Problem solving seminar III

10. Suppose that f_{n} is a sequence of nondecreasing functions which map the unit interval into itself. Suppose that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

pointwise and that f is continuous function. Prove that $f_{n}(x) \rightarrow f(x)$ uniformly as $n \rightarrow \infty, 0 \leq x \leq 1$. Note that the functions f_{n} are not necessarily continuous.
11. Let G be a group and H a subgroup of index $n<\infty$. Prove or disprove the following statements:
(A) If $a \in G$, then $a^{n} \in H$.
(B) If $a \in G$, then there is $k, 1 \leq k \leq n$ such that $a^{k} \in H$.
12. Let A be an $n \times n$ matrix and A^{t} its transpose. Show that $A^{t} A$ and A^{t} have the same rank.
13. Let $X \subset \mathbb{R}^{n}$ be compact and let $f: X \rightarrow \mathbb{R}$ be continuous. Given $\varepsilon>0$, show that there is M such that for all $x, y \in X$

$$
|f(x)-f(y)| \leq M| | x-y \|+\varepsilon .
$$

