�b(1)g℄ + 
omplex 
onjugate = 0:(99)Like before, the part in bra
kets is for
ed to be zero, sin
e Æ��a(1) 
an be anything. Setting itequal to zero and rearranging to make it look like some sort of eigenvalue equation yields[ĥ(1) +Xb (Ĵb(1)� K̂b(1))℄�a(1) = Xb "ba�b(1) (100)f(1)�a(1) =Xb "ba�b(1) (101)17



These are the glorious Hartree{Fo
k equations derived in general in the spin orbital basis. Butwait { there's a problem. These are 
oupled integro{di�erential equations, and while they are notstri
tly unsolvable, they're a pain. It would be ni
e to at least un
ouple them, so let's do that.If we apply a unitary rotation to the full set of spin orbitals, generating a new set�0a =Xb �bUba (102)whereU is unitary, ie. Uy = U�1, what 
hanges? The rotation 
an be written as a matrix produ
t,if we de�ne A as the matrix resembling the slater determinant for the system, ie. (N !)�1=2 det(A)= j	0i. In that 
ase, det(A0) = det(A) det(U) (103)However, sin
e this matrix U is unitary, j det(U)j2 = 1, det(U) = ei� and the new wavefun
tiondi�ers from the old by a phase fa
tor, a�e
ting nothing observable. How does it a�e
t f(1) and"ba? Xa Ĵ 0a(1) = Xa Z dx2�0�a (2)r�112 �0a(2) (104)= Xa Z dx2Xb U�ba��b(2)r�112 X
 U
a�
(1) (105)= Xb
 (Xa U�baU
a) Z dx2��b(2)r�112 �
(2) (106)= Xb
 Æb
 Z dx2��b(2)r�112 �
(2) =Xb Ĵb(1) (107)Xa K̂ 0a(1)�0d(1) = Xa Z dx2�0�a (2)r�112 �0d(2)�0a(1) (108)= Xa Z dx2Xb U�ba��b(2)r�112 �d(2)0X
 U
a�
(1) (109)= Xb
 (Xa U�baU
a) Z dx2��b(2)r�112 �d(2)0�
(1) (110)= Xb
 Æb
 Z dx2��b(2)r�112 �d(2)0�
(1) =Xb K̂b(1)�0d(1) (111)So f(1)0 = f(1)! How about "ba? Start by realizing that "ba are matrix elements of the fo
koperator. h�
jf j�ai =Xb "bah�
j�bi (112)18



= "
a (113)"0ab = Z dx1�0�a f(1)�0b(1) (114)= X
d U�
aUdb"
d (115)= Uy"U (116)This last result 
an be written as a martix produ
t as well, and it is seen that this is now aunitary transformation to the matrix ". We are free to 
hoose U to be whatever we please, and ifwe 
hoose it to make " diagonal, we 
an rewrite the Hartree{Fo
k equations asf j�ai = "aj�ai: (117)When this is done, the resulting spin orbitals are termed the Hartree{Fo
k 
anoni
al orbitals. Readse
tion 3.3 in Szabo and Ostlund for various fun things to do with the Hartree{Fo
k equations.The problem still remains, though. These are integro{di�erential equations, whi
h 
omputers(and 
omputer programmers) balk at. That is why Roothaan is a HERO! Through his results,we 
an transform these into a set of matrix formulated algebrai
 equations that 
omputers andprogrammers dig. The general 
ase is too troublesome for now, so let's limit ourselves to 
losedshell, RHF orbitals. To take advantage of the simpli�
ations this 
an a�ord, we need to return tothe spatial orbital basis. We've derived the spin orbital based Fo
k operatorf(x1) = ĥ(x1) + NXa (Ĵa(x1)� K̂a(x1)): (118)Without further ado, we'll introdu
e the spatial orbital based Fo
k operator and be done with it.f(r1) = ĥ(r1) + N=2Xa (2Ĵa(r1)� K̂a(r1) (119)Ĵb(r1) = Z dr2j b(r2)j2r�112 (120)K̂b(r1) a(r1) = Z dr2 �b (r2)r�112  a(r2) b(1) (121)With the properties f(r1) j(r1) = "j j(r1) (122)"i = hii + N=2Xb 2Jib �Kib (123)19



Now we introdu
e a basis set expansion to bring the HF integro{di�erential equations to soluablealgebrai
 equations. Letting  i = P�Ci���,f(1)X� Ci��� = "iX� Ci��� (124)Multiplying by ���(1) and integrating over ele
tron 1 givesX� Ci� Z dr1���(1)f(1)��(1) = "iX� Ci� Z dr1���(1)��(1): (125)Identifying the integrals as matrix elements of the fo
k operator and the unit operator (overlap)respe
tively, X� F��Ci� = "iX� S��Ci� (126)Using the fa
t that " is diagonal, this 
an be written as the matrix produ
tFC = SC" (127)So what is F, this so 
alled Fo
k Matrix? We've de�ned F�� before as the matrix element of theone ele
tron fo
k operator, f(1) in equation 119. Writing out this integral and expanding,F�� = Z dr1���(1)f(1)��(1)= Z dr1���(1)[h(1) +Xa (2Ĵa(1)� K̂a(1))℄��(1)= Z dr1���(1)h(1)��(1) +Xa [2 Z dr1���(1)Ĵa(1)��(1)� Z dr1���(1)K̂a(1)��(1)℄ (128)= h�� +Xa 2(��jaa)� (�aja�)= h�� +Xa [X�� Ca�Ca�2(��j��)� (��j��)℄= h�� +X�� (Xa Ca�Ca�)[2(��j��)� (��j��)℄= h�� +X�� D��[2(��j��)� (��j��)℄ (129)This is a quantity whi
h 
an be easily 
onstru
ted given a set of mole
ular orbitals (the 
oeÆ
ientsCa�) and a pre
al
ulated set of atomi
 orbital integrals. At this point, the Hartree{Fo
k equationshave been redu
ed to a matrix eigenve
tor problem, FC = SC", but not in a 
omputationally
onvenient form. Following the analysis leading to equation 84, we �rst de�ne the transformedFo
k matrix as Ft = S�1=2FS�1=2: (130)20



We 
an then take Ft(S1=2C) = (S1=2C)" (131)to be equivalent to equation 127. Sin
e " is diagonal by 
hoi
e, diagonalizing the transformed Fo
kmatrix gives a set of transformed mole
ular orbital 
oeÆ
ients, Cy = S1=2C. The matrix S1=2C
an be ba
k transformed to give the true MO 
oeÆ
ient matrix, C. The density matrix for these
oeÆ
ients is formed by the produ
t D = CyC, and 
an subsequently be used to 
onstru
t a newfo
k matrix via equation 129. Sin
e the overlap matrix S does not depend on the MO 
oeÆ
ients,the same unitary transformation 
an be applied to the new fo
k matrix to give a new transformedfo
k matrix. This 
an be diagonalized to produ
e new MO 
oeÆ
ients, and the pro
ess repeateduntil 
onvergan
e. As an initial guess for the fo
k matrix, one generally uses the 
ore hamiltonian,ignoring all the two ele
tron integrals.F 1�� = H�� = Z ���(�r2i +XA ZAriA )�� (132)From the 
ore hamiltonian, an initialC is obtained and a mu
h improved Fo
k matrix 
an be builtin
luding the two ele
tron integrals. And that's about it for the Hartree{Fo
k Self Consistent FieldMethod. These last few pages will be the most important when you get around to programmingthe 
losed shell SCF method for the spe
i�
 
ase of water, as you will be given the integrals in a�le, and you 
an begin the pro
ess by building the 
ore hamiltonian as des
ribed above.
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