Basic Maple Commands

Command	Description
1. General Commands and Conventions	
```\(f(a)\) \% (previously: ") cursor on name, click on help settime \(:=\) time (); expression; time () - settime; \(a:=\) expression; \(a^{\wedge} n\); sqrt(a); evalf(expression, \(n\) ); \(\operatorname{evalb}(a=b)\); \(a[n]\); plot(expression, \(x=a . . b)\); plot3d(expr, \(x=a . . b, y=c . . d)\); \(f:=x->\) expr \(f:=[x, y, \ldots]->\) expr \(a:=\operatorname{proc}(x, y) \operatorname{local} z, w ; \ldots ; e n d ;\)```	evaluating a function $f$ at $a$; e.g. $\sin (P i)$ command end/result displayed   " "/result not displayed   output of previous line   help for name   to get elapsed time for computing an expression   assignment   $n$-th power of $a$   the (exact) square root of $a$   numerical value of expression to $n$-digit accuracy   logical comparison (gives true or false)   $n$-th element of list $a$   2-dim plot of expression for $x$ between $a$ and $b$   3-dim plot of expr for $x$ between $a$ and $b$ and $y$ between $c$ and $d$   definition of a one-variable function $f(x)$   definition of multi-variable function $f(x, y, \ldots)$   definition of subroutine $a$
2. Elementary Number Theory	
```iquo(a,b); or floor(a/b); irem}(a,b); or modp(a,b) frac(x); igcd(a,b); igcdex (a,b,' 'x',' y'); x;y; ithprime(n); isprime(n); ifactor(n); a&^nmodm; or Power (a,n) modm;```	integral part of the quotient $a / b$ remainder of division of $a$ by $b$ the fractional part of $x$ the gcd of $a$ and $b$ the extended gcd to extract the values of the above extended gcd the $n$-th prime number test whether or not $n$ is prime (gives true or false) factor $n$ into its prime factors compute $a^{n} \bmod m$ efficiently

mpl-1

Command	Description
3. Sets and Lists: Basic Structure	
$\begin{aligned} & s:=\{1,2,3,4,5\} ; \\ & a:=[1,2,3,4,5] ; \\ & s:=\{\operatorname{seq}(f, i=1 . .5)\} ; \\ & a:=[\operatorname{seq}(f, i=1 . .5)] ; \\ & \text { nops }(a) ; \\ & a[i] \\ & {[a[i . . j]] \text { or }[\text { op }(i . . j, a)]} \\ & \text { select }(k->k<m \text { or } k>n, a) ; \\ & \text { member }(e, a) ; \\ & \text { member }\left(e, a,,^{\prime} p^{\prime}\right) ; p ; \\ & \text { type }(s, \text { set }) ; \\ & \text { type }(a, l i s t) ; \end{aligned}$	defines a set s : an unordered sequence of elements defines a list a : an ordered sequence of elements create the set s consisting of the elements $f(1), \ldots$, $f(5)$; here f is an expression (depending on i) create the list a consisting of the elements $f(1), \ldots$, $f(5)$; here f is an expression (depending on i) the number of elements in list a the ith element of the list a the list consisting of elements i through j (inclusive) list a with elements m through n dropped test whether e occurs in list a (true or false) the position(s) at which e occurs in a check whether s is a set (has type "set"); gives true or false check whether s is a list (has type "list"); gives true or false
4. Operations on Sets and Lists	
```\(s:=\operatorname{convert}(a\), set \() ;\) \(a:=\operatorname{convert}(s\), list \()\); \(s\) union \(t\); or 'union' \((s, t, \ldots)\) \(s\) intersect \(t\); \(s\) minus \(t\) \([o p(a), o p(b), \ldots]\) \(a:=[e, o p(a)] ;\) \(a:=[o p(a), e] ;\) \(a:=\operatorname{subsop}(i=e, a)\); \(a:=\operatorname{subsop}(i=N U L L, a) ;\) \([a[1 . . n-1], e, a[n . . n o p s(a)] ;\) sort (a); [select(bool, a)]; \(\operatorname{map}(f, a)\);```	convert a list to a set convert a set to a list combine sets $s, t, \ldots$, removing repeated elements intersection of sets $s$ and $t$   the set of elements which are in $s$ but not in $t$ concatenate (join) the lists $a, b, \ldots$ add element $e$ at the beginning of list $a$ add element $e$ at the end of list $a$ replace the $i$ th element of the list $a$ by $e$ delete $i$ th element from list $a$ insert $e$ at position $n$ in list $a$ sort the elements of list $a$ (into a standard order) list consisting of the elements of $a$ for which the boolean-valued function bool is true apply the function $f$ to each element of the list $a$

mpl-2

Command	Description
5. Character Strings	
```str \(:=\) "This is a string"; length(str); substring(str,m..n); \([\operatorname{seq}(\) substring \((s t r, k . . k), k=1 .\). length(str)] searchtext(st, str) \(s 1 . s 2 \ldots\) or \(\operatorname{cat}(s 1, s 2, \ldots)\) convert(expr, string); type(str, string)```	defining a character string the number of characters in a string extract a substring from string str starting with the $m$ th and ending with the $n$th character give the list of characters in a string   find the place where st occurs in string str join the strings $s 1, s 2, \ldots$ together convert an expression to a string (textual form) check whether str is a string (true or false)
6. Boolean expressions	
$\begin{aligned} & b:=\text { true } ; b:=\text { false; } \\ & =,<>,<,<=,>,>= \\ & \text { and, or, not } \\ & \text { evalb(bool) } \\ & \text { type(b, boolean) } \end{aligned}$	assigning true/false to the variable b relation operators (equal, not equal, less than, etc.); can be used to form boolean expressions logical operators (\rightarrow boolean expressions) evaluate the boolean expression bool (gives true or false) check whether b is a boolean expression (true or false)
7. Looping control	
for i to m do; expr; od; for i from n to m by s do; expr; od; while test do; expr; od; for i from n to m by s while test do; expr; od; RETURN(expr)	evaluate expr repeatedly with i varying from 1 to m in steps of 1 evaluate expr repeatedly with i varying from n to m in steps of s evaluate expr until test becomes false evaluate expr repeatedly with i varying from n to m in steps of s as long as test is true (explicit) return from a subroutine, assigning the value expr to the subroutine
8. Conditionals	
if test then statmt fi; if test then statmt ${ }_{1}$ else statmt ${ }_{2}$ fi;	execute the statement (sequence) statmt only if test is true execute the statement (sequence) statm $_{1}$ if test is true, otherwise execute statmt $_{2}$

