Problem solving seminar I

1. Let T be a linear transformation of a vector space V into itself. Suppose that $v \in V$ is such that $T^{m} v=0, T^{m-1} v \neq 0$ for some positive integer m. Show that $v, T v, T^{2} v, \ldots, T^{m-1} v$ are linearly independent.
2. Let A be an $n \times n$ matrix over a field \mathbb{K}. Prove that

$$
\operatorname{rank} A^{2}-\operatorname{rank} A^{3} \leq \operatorname{rank} A-\operatorname{rank} A^{2}
$$

3. (a) Prove that there is no continuous function from the closed interval $[0,1]$ onto the open interval $(0,1)$.
(b) Find a continuous surjective function from the open interval $(0,1)$ onto the closed interval $[0,1]$.
(c) Prove that no map from (b) is bijective.
4. Compute the 100th derivation of the function

$$
\frac{x^{2}+1}{x^{3}-x} .
$$

5. Suppose that f is a continuous real function with period 1 . Show that there is a real number x_{0} such that

$$
f\left(x_{0}+\pi\right)=f\left(x_{0}\right) .
$$

Homework I. Find the limit

$$
\lim _{x \rightarrow 0} \frac{\sin \tan x-\tan \sin x}{\arcsin \arctan x-\arctan \arcsin x} .
$$

