Problem solving seminar V

17. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable with $f(0)=0$. Prove that

$$
\sup _{0 \leq x \leq 1}|f(x)| \leq \sqrt{\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x}
$$

18. Prove or supply a counterexample: If f is a nondecreasing real valued function on $[0,1]$, then there is a sequence $\left\{f_{n}\right\}$ of continuous functions on $[0,1]$ such that for each $x \in[0,1]$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) .
$$

19. Let G be a group of order 10 which has a normal subgroup of order 2. Prove that G is abelian.
20. Let G be a group and H and K subgroups such that H has a finite index in G. Prove that $K \cap H$ has a finite index in K.
