Algorithm 2DBOUNDEDLP(H, \vec{c}, m_1, m_2) Input. A linear program $(H \cup \{m_1, m_2\}, \vec{c})$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^2$, and m_1, m_2 bound the solution. *Output.* If $(H \cup \{m_1, m_2\}, \vec{c})$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported. Let v_0 be the corner of C_0 . 1. **Chapter 4** Let h_1, \ldots, h_n be the half-planes of H. 2. AR PROGRAMMING for $i \leftarrow 1$ to n3. 4. **do if** $v_{i-1} \in h_i$ 5. then $v_i \leftarrow v_{i-1}$ else $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{e}}(p)$, subject to the 6. constraints in H_{i-1} . if p does not exist 7. then Report that the linear program is infeasible and quit. 8. 9. return v_n **Algorithm** 2DRANDOMIZEDBOUNDEDLP(H, \vec{c}, m_1, m_2) *Input.* A linear program $(H \cup \{m_1, m_2\}, \vec{c})$, where *H* is a set of *n* half-planes, $\vec{c} \in \mathbb{R}^2$, and m_1, m_2 bound the solution. *Output.* If $(H \cup \{m_1, m_2\}, \vec{c})$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported. 1. Let v_0 be the corner of C_0 . 2. Compute a random permutation h_1, \ldots, h_n of the half-planes by calling RANDOMPERMUTATION($H[1 \cdots n]$). 3. for $i \leftarrow 1$ to n4. **do if** $v_{i-1} \in h_i$ 5. then $v_i \leftarrow v_{i-1}$ 6. else $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1} . 7. if p does not exist 8. then Report that the linear program is infeasible and quit. 9. return v_n