mpl-3

Command	Description
9. Complex Numbers	
$\begin{aligned} & z:=x+y * I ; \\ & \text { abs(expr); } \\ & \text { argument(expr) } \\ & \text { Re(expr);Im(expr); } \\ & \text { conjugate(expr); } \\ & \text { evalc(expr) } \\ & \text { convert(expr,polar) } \\ & \text { type(expr,complex) } \end{aligned}$	defining a complex number the absolute value of expr the argument of expr the real and imaginary part of expr the complex conjugate of expr evaluating an expression (as a complex number) convert expr to its polar form check that expr has type "complex"
10. Polynomials	
```\(f:=x^{\wedge} n+a_{1} * x^{\wedge}(n-1)+\ldots ;\) type \((f\), polynom \((\) integer,\(x))\) degree \((f, x)\) \(\operatorname{coeff}(f, x, n)\) \(\operatorname{coeffs}(f, x)\) lcoeff \((f, x)\) tcoeff \((f, x)\) collect \((f, x)\) expand(expr) \(\operatorname{sort}(f)\) \(\operatorname{subs}(x=a, f)\) \(\operatorname{Eval}(f, x=a) \bmod p ;\) \(f \bmod n\); \(q u o(f, g, x) ; \operatorname{rem}(f, g, x) ;\) \(\operatorname{gcd}(f, g, x)\) \(\operatorname{gcd}\left(f, g, x,{ }^{\prime} s^{\prime}, t^{\prime}\right)\) factor \((f)\) Factor \((f) \bmod p\) roots \((f)\) \(\operatorname{interp}(x, y, t)\)```	defining a polynomial $f=f(x)$ (assuming that $x$ has no value)   check that $f$ is an integer polynomial in $x$ degree of $f$ in $x$   extract the coefficient of $x^{n}$ in $f$   list of coefficients of $f(x)$   the leading (highest) coefficient of $f(x)$   the constant (trailing) coefficient of $f(x)$   collect all coefficients of $f$ which have the same powers in $x$   distribute products over sums   sort into decreasing order   evaluate $f(x)$ at $x=a$   evaluate $f(x)(\bmod p)$ at $x=a$   reduce the coefficients of $f$ modulo $n$   the quotient and remainder of division of $f$ by $g$ (viewed as polynomials in $x$ )   the greatest common divisor of $f(x)$ and $g(x)$   the extended Euclidean algorithm of $f(x)$ and $g(x)$; i.e. $s, t$ satisfy $f * s+g * t=g:=\operatorname{gcd}(f, g)$   factor $f$ into its irreducible factors   factor $f$ modulo $p$   find the rational roots of $f$   The Lagrange Interpolation polynomial

mpl-4

