Problem solving seminar II

6. Let the real valued function f be defined in an open interval about the point a on the real line and be differentiable at a. Prove that if $\left(x_{n}\right)$ is an increasing sequence and $\left(y_{n}\right)$ is a decreasing sequence in the domain of f, and both sequences converge to a, then

$$
\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}=f^{\prime}(a) .
$$

7. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be distinct real numbers. Show that the n exponential functions $e^{\alpha_{1} t}, e^{\alpha_{2} t}, \ldots, e^{\alpha_{n} t}$ are linearly independent over the real numbers.
8. Let A and B be $n \times n$ complex unitary matrices. Prove that

$$
|\operatorname{det}(A+B)| \leq 2^{n} .
$$

9. Suppose that f is continuous real valued function. Show that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(\xi)
$$

for some $\xi \in[0,1]$.
Homework II. Does every positive polynomial in two variables take its minimum in the plane?

